
Automatic Reconstruction of 3D GeometryUsing Projections and a Geometric Prior ModelJ. L�otj�onen1;2;3, I. E. Magnin2, L. Reinhardt1;3, J. Nenonen1;3, and T. Katila1;31 Laboratory of Biomedical Engineering, Helsinki University of Technology, P.O.B.2200, FIN-02015 HUT, FinlandfJyrki.Lotjonen, Lutz.Reinhardt, Jukka.Nenonen, Toivo.Katilag@hut.fi2 Creatis, INSA 502, 69621 Villeurbanne Cedex, FranceIsabelle.Magnin@creatis.insa-lyon.fr3 BioMag Laboratory, Helsinki University Central Hospital, P.O.B. 503, FIN-00029HYKS, FinlandAbstract. A method has been developed to reconstruct 3D surfacesfrom two orthogonal X-ray projections. A 3D geometrical prior model,composed of triangulated surfaces, is deformed according to contours seg-mented from projection images. The contours are segmented by a newmethod based on free-form deformation. First, virtual X-ray images ofthe prior model are constructed by simulating real X-ray imaging. There-after, the contours segmented from the virtual projections are elasticallymatched with patient data. Next, the produced 2D vectors are back-projected onto the surface of the prior model and the prior model isdeformed using the back-projected vectors with shape-based interpola-tion. The accuracy of the method is validated by a data set containing20 cases. The method is applied to reconstruct thorax and lung surfaces.The average matching error is about 1:2 voxels, corresponding to 5 mm.1 IntroductionModern medical imaging devices produce detailed 3D volume images. However,these imaging modalities are not always available. Hence, a method to recon-struct individualized 3D information using only two approximately orthogonalX-ray projections was developed. In this paper, the method is demonstratedwith two applications: creation of patient speci�c thorax models and reconstruc-tion of lung volumes from the X-ray projections. Patient-speci�c thorax modelsare needed in magnetocardiographic (MCG) and electrocardiographic (ECG)forward and inverse problems [1].Terzopoulos et al. [2] presented a method to recover the 3D shape from 2Dpro�les of an object using a deformable tube coupled to a deformable spine. Thedeformation was controlled by physically based intrinsic and extrinsic forces.Bardinet et al. [3] proposed a method to match a parametric deformable modelto unstructured 3D data. First, they matched a superquadric model to a givenpoint set. Second, the generated superquadric model was deformed locally bya free-form deformation (FFD) [4] using a 3D deformation grid. Because of theparametric model and the regularization, the method can be used to model
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sparse data. Several other methods exist to create a 3D surface from a set of3D points [5, 6]. However, the application of these methods to projection imageshas not been reported. Laurentini has discussed theoretical limitations of surfacereconstruction from 2D silhouettes [7].Our method di�ers considerably from the methods referred above. In gen-eral, the detailed 3D reconstruction of the geometry is not possible using onlyinformation from two orthogonal projections. We introduce a method based on3D elastic deformation of a geometric prior model. First, the contours, createdfrom the prior model by simulating real X-ray imaging conditions, are elasticallymatched with the contours extracted from real projections. The segmentationmethod proposed in this paper produces elastic matching between the contoursautomatically. Second, the generated 2D-vector �eld is back-projected onto the3D surface of the model. Finally, the deformation of the prior model is accom-plished by shape-based interpolation utilizing the back-projected 3D vectors.2 SegmentationThe segmentation is based on our previous work [8]. The most important di�er-ence is the de�nition of the prior model. Compared to magnetic resonance (MR)images, edges are smoother and more di�cult to de�ne in X-ray projections.Therefore, distance maps, calculated from binarized edges in MR data and usedto attract the prior model surfaces in 3D or contours in 2D, can not be easilyutilized with X-ray images. In this paper, the prior model is an X-ray imagesimilar to the one to be segmented but taken from a di�erent patient (Fig. 1).The prior model is a representative of mean anatomy. The model is matchedwith the input image using the FFD in such a way that the similarity betweentwo images is maximized. Since the model is pre-segmented, the segmentationof the input image is automatically produced. Therefore, even very weak edgescan be correctly localized because they appear in same positions both in theinput image and in the prior model. In practice, we matched the gradient im-ages calculated by the Canny-operator (Fig. 1) [9] because they are less sensitiveto the contrast and brightness di�erences than the original X-ray images. Thematching error Edata between the model and data is de�ned byEdata = 1NG NGXi=1 kGD(xi; yi)�GMi k2; (1)where the functionGD(x; y) is the gradient image of input data,GMi is a gradientvector from the gradient image of the prior model, and NG is the total number ofthese vectors. The function GD(x; y) is evaluated at the position (xi; yi) of thegradient GMi . The symbol k k denotes vector norm. It is worth noting that thefunction GD(x; y) and the gradients GMi remain constant during deformation.Only the position (xi; yi) of each model gradient is varying.The minimization of Edata does not guarantee that the prior knowledge of themodel shape is preserved. Therefore, deformation is regularized. The changes in



