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Abstract

Machine learning is a subdiscipline in the field of artificial intelligence, which
focuses on algorithms capable of adapting their parameters based on a set of
observed data, by optimizing an objective or cost function. Machine learning
has been the subject of large interest in the biomedical community because
it can improve sensitivity and/or specificity of detection and diagnosis of any
disease, while increasing the objectivity of the decision-making process. With
the late increase in volume and complexity of medical data being collected, there
is a clear need for applying machine learning algorithms in multi-parametric
analysis for new detection and diagnostic modalities.

Biomedical imaging is becoming indispensable for healthcare, as multiple
modalities, such as Magnetic Resonance Imaging (MRI), Computed Tomography,
and Positron Emission Tomography, are being increasingly used in both research
and clinical settings. The non-invasive standard for brain imaging is MRI, as
it can provide structural and functional brain maps with high resolution, all
within acceptable scanning times. However, with the increase of MRI data
volume and complexity, it is becoming more time consuming and difficult for
clinicians to integrate all data and make accurate decisions.

The aim of this thesis is to develop machine learning methods for automated
preprocessing and diagnosis of abnormal brain tissues, in particular for the follow-
up of glioblastoma multiforme (GBM) and multiple sclerosis (MS). Current
conventional MRI (cMRI) techniques are very useful in detecting the main
features of brain tumours and MS lesions, such as size and location, but are
insufficient in specifying the grade or evolution of the disease. Therefore,
the acquisition of advanced MRI, such as perfusion weighted imaging (PWI),
diffusion kurtosis imaging (DKI), and magnetic resonance spectroscopic imaging
(MRSI), is necessary to provide complementary information such as blood
flow, tissue organisation, and metabolism, induced by pathological changes. In
the GBM experiments our aim is to discriminate and predict the evolution of
patients treated with standard radiochemotherapy and immunotherapy based
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vi ABSTRACT

on conventional and advanced MRI data. In the MS experiments our aim is
to discriminate between healthy subjects and MS patients, as well as between
different MS forms, based only on clinical and MRSI data.

As a first experiment in GBM follow-up, only advanced MRI parameters were
explored on a relatively small subset of patients. Average PWI parameters
computed on manually delineated regions of interest (ROI) were found to
be perfect biomarkers for predicting GBM evolution one month prior to the
clinicians.

In a second experiment in GBM follow-up of a larger subset of patients, MRSI
was replaced by cMRI, while PWI and DKI parameter quantification was
automated. Feature extraction was done on semi-manual tumour delineations,
thereby reducing the time put by the clinician for manual delineating the
contrast enhancing (CE) ROI. Learning a modified boosting algorithm on
features extracted from semi-manual ROIs was shown to provide very high
accuracy results for GBM diagnosis.

In a third experiment in GBM follow-up of an extended subset of patients, a
modified version of parametric response maps (PRM) was proposed to take into
account the most likely infiltration area of the tumour, reducing even further
the time a clinician would have to put for manual delineating the tumour,
because all subsequent MRI scans were registered to the first one. Two types of
computing PRM were compared, one based on cMRI and one based on PWI,
as features extracted with these two modalities were the best in discriminating
the GBM evolution, according to results from the previous two experiments.
Results obtained within this last GBM analysis showed that using PRM based
on cMRI is clearly superior to using PRM based on PWI.

As a first experiment in MS follow-up, machine learning algorithms for
binary classification problems were tuned on multiple types of data, such
as metabolic features, clinical data (e.g. patient age, disease age), and lesion
load. Classification results for discriminating healthy control subjects from MS
patients were not satisfactory, even though statistically significant differences
between the two groups were observed. Classification results for discriminating
between different MS forms based only on MRSI features were moderate, while
high classification results were found only when incorporating clinical data.

A second experiment was done in order to extract higher level MRSI features
and used state of the art machine learning algorithms, such as convolutional
neural networks, but results obtained with more complex classifiers did not
outperform the ones obtained with classical algorithms trained on more simple
MRSI features.



Beknopte samenvatting

Machine learning is een onderdeel van de studie naar artificiele intelligentie
dat zich richt op het aanpassen van parameters in algoritmen (gebaseerd op
verkregen data) om een functie te optimaliseren. Binnen de biomedische
wetenschappen hebben machine learning methoden grote interesse verworven
omdat deze de sensitivieteit en/of specificiteit van diagnoses in ziektes verbeteren
en tegelijkertijd de objectiviteit van deze beslissingen verhogen.

Biomedische beeldvorming is van groot belang in de gezondheidszorg aangezien
meerdere methoden, zoals bijvoorbeeld magnetische resonantie imaging (MRI),
computertomografie en positron emissie tomografie in toenemende mate worden
gebruikt voor onderzoek en klinische diagnosen. MRI is op dit moment de
standaard voor niet-invasieve hersenbeeldvorming omdat het structurele en
functionele hersenbeelden met hoge resolutie biedt met aanvaardbare scantijden.
Echter, door het toenemen van de hoeveelheid MRI data en complexiteit kost
het de clinici steeds meer tijd en expertise om deze data te interpreteren om
correcte medische beslissingen te maken.

Het doel van dit proefschrift is het ontwikkelen van machinale leermethoden
voor geautomatiseerde preprocessing en diagnose van abnormale hersenweefsels,
met name voor het opvolgen van glioblastoma multiforme (GBM) en multiple
sclerose (MS). Huidige conventionele MRI (cMRI) technieken zijn zeer nuttig
bij het opsporen van de belangrijkste kenmerken van hersentumoren en MS-
letsels, zoals grootte en locatie, maar zijn onvoldoende om de graad of evolutie
van de ziekte te specificeren. Daarom is de acquisitie van geavanceerde MRI,
zoals perfusiegewogen beeldvorming (PWI), diffusie kurtosis imaging (DKI),
en magnetische resonantie spectroscopische beeldvorming (MRSI) nodig om
complementaire informatie te verschaffen zoals bloedstroom, weefselorganisatie
en metabolisme, die kenmerkend zijn voor pathologische veranderingen. In de
GBM experimenten is het ons doel om de evolutie van patiënten te voorspellen
en onderscheid te maken tussen de patiënten die behandeld worden met
standaard radiochemotherapie en immunotherapie op basis van conventionele en
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geavanceerde MRI data. In de MS-experimenten is het ons doel om onscheid te
maken tussen gezonde personen en MS-patiënten, evenals tussen verschillende
MS-vormen, beiden uitsluitend op basis van klinische en MRSI-gegevens.

In het eerste experiment voor GBM-follow-up werden alleen geavanceerde MRI-
parameters onderzocht op een relatief kleine subset van patiënten. Gemiddelde
PWI parameters berekend op manuele aflijningen van ‘regio’s van belangstelling’
(ROI) bleken perfecte biomarkers te zijn voor het voorspellen van GBM evolutie
een maand eerder dan de clinici.

In een tweede experiment met een grotere deelgroep patiënten voor GBM-
follow-up werd MRSI vervangen door cMRI en de PWI en DKI parameter
kwantificering werd geautomatiseerd. Kenmerk-extractie werd gedaan op basis
van semi-manuele tumoraflijningen, waardoor de tijd die de clinicus nodig
heeft voor manuele aflijning van het contrastverhoging (CE) ROI korter wordt.
Hoge classificatie nauwkeurigheid werd aangetoond op basis van een aangepast
boosting-algoritme, toegepast op kenmerken die uit semi-manuele ROI’s werden
geëxtraheerd.

In een derde experiment voor GBM-follow-up met een uitgebreide subset van
patiënten werd een gewijzigde versie van parametrische responsbeelden (PRM)
voorgesteld om rekening te houden met het meest waarschijnlijke infiltratiegebied
van de tumor. Door alle daaropvolgende MRI-scans te refereren aan de eerste,
zou de tijd die een clinicus doorbrengt met manuele aflijningen nog verder dalen.
Twee PRM varianten werden vergeleken, één gebaseerd op cMRI en één op basis
van PWI, aangezien deze kenmerken de beste waren in de discriminatie van de
GBM evolutie. Zoals bleek uit de resultaten van de vorige twee experimenten.
Resultaten laten zien dat het gebruik van PRM op basis van cMRI duidelijk
beter is dan het gebruik van PRM op basis van PWI.

Als eerste experiment voor MS-follow-up werden machine learning algoritmes
voor binaire classificatieproblemen afgestemd op meerdere soorten data zoals:
metabolische kenmerken, klinische data (bijvoorbeeld patiënt leeftijd, ziekte
leeftijd) en laesie volume. Classificatie tussen gezonde subjecten en MS patiënten
waren niet bevredigend, alhoewel er wel statistisch significante verschillen tussen
de twee groepen werden waargenomen. Classificatie tussen verschillende MS
vormen gebaseerd op MRSI kenmerken waren redelijk, terwijl hoge classificatie
resultaten alleen gevonden zijn bij het gebruiken van klinische gegevens.

Een tweede experiment werd uitgevoerd om diepere informatie uit de MRSI
te halen en state-of-the-art machine learning methoden, zoals convolutionele
neurale netwerken, te gebruiken. De resultaten die werden verkregen met
deze complexere classifiers waren niet beter dan die verkregen met klassieke
algoritmen die werken met eenvoudigere MRSI kenmerken.



Résumé

«Machine Learning» est un champ d’étude de l’intelligence artificielle qui se
concentre sur des algorithmes capables d’adapter leur paramètres en se basant
sur les données observées par l’optimisation d’une fonction objective ou d’une
fonction de cout. Cette discipline a soulevé l’intérêt de la communauté de la
recherche biomédicale puisqu’elle permet d’améliorer la sensibilité et la spécificité
de la détection et du diagnostic de nombreuses pathologies tout en augmentant
l’objectivité dans le processus de prise de décision thérapeutique.

L’imagerie biomédicale est devenue indispensable en médecine, puisque
plusieurs modalités comme l’imagerie par résonance magnétique (IRM), la
tomodensitométrie et la tomographie par émission de positron sont de plus en
plus utilisées en recherche et en clinique. L’IRM est la technique d’imagerie
non-invasive de référence pour l’étude du cerveau humain puisqu’elle permet
dans un temps d’acquisition raisonnable d’obtenir à la fois des cartographies
structurelles et fonctionnelles avec une résolution spatiale élevée. Cependant,
avec l’augmentation du volume et de la complexité des données IRM, il devient
de plus en plus long et difficile pour le clinicien d’intégrer toutes les données
afin de prendre des décisions précises.

Le but de cette thèse est de développer des méthodes de « machine learning »
automatisées pour la détection de tissu cérébral anormal, en particulier dans le
cas de suivi de glioblastome multiforme (GBM) et de sclérose en plaques (SEP).
Les techniques d’IRM conventionnelles (IRMc) actuelles sont très utiles pour
détecter les principales caractéristiques des tumeurs cérébrales et les lésions
de SEP, telles que leur localisation et leur taille, mais ne sont pas suffisantes
pour spécifier le grade ou prédire l’évolution de la maladie. Ainsi, les techniques
d’IRM avancées, telles que l’imagerie de perfusion (PWI), de diffusion (DKI)
et la spectroscopie par résonance magnétique (SRM), sont nécessaires pour
apporter des informations complémentaires sur les variations du flux sanguin,
de l’organisation tissulaire et du métabolisme induits par la maladie.
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x RÉSUMÉ

Dans une première étude de suivi de patients GBM, seuls les paramètres d’IRM
avancés ont été explorés dans un relativement petit sous-groupe de patients. Les
paramètres de PWI moyens, mesurés dans les régions d’intérêts (ROI) délimités
manuellement, se sont avérés être d’excellents marqueurs, puisqu’ils permettent
de prédire l’évolution du GBM en moyenne un mois plus tôt que le clinicien.

Dans une seconde étude, réalisée sur un échantillon plus important que la
précédente, la SRM a été remplacée par l’IRMc et la quantification de la
PWI et du kurtosis de diffusion (DKI) a été réalisée de manière automatique.
L’extraction des paramètres d’imagerie a été effectuée sur des segmentations
semi-automatiques des tumeurs, réduisant ainsi le temps nécessaire au clinicien
pour la délimitation du ROI de la partie de la lésion rehaussée au produit
de contraste (CE-ROI). L’application d’un algorithme modifié de «boosting»
sur les paramètres extraits des ROIs a montré une grande précision pour le
diagnostic du GBM.

Dans une troisième, une version modifiée des cartes paramétriques de réponse
(PRM) est proposée pour prendre en compte la région d’infiltration de la tumeur,
réduisant toujours plus le temps nécessaire pour la délimitation de la tumeur
par le clinicien, puisque toutes les images IRM sont recalées sur la première.
Deux façons de générer les RPM ont été comparées, l’une basée sur l’IRMc
et l’autre basée sur la PWI, ces deux paramètres étant les meilleurs pour la
discrimination de l’évolution du GBM, comme le montrent les deux études
précédentes. Les résultats de cette étude montrent que l’emploi de PRM basés
sur l’IRMc permet d’obtenir des résultats supérieurs à ceux obtenus avec les
PRM basés sur la PWI.

Dans une première étude de suivi de patients SEP, des algorithmes de « machine
learning » permettant une classification binaire, ont été adaptés à différents
types de données, telles que les paramètres métaboliques, les données cliniques
(âge du patient, durée de la maladie, etc.) et la charge lésionnelle. Les résultats
de la classification pour la discrimination des patients SEP des sujets contrôles
n’étaient pas satisfaisants, bien que des différentes significatives soient observées
pour ces différents paramètres entre les deux groupes. Les résultats de la
classification pour la discrimination des différentes formes cliniques de la maladie,
basée sur les paramètres de MRS uniquement étaient modérés, bien que l’ajout
des données cliniques améliore considérablement ces résultats.

Une seconde étude a été réalisée pour extraire des paramètres de MRS de plus
haut niveau, utilisant les réseaux de neurones conventionnels. Les résultats
obtenus avec ces paramètres de MRS de haut niveau n’ont pas surpassé ceux
obtenus avec des algorithmes de classification classiques entrainés sur des
paramètres plus simples de MRS.



