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Abstract. A method has been developed to reconstruct 3D surfaces
from two orthogonal X-ray projections. A 3D geometrical prior model,
composed of triangulated surfaces, is deformed according to contours seg-
mented from projection images. The contours are segmented by a new
method based on free-form deformation. First, virtual X-ray images of
the prior model are constructed by simulating real X-ray imaging. There-
after, the contours segmented from the virtual projections are elastically
matched with patient data. Next, the produced 2D vectors are back-
projected onto the surface of the prior model and the prior model is
deformed using the back-projected vectors with shape-based interpola-
tion. The accuracy of the method is validated by a data set containing
20 cases. The method is applied to reconstruct thorax and lung surfaces.
The average matching error is about 1.2 voxels, corresponding to 5 mm.

1 Introduction

Modern medical imaging devices produce detailed 3D volume images. However,
these imaging modalities are not always available. Hence, a method to recon-
struct individualized 3D information using only two approximately orthogonal
X-ray projections was developed. In this paper, the method is demonstrated
with two applications: creation of patient specific thorax models and reconstruc-
tion of lung volumes from the X-ray projections. Patient-specific thorax models
are needed in magnetocardiographic (MCG) and electrocardiographic (ECQ)
forward and inverse problems [1].

Terzopoulos et al. [2] presented a method to recover the 3D shape from 2D
profiles of an object using a deformable tube coupled to a deformable spine. The
deformation was controlled by physically based intrinsic and extrinsic forces.
Bardinet et al. [3] proposed a method to match a parametric deformable model
to unstructured 3D data. First, they matched a superquadric model to a given
point set. Second, the generated superquadric model was deformed locally by
a free-form deformation (FFD) [4] using a 3D deformation grid. Because of the
parametric model and the regularization, the method can be used to model
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sparse data. Several other methods exist to create a 3D surface from a set of
3D points [5, 6]. However, the application of these methods to projection images
has not been reported. Laurentini has discussed theoretical limitations of surface
reconstruction from 2D silhouettes [7].

Our method differs considerably from the methods referred above. In gen-
eral, the detailed 3D reconstruction of the geometry is not possible using only
information from two orthogonal projections. We introduce a method based on
3D elastic deformation of a geometric prior model. First, the contours, created
from the prior model by simulating real X-ray imaging conditions, are elastically
matched with the contours extracted from real projections. The segmentation
method proposed in this paper produces elastic matching between the contours
automatically. Second, the generated 2D-vector field is back-projected onto the
3D surface of the model. Finally, the deformation of the prior model is accom-
plished by shape-based interpolation utilizing the back-projected 3D vectors.

2 Segmentation

The segmentation is based on our previous work [8]. The most important differ-
ence is the definition of the prior model. Compared to magnetic resonance (MR)
images, edges are smoother and more difficult to define in X-ray projections.
Therefore, distance maps, calculated from binarized edges in MR data and used
to attract the prior model surfaces in 3D or contours in 2D, can not be easily
utilized with X-ray images. In this paper, the prior model is an X-ray image
similar to the one to be segmented but taken from a different patient (Fig. 1).
The prior model is a representative of mean anatomy. The model is matched
with the input image using the FFD in such a way that the similarity between
two images is maximized. Since the model is pre-segmented, the segmentation
of the input image is automatically produced. Therefore, even very weak edges
can be correctly localized because they appear in same positions both in the
input image and in the prior model. In practice, we matched the gradient im-
ages calculated by the Canny-operator (Fig. 1) [9] because they are less sensitive
to the contrast and brightness differences than the original X-ray images. The
matching error Fg,:, between the model and data is defined by
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Eiata = — GP(z;,y;) — GM|]? 1
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where the function G (z, y) is the gradient image of input data, GM is a gradient
vector from the gradient image of the prior model, and Ng is the total number of
these vectors. The function G (z,y) is evaluated at the position (x;,v;) of the
gradient GM. The symbol || || denotes vector norm. It is worth noting that the
function G (z,y) and the gradients GM remain constant during deformation.
Only the position (x;,y;) of each model gradient is varying.