Fig. 1. On the left: The prior model (up) and corresponding gradient image (bottom),showing only the magnitude of the gradient. On the right: the multiresolution and theglobal-to-local approach. The deformed prior model contour and a deformation grid aresuperimposed onto the input data.the normal directions of the contour points, de�ned by the pre-segmented model,are restricted. The energy Emodel is calculated as followsEmodel = 1NC NCXl=1(1:0� nl � n�l ); (2)where NC is the total number of contour points in the model, nl and n�l arethe deformed and the original normals of the contour point l, respectively, and �stands for the dot product. Other regularization terms, such as curvature basedmeasures, could be also used [8].The total energy Etotal is de�ned byEtotal = Edata + 
Emodel; (3)where 
 is a parameter to control the balance between the two energy compo-nents.The FFD is controlled by a deformation grid. The relation between the dis-placements of the grid points and the points of the prior model were de�ned bybilinear interpolation.Since distance maps are not used, the minimization process is more sensitiveto local minima. Two di�erent methods were chosen to improve robustness:1. The multiresolution approach is used, i.e. the matching is started at a lowresolution level and followed by increasing resolution during the process. Themethod is a trade o� between computation time and convergence towards



the global minimum. The multiresolution approach is visualized by verticalarrows in Fig. 1.2. The global-to-local approach is used, i.e. more degrees of freedom are addedto the model during deformation. First, input data and the prior modelare coarsely registered. In this paper, this is accomplished by matching thecenters of mass when the mass of each pixel is the magnitude of the gradient(the �rst image on the right side of Fig.1). Next, the prior model is deformedby a grid size of 3� 3. When a minimum is found, the number of grid pointsis increased. In practice, only one grid point is added in both directions ateach step until the speci�ed grid size is reached. The highest grid size useddepends on the geometric details needed. A grid size of 10�10 is usually largeenough for thorax images. After reaching the highest grid size the resolutionlevel is changed. The global-to-local approach is demonstrated by horizontalarrows in Fig. 1.Local rigidity constraints can be easily added to the prior model. One coef-�cient can be attached to each prior model vector in Eq. 1. Similar e�ects withlower computation time can be achieved by locally reducing the number of priormodel gradients (Eq. 1). Local rigidity is increased at areas where the modeldoes not represent data well. Moreover, rigidity can be set higher at areas wherethe gradients are nearly constant in order to reduce computation time.3 Reconstruction of the 3D geometry3.1 Prior modelThe prior model should be a good representation of the object to be modeled.Cootes et al. [10] and Sz�ekely et al. [11] propose 3D models which representmean shapes in a statistical sense. Moreover, the models are deformed usingdeformation modes, which are statistically de�ned using a training set. In ourapproach, a prior model library was constructed from MR data of ten di�erentsubjects. The geometric prior models (Fig. 2a) were built by triangulating thesegmented MR volumes [12].
(a) (b)Fig. 2. a) The prior model. b) Real (left) and virtual (right) X-ray projections.



The matching between real data and the prior model can not be accomplishedstraightforwardly, because the X-ray projections are in 2D and the model in 3D.Therefore, virtual projections are produced from the model by simulating X-rayimaging conditions, i.e. the orthogonal side and frontal views are generated. Thedistances from the �lm to the X-ray source and to a patient correspond to thevalues used in clinical practice. The X-ray source is regarded as a point becausethe blurring e�ect is less than one millimeter. Noise is added to the signal. Theimaging process has been simpli�ed in two ways: 1) The radiation is monochro-matic, 2) The bone structures were excluded because CT images covering thewhole thorax were not available for this study. Despite these simpli�cations, thevirtual X-ray images correspond visually well to real images (Fig. 2b). Since thesurfaces of the body and lungs are to be reconstructed, the e�ect of the excludedribs is not important.3.2 Sparse vector �eldThe contours extracted from real and virtual X-ray projections are matchedelastically. The segmentation method automatically gives a 2D displacementvector Vk for each contour point of the virtual X-ray image (Fig. 3a).
(a) (b)Fig. 3. a) Displacement vectors of the contour points produced by segmentation. b) Thepositions of the back-projected contour points on the surface of the 3D prior model.Thereafter, each vector is back-projected onto the surface of the 3D priormodel. A ray is cast from each contour point towards the X-ray source. Theclosest surface points, to which the ray is tangential, are selected and denotedby pk. Because of parallax e�ect, the symmetry of the thorax has to be takeninto account separately. Next, the vector Vk is back-projected onto the plane,which is orthogonal to the ray going through the point pk and which containsthe point pk. The end-points of the vector Vk are projected separately. Theprojection is accomplished by the ray from the point to be projected to the X-ray source. The e�ect of parallax e�ect to the length of the projected vector isautomatically considered. Back-projection leads to a sparse 3D vector �eld. InFig. 3b, the apex points of the triangles represent the positions pk.