List of Abbreviations

AD Axial Diffusivity
ADC Apparent Diffusion Coefficient
AIF Arterial Input Function
AK Axial Kurtosis
ASL Arterial Spin Labelling
BAR Balanced Accuracy Rate
BBB Blood Brain Barrier
BER Balanced Error Rate
CBF Cerebral Blood Flow
CBV Cerebral Blood Volume
Cho Choline
CIS Clinically Isolated Syndrome
cMRI Conventional Magnetic Resonance Imaging
CNN Convolutional Neural Network
CNS Central Nervous System
Cre Creatine
CRLB Cramer-Rao Lower Bound
CSF Cerebro-Spinal Fluid
DCE-MRI Dynamic Contrast Enhanced Magnetic Reso-

nance Imaging
DKI Diffusion Kurtosis Magnetic Resonance Imaging
DSC-MRI Dynamic Susceptibility Contrast Magnetic

Resonance Imaging
DTI Diffusion Tensor Magnetic Resonance Imaging
DWI Diffusion Weighted Magnetic Resonance Imaging
EPI Echo Planar Imaging
FA Fractional Anisotropy
FLAIR FLuid-Attenuated Inversion Recovery
FOV Field Of View
GBM Glioblastoma Multiforme

xi



xii List of Abbreviations

GE Gradient Echo
Gln Glutamine
Glu Glutamate
Glx Glutamine+glutamate
Gly Glycine
Lac Lactate
LDA Linear Discriminant Analysis
Lip Lipids
LOPOCV Leave One Patient Out Cross Validation
MD Mean Diffusivity
mI myo-Inositol
MK Mean Kurtosis
MR Magnetic Resonance
MRI Magnetic Resonance Imaging
MRS proton Magnetic Resonance Spectroscopy
MRSI proton Magnetic Resonance Spectroscopic Imag-

ing
MS Multiple Sclerosis
MTT Mean Transit Time
NAA N-Acetyl-Aspartate
NAWM Normal Appearing White Matter
OS Overall Survival
PFS Progression Free Survival
PP Primary Progressive
PRESS Point RESolved Spectroscopy
PRM Parametric Response Map
PWI Perfusion-Weighted Magnetic Resonance Imag-

ing
RANO Response Assessment in Neuro-Oncology
RD Radial Diffusivity
RF Random Forest
RK Radial Kurtosis
ROI Region Of Interest
RR Relapsing Remitting
SE Spin Echo
SNR Signal to Noise Ratio
SP Secondary Progressive
STEAM STimulated Echo Acquisition Mode
SVM Support Vector Machines
SVS Single Voxel proton Magnetic Resonance Spec-

troscopy



LIST OF ABBREVIATIONS xiii

T1pc T1-weighted Magnetic Resonance Imaging post
contrast enhancing

TE Echo Time
TI Inversion Time
TNP True Negative Rate
TPR True Positive Rate
TR Repetition Time
VOI Volume Of Interest





Contents

Abstract v

List of Abbreviations xiii

Contents xv

List of Figures xxi

List of Tables xxvii

1 Introduction 1

1.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Support Vector Machines . . . . . . . . . . . . . . . . . 2

1.1.2 Random Forests . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.4 Cross-Validation and Performance measures . . . . . . . 10

1.2 Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . 12

1.2.1 Principles of MRI . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Conventional MRI . . . . . . . . . . . . . . . . . . . . . 16

1.2.3 Perfusion weighted MRI . . . . . . . . . . . . . . . . . . 19

1.2.4 Diffusion MRI . . . . . . . . . . . . . . . . . . . . . . . 22

xv



xvi CONTENTS

1.2.5 Magnetic Resonance Spectroscopic Imaging . . . . . . . 25

1.3 Glioblastoma Multiforme . . . . . . . . . . . . . . . . . . . . . 27

1.3.1 Glioblastoma Multiforme Overview . . . . . . . . . . . . 27

1.3.2 Advanced MRI in the post-operative GBM follow-up . . 28

1.3.3 UZ Leuven post-operative GBM dataset . . . . . . . . . 30

1.4 Multiple Sclerosis . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4.1 Multiple Sclerosis Overview . . . . . . . . . . . . . . . . 33

1.4.2 Advanced MRI in the longitudinal MS follow-up . . . . 35

1.4.3 AMSEP longitudinal dataset . . . . . . . . . . . . . . . 37

1.5 Objectives of the thesis and main contributions . . . . . . . . . 39

1.6 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 40

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2 Tumour relapse prediction using multi-parametric MR data recorded
during follow-up of GBM patients 43

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.1 Study setup . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.2 MRI acquisition and processing . . . . . . . . . . . . . . 45

2.2.3 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2.4 In-house imputation method . . . . . . . . . . . . . . . 50

2.2.5 Performance indices . . . . . . . . . . . . . . . . . . . . 51

2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



CONTENTS xvii

3 Classifying glioblastoma multiforme follow-up progressive vs. re-
sponsive forms using multi-parametric MRI features 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 Study setup . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.2 MRI acquisition and processing . . . . . . . . . . . . . . 62

3.2.3 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Classification of Recurrent Glioblastoma using modified Parametric
Response Maps of contrast-enhanced T1-weighted MRI and
Perfusion MRI 79

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 Patient population . . . . . . . . . . . . . . . . . . . . . 81

4.2.2 MRI acquisition and processing . . . . . . . . . . . . . . 81

4.2.3 MRI Co-registration . . . . . . . . . . . . . . . . . . . . 82

4.2.4 Feature extraction: Parameter Response Map . . . . . . 83

4.2.5 Feature selection: Minimum Redundancy Maximum
Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.6 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.7 Performance measures . . . . . . . . . . . . . . . . . . . 86

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



xviii CONTENTS

5 Machine learning approach for classifying Multiple Sclerosis courses
by combining clinical data with lesion loads and Magnetic Reso-
nance metabolic features 93

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.1 Patient population . . . . . . . . . . . . . . . . . . . . . 95

5.2.2 Longitudinal MS data . . . . . . . . . . . . . . . . . . . 95

5.2.3 MRI acquisition and processing . . . . . . . . . . . . . . 95

5.2.4 Feature extraction . . . . . . . . . . . . . . . . . . . . . 96

5.2.5 Training approach . . . . . . . . . . . . . . . . . . . . . 96

5.2.6 Performance measures and statistical testing . . . . . . 97

5.2.7 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 A comparison of Machine Learning approaches for classifying
Multiple Sclerosis courses using MRSI and brain segmentations 107

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.1 Patient population . . . . . . . . . . . . . . . . . . . . . 108

6.2.2 Magnetic Resonance data acquisition and processing . . 109

6.2.3 Classification tasks and performance measures . . . . . 109

6.2.4 Feature extraction models . . . . . . . . . . . . . . . . . 110

6.2.5 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Conclusions 115



CONTENTS xix

7.1 General conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 Future perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 117

A Appendix 119

Bibliography 137

Curriculum Vitae 163

List of publications 165





List of Figures

1.1 SVM: finding the best separation plane . . . . . . . . . . . . . 2

1.2 Random forests: majority voting. Figure adapted from [163]. . 5

1.3 Deep learning growth in the last years. Source: Nvidia website [107]. 5

1.4 Fully connected network with 2 hidden layers. Source: [164]. . . 6

1.5 Schematic representation of the neuron as it is used in neural
networks. Source: [122]. . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Activation functions: tanh (left) and ReLU (right). Source: [122]. 7

1.7 Convolution operation applied on an input image. Source: [87]. 8

1.8 Max-pooling. Source: [122]. . . . . . . . . . . . . . . . . . . . . 9

1.9 Dropout during a randomly selected training epoch of a fully
connected neural network with 2 hidden layers. Source: [213]. . 9

1.10 Dropout during training. Source: [213]. . . . . . . . . . . . . . . 10

1.11 Precessing spins in external field B0 form the Magnetization
vector M. Figure adapted from [197]. . . . . . . . . . . . . . . . 13

1.12 Radio-frequency pulse flips the magnetization in the transversal
x-y space. Figure adapted from [197]. . . . . . . . . . . . . . . 16

1.13 Envelope of the FID signal in the transversal space. On the x-axis
there is time, and on the y-axis there is the relative amplitude of
the transversal FID signal’s envelope. . . . . . . . . . . . . . . . 17

1.14 Envelope of the recovered signal in the z direction. On the x-axis
there is time, and on the y-axis there is the relative amplitude of
the recovered FID signal’s envelope in the z direction. . . . . . 18

xxi



xxii LIST OF FIGURES

1.15 Details of a spin-echo sequence. Figure adapted from [126]. . . 19

1.16 Details of a gradient-echo sequence. Figure adapted from [126]. 20

1.17 Perfusion MRI CBV quantification after correcting for contrast
agent leakage. Source: Cha et al., Radiology, 2002 [31] . . . . . . 21

1.18 Types of diffusion. Source: [154] . . . . . . . . . . . . . . . . . 22

1.19 Pulsed Gradient Spin Echo diffusion weighted acquisition
sequence. Figure adapted from [126]. . . . . . . . . . . . . . . . 23

1.20 Diffusion tensor. Figure adapted from [126]. . . . . . . . . . . . 24

1.21 MRS acquisition sequences: PRESS and STEAM, where MT is
the Mixing Time. Image adapted from [13]. . . . . . . . . . . . 26

1.22 Short and long TE MRS spectra (right and left columns) for a
healthy subject and a patient (top and bottom rows) suffering
from progressive multifocal leukoencephalopathy, scanned at 1.5
Tesla. Image adapted from [117]. . . . . . . . . . . . . . . . . . 27

1.23 Conventional MRI of a post-operative GBM patient. . . . . . . . 31

1.24 Post-operative GBM perfusion MRI parameter maps obtained
using the DSCoMAN plugin [18]. . . . . . . . . . . . . . . . . . 32

1.25 DKI parameter maps of a post-operative GBM patient. . . . . 33

1.26 Multiple Sclerosis global incidence. Source: [6]. . . . . . . . . . 34

1.27 Multiple Sclerosis disease progression. Source: [74]. . . . . . . . 35

1.28 MRSI grid (red) superimposed on T1pc of a Multiple Sclerosis
patient. From left to right: coronal, sagittal, and axial view. . . 38

1.29 Thesis outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.1 Brain tumour delineations on T1pc MRI. Green - necrosis, Red -
contrast enhancing region of interest, Blue - edema. . . . . . . . 46

3.1 Left - T1pc. Center - Manual delineations on top of T1pc. Right
- Semi-manual delineations on top of T1pc. In red there is the
contrast enhancing region (CER), while in blue it is the non-
enhancing region (NER). . . . . . . . . . . . . . . . . . . . . . . 63



LIST OF FIGURES xxiii

3.2 Example of co-registration results to T1pc for all multi-parametric
magnetic resonance maps. . . . . . . . . . . . . . . . . . . . . . 69

3.3 Rank estimates and confidence intervals for all combinations
of classifiers, delineations, and MR modalities. Intervals are
shown as horizontal lines, while rank estimates are in the middle
of the intervals. The highest ranked group has its interval
limited by two vertical dotted lines. Groups that are significantly
different than the highest ranked group have a filled diamond
marker in the middle of their interval, while groups that are
not significantly different than the highest ranked group have
an empty circular marker in the middle of their interval. Two
groups are significantly different if their intervals are disjoint;
they are not significantly different if their intervals overlap. Each
group has 10 BAR values, corresponding to 10 different features. 70

3.4 Rank estimates and confidence intervals for all combinations
of delineations and MR modalities. CER - contrast enhancing
region, NER - non-enhancing region. Intervals are shown as
horizontal lines, while rank estimates are in the middle of the
intervals. The highest ranked group has its interval limited
by two vertical dotted lines. Groups that are significantly
different than the highest ranked group have a filled diamond
marker in the middle of their interval, while groups that are
not significantly different than the highest ranked group have an
empty circular marker in the middle of their interval. Two groups
are significantly different if their intervals are disjoint; they are
not significantly different if their intervals overlap. Each group
has 70 BAR values, corresponding to 10 features and 7 classifiers. 71

3.5 Rank estimates and confidence intervals for all combinations of
delineations and classifiers. CER - contrast enhancing region,
NER - non-enhancing region. Intervals are shown as horizontal
lines, while rank estimates are in the middle of the intervals.
The highest ranked group has its interval limited by two vertical
dotted lines. Groups that are significantly different than the
highest ranked group have a filled diamond marker in the middle
of their interval, while groups that are not significantly different
than the highest ranked group have an empty circular marker
in the middle of their interval. Two groups are significantly
different if their intervals are disjoint; they are not significantly
different if their intervals overlap. Each group has 40 BAR values,
corresponding to 4 MR datasets and 10 features. . . . . . . . . 72



xxiv LIST OF FIGURES

3.6 Rank estimates and confidence intervals for all combinations of
delineations and varying number of features. CER - contrast
enhancing region, NER - non-enhancing region. Intervals are
shown as horizontal lines, while rank estimates are in the middle
of the intervals. The highest ranked group has its interval
limited by two vertical dotted lines. Groups that are significantly
different than the highest ranked group have a filled diamond
marker in the middle of their interval, while groups that are
not significantly different than the highest ranked group have
an empty circular marker in the middle of their interval. Two
groups are significantly different if their intervals are disjoint;
they are not significantly different if their intervals overlap. Each
group has 28 BAR values, corresponding to 4 MR datasets and
7 classifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.7 Maximum classification results over all MR modalities using 1 to
10 features. On y-axis are BAR values, and on x-axis the number
of features used for classification. BAR - balanced accuracy rate,
CER - contrast enhancing region, NER - non-enhancing region. 74

4.1 MRI Co-registration: on the top row there are baseline MRI
maps, while on the bottom one there are MRI maps from the
second time point. On both rows there are 5 columns, from left
to right: (1) T1pc, (2) Reunion of total tumour ROIs from all
time points (red) and NAWM ROI (blue) superimposed on T1pc,
(3) FLAIR, (4) CBV, (5) CBF. . . . . . . . . . . . . . . . . . . 83

4.2 Comparison of T1pc-PRM+ and CBV-PRM+. First row, left
corner: T1pc difference map between time point 2 and baseline,
white/dark limits are +0.14 and -0.14. First row, right corner:
T1pc-PRM+ on top of the T1pc difference map. Second row, left
corner: CBV difference map between time point 2 and baseline,
white/dark limits are +1.3 and -0.7. Second row, right corner:
CBV-PRM+ on top of the CBV difference map. PRM+ - positive
parametric response map. . . . . . . . . . . . . . . . . . . . . . 85

4.3 Area under the curve (AUC) values obtained by training SVM-lin
and SVM-rbf using conventional and perfusion MRI (cpMRI)
features extracted separately by the two positive parametric
response maps, T1pc-PRM+ and CBV-PRM+. Training of the
classifiers was done with an increasing number of features from
1 to 16, sorted using minimum-redundancy-maximum-relevance
(mRMR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



LIST OF FIGURES xxv

4.4 Area under the curve (AUC) values obtained by training SVM-
lin and SVM-rbf using only conventional MRI (cMRI) features
extracted separately by the two positive parametric response
maps, T1pc-PRM+ and CBV-PRM+. Training of the classifiers
was done with an increasing number of features from 1 to 8,
sorted using minimum-redundancy-maximum-relevance (mRMR). 88

4.5 Area under the curve (AUC) values obtained by training SVM-lin
and SVM-rbf using only perfusion MRI (PWI) features extracted
separately by the two positive parametric response maps, T1pc-
PRM+ and CBV-PRM+. Training of the classifiers was done
with an increasing number of features from 1 to 8, sorted using
minimum-redundancy-maximum-relevance (mRMR). . . . . . . 89

5.1 Box-plots of magnetic resonance metabolic features and lesion
loads extracted from healthy controls (HC) and multiple sclerosis
(MS) patients: A. NAA/Cho; B. NAA/Cre; C. Cho/Cre; D.
Lesion load (LL). The four MS groups are: CIS - clinically isolated
syndrome, RR - relapsing-remitting, PP - primary progressive,
SP - secondary progressive. . . . . . . . . . . . . . . . . . . . . 99

A.1 Classification results on CER & NER semi-manual delineations,
using 1 to 10 features assigned by rank products per each dataset.
On y-axis are BAR values, and on x-axis the number of features
used for classification. CER - contrast enhancing region, NER -
non-enhancing region. . . . . . . . . . . . . . . . . . . . . . . . 128

A.2 Classification results on Total manual delineations, using 1 to 10
features assigned by rank products per each dataset. On y-axis
are BAR values, and on x-axis the number of features used for
classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.3 Healthy Controls (HC) vs. Multiple Sclerosis (MS) groups in 2-D
feature space: x-axis is NAA/Cho and y-axis is NAA/Cre. The
four MS groups are: CIS - clinically isolated syndrome, RR -
relapsing-remitting, PP - primary progressive, SP - secondary
progressive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.4 Comparison of Multiple Sclerosis (MS) groups in 2-D feature
space: x-axis is NAA/Cho and y-axis is NAA/Cre. The four MS
groups are: CIS - clinically isolated syndrome, RR - relapsing-
remitting, PP - primary progressive, SP - secondary progressive. 133



xxvi LIST OF FIGURES

A.5 Comparison of Multiple Sclerosis (MS) groups in 2-D feature
space: x-axis is disease age and y-axis is Cho/Cre. The four MS
groups are: CIS - clinically isolated syndrome, RR - relapsing-
remitting, PP - primary progressive, SP - secondary progressive. 134

A.6 Comparison of Multiple Sclerosis (MS) groups in 2-D feature
space: x-axis is lesion load and y-axis is EDSS. The four MS
groups are: CIS - clinically isolated syndrome, RR - relapsing-
remitting, PP - primary progressive, SP - secondary progressive. 135



List of Tables

1.1 General binary confusion matrix. . . . . . . . . . . . . . . . . . 10

1.2 Typical relaxation times and water percentages of the most
important brain tissues at 1.5 Tesla. . . . . . . . . . . . . . . . 16