The minimization of Eg,4, does not guarantee that the prior knowledge of the
model shape is preserved. Therefore, deformation is regularized. The changes in



Fig. 1. On the left: The prior model (up) and corresponding gradient image (bottom,),
showing only the magnitude of the gradient. On the right: the multiresolution and the
global-to-local approach. The deformed prior model contour and a deformation grid are
superimposed onto the input data.

the normal directions of the contour points, defined by the pre-segmented model,
are restricted. The energy FE,,,q4¢ is calculated as follows

1 &

Emodel = N_C;(]--O_nl -Il;), (2)
where N¢ is the total number of contour points in the model, n; and n; are
the deformed and the original normals of the contour point [, respectively, and -
stands for the dot product. Other regularization terms, such as curvature based
measures, could be also used [8].

The total energy FEiotq is defined by

Etotal = Edata + 'YEmodel: (3)

where 7 is a parameter to control the balance between the two energy compo-
nents.

The FFD is controlled by a deformation grid. The relation between the dis-
placements of the grid points and the points of the prior model were defined by
bilinear interpolation.

Since distance maps are not used, the minimization process is more sensitive
to local minima. Two different methods were chosen to improve robustness:

1. The multiresolution approach is used, i.e. the matching is started at a low
resolution level and followed by increasing resolution during the process. The
method is a trade off between computation time and convergence towards



the global minimum. The multiresolution approach is visualized by vertical
arrows in Fig. 1.

2. The global-to-local approach is used, i.e. more degrees of freedom are added
to the model during deformation. First, input data and the prior model
are coarsely registered. In this paper, this is accomplished by matching the
centers of mass when the mass of each pixel is the magnitude of the gradient
(the first image on the right side of Fig.1). Next, the prior model is deformed
by a grid size of 3 x 3. When a minimum is found, the number of grid points
is increased. In practice, only one grid point is added in both directions at
each step until the specified grid size is reached. The highest grid size used
depends on the geometric details needed. A grid size of 10x 10 is usually large
enough for thorax images. After reaching the highest grid size the resolution
level is changed. The global-to-local approach is demonstrated by horizontal
arrows in Fig. 1.

Local rigidity constraints can be easily added to the prior model. One coef-
ficient can be attached to each prior model vector in Eq. 1. Similar effects with
lower computation time can be achieved by locally reducing the number of prior
model gradients (Eq. 1). Local rigidity is increased at areas where the model
does not represent data well. Moreover, rigidity can be set higher at areas where
the gradients are nearly constant in order to reduce computation time.

3 Reconstruction of the 3D geometry

3.1 Prior model

The prior model should be a good representation of the object to be modeled.
Cootes et al. [10] and Székely et al. [11] propose 3D models which represent
mean shapes in a statistical sense. Moreover, the models are deformed using
deformation modes, which are statistically defined using a training set. In our
approach, a prior model library was constructed from MR data of ten different
subjects. The geometric prior models (Fig. 2a) were built by triangulating the
segmented MR volumes [12].

Fig. 2. a) The prior model. b) Real (left) and virtual (right) X-ray projections.



The matching between real data and the prior model can not be accomplished
straightforwardly, because the X-ray projections are in 2D and the model in 3D.
Therefore, virtual projections are produced from the model by simulating X-ray
imaging conditions, i.e. the orthogonal side and frontal views are generated. The
distances from the film to the X-ray source and to a patient correspond to the
values used in clinical practice. The X-ray source is regarded as a point because
the blurring effect is less than one millimeter. Noise is added to the signal. The
imaging process has been simplified in two ways: 1) The radiation is monochro-
matic, 2) The bone structures were excluded because CT images covering the
whole thorax were not available for this study. Despite these simplifications, the
virtual X-ray images correspond visually well to real images (Fig. 2b). Since the
surfaces of the body and lungs are to be reconstructed, the effect of the excluded
ribs is not important.

3.2 Sparse vector field

The contours extracted from real and virtual X-ray projections are matched
elastically. The segmentation method automatically gives a 2D displacement
vector V. for each contour point of the virtual X-ray image (Fig. 3a).

(a) (b)
Fig. 3. a) Displacement vectors of the contour points produced by segmentation. b) The
positions of the back-projected contour points on the surface of the 3D prior model.

Thereafter, each vector is back-projected onto the surface of the 3D prior
model. A ray is cast from each contour point towards the X-ray source. The
closest surface points, to which the ray is tangential, are selected and denoted
by pg. Because of parallax effect, the symmetry of the thorax has to be taken
into account separately. Next, the vector V, is back-projected onto the plane,
which is orthogonal to the ray going through the point p; and which contains
the point pi. The end-points of the vector V|, are projected separately. The
projection is accomplished by the ray from the point to be projected to the X-
ray source. The effect of parallax effect to the length of the projected vector is
automatically considered. Back-projection leads to a sparse 3D vector field. In
Fig. 3b, the apex points of the triangles represent the positions py.