3.3 Dense vector �eldTo deform the prior model, the displacement vectors have to be de�ned for eachnode of the model p�l (Fig. 2a). Each displacement vector v�l is a weighted sumof the back-projected vectors vk. Only the vectors vk located close to the nodep�l a�ect the vector v�l . We consider a geodesic distance between the points,computed on the model surface. This is similar to the so-called natural neighborcoordinate used in the computational geometry and geological modeling. Thegeodesic closeness is de�ned using the Voronoi areas on the surface for the allpoints pk and each prior model node p�l separately [12]. The weights sk for eachvector vk are calculated as follows:sk = 1=dkPNnbm=1 1=dm ; (4)where dk is the geodesic distance from pk to p�l on the model surface, and Nnbis the number of neighboring Voronoi areas. For non-neighboring Voronoi areasweights sk are zero. The bene�t in using geodesic distances is that in somegeometries the model nodes may be close to each others according to Euclideanmeasures, although they are on di�erent sides of the surface.Linear interpolation gives optimal results if the surface between the back-projected vectors is well represented by a plane. However, this approximation isnot valid for some large triangles in Fig. 3b. Therefore, a heuristic interpolationmethod was developed tending to preserve the normal direction of the priormodel surface. A 2D example of shape based interpolation is shown in Fig. 4a.The thick black line describes the known model surface; vk and vk+1 are back-projected vectors. A displacement vector on the dashed line is de�ned as follows.1) Search a point pSl in such a way that the angle between the lines, de�ned bypoints pSl and pk, and pSl and pk+1, is �=2. 2) These lines are moved accordingto the displacement vectors vk and vk+1. The cross-section point of the displacedlines is calculated resulting in the vector vSl . 3) The displacement vector for thepoint pLl is calculated by linear interpolation between the vectors vk and vk+1.4) The displacement vector between the points pSl and pLl is de�ned by linearinterpolation with the corresponding vectors, otherwise the vector vSl is used.In general, the prior shape can not be preserved in 3D but an approximationis used (Fig. 4b). The lines in 2D correspond to planes in 3D. The de�nition ofthe planes to de�ne the vector vSl can not be directly transformed to 3D. Instead,the orientation of the plane is de�ned in 3D by the following two vectors: 1) thevector from the point pk + vk to the point pk+1 + vk+1 and 2) the vector fromthe point (pk + pk+1)=2 to the point pSl .4 Results4.1 SegmentationSegmented thorax X-ray images are shown in Fig. 5. The 
 factor was 1000 andthe lowest resolution 32 � 32. Overall, the results are visually good. Usually,
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(a) (b)Fig. 4. Shape-based interpolation in 2D and in 3D.
Fig. 5. A segmentation result of thorax images.only small interactive corrections are needed. The computation time was about10 seconds using a Sun Ultra10 workstation.4.2 Extraction of 3D surfacesThe accuracy of the reconstruction method was tested by a simulation. VirtualX-ray projections were created from 20 segmented MR volumes. The result-ing X-ray images were segmented and the prior model was deformed. The re-sults were compared to the original volumes. The size of the volumes was about128x128x100 voxels with a voxel size 3:9 mm. The matching error is de�ned asthe shortest Euclidean distance from each model node to the surface in the MRvolume.Ten di�erent prior models were tested. The model that produced the smallestaverage error was selected out of 20 patients. The results are shown in Table 1a.The error corresponds to about 5 mm. If linear interpolation was used instead ofshape based interpolation, the error would be about 5% higher. Fig. 6 shows thedeformed model superimposed onto the segmented MR volume in the best case(patient 20, T=1.03, LL=0.93, LR=0.90 voxels) and in the worst case (patient15, T=1.25,LL=1.8, LR=1.21 voxels). The overall match is good, except for theleft lung in Fig. 6b. In general, the highest matching error is concentrated on theareas where the distance to the nearest back-projected vector is high. The timeto create the deformed model from the contours is less than one second with aSun Ultra10 workstation.