1.3 Patient population: Age - average value (standard deviation);
Disease duration - average value (standard deviation); EDSS
- median (minimum - maximum); Lesion Load - average value
(standard deviation). . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1 Supervised and semi-supervised classifiers tested in this chapter. 49

2.2 Detailed BER results for each time point when training the
best 6 classifiers on complete features for all MR modalities.
The decision (i.e. labelling) moment ‘L’ is highlighted. Some
time points do not have results because there were no complete
measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3 Detailed BER results for each time point for the best 6 classifiers
when trained on imputed data for all MR modalities. The decision
(i.e. labelling) moment ‘L’ is highlighted. . . . . . . . . . . . . . 54

2.4 Weighted BER for the best 6 supervised classifiers trained on
complete data for each MR modality separately. PWI and
DKI features were extracted from both CE and ED ROI. MRSI
features were extracted only from CE voxels. . . . . . . . . . . 54

2.5 Weighted BER for the best classifiers trained on imputed features
from each MR modality separately. PWI and DKI features
were extracted from both CE and ED ROI. MRSI features were
extracted only from CE voxels. . . . . . . . . . . . . . . . . . . 55

xxvii



xxviii LIST OF TABLES

2.6 Weighted BER comparison between our in-house method of
imputing missing values and built-in imputation strategy of
different supervised classifiers. . . . . . . . . . . . . . . . . . . . 55

5.1 Patient population: Age - average value (standard deviation);
Disease duration - average value (standard deviation); EDSS
- median (minimum - maximum); Lesion Load - average value
(standard deviation). The four multiple sclerosis (MS) groups
are: CIS - clinically isolated syndrome, RR - relapsing-remitting,
PP - primary progressive, SP - secondary progressive. . . . . . 95

5.2 Adjusted p-values for multiple comparisons between multiple
sclerosis (MS) groups modelled by linear mixed effects model,
tested using the “multcomp” package in ‘R’ (* for p < 0.05 and
** for p < 0.01). The four MS groups are: CIS - clinically isolated
syndrome, RR - relapsing-remitting, PP - primary progressive,
SP - secondary progressive. . . . . . . . . . . . . . . . . . . . . 99

5.3 F1-scores for all nine classification tasks (rows) after training
LDA using only metabolic ratios. Values above 75 are coloured
in light gray. HC - healthy controls, CIS - clinically isolated
syndrome, RR - relapsing-remitting, PP - primary progressive,
SP - secondary progressive. . . . . . . . . . . . . . . . . . . . . 100

5.4 F1-scores for classification tasks (columns) involving only multiple
sclerosis (MS) patients. Abbreviations: M = all three average
metabolic ratios; Age = patient age; DD = disease duration; LL
= lesion load; EDSS = Expanded Disability Status Scale. Values
between 75 and 79 are coloured in light gray, values between 80
and 84 are coloured in medium gray, while values larger than 85
are coloured in dark gray. CIS - clinically isolated syndrome, RR
- relapsing-remitting, PP - primary progressive, SP - secondary
progressive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1 Multiple sclerosis (MS) patient population details. CIS - clinically
isolated syndrome, RR - relapsing-remitting, PP - primary
progressive, SP - secondary progressive. . . . . . . . . . . . . . 108

6.2 Multiple sclerosis (MS) metabolite ratios - mean (standard
deviation). CIS - clinically isolated syndrome, RR - relapsing-
remitting, PP - primary progressive, SP - secondary progressive. 110



LIST OF TABLES xxix

6.3 Area under the curve (AUC), Sensitivity, and Specificity values
for all classifiers, feature extraction models (M1-M4), and
classification tasks. Dimensionality of the models: M1 - 81
(metabolic spectra), M2 - 3 (metabolic features), M3 - 6 (3
metabolic and 3 tissue percentages), M4 - CNN - input image
is 128×57. CIS - clinically isolated syndrome, RR - relapsing-
remitting, PP - primary progressive, SP - secondary progressive. 112

A.1 Weighted BER for supervised and semi-supervised classifiers
trained on complete and imputed data. We highlight the best 6
classifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.2 Detailed BER results for each time point for the best 6 supervised
classifiers when using the leave-one-patient-out method on
complete perfusion features. The decision (i.e. labelling) moment
‘L’ is highlighted. Some time points do not have results because
there were no complete perfusion measurements. . . . . . . . . . 121

A.3 Detailed BER results for each time point for the best 6 supervised
classifiers when using the leave-one-patient-out method on
complete diffusion features. The decision (i.e. labelling) moment
‘L’ is highlighted. Some time points do not have results because
there were no complete diffusion measurements. . . . . . . . . . 122

A.4 Detailed BER results for each time point for the best 6 supervised
classifiers when using the leave-one-patient-out method on
complete spectroscopy features. The decision (i.e. labelling)
moment ‘L’ is highlighted. Some time points do not have results
because there were no complete spectroscopy measurements. . . 123

A.5 Detailed BER results for each time point for the best 6 supervised
classifiers when using the leave-one-patient-out method on
imputed perfusion features. The decision (i.e. labelling) moment
‘L’ is highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.6 Detailed BER results for each time point for the best 6 supervised
classifiers when using the leave-one-patient-out method on
imputed diffusion features. The decision (i.e. labelling) moment
‘L’ is highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.7 Detailed BER results for each time point for the best 6 supervised
classifiers when using the leave-one-patient-out method on
imputed spectroscopy features. The decision (i.e. labelling)
moment ‘L’ is highlighted. . . . . . . . . . . . . . . . . . . . . . 124



xxx LIST OF TABLES

A.8 Number of data points acquired at each time point. The decision
(i.e. labelling) moment ‘L’ is highlighted. . . . . . . . . . . . . . 125

A.9 Number of features per MRI modality and delineation. . . . . . 125

A.10 Supervised classifiers used in Chapter 3 and their software
implementations. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.11 Maximum BAR of all MR modalities over all classifiers. CER -
contrast enhancing region, NER - non-enhancing region. . . . . 126

A.12 Top 10 selected features according to rank products for each
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.13 Balanced accurary rates (BAR), sensitivity (TPR), and specificity
(TNR) values, for all 9 classification tasks (rows) after training
LDA using only metabolic ratios. Values between 75 and 79 are
coloured in light gray, values between 80 and 84 are coloured
in medium gray, values between 85 and 89 are coloured in dark
gray, while values higher than 90 are coloured in very dark gray. 130

A.14 BAR values for classification tasks involving only MS patients
(columns). Abbreviations: M = all three average metabolic ratios;
Age = patient age; DD = disease duration; LL = lesion load;
EDSS = Expanded Disability Status Scale.Values between 75
and 79 are coloured in light gray, values between 80 and 84 are
coloured in medium gray, values between 85 and 89 are coloured
in dark gray, while values higher than or equal to 90 are coloured
in very dark gray. . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.15 Sensitivity values for classification tasks involving only MS
patients (columns). Abbreviations: M = all three average
metabolic ratios; Age = patient age; DD = disease duration;
LL = lesion load; EDSS = Expanded Disability Status Scale.
Values between 75 and 79 are coloured in light gray, values
between 80 and 84 are coloured in medium gray, values between
85 and 89 are coloured in dark gray, while values higher than or
equal to 90 are coloured in very dark gray. . . . . . . . . . . . . . 131



LIST OF TABLES xxxi

A.16 Specificity values for classification tasks involving only MS
patients (columns). Abbreviations: M = all three average
metabolic ratios; Age = patient age; DD = disease duration;
LL = lesion load; EDSS = Expanded Disability Status Scale.
Values between 75 and 79 are coloured in light gray, values
between 80 and 84 are coloured in medium gray, values between
85 and 89 are coloured in dark gray, while values higher than or
equal to 90 are coloured in very dark gray. . . . . . . . . . . . . . 131

A.17 Performance measures computed with SVM-lin and SVM-rbf
trained on an increasing number of features from 1 to 16 for
Conventional and Perfusion MRI (cpMRI), extracted using the
two positive parametric response maps (PRM+), T1pc-PRM+
and CBV-PRM+. Values over 90% are highlighted in gray. . . 132

A.18 Performance measures computed with SVM-lin and SVM-rbf
trained on an increasing number of features from 1 to 8 for
cMRI and PWI separately, features extracted using the two
positive parametric response maps (PRM+), T1pc-PRM+ and
CBV-PRM+. Values over 90% are highlighted in gray. . . . . . 133

A.19 Conventional and Perfusion MRI (cpMRI) features selected
with minimum-redundancy-maximum-relevance (mRMR) after
applying separately the two positive parametric response maps
(PRM+), T1pc-PRM+ and CBV-PRM+, where “F" stands for
FLAIR. Features are ‘X’-percentile, where ‘X’ can be 50, 70, 90,
and 99. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.20 Conventional MRI features selected with minimum-redundancy-
maximum-relevance (mRMR) after applying separately the two
positive parametric response maps (PRM+), T1pc-PRM+ and
CBV-PRM+. Features are ‘X’-percentile, where ‘X’ can be 50,
70, 90, and 99. . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.21 Perfusion MRI features selected with minimum-redundancy-
maximum-relevance (mRMR) after applying separately the two
positive parametric response maps (PRM+), T1pc-PRM+ and
CBV-PRM+. Features are ‘X’-percentile, where ‘X’ can be 50,
70, 90, and 99. . . . . . . . . . . . . . . . . . . . . . . . . . . . 136





Chapter 1

Introduction

1.1 Machine Learning

Machine learning is an area of computer science which has been constantly
growing in popularity during the last 30 years. It is being used in a very wide
range of applications, like search engines, computer vision, anti-spam software,
financial market analysis, bioinformatics, astronomy, and many more. Its main
purpose is to find meaningful patterns in data, therefore it is a very interesting
field to explore, especially now when there is an explosion of data in the world.
According to [84], the volume of all digital information in 2020 will have grown
300 times compared to 2005, up to approximately 40 trillion gigabytes. For an
extended analysis of machine learning methods the reader is referred to Hastie
et al. [78], one of the many open-access books available online.

This work will focus only on supervised machine learning for binary classification
tasks, meaning that there are only two labels (e.g. 0 and 1, negative and positive)
that have to be differentiated. The general problem statement in supervised
learning is: given a training set with N labelled data points having the form
{(x1,y1), . . . , (xN ,yN )}, find the function h : X→ Y such that the predicted
labels ŷi =h(xi) ideally match the real labels, where xi is the feature vector
of the i-th training example, yi is its label, X = Rd is the feature space, and
Y = {−1,1} is the label space. After the training stage is complete, the learned
function h is verified against a test set independent from the training set, to see
how it performs against unseen examples. Three main supervised classification
methods are further discussed: Support Vector Machines (SVM), which is
probably the most widely used classifier in the last 20 years, Random Forests
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2 INTRODUCTION

(RF), one of the best off-the-shelf classifier, and a brief introduction into the
current growing paradigm of deep learning.

1.1.1 Support Vector Machines

The original SVM algorithm was invented by Cortes and Vapnik in 1995 [39],
and is based on the assumption that there exists an optimal separation plane
between data points belonging to different classes. Since then, many variants
have been proposed, one of the most important ones being least squares support
vector machines (LSSVM) [222]. A simple 2-D graphical representation of data
points from two classes is shown in Figure 1.1. SVM will find the best separation
line and its associated margin marked by the two lines parallel to the separation
line. The support vectors are highlighted with a green border and lie within
the margin. Mathematically, the SVM binary classifier is a maximum-margin

Figure 1.1: SVM: finding the best separation plane

linear model of the form:

h(x) =
{

1 if b+
∑d
j=1 xjwj > 0

−1 otherwise
(1.1)
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where w = [w1, . . . , wd] is the vector containing all weights, and b is the intercept
term. These two terms, w and b, define the function h. The purpose of SVM
is to find these two terms, given the training data set {(x1,y1), . . . , (xN ,yN )}.
For the non-separating case, the learning phase is done by solving the following
primal optimization problem:

min
w,ξi

1
2‖w‖

2 + C

N∑
i=1

ξi

subject to yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1 . . . N

(1.2)

where ξi are called slack variables, and C is a hyper-parameter that controls the
degree of misclassification. The optimization problem in its Lagrangian dual
form is:

max
α

N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjyiyjxi · xj

subject to C ≥ αi ≥ 0, i = 1 . . . N

N∑
i=1

αiyi = 0

(1.3)

Having solved the dual optimization problem, namely finding the αi, the weights
and intercept are computed by:

ŵ =
N∑
i=1

αiyixi

b = ŵ · xk − yk, for αk ≥ 0

(1.4)

The SVM methodology can easily be extended to non-linear classification tasks.
By replacing each data vector xi with a non-linear mapping φ(xi), and defining
a kernel as K(x, z) = φ(x) · φ(z), the optimization problem in its Lagrangian
dual form can be rewritten as:

max
α

N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjyiyjK(xi,xj)

subject to C ≥ αi ≥ 0, i = 1 . . . N

N∑
i=1

αiyi = 0

(1.5)
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One of the most commonly used kernels in the literature is the gaussian or
radial basis function kernel, defined as:

K(x, z) = exp(−‖x− z‖2

2σ2 ) (1.6)

1.1.2 Random Forests

The original RF algorithm was invented by Breimann in 2001 [21], and is based
on the assumption that a collection of weak classifiers outperforms a single weak
classifier, namely a weak decision tree [22].

Decision trees are very attractive classifiers to use because they can handle
heterogeneous data (ordered, categorical, or a mix of both), they intrinsically
implement variable selection, they are robust to outliers, and most importantly,
they are easily interpretable. However, it can be proved that they suffer from
the “high variance” problem, meaning they risk to overfit the training data.
Breimann solved this problem, by combining bagging [20] with random variable
selection at each node.

Bagging stands for bootstrap aggregating, meaning each individual decision
tree of the forest will learn a different classification model based on a bootstrap
sample of the original training set. One bootstrap sample has approximately
63% of the original training data points, sampled with replacement, while the
remaining 37% form the out-of-bag data. Each time a tree is added to the
forest, the out-of-bag data is used as internal validation data for estimating
classification error and variable importance.

For classification tasks, each tree will learn a model only on
√
d variables, where

d is the dimension of any data point.

It is widely recognized that random forests are an excellent off-the-shelf machine
learning algorithm, with a great overview given by Louppe [145].

A simplified graphical explanation is provided in Figure 1.2.

1.1.3 Deep learning

Deep learning is the hottest topic of machine learning, with an exponential
growth in the last 5 years, which can be targeted at improving every field of
our daily lives, from healthcare to finance and to space exploration, as seen in
Figure 1.3. It is widely known that huge companies such as Google, Microsoft,
Facebook, Amazon, Instagram, Baidu, IBM, Tesla, and many more, either use
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Figure 1.2: Random forests: majority voting. Figure adapted from [163].

Nvidia’s graphical processing units in their programs or they are building their
own patented deep learning chips.

Figure 1.3: Deep learning growth in the last years. Source: Nvidia website [107].

The most influential paper is the one by Krizhevsky et al. [131] from 2012,
where they first describe deep convolutional networks, in the most difficult
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visual recognition challenge, ImageNet Large-Scale Visual Recognition Challenge.
Currently, deep learning models are capable of impressive feats, as they perform
better than humans at object recognition and classification [97, 113], speech
recognition [99], and have recently beaten the European number 1 master in
the game of Go [206], and afterwards also the world number 1, an achievement
previously thought to be at least a decade away. After this success, Google
and Facebook announced that they will focus also on mastering the popular
computer game Starcraft (Blizzard Entertainment), which will give valuable
insights into real world adversarial situations.

Considering the huge amount of work on deep learning, it would be impossible
to properly make an introduction within this thesis. Instead, we will only give
an overview of each layer of the Convolutional Neural Network (CNN) used in
Chapter 6, and for detailed mathematical formulation we will refer the reader
to the “Deep Learning” book of Goodfellow, Bengio, and Courville [87].