3.3 Dense vector field

To deform the prior model, the displacement vectors have to be defined for each
node of the model p; (Fig. 2a). Each displacement vector v} is a weighted sum
of the back-projected vectors vi. Only the vectors vy located close to the node
p; affect the vector v;. We consider a geodesic distance between the points,
computed on the model surface. This is similar to the so-called natural neighbor
coordinate used in the computational geometry and geological modeling. The
geodesic closeness is defined using the Voronoi areas on the surface for the all
points py and each prior model node p; separately [12]. The weights s, for each
vector vy, are calculated as follows:

1/dy
S e
where dj, is the geodesic distance from pj to p; on the model surface, and Ny,
is the number of neighboring Voronoi areas. For non-neighboring Voronoi areas
weights s, are zero. The benefit in using geodesic distances is that in some
geometries the model nodes may be close to each others according to Euclidean
measures, although they are on different sides of the surface.

Linear interpolation gives optimal results if the surface between the back-
projected vectors is well represented by a plane. However, this approximation is
not valid for some large triangles in Fig. 3b. Therefore, a heuristic interpolation
method was developed tending to preserve the normal direction of the prior
model surface. A 2D example of shape based interpolation is shown in Fig. 4a.
The thick black line describes the known model surface; v, and v are back-
projected vectors. A displacement vector on the dashed line is defined as follows.
1) Search a point pf in such a way that the angle between the lines, defined by
points pf and py, and plS and pg+1, is /2. 2) These lines are moved according
to the displacement vectors vy and vj41. The cross-section point of the displaced
lines is calculated resulting in the vector v’. 3) The displacement vector for the
point plL is calculated by linear interpolation between the vectors v and vi1.
4) The displacement vector between the points pf and plL is defined by linear
interpolation with the corresponding vectors, otherwise the vector vlS is used.

In general, the prior shape can not be preserved in 3D but an approximation
is used (Fig. 4b). The lines in 2D correspond to planes in 3D. The definition of
the planes to define the vector v{’ can not be directly transformed to 3D. Instead,
the orientation of the plane is defined in 3D by the following two vectors: 1) the
vector from the point pg + v, to the point pg41 + viy1 and 2) the vector from
the point (py + Pr+1)/2 to the point py.

(4)

S =

4 Results

4.1 Segmentation

Segmented thorax X-ray images are shown in Fig. 5. The 7 factor was 1000 and
the lowest resolution 32 x 32. Overall, the results are visually good. Usually,



Fig. 5. A segmentation result of thoraz images.

only small interactive corrections are needed. The computation time was about
10 seconds using a Sun UltralQ workstation.

4.2 Extraction of 3D surfaces

The accuracy of the reconstruction method was tested by a simulation. Virtual
X-ray projections were created from 20 segmented MR volumes. The result-
ing X-ray images were segmented and the prior model was deformed. The re-
sults were compared to the original volumes. The size of the volumes was about
128x128x100 voxels with a voxel size 3.9 mm. The matching error is defined as
the shortest Euclidean distance from each model node to the surface in the MR,
volume.

Ten different prior models were tested. The model that produced the smallest
average error was selected out of 20 patients. The results are shown in Table 1a.
The error corresponds to about 5 mm. If linear interpolation was used instead of
shape based interpolation, the error would be about 5% higher. Fig. 6 shows the
deformed model superimposed onto the segmented MR volume in the best case
(patient 20, T=1.03, LL=0.93, LR=0.90 voxels) and in the worst case (patient
15, T=1.25,LL=1.8, LR=1.21 voxels). The overall match is good, except for the
left lung in Fig. 6b. In general, the highest matching error is concentrated on the
areas where the distance to the nearest back-projected vector is high. The time
to create the deformed model from the contours is less than one second with a
Sun Ultral0 workstation.



Two simple matching methods were used for comparison: 1) The centers of
mass of the contours were matched, 2) The contours were affine registered. The
results using these simple matching methods and the elastic deformation method
presented in this paper are represented in Table 1b. The column 'Mean’ is the
mean error for the thorax and lungs of all 20 patients (20 patients and 3 objects
leading to 60 measures). The columns 'Min’ and 'Max’ represent the lowest and
the highest value out of 60 matching errors.