Two simple matching methods were used for comparison: 1) The centers ofmass of the contours were matched, 2) The contours were a�ne registered. Theresults using these simple matching methods and the elastic deformation methodpresented in this paper are represented in Table 1b. The column 'Mean' is themean error for the thorax and lungs of all 20 patients (20 patients and 3 objectsleading to 60 measures). The columns 'Min' and 'Max' represent the lowest andthe highest value out of 60 matching errors.Object Error Stdev MaxT 1.22 0.91 5.4LL 1.19 0.91 4.8LR 1.21 0.90 4.6 Method Mean Min MaxMass 2.81 1.47 6.60A�ne 1.61 0.96 3.01Elastic 1.21 0.85 1.80Table 1. a) Mean error (N=20), standard deviation and maximum error (in voxels)for thorax (T), left lung (LL) and right lung (LR). b) Mean, minimum and maximummatching errors of 20 patients using di�erent matching methods.
Fig. 6. A deformed model superimposed onto MR images in the best case (top) and inthe worst case (bottom).The e�ect of the error in imaging geometry was tested. An error of 3 cm inthe position of the X-ray source increased the matching error maximally by 10%.4.3 Extraction of 3D volumeThe same simulation data set was used as in the previous section to de�ne thevolume of lungs from projections. The model producing the lowest error waschosen. The average error for right and left lungs were 5% and 7%, respectively.The maximum error was 14% and the minimum error less than 1%.4.4 Thorax libraryA method was developed and tested to choose the best model from the priormodel library to be used with each separate patient. The idea was to test if theshape of 2D contours in X-ray images has a relation to the 3D shape of the areasfar from the back-projected vectors. For example, if a model library containstwo models, a cube and a ball, and the 2D contours are circles, the ball-shapedmodel should be chosen better.



Altogether 90 parameters were calculated from the contours in both direc-tions. These parameters include harmonic coe�cients up to the 10th order, dif-ferent moments, lengths and the area of the object. The di�erences between theparameters of each model and patient data were calculated. Moreover, severalother parameters were de�ned, such as an error after a�ne registration. Eachmodel was matched with a data set of 15 di�erent patients and the error wascalculated. Thereafter, a linear regression analysis was applied to �nd out thebest linear model to calculate the matching error between a model and a patientusing the parameters de�ned from X-ray images. The best prior model for apatient is the one which gives the lowest matching error using the linear model.The goodness of the model was tested with the data set of 15 patients, and alsowith a set of 5 patients who were not included in the regression analysis.If the model giving the lowest error was correctly chosen, the average errorin 3D surface reconstruction for thorax, left lung and right lung would be 1:10voxels. The corresponding value for the model producing the lowest average errorwas 1:21, as reported above. This means that the error would be about 10% lowerin the optimal case. When the linear model was applied, the results for a dataset used to create the model was about 2% lower and for the whole data set 1%higher than with the lowest average error model. Thereby, the statistical modelis not able to choose the best model from the library with given contours.5 DiscussionA method was proposed to deform a 3D geometric prior model based on X-rayprojections of a patient. The 3D model generated does not describe the anatomyof the patient as well as a model extracted, for example, from MR images, but isa good trade o� between accuracy and cost. The accuracy of the elastic matchingis superior to a�ne registration tested. The absolute value of the error was 1:21voxels using 128�128�100 volumes. So far, it is not known what is the correlationbetween the geometric error of the model and the accuracy of MCG/ECG sourcelocalization.The segmentation method developed is robust and fast. Moreover, the con-struction of the prior model is easy because only one X-ray image with segmentedcontours is needed. So far, we have applied the method to thorax images. How-ever, to validate the method, it should also be tested with other types of X-rayimages.The pose, the size and the orientation of the prior model should approxi-mately correspond to the patient data. Otherwise, the model has to be coarselyregistered with the patient data. If the variability of the shape in the patientdata is large, the coarse registration does not solve the problem. Therefore, weused a thorax library to select the best model. However, the shape parametersof the 2D contours did not contain enough information to choose the best modelfrom the library. The analysis should be continued by using intensity informationof X-ray images with the shape parameters. Another approach would be to usea statistical mean model and to deform it using statistically de�ned deformation



modes. After deformation the model should follow the positions de�ned by theback-projected vectors.The accuracy of the 3D reconstruction method could be improved by usingmore than two X-ray projections. However, the improvement of the geometricaccuracy compared to the extra dose captured by a patient should be validated.Moreover, a calibration system to produce X-ray images in speci�c angles shouldbe used.Besides of the described applications, the method can be used to create pa-tient speci�c 3D heart models from 
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