Most CNNs architectures are usually made of the following types of layers:
convolutional (conv), pooling (either maximum or average), dropout, fully-
connected (FC), and activation (e.g. rectified linear unit (ReLU)). The most
important layers are the convolutional and the fully connected, called weight
layers. The paper from Krizhevsky only had 8 weight layers (5 conv and 3 FC),
while modern architectures have gone up to 152 [98].

Layers are usually connected sequentially, starting from an input layer to an
output layer, while all layers in-between are called “hidden”. An example of a
neural network with 2 fully connected hidden layers is given in Figure 1.4. The

Figure 1.4: Fully connected network with 2 hidden layers. Source: [164].

input layer can be of any dimension, either a signal, a 2-D gray image, a colour
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image with three channels (e.g. RGB), or even more. However, CNNs are built
especially for images, both colour and gray, so we will focus on them.

The building block of the original neural networks was the neuron, depicted in
Figure 1.5. A neuron takes as input a number of points from the previous layer,

Figure 1.5: Schematic representation of the neuron as it is used in neural
networks. Source: [122].

which are multiplied by individual weights, and finally performs an activation.
During training, weights are iteratively updated following an optimisation
procedure. In CNNs two main activation functions are used, hyperbolic tangent
(tanh) and ReLU, as shown in Figure 1.6. However, ReLU was found to be 6
times faster than tanh [131].

Figure 1.6: Activation functions: tanh (left) and ReLU (right). Source: [122].

Convolutional layers apply the convolution operation to the input, passing the
result to the next layer. Mathematically, the convolution operation is noted as
∗ and is described by

(f ∗ g)(t) =
∫ +∞

−∞
f(τ) · g(t− τ)dτ =

∫ +∞

−∞
f(t− τ) · g(τ)dτ (1.7)
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Graphically, a convolutional kernel slides through the image and simple
operations are performed, as seen in Figure 1.7. The amount of pixels that

Figure 1.7: Convolution operation applied on an input image. Source: [87].

the convolution filter (or kernel) slides between two operations is called stride,
and is equal to 1 in our graphical example. Convolutional layers usually have
multiple kernels designed to detect specific image features (e.g. vertical edges),
and are typically followed by ReLU activation layers, previously described, and
maximum pooling (MP) layers, as described in Figure 1.8. Because of the large
amount of parameters that are optimised for specific data, CNN overfitting
is very likely, even if the learning data is split into training and validation.
To prevent it from happening, Srivastava et al. [213] introduced the dropout
layer which is especially useful between fully connected layers. During the
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Figure 1.8: Max-pooling. Source: [122].

training phase, incoming and outgoing connections to a dropped-out neuron
are randomly removed with a probability 1-p, as shown in Figure 1.9. During

Figure 1.9: Dropout during a randomly selected training epoch of a fully
connected neural network with 2 hidden layers. Source: [213].

test phase, all neurons are present and their weights are multiplied by their
specific probability to be present in the network during training, as shown in
Figure 1.10.

A typical CNN architecture has a few main building blocks of [conv-ReLU-MP]
with convolutional kernels of size 5×5 or 7×7, followed by a few FC layers, and
a final activation layer, usually tanh. Simonyan and Zisserman [207] have shown
the benefits of modifying the building block by adding extra convolutional and
ReLU layers, [conv-ReLU-conv-ReLU-MP], but using only small convolutional
kernels of size 3×3. The CNN architecture that we built in Chapter 6 is inspired
by their work.
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Figure 1.10: Dropout during training. Source: [213].

1.1.4 Cross-Validation and Performance measures

In order to quantify the quality of a machine learning model, different
performance measures can be computed using the predicted labels. Because
the focus of this thesis is on biomedical applications, a leave-one-patient-out
cross-validation (LOPOCV) scheme was mostly used, except for Chapter 6 when
a 2-fold cross-validation scheme was used for testing CNNs. In a LOPO-CV
scheme, data points from one patient are assigned to the test set, while data
points from the rest of the patients are assigned to the training set. In this way
it is made sure that the test set is always independent from the training set.
Patients are assigned one by one to the test set and all predicted labels are
stored. The comparison between predicted labels and real labels is done at the
end, after each patient was tested once.

Multiple performance measures can be computed based on the confusion matrix,
which is presented in Table 1.1 in a general way for a binary classification task.
All measures described below can take values between 0 and 1.

Confusion matrix predicted condition
negative positive

true condition negative True Negative (TN) False Positive (FP)
positive False Negative (FN) True Positive (TP)

Table 1.1: General binary confusion matrix.

Sensitivity

Sensitivity, also called recall or true positive rate (TPR), measures the amount
of positives recognized as such from the total amount of positives:

Sensitivity = TP

TP + FN
(1.8)
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Specificity

Specificity, also called true negative rate (TNP), measures the amount of
negatives recognized as such from the total amount of negatives:

Specificity = TN

TN + FP
(1.9)

Precision

Precision measures the amount of positives recognized as such from the total
amount of predicted positives:

Precision = TP

TP + FP
(1.10)

Balanced accuracy rate

Balanced accuracy rate (BAR) is the average between sensitivity and specificity:

BAR = Sensitivity + Specificity

2 (1.11)

Balanced error rate

Balanced error rate (BER) is defined as:

BER = 1−BAR (1.12)

F1 score

F1 score is the harmonic mean between precision and recall, and can be reduced
to:

F1 = 2× TP
2× TP + FN + FP

(1.13)
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1.2 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is primarily a medical investigation
technique based on the theory of nuclear magnetic resonance, which states
that certain atomic nuclei can absorb (and emit) radio frequency energy when
placed in an external magnetic field. The first MRI scan of a human patient was
done in 1977, and since then, the number of MRI scans in developed countries has
increased up to an average of 52/1000 inhabitants/year [110]. MRI has a wide
range of applications, especially in medical diagnosis, as approximately 36000
scanners are estimated to be in use worldwide [185]. Because MRI scanners use
only magnetic fields, they are much safer than any other scanners using ionizing
radiation, such as Computed Tomography (CT), Positron Emission Tomography
(PET), or Single-Photon Emission Computed Tomography (SPECT). MRI is
the tool of choice for neuroimaging, as it provides high resolution 3-D brain
and neck images that offer great contrast of soft tissues (i.e. gray and white
matter).

1.2.1 Principles of MRI

In quantum mechanics, nuclei with an even atomic number, such as hydrogen
(1H), carbon (13C), fluor (19F), and phosphorus (31P), possess a spin, or angular
momentum. Due to the large amount of protons in the human body, 1H-
MRI is the most commonly used and developed technique, and it will be the
unique subject throughout this thesis. Because protons are moving electrical
charges, they also have magnetic moments. Therefore, when protons are put
in an external magnetic field B0, they align along it either in a parallel (spin
+ 1

2 ) or anti-parallel state (spin − 1
2 ), as seen in Figure 1.11. The resulting

magnetic vector M is called Magnetization, is aligned parallel to B0 and its
amplitude depends on the density of protons. One of the most important
formula in magnetic resonance (MR) is the Larmor equation, which shows that
the precession (or Larmor) frequency ω of any proton magnetic moment is
proportional to the external magnetic field B0 and the gyromagnetic ration
γ, which for protons is equal to 2.675 · 108rad · s−1 · T−1. In this thesis, the
external magnetic field B0 is either 1.5 Tesla (used in scanning multiple sclerosis
(MS) patients) or 3 Tesla (used in scanning glioblastoma multiforme (GBM)
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Figure 1.11: Precessing spins in external field B0 form the Magnetization vector
M. Figure adapted from [197].

patients).

ω0 =γ ·B0

or

ν0 = γ

2π ·B0

(1.14)

The energy difference between the two states is:

∆E = hν0 = hγ

2π ·B0 (1.15)

The ratio between the two states can be computed using the Boltzmann equation:

n+ 1
2

n− 1
2

= exp(∆E
kT

) = exp(hγB0

2πkT ), (1.16)
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where k is the Boltzmann constant, T is the temperature in Kelvin, and kT
is the thermal energy. For an external magnetic field of 1.5 Tesla, at a body
temperature of 37 degree Celsius or 310.15 Kelvin, the ratio will be:

n+ 1
2

n− 1
2

= 1.00000988191692 = α. (1.17)

This means that for every million protons in the anti-parallel state, there are
approximately 10 more protons in the parallel state. To better understand this
number, water will be considered as soft tissue, and an approximate number
of excess protons will be computed. Using common chemical formulations, we
know that

1 mol of water . . . 18 grams . . . 2 grams of 1H . . . 6.023 · 1023molecules

leads to

1 gram of water . . . 0.11 grams of 1H . . . 3.346 · 1022molecules
(1.18)

Therefore, in 1 gram of water there are approximately 3.34×1022 water molecules,
or a total amount Nt of protons of 6.68 ×1022. This leads to an excess of

n+ 1
2
− n− 1

2
= α− 1
α+ 1 ·Nt = 3.3 · 1017 (1.19)

protons contributing to a maximum net magnetic dipole m of amplitude

m0 = γ2h2B0Nt
16π2kT

= 4.65 · 10−9Am2 (1.20)

and after considering water density we obtain the magnetization, M = m/V,
with maximum amplitude

M0 = 4.65 · 10−3A/m. (1.21)

The huge number of protons contributing to the magnetization help us
understand that the microscopic quantum effects sum up and produce
macroscopic effects, therefore facilitating the transition between quantum theory
and classical electro-magnetic theory. The fundamental Bloch equation behind
MRI phenomenology have been mathematically proven using both quantum
and classical theory:

dM(t)
dt

= γM(t)×B(t) (1.22)

If we introduce relaxation terms T1 for spin-lattice interactions and T2 for
spin-spin interactions, and we consider that the external magnetic vector B
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typically has only a z-component Bz = B0, while Bx = By = 0 the Bloch
equations can be re-written

dMx(t)
dt

= γ(M(t)×B(t))x −
Mx(t)
T2

dMy(t)
dt

= γ(M(t)×B(t))y −
My(t)
T2

dMz(t)
dt

= γ(M(t)×B(t))z −
Mz(t)−M0

T1

(1.23)

with solutions in the x-y space

Mx(t) =[Mx(0) cos(γBt)− [My(0) sin(γBt)] exp(− t

T2
)

My(t) =[−Mx(0) sin(γBt) + [My(0) cos(γBt)] exp(− t

T2
)

(1.24)

and in the z-direction

Mz(t) = M0 + (Mz(0)−M0) exp(− t

T1
). (1.25)

By applying a radio-frequency pulse B1 along the x-direction, the magnetization
M will flip along the y-direction, as shown in Figure 1.12. In this case, Mz(0)
and Mx(0) will be equal to 0, and the Bloch solutions will be

Mx(t) =−M0 sin(γBt) exp(− t

T2
)

My(t) = +M0 cos(γBt) exp(− t

T2
)

Mz(t) =M0(1− exp(− t

T1
)).

(1.26)

When the radio-frequency pulse is switched off, the magnetization will oscillate
to equilibrium along B0, and two types of signals can be observed: a recovery
signal along z and free induction decay (FID) signals in the transversal x-y
space. Using proper coils, real in-vivo T1 and T2 can be measured, as shown
in Figure 1.13 and Figure 1.14. Because the magnetic field is not perfectly
homogeneous in real-life applications, it will affect the relaxation time in the
transversal space such that the measured time will be T∗2, where

1
T ∗2

= 1
T2

+ 1
Tinhomogen

(1.27)
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Figure 1.12: Radio-frequency pulse flips the magnetization in the transversal
x-y space. Figure adapted from [197].

1.2.2 Conventional MRI

For neurological applications, MRI is the standard imaging technique used
around the world. It has a high resolution and provides excellent contrast
between different brain tissues. This is possible because different brain tissues
have different relaxation times, as shown in Table 1.2.

Brain tissue T1 (ms) T2 (ms) %H2O
Cerebro-Spinal Fluid 4000 2000 97
Gray Matter 900 100 80
White Matter 780 90 72
Fat 260 80 0

Table 1.2: Typical relaxation times and water percentages of the most important
brain tissues at 1.5 Tesla.
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Figure 1.13: Envelope of the FID signal in the transversal space. On the x-axis
there is time, and on the y-axis there is the relative amplitude of the transversal
FID signal’s envelope.

MRI sequences are characterized by two main parameters: echo time (TE) and
repetition time (TR). The echo time is the duration between the radio-frequency
pulse application and the acquisition of the main (echo) MR signal, and its
optimization allows imaging the T2 contrast between tissues. The repetition
time is the duration between two successive radio-frequency pulses, and its
optimization allows imaging the T1 contrast between tissues.

T2-weighted MRI

MRI sequences that use the 90◦ flip of the magnetization in the transversal x-y
space are called spin-echo (SE). A classical SE sequence is shown in Figure 1.15,
and is mainly characterized by long TE and long TR. The second radio-frequency
pulse is called the re-focusing 180◦ pulse and it corrects for any magnetic field
inhomogeneities, therefore SE MRI acquisitions are mainly used for detecting
T2 contrast between tissues.

T1-weighted MRI

For T1 acquisitions, another type of MR sequence is mainly used, called gradient
echo (GE). A classical GE sequence is shown in Figure 1.16, and is mainly
characterized by short TE and short TR. This type of sequences do not uses
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Figure 1.14: Envelope of the recovered signal in the z direction. On the x-axis
there is time, and on the y-axis there is the relative amplitude of the recovered
FID signal’s envelope in the z direction.

any re-focusing 180◦ radio-frequency pulse, which means that the magnetization
in x-y space will be affected by local magnetic field inhomogeneities, making
GE sequences unsuitable for T2 acquisitions. However, using only one radio-
frequency pulse lowers TE, which lowers TR, and therefore improves T1 contrast
between tissues. Moreover, in GE sequences the flip angle α of the radio-
frequency pulse is usually less than 90◦, which means that Mz(0) has a positive
value greater than 0, allowing for a faster recovery of the magnetization along
the z-direction, and a shorter TR. To improve contrast of vascular tissues
and to detect breakdown in blood-brain barrier (BBB), while performing a
T1-weighted MRI scan, patients are injected with a non-toxic paramagnetic
contrast enhancement agent, typically a gadolinium compound [28], and a post
contrast T1-weighted MRI (T1pc) is acquired.

FLAIR MRI

Fluid attenuated inversion recovery (FLAIR) is one of the most commonly used
MRI sequence to suppress the cerebro-spinal fluid (CSF). It is based on the
spin-echo sequence but it has an additional 180◦ radio-frequency pulse before
the 90◦ radio-frequency pulse, separated in time by the inversion time (TI),
which ensures cancelling the CSF signal when reading the echo. Typical FLAIR
sequences have very long TR, TE, and TI.
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Figure 1.15: Details of a spin-echo sequence. Figure adapted from [126].

1.2.3 Perfusion weighted MRI

Perfusion weighted MRI (PWI) complements the anatomical information
acquired with conventional MRI, as it is mainly applied for investigating vascular
and tumoral brain pathologies. It provides measurements of the parameters of
cerebral micro-vascularization, such as cerebral blood volume (CBV), cerebral
blood flow (CBF), and mean transit time (MTT). It relies on using either an
endogenous or exogenous tracer, followed by measurements of the transient
signal through the brain during the first pass of the tracer. Arterial spin labelling
(ASL) uses magnetically labelled blood as an endogenous tracer, while Dynamic
Contrast Enhanced MRI (DCE-MRI) and Dynamic Susceptibility Contrast MRI
(DSC-MRI) use a gadolinium chelate as an exogenous tracer. Both DCE- and
DSC-MRI are based on the acquisition of serial MR images before, during, and
after the administration of a contrast agent. DCE-MRI relies on acquiring and
processing T1-weighted images, which leads to quantification of permeability
parameters (e.g. transfer constant (ktrans), rate constant (kep)). DSC-MRI
relies on acquiring and processing either T2- or T∗2-weighted images, but because
the first one requires a larger amount of contrast agent and is less sensitive to
magnetic susceptibility effects, T∗2-weighted MRI became the standard. One
of the main parameters quantified with DSC-MRI is CBV, which is extremely
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Figure 1.16: Details of a gradient-echo sequence. Figure adapted from [126].

important in brain tumour detection and diagnosis. Therefore, in this thesis,
only DSC-MRI has been used to measure changes in brain perfusion. The vast
majority of DSC-MRI acquisitions are based on the gradient-echo echo planar
imaging (EPI) sequence, mainly because of its low acquisition time due to the
short TE and the EPI readout [31]. Typical scan times are between 1 and 5
minutes, during which around 50 to 60 3-D brain images are taken. This allows
to follow the evolution in time of a pixel’s signal, which can be modelled by

S(t) = S(0) · exp(− TE

∆T ∗2
). (1.28)

It has been shown [252] that in the absence of recirculation and contrast
agent leakage, CBV is proportional to the area under the contrast agent
concentration–time curve. The contrast agent concentration C(t) depends
linearly with the change in relaxation rate [187](∆R∗2 = 1

∆T∗
2
), which can be

calculated after re-writing equation 1.28:

C(t) = k∆R∗2 = − k

TE
ln( S(t)

S(0)), (1.29)

where k is a constant specific to tissue, field strength, and pulse sequence.