Object|Error|Stdev|Max Method|Mean|Min|Max
T 1.22 1091 |54 Mass | 2.81 |1.47|6.60
LL |1.19|0.91 | 4.8 Affine | 1.61 [0.96(3.01
LR |1.21|0.90 | 4.6 Elastic | 1.21 |0.85[1.80

Table 1. a) Mean error (N=20), standard deviation and mazimum error (in vozels)
for thoraz (T), left lung (LL) and right lung (LR). b) Mean, minimum and mazimum
matching errors of 20 patients using different matching methods.
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Fig. 6. A deformed model superimposed onto MR images in the best case (top) and in
the worst case (bottom,).

The effect of the error in imaging geometry was tested. An error of 3 cm in
the position of the X-ray source increased the matching error maximally by 10%.

4.3 Extraction of 3D volume

The same simulation data set was used as in the previous section to define the
volume of lungs from projections. The model producing the lowest error was
chosen. The average error for right and left lungs were 5% and 7%, respectively.
The maximum error was 14% and the minimum error less than 1%.

4.4 Thorax library

A method was developed and tested to choose the best model from the prior
model library to be used with each separate patient. The idea was to test if the
shape of 2D contours in X-ray images has a relation to the 3D shape of the areas
far from the back-projected vectors. For example, if a model library contains
two models, a cube and a ball, and the 2D contours are circles, the ball-shaped
model should be chosen better.



Altogether 90 parameters were calculated from the contours in both direc-
tions. These parameters include harmonic coefficients up to the 10th order, dif-
ferent moments, lengths and the area of the object. The differences between the
parameters of each model and patient data were calculated. Moreover, several
other parameters were defined, such as an error after affine registration. Each
model was matched with a data set of 15 different patients and the error was
calculated. Thereafter, a linear regression analysis was applied to find out the
best linear model to calculate the matching error between a model and a patient
using the parameters defined from X-ray images. The best prior model for a
patient is the one which gives the lowest matching error using the linear model.
The goodness of the model was tested with the data set of 15 patients, and also
with a set of 5 patients who were not included in the regression analysis.

If the model giving the lowest error was correctly chosen, the average error
in 3D surface reconstruction for thorax, left lung and right lung would be 1.10
voxels. The corresponding value for the model producing the lowest average error
was 1.21, as reported above. This means that the error would be about 10% lower
in the optimal case. When the linear model was applied, the results for a data
set used to create the model was about 2% lower and for the whole data set 1%
higher than with the lowest average error model. Thereby, the statistical model
is not able to choose the best model from the library with given contours.

5 Discussion

A method was proposed to deform a 3D geometric prior model based on X-ray
projections of a patient. The 3D model generated does not describe the anatomy
of the patient as well as a model extracted, for example, from MR images, but is
a good trade off between accuracy and cost. The accuracy of the elastic matching
is superior to affine registration tested. The absolute value of the error was 1.21
voxels using 128 x 128 x 100 volumes. So far, it is not known what is the correlation
between the geometric error of the model and the accuracy of MCG/ECG source
localization.

The segmentation method developed is robust and fast. Moreover, the con-
struction of the prior model is easy because only one X-ray image with segmented
contours is needed. So far, we have applied the method to thorax images. How-
ever, to validate the method, it should also be tested with other types of X-ray
images.

The pose, the size and the orientation of the prior model should approxi-
mately correspond to the patient data. Otherwise, the model has to be coarsely
registered with the patient data. If the variability of the shape in the patient
data is large, the coarse registration does not solve the problem. Therefore, we
used a thorax library to select the best model. However, the shape parameters
of the 2D contours did not contain enough information to choose the best model
from the library. The analysis should be continued by using intensity information
of X-ray images with the shape parameters. Another approach would be to use
a statistical mean model and to deform it using statistically defined deformation



modes. After deformation the model should follow the positions defined by the
back-projected vectors.

The accuracy of the 3D reconstruction method could be improved by using
more than two X-ray projections. However, the improvement of the geometric
accuracy compared to the extra dose captured by a patient should be validated.
Moreover, a calibration system to produce X-ray images in specific angles should
be used.

Besides of the described applications, the method can be used to create pa-
tient specific 3D heart models from fluoroscopic images. These models can be
fused to the body surface potential mapping system used in a catheterization
laboratory. The method could be also applied in registration of 3D images with
2D projections or as an initialization in model based segmentation.
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