MAGNETIC RESONANCE IMAGING 21

Figure 1.17: Perfusion MRI CBV quantification after correcting for contrast
agent leakage. Source: Cha et al., Radiology, 2002 [31]

The typical workflow for CBV quantification is shown in Figure 1.17. In practice,
relative CBV (rCBV) values are extracted by dividing the CBV values to an
average CBV usually calculated over normal appearing white matter (NAWM),
rCBV = CBV

CBVNAW M
. CBF calculation is done using the indicator dilution

theory [168], which states that the contrast agent concentration is proportional
to the convolution between an arterial input function (AIF) and a tissue residue
function R:

C(t) = α · CBF · (AIF (t) ∗R(t)). (1.30)

The residue function describes the fraction of contrast agent remaining in
tissue at time t, following an ideal injection (i.e. delta function), meaning that
R(t = 0) = 1. Therefore, after deconvolving C(t) and AIF (t), we obtain a curve
whose amplitude at t = 0 is proportional to CBF. To obtain reliable CBF values,
a large brain vessel is usually selected by hand for the AIF concentration curve.
In the end, MTT can be calculated using the central volume theorem [215],
MTT = CBV

CBF .
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1.2.4 Diffusion MRI

Diffusion MRI is an advanced non-invasive imaging technique which provides
information about the water movement in biological environments, where it can
interact with macromolecules, fibres, membranes, or other cellular structures.
Usually, inside the brain, we can separate three types of diffusion: free isotropic,
encountered mostly in CSF, restricted isotropic, encountered mostly in gray
matter, and anisotropic, encountered mostly in white matter. A simple graphical
representation of these diffusion types is shown in Figure 1.18. The first diffusion-

Figure 1.18: Types of diffusion. Source: [154]

weighted MRI (DWI) of the human brain were published in 1986 [139], and
used a SE sequence. Because of the short acquisition time induced by EPI
readout development, measuring diffusion signals is presently done using SE-
EPI sequences. The most commonly used Pulsed Gradient Spin-Echo (PGSE)
acquisition sequence is shown in Figure 1.19. The main novelty introduced
by the PGSE sequence is the diffusion gradient, which can be applied in any
direction. The diffusion gradient has two pulses in a given direction, equal in
duration and amplitude, but opposite in phase. If there is no water diffusivity,
the effects of these two pulses cancel each other. If there is water diffusivity,
the re-phasing of water molecules that have moved will be incomplete and it
will lead to a decrease of the diffusion signal measured in a voxel, which can be
modelled by the following diffusion equation [214]:

S = S0 · exp(−γ2G2δ2(∆− δ

3)D) (1.31)
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Figure 1.19: Pulsed Gradient Spin Echo diffusion weighted acquisition sequence.
Figure adapted from [126].

where S is the acquired signal, S0 is the spin-echo signal, G is the diffusion
gradient’s amplitude, δ is the duration of one pulse, ∆ is the time between the
two pulses, and D is the diffusion coefficient. According to Le Bihan et al. [139],
the diffusion signal can be re-written as a function of the b coefficient:

S = S0 · exp(−b ·ADC), (1.32)

where ADC is the Apparent Diffusion Coefficient, and

b = −γ2G2δ2(∆− δ

3). (1.33)

In DWI, it is common to acquire only two signals at different b-values, then to
compute only one measure:

ADC = 1
b2 − b1

· ln(S1

S2
) (1.34)

In Diffusion Tensor Imaging (DTI) [10], the diffusion process is considered a
symmetric tensor with different elongations along three main directions, x, y,
and z. Seven measurements, one at b = 0 and six independent measurements
at b 6= 0 in non-collinear directions, are sufficient to properly determine the
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tensor shape, given by Dxx, Dyy, Dzz, Dxy, Dxz, and Dyz. Then, the diffusion
equation can be re-written as:

ln( S(b)
S(b = 0)) = −

∑
i,j⊂(x,y,z)

bijDij , (1.35)

where

D =

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 , b =

bxx bxy bxz
bxy byy byz
bxz byz bzz

 (1.36)

After performing eigenvalue decomposition on the diffusion tensor, three
eigenvalues ordered from highest to lowest, λ1, λ2, and λ3, are obtained
across the three main directions, as shown in Figure 1.20. Multiple diffusion

Figure 1.20: Diffusion tensor. Figure adapted from [126].

measures can be computed using the eigenvalues, such as: Axial Diffusivity
(AD), defined as the largest eigenvalue, AD = λ1; Radial Diffusivity (RD),
defined as RD = λ2+λ3

2 ; Mean Diffusivity (MD), defined as the mean of all
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three eigenvalues, MD = λ1+λ2+λ3
3 , and Fractional Anisotropy (FA), defined as

FA =
√

3
2

√
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2√

λ2
1 + λ2

2 + λ2
3

(1.37)

Both DWI and DTI assume the diffusion process is a random process, so it
can be modelled using a Gaussian distribution. However, in biological tissues,
the diffusion process has also a non-Gaussian component [120], which can help
model an extended diffusion equation:

ln( S(b)
S(b = 0)) = −bD + 1

6b
2D2K (1.38)

where the kurtosis K is a fourth-order tensor (Kijkl) which quantifies the
deviation from a Gaussian distribution. Similar to DTI, multiple diffusion
kurtosis MRI (DKI) measures can be computed [108,175], such as Axial Kurtosis
(AK), Radial Kurtosis (RK), Mean Kurtosis (MK), and Kurtosis Anisotropy
(KA).

1.2.5 Magnetic Resonance Spectroscopic Imaging

Protong Magnetic Resonance Spectroscopy (MRS) is an advanced MR
acquisition modality which provides biochemical information about a sample.
Using MRS it is possible to identify a large number of molecules involved in
the metabolic process of a cell, called metabolites. The basic principle behind
MRS acquisition is the chemical shift effect, which states that in a perfectly
homogeneous magnetic field B0, protons from different molecules will experience
a different magnetic field B0(1 − σ), where σ depends only on the chemical
structure of that molecule. Therefore, protons from different metabolites will
oscillate at different frequencies, given by ω = γB0(1 − σ), which are visible
in the frequency domain of the acquired MR signal. Because the metabolite
frequency shift is independent of the external magnetic field, it is commonly
known as chemical shift and is not measured in Hertz, but in parts per million
(ppm).

Following the radio-frequency excitation pulse in a large magnetic field,
metabolites will emit signals several orders of magnitude lower than the water’s
signal, which has by far the highest strength due to the high natural abundance.
In order to acquire MRS signals of sufficient Signal to Noise Ratio (SNR), it
is necessary to excite bigger volumes compared to T1 MRI or T2 MRI. The
acquisition of a Single Voxel MRS (SVS) is very common in clinical settings
because it takes only a couple of minutes and provides high SNR. However,
Multi Voxel MRS, also known as Chemical Shift Imaging (CSI) or Magnetic
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Resonance Spectroscopic Imaging (MRSI), offers a larger excitation volume (2D
or 3D) with a relatively better resolution compared to SVS, but in a longer
time. Many reviews [13,177] discussing advantages and disadvantages of SVS
compared to MRSI have been published in the last decade.

Two commonly used localization sequences for both SVS and MRSI are Point
RESolved Spectroscopy (PRESS) [17] and STimulated Echo Acquisition Mode
(STEAM) [75], as shown in Figure 1.21. STEAM is usually adapted to short
TE acquisitions (TE<50ms), while PRESS is adapted for both short and long
TE (TE>100) acquisitions and provides double the SNR compared to STEAM.

Figure 1.21: MRS acquisition sequences: PRESS and STEAM, where MT is
the Mixing Time. Image adapted from [13].

The main difference between spectra acquired by short and long TE, as shown
in Figure 1.22, is that at long TE only a limited number of metabolites can be
identified and quantified: N-Acetyl-Aspartate (NAA), Choline (Cho), Creatine
(Cre), and Lactate (Lac), while short TE allows for more metabolites to be
quantified, such as Glutamate (Glu), Glutamine (Gln), Glu+Gln (Glx), Glycine
(Gly), myo-Inositol (mI), and Lipids (Lip). However, spectra acquired by long
TE MRS are less prone to errors, because signals from the underlying baseline
of macro-molecules will drop close to zero at long echo times.

Quantifying metabolites of interest can be done by extracting information from
either time or frequency domain. Most algorithms use a database containing
MRS signals acquired from individual metabolites, either in-vitro or generated
synthetically, which are then combined to provide the best fit in time or frequency
domain. Two widely known methods for fitting MRS signals in time-domain are
AQSES [180](Accurate Quantitation of Short Echo time domain Signals) and
QUEST [183](QUantitation based on quantum ESTimation), while the most
widely known method for fitting signals in frequency domain is LCModel [181].
In order to improve relevant information of MRS spectra, several preprocessing
steps can be used, such as zero-filling, frequency alignment, phase correction,
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Figure 1.22: Short and long TE MRS spectra (right and left columns) for a
healthy subject and a patient (top and bottom rows) suffering from progressive
multifocal leukoencephalopathy, scanned at 1.5 Tesla. Image adapted from [117].

water filtering, signal normalization, and baseline correction.

1.3 Glioblastoma Multiforme

1.3.1 Glioblastoma Multiforme Overview

Glioblastoma Multiforme, or simply Glioblastoma (GBM), is the most common
and aggressive primary brain and Central Nervous System (CNS) tumour,
and corresponds to the highest tumour grade (IV) based on World Health
Organization (WHO) Classification [144]. It accounts for 45% of malignant
primary brain and CNS tumours, 54% of all gliomas, and 16% of all primary
brain and CNS tumours [169]. The average incidence rate is 3.19/100,000
population, with a higher incidence in men and individuals of white race and
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non-Hispanic ethnicity [224]. GBM is an incurable disease, with a median age
of diagnosis of 64 years, and a median survival of 15 months [129,228].

GBMs comprise of primary and secondary subtypes which evolve through
different genetic pathways, affecting patients at different ages and have
differences in outcomes [125]. Primary GBMs account for 80% of GBMs
and occur in older patients (mean age 62 years), while secondary GBMs
develop from lower-grade astrocytoma or oligodendrogliomas and occur in
younger patients (mean age 45 years) [167]. Treatment is complex and
initially consists of maximal-safe surgical resection followed by radiation therapy
with concurrent temozolomide (TMZ) chemotherapy followed by six cycles of
maintenance TMZ [216]. Many environmental and lifestyle factors including
several occupations, environmental carcinogens, and diet have been reported to
be associated with an elevated glioma risk, but the only factor unequivocally
associated with an increased risk is therapeutic X-irradiation [166]. Several
favourable clinical prognostic factors were also identified, such as younger age at
diagnosis, cerebellar location, high Karnofsky Performance Status, and maximal
tumour resection [135].

Although all GBMs are classified as WHO grade IV, they exhibit significant
genetic heterogeneity. Various prognostic molecular markers can be identified
based on specific genetic alterations [125, 135], including methylation status
of the gene promoter for O6-methylguanine-DNA methyltransferase (MGMT),
isocitrate dehydrogenase enzyme 1/2 (IDH1/2) mutation, epidermal growth
factor receptor (EGFR) over-expression and amplification, glioma-CpG island
methylator phenotype (G-CIMP), tumour protein (TP53) mutation and genetic
losses of chromosomes. Several research groups also investigate immunotherapy,
with a very recent study showing 7 out of 16 patients survived disease free after
5 years, 6 patients survived disease free after 7.7 years, and 3 were still disease
free after 8 years [172].

1.3.2 Advanced MRI in the post-operative GBM follow-up

The current standard for assessing GBM response to therapy is called the
Response Assessment in Neuro-Oncology (RANO) criteria [239], and it is based
entirely on conventional MRI measurements (T1pc, T2, FLAIR) of contrast
enhancing lesions. According to the RANO criteria, a GBM patient should be
assigned into one of the following four groups:

• Progressive Disease - MRI shows an increase of ≥25% in the sum of
the products of perpendicular diameter of enhancing lesions compared
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to the smallest tumour measurement obtained either at baseline or best
response.

• Complete Response - MRI shows disappearance of all measurable and
non-measurable disease sustained for at least 4 weeks.

• Partial Response - MRI shows (1) a decrease of ≥50% compared
with baseline in the sum of products of perpendicular diameters of all
measurable contrast-enhancing lesions sustained for at least 4 weeks, and
(2) stable or improved non-enhancing lesions compared with baseline scan.

• Stable Disease - does not qualify for partial response, complete response,
nor progressive disease.

However, an apparent increase or decrease of enhancing lesions can also be
misidentified as pseudoprogression or pseudoresponse [217, 230]. Therefore, one
of three main directions of GBM follow-up research is discriminating between
Treatment Related Changes (TRC) (e.g. radiation injury, pseudoprogression)
and true progression (TPr), with an extended review given by Da Cruz et
al. [46]. The other two main directions of GBM follow-up research are (1)
studying overall survival (OS) and progression free survival (PFS), and more
recently, (2) computing parametric response maps (PRM) based on diffusion
and perfusion MRI maps for studying OS, PFS, and TRC vs. TPr.

There is a general consensus in the literature that features extracted from
advanced MRI modalities, such as diffusion MRI [16, 30, 105, 236], perfusion
MRI [5, 105, 161, 217, 236], and MR Spectroscopy [242], are helpful in
discriminating TRC and TPr with high accuracy, while only one study [86] shows
that volumetric features of the tumour could be predictors of treatment outcome.
All literature states that higher values of rCBV and rCBF are associated with
angiogenesis, therefore they are indicative of tumour growth and infiltration.
Lower values of MD or ADC and higher values of FA are also associated to true
tumour progression.

For survival analysis there is the same general consensus: diffusion metrics [148],
with an emphasis on ADC [32, 90, 152, 176, 240, 245], but also perfusion
metrics [104,148,199], are helpful in discriminating short and long OS and PFS.

Parametric Response Map (PRM) is a voxel-wise approach for image analysis
and quantification of alterations during treatment that has been shown to have
predictive power of OS, PFS, and discriminative power between TPr and TRC.
It was initially developed for ADC maps by Moffat et al. [61–63,90,91,152,247],
but later it was adapted to rCBV maps by Galban et al. [3, 82,83,229,247].
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Recent studies have shown that advanced machine learning algorithms can
predict early recurrence areas [1] based on multi-parametric MRI, and also
treatment outcome [250] based on bio-molecular gene expression.

1.3.3 UZ Leuven post-operative GBM dataset

Patients population In this thesis, there is a total of 29 GBM patients followed
up post-operative at the University Hospitals of Leuven (UZ Leuven). Sixteen
of them have relapse-GBM and were treated according to the HGG-IMMUNO-
2003 protocol [51,52,194,234], meaning they received immune therapy as sole
treatment after surgery. The rest of thirteen patients had primary GBM and were
treated according to the HGG-IMMUNO-2010 protocol [234], meaning that after
surgery they were split into two groups. The first group consisting of 6 patients
received radiochemotherapy and the immune therapy vaccine. The second
group consisting of the remaining 7 patients received just radiochemotherapy
for the first six months after surgery, and afterwards all of them received
radiochemotherapy plus the immune therapy vaccine. We refer to the first
group as “HGG-IMMUNO-2010 vaccine” and to the second group as “HGG-
IMMUNO-2010 placebo”.

All 29 patients were offered monthly MRI follow-up, but after six months under
immune therapy all patients switched to a three monthly scanning schedule. The
local ethics committee approved this study and informed consent was obtained
from every patient before the first imaging time point. Based on radiological
evaluation of the follow-up MRI scans using the RANO criteria [239], each
time-point of a patient was labelled as one of the following:

• Unlabeled, if the MRI scan was labelled as “Stable” according to the
RANO criteria

• Labeled as Progressive, if the MRI scan was labelled as “Progressive
Disease” according to the RANO criteria

• Labeled as Responsive, if the MRI scan was labelled as “Partial Response”
or “Complete Response” according to the RANO criteria

MRI acquisition and processing Magnetic resonance scanning was performed
on a clinical 3 Tesla MRI system (Philips Achieva, Best, The Netherlands),
using a body coil for transmission and a 32-channel head coil for signal reception.
The scanning protocol at UZ Leuven consisted of standard anatomical imaging
(T1pc, T1, T2 and FLAIR) and advanced MRI (DSC-MRI, DKI-MRI, and
MRSI).
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Conventional MRI Conventional MRI (cMRI) were acquired as described
in [231,233,235]. In brief, an axial spin echo T2-weighted MR image (TR/TE:
3000/80 msec, slice/gap: 4/1 mm, field of view (FOV): 230×184 mm2, turbo
factor (TF): 10, acquisition matrix: 400×300), a FLAIR image (TR/TE/TI:
11000/120/2800 msec, slice/gap: 4/1 mm, acquisition matrix: 240×134) and a
T1-weighted 3D spoiled GE scan (fast field echo - FFE, TR/TE: 9.7/4.6 msec,
flip angle: 8°, turbo field echo factor: 180, acquisition voxel size: 0.98×0.98×1
mm3, 118 contiguous partitions, inversion time: 900 msec) with and without
contrast administration were acquired as high-resolution anatomical reference
images. Examples of conventional MRI are shown in Figure 1.23.

Figure 1.23: Conventional MRI of a post-operative GBM patient.

DSC-MRI acquisition Perfusion images were obtained using a standard DSC-
MRI protocol consisting of a GE-EPI sequence, TR/TE: 1350/30 msec, section
thickness/gap: 3/0 mm, dynamic scans: 60, FOV: 200×200 mm2, matrix:
112×109, number of slices: 23, scan time: 1 minute 26 seconds. EPI data were
acquired during the first pass following a rapid injection of a 0.1 mmol/kg body
weight bolus of megluminegadoterat (Dotarem, Guerbet, Villepinte, France) via
a mechanical pump at a rate of 4 ml/sec, followed by a 20 ml bolus of saline.
Pre-load dosing was performed in order to correct for T1-weighted leakage
(pre-load dose 0.1 mmol/kg megluminegadoterat, incubation time 10 min) [103].

Examples of perfusion MRI parameter maps obtained using the DSCoMAN
plugin [18] for ImageJ [200], which takes into consideration the leakage correction,
are shown in Figure 1.24.

DKI-MRI acquisition and processing DKI data were acquired as described
in [231,233], using a SE-EPI-DWI sequence with TR/TE: 3200/90 msec, δ/∆:
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Figure 1.24: Post-operative GBM perfusion MRI parameter maps obtained
using the DSCoMAN plugin [18].

20/48.3 msec; FOV: 240×240 mm2, matrix: 96×96, number of slices: 44, 1 signal
average acquired, section thickness/gap: 2.5/0 mm, b-values: 700, 1000 and 2800
sec/mm2 in 25, 40 and 75 uniformly distributed directions respectively [175].
The DKI data were processed as described in [231].

Examples of DKI parameter maps are shown in Figure 1.25.

MRSI acquisition and processing A 2D-MRSI short echo time PRESS
protocol with TR/TE = 2000/35 msec was used as validated in [232]. The
volume of interest (VOI) is positioned on the slice of the transverse reconstruction
of the T1-weighted 3D-FFE sequence with the largest section of contrast
enhancement. The slice thickness of the VOI is 10 mm and the VOI is 80
× 80 × 10 mm3, with each voxel being 5 × 5 × 10 mm3 (16 × 16 voxels in
total). If the contrast-enhancing lesion was smaller than 2 cm3 or the contrast-
enhancement is located in areas with large susceptibility differences e.g. the
basal forebrain or the anterior temporal lobes, a SVS technique was performed
(TR/TE: 2000/35 msec, minimal volume: 1 cm3).

MR spectra were processed using the MATLAB 2010b environment (MathWorks,
Massachusetts, U.S.A.) with the SPID graphical user interface [212], as described
in [232]. Nine metabolites were quantified using the AQSES method [44]: NAA,
Gln, Glu, Cre, phosphorylcholine (PCh), glycerophosphorylcholine GPC, mI,
and lipids (Lips) at 0.9 and 1.3ppm, referred to as Lip1 and Lip2 respectively.
Two different sums, Glu+Gln and PCh+GPC, were reported as Glx and tCho
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Figure 1.25: DKI parameter maps of a post-operative GBM patient.

(total choline), respectively. For each metabolite, AQSES reported metabolite
concentrations in institutional units and their error estimates as Cramer-Rao
Lower Bound (CRLB) [29].

1.4 Multiple Sclerosis

1.4.1 Multiple Sclerosis Overview

Multiple Sclerosis (MS) is an inflammatory neurodegenerative disorder of the
human CNS that damages axons and the myelin protective sheath covering the
axons, which typically generates focal lesions in white and grey matter. MS
affects approximately 2.5 million people worldwide, with an average onset age
of 30 years. Global incidence rates are shown in Figure 1.26, with women cases
doubling those of men [6].

The exact cause of inflammation is unclear, but the most likely suspects are
either an autoimmune response directed towards the CNS, or failure of myelin-
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Figure 1.26: Multiple Sclerosis global incidence. Source: [6].

producing cells [156]. The majority (85%) of MS patients usually experience
a first attack defined as Clinically Isolated Syndrome (CIS), while the rest of
15% will start directly with a primary progressive (PP) form. All CIS patients
will develop a relapsing-remitting (RR) form [151], with two thirds of RR
patients developing a secondary progressive (SP) form, and the other third
having a benign course [198]. A simplified graphic of MS evolution is presented
in Figure 1.27.

Diagnosing MS forms is a complicated topic which was originally described by
McDonald in 2001 [150], and revised by Polman in 2005 [174] and 2011 [173].
State of the art MS diagnosis criteria include clinical and paraclinical laboratory
assessments emphasizing the need to demonstrate lesion dissemination in space
and time and to exclude alternative diagnoses.

Because the underlying cause of MS is still under debate, treatment has recently
been shifted towards ’no evidence of disease activity’ or NEDA, which is a
composite of three measures: no relapses, no disability progression, and no MRI
activity (new or enlarging T2 lesions or T1pc lesions) [8, 85, 94]. Two standard
clinical scores used to measure disability and decrease in cognitive functions are
the Expanded Disability Status Scale (EDSS) [133] and the Multiple Sclerosis
Functional Composite [45]. Conventional MRI (T1, T1pc, T2, FLAIR) plays a
crucial role in MS diagnosis due to high sensitivity for visualizing MS lesions,
and MRI measures such as T2 lesion volume, T2 lesion count, T1pc lesion
count, and brain volume loss (BVL), have been extensively investigated. In an
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Figure 1.27: Multiple Sclerosis disease progression. Source: [74].

effort to improve the classical NEDA criteria, which is weighted towards focal
inflammatory disease activity, Kapos et al. [121] propose BVL as a measure to
capture neurodegeneration effects.

1.4.2 Advanced MRI in the longitudinal MS follow-up

Conventional MRI provides a high sensitivity in detecting new lesions and
in computing volumetric measurements of the brain and the lesions, but it
comes with a poor specificity in identifying the real stage of MS lesions. Indeed,
conventional MRI can discriminate between active and non-active lesions, but
this separation is based on the evidence of BBB breakdown, as indicated only
by contrast enhancement. However, there are multiple factors influencing the
imaging of T1pc, such as treatment effects, contrast enhancement dosage, MR
acquisition parameters, and time delay between dosage and imaging [67].

Histopathological and MRI data suggest that lesions evolve differently during
early versus chronic MS phases, going through several stages of demyelinating
activity: early active, late active, inactive, early remyelinated, and late
remyelinated [24]. Active lesions predominate in relapsing MS and might be the
cause of clinical attacks. Inactive or slowly expanding lesions predominate in
progressive MS, therefore they might contribute to progression. Remyelinated
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lesions are found in both relapsing and progressive MS [72]. Moreover, it has
been shown that in progressive MS, inflammation and active tissue injury can
occur in the absence of BBB breakdown [100,138].

Therefore, advanced MR modalities have been explored, such as DTI,
Magnetization Transfer Imaging (MTI), and MRS, due to their ability to
assess tissue damage both inside the lesions and outside, in the NAWM and in
the normal appearing gray matter (NAGM) [65,124].

Indeed, multiple studies have shown higher ADC or MD and lower FA values in
lesions than in areas of NAWM, but conflicting results have been achieved when
comparing ADC or MD values in enhancing vs non-enhancing lesions or between
lesions with different patterns of enhancement [7,58,68,70,192,241]. Another
way of analysing diffusion data is by generating white matter fiber tracts (or
tractography), which give information about the structural connectivity of the
brain. It has been proven that MS patients have lower brain connectivity than
healthy controls, and it correlates with disability [203]. Additional longitudinal
diffusion studies are needed to investigate how much of tissue disruption in
enhancing lesions is permanent (i.e., related to axonal loss) and how much
is transient (i.e., related to demyelination and remyelination). Two extended
reviews [111, 189] provide additional information on the use of diffusion MRI in
MS.

MTI is an MRI acquisition that can explore non-water components in tissue.
Protons bound to larger molecules have relaxation properties that make them
invisible in a conventional MR measurement. However, the number of bound
protons can be indirectly quantified by sequences that use the energy exchange
between bound protons and water protons, commonly termed Magnetization
Transfer (MT). The relative magnitude of MT, MT ratio (MTR), is very
attractive for clinical use, as it is fast, easy to acquire, reproducible, and
comparable among subjects, provided the same sequence is used [186]. Reduced
MTR values compared to healthy controls have been measured in NAWM
and NAGM from patients with different MS forms, including those at the
earliest stage [71]. MTR abnormalities from NAGM correlated with disease
duration, disability, cognitive impairment, and were more pronounced in patients
with progressive MS forms [2,71,95,182,190]. MTR was also consistent with
demyelination and remyelination that followed different temporal evolutions
and were ongoing in different lesion regions for at least 3 years after new lesion
formation [35].

Proton MRS metrics provide high MS pathological specificity as well as high
sensitivity to biochemical changes. Decrease of NAA and increase in Cho and
Cre contents were observed in lesions and NAWM of MS patients, compared to
healthy controls, indicating axonal loss, demyelination, and cell proliferation [191,
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195,223]. A recent longitudinal study [124] showed that pre-lesional tissue giving
rise to new lesions had higher Choline and Creatine values compared to NAWM.
Moreover, they observed a positive correlation between changes in moderately
hypointense lesions volume and Choline values, indicating that changes in lesion
size are mediated by the level of chronic inflammation.

1.4.3 AMSEP longitudinal dataset

Patient population In this thesis, eighty-seven MS patients (12 CIS, 30 RR,
28 SP and 17 PP) part of the AMSEP project were studied against 18 volunteers
without any neurological disorders, who served as healthy control (HC) subjects.
Diagnosis and disease course were established according to the McDonald
criteria [146, 150]. This prospective study was approved by the local ethics
committee (CPP Sud-Est IV) and the French national agency for medicine and
health products safety (ANSM) and written informed consents were obtained
from all patients and control subjects prior to study initiation. More details
for each MS group, such as average age at first scan, average disease duration,
median EDSS and average lesion loads can be found in Table 1.1. The MS
patients involved in this study were scanned multiple times over a different
period for each patient, ranging from 2.5 to 6 years. The minimum number of
scans is 3, while the maximum is 10. The gap between two consecutive scans is
either 6 months or 1 year.

CIS RR PP SP
Number of patients (Male/Female) 12 (6/6) 30 (6/24) 17 (6/11) 28 (17/11)

Age at first scan [years] 31.8 (6.4) 33.2 (7) 39.5 (6) 41.1 (4.8)
Disease duration [years] 2.9 (1.9) 8.3 (4.8) 7.5 (2.9) 14.9 (6.1)
EDSS median [range] 1 (0-4) 2 (0-5.5) 4 (2-7.5) 5 (3-8.5)

Lesion Load [ml] 6.6 (3.5) 16.7 (12.6) 20.8 (13) 31 (12.9)
Total number of scans 62 226 125 206

Table 1.3: Patient population: Age - average value (standard deviation); Disease
duration - average value (standard deviation); EDSS - median (minimum -
maximum); Lesion Load - average value (standard deviation).

All patients and control subjects underwent MR examination using a 1.5 Tesla
MR system (Sonata Siemens, Erlangen, Germany) and an 8 elements phased-
array head-coil.

Conventional MRI acquisition Conventional MRI protocol consisted of a 3
dimensional T1-weighted MPRAGE (magnetization prepared rapid gradient
echo) sequence with TR/TE/TI= 1970/3.93/1100 ms, flip angle= 15°, matrix
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size= 256×256, FOV= 256×256 mm, slice thickness= 1 mm, voxel size= 1×1×1
mm, acquisition time= 4.62 min, and a FLAIR sequence with TR/TE/TI=
8000/105/2200 ms, flip angle= 150°, matrix size= 192× 256, FOV= 240× 240
mm, slice thickness= 3 mm, voxel size= 0.9× 0.9× 3 mm, and an acquisition
time of approximately 5 min.

MRSI acquisition and processing MRSI data was acquired from one slice
of 1.5 cm thickness, placed above the corpus callosum and along the anterior
commissure - posterior commissure (AC-PC) axis, encompassing the centrum
semioval region, and took 5 minutes and 20 seconds. A PRESS with TR=1690
ms and TE=135 ms was used to select a volume of interest (VOI) of 105×105×15
mm3 during the acquisition of 24× 24 (interpolated to 32× 32) phase-encodings
over a FOV of 240× 240 mm2.

MRSI data processing was performed using SPID [178,179] in MatLab 2015a
(MathWorks, Natick, MA, USA). AQSES [44,180] was used to quantify NAA,
Choline, and Creatine, using a synthetic basis set, which incorporates prior
knowledge of the individual metabolites in the quantification procedure. MPFIR
(maximum-phase finite impulse response) filtering [220] was included in the
AQSES procedure for residual water suppression, with a filter length of 50 and
spectral range from 1.7 to 4.2 ppm. A band of two voxels at the outer edges of
each VOI was discarded in order to avoid chemical shift displacement artifacts
and lipid contamination artifacts.

In Figure 1.28 there are examples of MS lesions on the axial view (right), brain
atrophy on the sagittal view (center), and a full MRSI grid superimposed on
the T1pc map.

Figure 1.28: MRSI grid (red) superimposed on T1pc of a Multiple Sclerosis
patient. From left to right: coronal, sagittal, and axial view.
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1.5 Objectives of the thesis and main contributions

The main objective of this thesis is to develop supervised classification models
based on multi-parametric MRI data in order to discriminate and predict the
evolution of two major pathologies affecting the brain: GBM and MS. To that
end, the thesis has two parallel tracks: analysing GBM MRI data acquired at
UZ Leuven, Belgium, and analsing MS MRI data acquired at CERMEP, Lyon,
France.

The main objective in analysing the GBM MRI data was to study the
discrimination between progressive and responsive patients, labelled as described
in Section 1.3.3, with the secondary objective of predicting in advance their
evolution from unlabelled (or stable) to labelled (progressive or responsive).

To some extent, both objectives have reached their end-goals in Chapter 2,
when perfect discrimination and even perfect prediction were possible with one
month in advance, but only on a limited number of 18 GBM patients, because
we restricted the study to comparing only advanced MRI modalities (PWI,
DKI, and MRSI). Perfect results were obtained by learning classifiers without
any parameter tuning (e.g. Random Forest with 100 trees), trained only on
perfusion MRI features that were easy to extract, such as average rCBV and
rCBF values computed inside the manually delineated Contrast Enhancing (CE)
region of interest (ROI) of the tumour.

In Chapter 3 we replaced the low quality MRSI data with the high quality
conventional MRI data, and proposed a semi-manual method for delineating CE
ROIs. As a result, more patients and more data points were added to the study,
and perfect prediction and discrimination between progressive and responsive
patients was not possible anymore. Therefore, more complex feature extraction
and selection methods were required to achieve high discriminative results. This
increase in overall complexity of the classification models was possible only after
developing an automated preprocessing pipeline for quantifying PWI and DKI
parameters. Learning a modified boosting algorithm on features extracted from
semi-manual ROIs was shown to provide very high accuracy results for GBM
diagnosis.

As a last effort in analysing GBM data, a modified PRM approach was developed
in Chapter 4, which takes into account the most likely infiltration area of the
tumour, greatly reducing the manual tumour delineation time of a clinician,
because all subsequent MRI scans were registered to the first one. Two types of
computing PRM were compared, one based on T1pc and one based on rCBV, as
features extracted with these two modalities were the best in discriminating the
GBM evolution, according to results from the previous two chapters. Results
obtained within this last GBM analysis showed that using PRM based on cMRI
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is clearly superior to using PRM based on PWI.

The main objective in analysing the MS MRI data was to study the metabolic
differences between all four MS courses (CIS, RR, PP, and SP), and a second
objective was to compare metabolic features extracted from healthy control
subjects and MS patients. Due to the difficulty of correctly diagnosing MS
courses even when more information is available, only binary classification
models were investigated.

Classifiers for different MS courses have been learned and tuned independently
on multiple types of data, such as clinical data (e.g. patient age, disease age,
EDSS), lesion loads, metabolic ratios (e.g. NAA/Cre, NAA/Cho, Cho/Cre), but
also on all of them combined. These results are summarized and presented in
Chapter 5. Furthermore, state of the art classifiers (e.g. CNN) were developed
and their architecture was optimized for higher level MRS features. These results
are summarized and presented in Chapter 6. Results for discriminating healthy
control subjects from MS patients were not satisfactory, even though statistically
significant differences between the two groups were observed. Finally, training
CNNs on MRS spectrograms did not improve classification of MS courses over
less complex machine learning algorithms, such as SVM-rbf, trained on more
simple features, such as metabolic ratios.

1.6 Outline of the thesis

This thesis is structured as shown in Figure 1.29.

In Chapter 1 basic concepts of ML, MRI, GBM, and MS, are described. In
Chapter 2 a first study is presented on classifying and predicting the evolution
of 18 post-operative GBM patients based only on advanced MRI data. In
Chapter 3 a second study, more complex than the first one, is presented
on classifying 29 post-operative GBM patients based on conventional and
advanced MRI data. In Chapter 4 a third study is presented on classifying
and predicting the evolution of 29 post-operative GBM patients using a modified
PRM approach on conventional and perfusion MRI data. In Chapter 5 a first
study is presented on classifying four different MS forms of 87 MS patients from
18 HC subjects, based on clinical and MRI data. In Chapter 6 a second study
used state of the art classifiers (CNN) for discriminating the main four MS forms
of 87 MS patients based only on MRSI data and brain tissue segmentations.
Finally, in Chapter 7, the main limitations, achievements, general conclusions
of our studies, as well as possible future ideas are discussed.
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Figure 1.29: Thesis outline.

1.7 Conclusion

Conventional MRI is the standard modality for detecting the main features of
abnormal brain tissues, such as brain tumours or lesions, but it has limited
specificity in detecting the grade or evolution of both diseases, therefore
more advanced MRI modalities need to be acquired for better brain tissue
characterization. For GBM follow-up prediction and diagnosis there is an
increasing interest in research and clinical settings to acquire and analyse DKI,
MRSI, and PWI, due to remarkable properties of imaging tissue organisation,
metabolism, blood perfusion and neo-angiogenesis. Also for MS follow-up
prediction and diagnosis there is an increasing interest in both research and
clinical settings to acquire and analyse MRSI, MTI, and DWI. With this
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increasing MRI data volume and complexity, machine learning fits perfectly the
need to compact and compare different types of MRI, analyse data and extract
meaningful features that can be used for validating different models, with the
ultimate goal of improving diagnosis accuracy and reducing time consuming
tasks of clinicians such as manual tumour delineation.



Chapter 2

Tumour relapse prediction
using multi-parametric MR
data recorded during
follow-up of GBM patients

In this chapter the difference between progressive and responsive GBM patients
was analyzed based only on advanced MRI data: PWI, DKI, and MRSI. For
each scanning session from a total of 178 sessions, three regions of interest
were manually delineated by an expert clinician: contrast enhancing, edema,
and necrosis. Average values of the first two ROI, contrast enhancing and
edema, were then extracted from three parametric perfusion maps (cerebral blood
volume, cerebral blood flow, decrease ratio), and from three parametric diffusion
maps (fractional anisotropy, mean diffusivity, mean kurtosis). Therefore, six
features were extracted from PWI (three from contrast enhancing and three from
edema), and six more features were extracted from DKI (three from contrast
enhancing and three from edema). Ten features were extracted from MRSI,
assessed only within the contrast enhancing voxels. Five additional features
were extracted and always used as input to machine learning algorithms: the
three ROI volumes (contrast enhancing, edema, necrosis) and two categorical
parameters, one indicating if the patient had a total tumour resection and
another one indicating the treatment group. In total there are 27 features: six
perfusion parameters, six diffusion parameters, 10 spectroscopic parameters,
three tumour compartments volumes, and two additional parameters. Although

43
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the MR data was acquired from 29 patients, only 18 patients had a complete
data set. The larger incomplete dataset has 178 data points (56 labelled and 122
unlabelled), while the smaller complete dataset has 45 data points (18 labelled
and 27 unlabelled). A method was developed to fill-in the missing data and a
comparison was done between results based on complete data and results based
on imputed data. The performance of twenty-three supervised and three semi-
supervised classifiers was measured using a leave-one-patient-out cross-validation
scheme. Training of the classifiers was done only on labelled data, while testing
was done also on unlabelled data. The work presented in this chapter was
published in [116] in a slightly modified version.

2.1 Introduction

GBM is the most common and malignant intracranial tumour [26], representing
as much as 30% of primary brain tumours with increasing incidence in some
geographic regions [56]. The patients have a median survival of only 10 to 14
months after diagnosis with only 3 to 5% of patients surviving more than three
years. Recurrence is universal, and at the time of relapse, the median survival
is only five to seven months despite therapy [193]. The current standard of care
is surgical resection followed by radiotherapy and concomitant and adjuvant
temozolomide chemotherapy [216].

MRI is the most widely used medical imaging technique for identifying the
location and size of brain tumours. However, cMRI has a limited specificity
in determining the underlying type of brain tumour and tumour grade [53,60].
More advanced MR techniques like DWI, PWI, and MRSI, are promising in the
characterization of brain tumours as they give potentially more physiological
information [162,184,235].

DWI and DKI visualize the tissue structure and are useful for assessing tumour
cellularity, because they give information about the water movement inside
different tissues including biological barriers. Typical parameters related to
diffusion are ADC, MD, MK and FA. MD is a general parameter that accounts
for the mean diffusivity in all directions, MK might be a specific parameter for
tissue structure [120], and FA is a general index of anisotropy, with a value of
zero corresponding to isotropic diffusion and a value of one corresponding to
diffusion only in one direction.

PWI provides measurements that reflect changes in blood flow, volume, and
angiogenesis. Hypervascularity due to glioma-induced neoangiogenesis may
show up as high rCBV while necrosis of different tissues may show up as low
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rCBV [147]. MRSI provides information about metabolites present in normal
and abnormal tissue [153].

We have studied patients with GBM that had the tumour surgically removed
and afterwards were treated according to two different protocols developed for
evaluating dendritic cell immuno-therapy: HGG-IMMUNO-2003 [51,52,194,234],
and HGG-IMMUNO-2010 [234].

The focus of our this chapter is finding a map between multiparametric MR
data acquired during GBM follow-up and the brain tumour relapse after surgery,
as described by the clinically accepted RANO criteria [239]. In order to do this,
we test different families of classifiers on multiparametric MR data, starting
from simple ones, e.g. k-Nearest Neighbours (k-NN) and Linear Discriminant
Analysis (LDA), and moving to non-linear classifiers, e.g. random forests and
neural networks, using a total of 27 features extracted from PWI, DKI and
MSRI data.

2.2 Materials and Methods

2.2.1 Study setup

Study setup was described in Section 1.3.3. Each MRI time point for each
patient was assessed based on the RANO criteria, and assigned to two major
groups: either unlabelled for all time points before the decision moment, or
labelled as “responsive” or “progressive” for all time points at and after the
decision moment.

2.2.2 MRI acquisition and processing

MRI was performed on a clinical 3 Tesla MR imaging system (Philips Achieva,
Best, The Netherlands), as previously described in Section 1.3.3.

Anatomical magnetic resonance imaging

Conventional MRI data was acquired as previously described in Section 1.3.3.
Regions of interest (ROI) were manually drawn around the solid contrast-
enhancing (CE) region if present, avoiding areas of necrosis or cystic components
such as the surgical cavity. A second ROI was manually drawn around the
total lesion, i.e. sum of contrast-enhancement (CE) and perilesional oedema
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(ED). The ROI containing the perilesional oedema was obtained by subtracting
the CE ROI from the total lesion. Finally, a separate ROI was drawn around
the contralateral NAWM to standardize the PWI hemodynamic measurements.
The CE ROI was delineated on T1pc, while the total lesion was delineated on
T2.

The manual delineations were drawn by a radiologist (Dr. Sofie Van Cauter)
with 5 years experience of brain tumour MR imaging. An example of delineations
on T1pc can be seen in figure 2.1, where green is the necrosis, red is CE and
blue is ED.

Figure 2.1: Brain tumour delineations on T1pc MRI. Green - necrosis, Red -
contrast enhancing region of interest, Blue - edema.

Magnetic resonance spectroscopy

MRSI data was acquired and processed as previously described in Section 1.3.3.
Sixty-six per cent (66 %) of all spectroscopic time points are not included in
this study. There are two reasons for this: (1) quantification was not possible
for all time points, mainly because of movement artefacts, and (2) the rest of
them did not pass the quality control recommended by Kreis [130], as listed
below.

Reject data if:

• full-width at half-maximum peak height of metabolites > 0.07–0.1 ppm
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• relative Cramer-Rao lower bounds > 50%

• unexplained features in residuals—reject, if artifact or expand model, if
unexpected metabolite peaks doubled or patient moved (post-acquisition
MRI)

• lineshape strongly asymmetric after eddy correction outer volume ghosts or
other artifacts present (at least exclude metabolites overlaid with artifact)

Perfusion Weighted MRI

PWI data was acquired as previously described in Section 1.3.3. DSC data
were analysed using DPTools (www.fmritools.org), as described in [231]. The
mean values of the considered perfusion parameters were retrieved in the CE,
ED, and NAWM regions. We report relative rCBV (rrCBV), relative rCBF
(rrCBF) and relative DR (rDR) of tumoural tissue by using the corresponding
parameter value in the contralateral NAWM as internal reference. Although
quantification was possible for all time points, after quality assessment done by
visual inspection by SVC, 30% of them were not included in this study.

Diffusion kurtosis imaging

DKI data was acquired as previously described in Section 1.3.3. The DKI data
were processed as described in [231]. Fractional anisotropy (FA), mean diffusivity
(MD) and mean kurtosis (MK) were derived from the tensors [108, 120]. A
nonlinear registration of the parameter maps to the anatomical MR imaging data
was performed to minimize the local misalignment between the EPI distorted
DKI data and the anatomical data on which the ROIs were manually positioned.
MK, MD and FA were determined in the CE and ED regions. Although
quantification was possible for all time points, after quality control according
to [175], 44% of them were not included in this study.

Summary of MRI acquisition and processing

In total, from 29 patients, there are 178 data points of follow-up MR imaging
sessions, and each of these ones has 27 features:

• 3 volumes - contrast enhancement (CE), oedema (ED), necrosis (N)

• 6 perfusion features - rrCBV, rrCBF, rDR for CE and ED
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• 6 diffusion features - MK, MD, FA for CE and ED

• 10 spectroscopic features - from CE - NAA/tCho, NAA/sum, tCho/sum,
NAA/Cre, Lips/tCho, tCho/Cre, Myo/sum, Cre/sum, Lips/Cre, Glx/sum

• a parameter (0 or 1) for total resection of the tumour

• a parameter (0,1, or 2) to describe the group of the patient - HGG-
IMMUNO-2003, HGG-IMMUNO-2010 placebo or HGG-IMMUNO-2010
vaccine

Out of all 178 data points, if we extract just the ones with complete features, it
will result in a subset of 18 patients with 45 data points. This implies that more
than 75% of the measurements have at least one feature missing. Five features
are always present: the three volumes, the parameter for tumour resection, and
the parameter for different groups.

2.2.3 Classifiers

We have used several supervised and semi-supervised classifiers, as presented in
Table 2.1, with the goal of testing whether the unlabelled data could have been
reliably labelled before the actual decision was taken in the clinic according to
the RANO criteria.

The list of classifiers in Table 2.1 is representative for the most important
families of classification methods, starting from simple classical ones such as
LDA and k-NN up to more complex non-linear classifiers such as RF and neural
networks.

All classifiers are implemented in Matlab R2013a (MathWorks, Massachusetts,
U.S.A.). All classifiers except Least Squares Support Vector Machines (LSSVMs)
and the semi-supervised ones are part of the Statistics Toolbox and Neural
Networks Toolbox of Matlab R2013a.

k-NN [42] is one of the basic classifers in machine learning. The class label of a
new testing point is given by the most common class among its k neighbours. We
used the default MATLAB R2013a (Statistics Toolbox) function “knnclassify”
to run a grid search for the best combination of number of neighbours (k) and
type of distance. We varied k between 1 and 11 and the distance was either
“euclidean”, “cityblock”, “cosine” or “correlation”. We found the best results for
the combination of 3 neighbours and the “correlation” distance.

Diagonal LDA (dLDA [201]) is a simple modification of Linear Discriminant
Analysis, which implies that we use the pseudoinverse of the covariance



MATERIALS AND METHODS 49

Supervised Classifiers Handles missing values
Random Forests X
Classification Tree X
Boost ensembles X
Neural networks −

SVM −
LSSVM −
k-NN −
dLDA −

Semi-supervised classifiers
LDS −
SMIR −
S4VM −

Table 2.1: Supervised and semi-supervised classifiers tested in this chapter.

matrix instead of the actual inverse. We used the default MATLAB R2013a
implementation “classify” from the Statistics Toolbox.

SVMs [39,43] are among the most popular machine learning models because
they are easy to understand: given a training set with points that belong to
two classes, we try to find the best hyperplane to differentiate between the two
types of points. We can try this in the original space or we can map the points
to another space by using the kernel trick. We used the default MATLAB
R2013a (Statistics Toolbox) implementations “svmtrain” and “svmclassify”. We
used different types of kernel: linear, polynomial, radial basis function and
multi-level perceptron.

Classification tree [22] is an algorithm commonly used in machine learning. Like
in a real tree there are leaves which represent class labels, and branches. At each
node of a tree a single feature is used to discriminate between different branches.
We used the default MATLAB R2013a (Statistics Toolbox) implementation
“classregtree”.

Neural networks [88, 101,143,188] are built on interconnected layers of artificial
“neurons” that try to map an input vector to its specific output. There are
three types of layers: input, hidden and output. The weights between different
neurons are trained until a maximum number of iterations or a minimum error
is reached. We used the default MATLAB R2013a (Neural Network Toolbox)
implementation “net” with 10 hidden neurons. We tested four types of neural
networks: pattern net, feed forward net, cascade forward net and fit net.
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Random forests [20, 21] are part of the ensemble methods for classification that
use a collection of decision trees. Each decision tree learns a rule and then it
can classify a new point. The new point is assigned to the class voted by the
majority of the decision trees. We used the default MATLAB R2013a (Statistics
Toolbox) implementation “TreeBagger” with 100 trees.

Boosting algorithms [76, 77, 79, 202] start with a collection of weak classifiers
(e.g. decision trees) and with each iteration they try to improve the overall
classification by learning what was misclassified at the previous step. We used
the default MATLAB R2013a (Statistics Toolbox) implementation “fitensemble”
with 100 trees. We tested seven types of boosting algorithms: AdaBoost,
LogitBoost, GentleBoost, RobustBoost, LPBoost, TotalBoost and RUSBoost.

LSSVMs [221,222] are a powerful machine learning technique. We downloaded
LSSVMlab from [66] and followed the instructions from [49] to tune the
parameters. We used different types of kernel: linear, polynomial, radial
basis function, and also the Bayesian approach on LSSVM.

The semi-supervised classifiers used in this chapter are Low Density Separation
(LDS [34]), Squared-loss Mutual Information Regularization (SMIR [165]), and
Safe Semi-Supervised Support Vector Machine (S4VM [141,251]). In the last
years there has been a steady increase in the use and development of semi-
supervised classifiers, as they take into account information from unlabeled data
also, not just from labeled data. This makes them powerful machine learning
tools. The implementation for semi-supervised classifiers was downloaded
from [218], [136] and [33].

Classifiers were tested first with all features described in section 2.2.2 taken
as input, but then also by selecting subsets of the available features as input,
i.e., only the features pertaining to a single modality (perfusion, diffusion and
spectroscopy). Additionally, classifiers were tested first on the smaller dataset
containing 45 time points with a complete set of features and then on the larger
dataset containing 178 time points where missing values have been imputed
according to section 2.2.4, presented below.

2.2.4 In-house imputation method

Some classifiers have built-in strategies of handling missing values, but other
classifiers do not handle missing values (see table 2.1). This is why we developed
our own in-house imputation method, so the handling of missing values will be
the same for all classifiers.

Our method is based on the volumes of contrast enhancement and oedema
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regions, in the sense that if the volume of a tumour region is zero, that missing
tissue is considered healthy tissue. If we have values of any modality (perfusion,
diffusion, spectroscopy) that are missing from CE or ED, and the volume of
CE or ED corresponding to that measurement is zero, then we assume that
those missing values belong to a normal type of tissue. For perfusion, because
we normalize every parameter to the normal appearing white matter value,
the missing values will be replaced by 1’s. For diffusion and spectroscopy, the
missing values will be replaced by the average of the features taken over the
measurements which were labeled as responsive, because we consider that these
measurements are recorded from a healthy tissue. If we have missing values
without association to zero volume for CE or ED, they will be replaced by the
average taken over all the labeled measurements.

2.2.5 Performance indices

Leave one patient out (LOPO)

Classifiers are trained on labelled data from all patients except one who is the
test patient. Each patient in turn is selected as test patient. All time points
that belong to the test patient are classified independently. Results for each
classifier are averaged per time point over all patients relative to the time point
at which the clinical decision was made. This way of testing is intuitive from a
medical point of view and provides us with information about how good is the
classification when we approach the decision time. In this way we can look at
the temporal evolution of the classification for each patient.

We compute the balanced error rate (BER) at each time point before and after
the decision, using the clinical decision assigned to each patient as expected
label for all time points of this patient. BER is computed as

BERi = ERRrespi + ERRprogi

2 , (2.1)

where

ERRrespi = Number of responsive patients misclassified as progressive
Total number of responsive patients (2.2)

and

ERRprogi = Number of progressive patients misclassified as responsive
Total number of progressive patients .

(2.3)

For each classifier we have a total of 17 time points, due to the fact that there
are patients with up to 6 time points after the decision and other patients with
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up to 11 time points before the decision. In order to compare the classifiers by
using just one error number instead of 17, we compute a weighted average for
each classifier’s time response. This performance measurement is denoted by
“weighted BER (wBER)” in the results section.

We use two sets of weights:

• one for the temporal response - the classifier should perform better when
we approach the labelling time point and after it W t

i = 1, if i ≥ decision
time point W t

i = 1− 0.5
11 · i, if i < decision time point

• one for patient population - the time points with more patients get a higher
weight (see table A.8 from Appendix) W p

i = Number of patients at time point i
Total number of patients

The equation of wBER is

wBER =
∑
W p
i ·W t

i ·BERi∑
W p
i ·W t

i

(2.4)

2.3 Results and Discussion

2.3.1 Results

LOPO when using all modalities

Table A.1 from Appendix shows how different classifiers perform on complete
and imputed features when trained on all MR modalities. We selected the best
6 classifiers (highlighted in table A.1) and present their detailed BER results
for each time point in table 2.2.

Table 2.3 shows the detailed BER results for each time point for the best 6
classifiers trained on imputed data.

LOPO when using each modality

Table 2.4 shows the best six supervised classifiers’ performance trained on
complete features of each MR modality separately.

Tables A.2, A.3, A.4 from Appendix list the best classifiers’ performance trained
on complete features of PWI, DKI, and MRSI, respectively. Table 2.5 shows the
performance of the best classifiers trained on separate imputed features. PWI
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Table 2.2: Detailed BER results for each time point when training the best
6 classifiers on complete features for all MR modalities. The decision (i.e.
labelling) moment ‘L’ is highlighted. Some time points do not have results
because there were no complete measurements.

BER Random Forests dLDA SVM-lin LogitBoost RobustBoost SVM-mlp
L+5 − − − − − −
L+4 − − − − − −
L+3 0 0 0 0 0 0
L+2 0 0 0 0 0 0
L+1 0 0 0 0 0 0
L 0 0.1 0.217 0 0 0.1
L-1 0 0.125 0 0 0 0.125
L-2 0.25 0.25 0.5 0.25 0.25 0.25
L-3 0.5 0.5 1 0.5 0.5 0.25
L-4 1 1 1 1 1 0.5
L-5 0.25 0.25 0.25 0.25 0.25 0.25
L-6 0.5 0 0 0.5 0.5 0
L-7 1 0 1 1 1 0
L-8 − − − − − −
L-9 0 0 0 0 0 0
L-10 − − − − − −
L-11 0 0 1 0 0 0
wBER 0.148 0.172 0.276 0.148 0.148 0.136

and DKI features were extracted from both CE and ED ROI. MRSI features
were extracted only from CE voxels.

Tables A.5, A.6, A.7 from Appendix list the performance of the best supervised
classifiers (highlighted in table A.1) when using, respectively, perfusion, diffusion
or spectroscopy data separately, considering imputed features only.

In-house imputation strategy vs. Built-in imputation strategy

Table 2.6 shows how different classifiers perform with our in-house imputation of
missing values (section 2.2.4) versus the built-in imputation strategy of missing
values for the classifiers marked in table 2.1.
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Table 2.3: Detailed BER results for each time point for the best 6 classifiers
when trained on imputed data for all MR modalities. The decision (i.e. labelling)
moment ‘L’ is highlighted.

BER Random Forests dLDA SVM-lin LogitBoost RobustBoost SVM-mlp
L+5 0 0 0 0 0 0
L+4 0 0 0 0 0 0
L+3 0 0 0 0 0 0
L+2 0.125 0.25 0.125 0.125 0.125 0
L+1 0.171 0.071 0.071 0.171 0.171 0.071
L 0.105 0.022 0.149 0.188 0.105 0.359
L-1 0.214 0.065 0.130 0.3 0.192 0.192
L-2 0.444 0.417 0.194 0.444 0.472 0.5
L-3 0.418 0.382 0.282 0.418 0.418 0.482
L-4 0.475 0.413 0.388 0.475 0.413 0.475
L-5 0.688 0.438 0.563 0.688 0.688 0.688
L-6 0.368 0.467 0.3 0.567 0.567 0.567
L-7 0.375 0.375 0.75 0.5 0.75 0.625
L-8 0.5 0.333 0.583 0.5 0.75 0.333
L-9 0.333 0.333 0.833 0.333 0.833 0.5
L-10 0.5 0.75 0.75 0.5 1 0.75
L-11 0.5 0.5 1 0.5 0.5 0.5
wBER 0.294 0.216 0.242 0.335 0.325 0.352

Table 2.4: Weighted BER for the best 6 supervised classifiers trained on complete
data for each MR modality separately. PWI and DKI features were extracted
from both CE and ED ROI. MRSI features were extracted only from CE voxels.

Weighted BER Random forests dLDA SVM-lin LogitBoost RobustBoost SVM-mlp
PWI 0.148 0.256 0.220 0.148 0.148 0.193
DKI 0.358 0.259 0.255 0.367 0.367 0.349
MRSI 0.571 0.561 0.600 0.609 0.623 0.629

2.3.2 Discussion

A first conclusion that we can draw from a comparative analysis of the different
classifiers is that we obtain the lowest error when training classifiers on data
with complete features and not on data with imputed features, no matter the
imputation method (our in-house method or the built-in method). In order to
improve the performance of classifiers, improving the quality of the data would
help.
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Table 2.5: Weighted BER for the best classifiers trained on imputed features
from each MR modality separately. PWI and DKI features were extracted from
both CE and ED ROI. MRSI features were extracted only from CE voxels.

Weighted BER Random Forests dLDA SVM-lin LogitBoost RobustBoost SVM-mlp
PWI 0.294 0.311 0.275 0.289 0.265 0.282
DKI 0.277 0.327 0.322 0.277 0.277 0.380
MRSI 0.412 0.401 0.423 0.423 0.408 0.415

Table 2.6: Weighted BER comparison between our in-house method of imputing
missing values and built-in imputation strategy of different supervised classifiers.

Weighted BER Our method Built-in method
Random forests 0.294 0.423

AdaBoost 0.324 0.333
LogitBoost 0.335 0.241
GentleBoost 0.308 0.245
RobustBoost 0.325 0.296
LPBoost 0.256 0.369

TotalBoost 0.289 0.323
RUSBoost 0.308 0.361

Decision Tree 0.346 0.651

The lowest error when using complete features is around 0.14 (SVM-mlp - 0.136),
while if we use imputed features the lowest error is 0.216 (dLDA). The best
classifiers on complete features are ensemble classifiers (random forests and
boosting algorithms), dLDA and SVM, while the best classifiers on imputed
features are dLDA, SVM-lin and random forests.

If we compare the results of single MR modalities when training classifiers
on data with complete features, we can say that the use of spectroscopy only
leads to the worst results with a minimum error of 0.561. The single use of
perfusion generates better results than using only diffusion data, especially when
using ensemble methods (random forests, LogitBoost and RobusBoost), with a
minimum error of 0.148 compared to 0.255. When using imputed features, the
minimum error almost doubles.

An interesting aspect when looking at detailed measurements on complete
features (table 2.2) is the fact that we have error equal to zero (perfect
classification) one time point before the actual labeling according to the RANO
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criteria, when using random forests, LogitBoost or RobustBoost. This means
that we can predict the patient outcome (progressive, responsive) with 100%
accuracy one time point (i.e. about 1 month in our study) earlier than the actual
clinical decision was made. When looking at each MR modality separately
(tables A.2, A.3, A.4) we notice that the same result could have been obtained by
using solely the perfusion data. This is a very important finding, mainly because
perfusion is very fast to measure (2-3 minutes) and it has the lowest rate of
missing data, which makes it reliable. Our study is not the only one that shows
that perfusion parameters are very reliable when it comes to differentiating
between tumour tissues and other tissues. Multiple studies (among others
Barajas et. al. [9] and Hu et. al. [104]) prove that perfusion parameters are
strongly correlated to tumour progression and overall survival. The main
reason behind this strong correlation is the fact that tumours grow very fast,
so they require large amounts of nutrients to develop, which is reflected in the
angiogenesis of the tumour. This increase in angiogenesis is visualised and
measured using perfusion imaging.

When comparing the two methods of imputing missing values, our in-house
method (section 2.2.4) and the classifier-dependent built-in strategies, the
difference between them is not important with respect to the performance of
the classifiers.

Using machine learning for classification of brain tumoral tissue is a field with
an increasing amount of work.

In [105] Hu et. al used a support vector machine approach on multiparametric
MRI (perfusion, diffusion and anatomical MRI) to automatically differentiate
between radiation necrosis voxels and progressive tumour voxels coming from
patients with resected GBM. They optimize a One Class SVM based on the
Area under Receiver Operator Curve from 6000 training voxels manually
delineated from 8 patients and then tested on manually delineated voxels
from 8 new patients. Their results show that perfusion and diffusion have a
high discrimination rate between radiation necrosis and tumour progression.

In [9] Barajas et al. used perfusion MR imaging to investigate which parameters
can be used to differentiate between recurrent GBM and radiation necrosis.
Their study was based on 57 patients, they used Welch t test to compare
measurements between groups, and they found that all perfusion parameters
(relative CBV, peak height, percentage of signal intensity recovery) are strongly
correlated to tumour progression.

In [104] Hu et al. used perfusion metrics on contrast enhancement lesions
(CBV mean, mode, maximum, width, and a new thresholding metric called
fractional tumour burden (FTB)) to see how they correlate to overall survival
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(OS). Their study was based on 25 patients with recurrent GBM and found
that all parameters are strongly correlated to OS.

In [242] Weybright et. al used MRSI to differentiate voxels with tumour
recurrence and radiation injury. Their study was based on 29 patients and they
had high quality data for 28 of them (97%). They found that the Cho/NAA
and Cho/Cr ratios may be the best numerical discriminators between tumour
recurrence and radiation injury.

A number of factors limited this study and will try to be addressed in the future.
MRSI feature extraction was done only from contrast enhancing voxels, however
the edema contains infiltrative tumour growth and is expected to show changes
in metabolites. Moreover, MRSI acquisition was done at the end of the scanning
session, therefore making it difficult for patients to resist, and more prone to
movement artifacts. The imputation method assumed normal type of tissue if
the contrast enhancing or edema ROI was missing, but there could be cases of
pseudoresponse where it is possible for tumour to be present. Also, filling in
with average values has its disadvantage, as any information concerning the
patient was missing, e.g. tumour location or scanning session.

Although we cannot compare our results directly to the ones from previous
studies because they are studying a different classification problem, it is
becoming more obvious that a learning algorithm based on multiparametric
MR data will evolve in the near future and will help clinicians in differentiating
between progressive tumour tissue and other types (necrotic or normal).

2.4 Conclusions

In this chapter we study the classification problem between progressive and
responsive GBM patients, by comparing different supervised and semi-supervised
machine learning algorithms. We train them on multi-parametric MR data
with complete and imputed features, acquired from 29 GBM follow-up patients.
We found that on a subset of 18 patients, the same label according to the
RANO criteria could have been put one month earlier with 100% accuracy,
if we trained RF on data with complete features, and more importantly, the
same result was achieved by the same classifiers using only complete perfusion
data. This conclusion is in contrast to the conception that multi-parametric
MRI (e.g. perfusion and diffusion) is always better than single-parametric MRI
(e.g. perfusion). For future work we plan on using the temporal evolution of
the features when classifying different MR sessions and also allow updating of
the class labels in time.





Chapter 3

Classifying glioblastoma
multiforme follow-up
progressive vs. responsive
forms using multi-parametric
MRI features

In this chapter the difference between progressive and responsive GBM patients
was analyzed based on conventional and advanced MRI data: cMRI, PWI,
and DKI. Conventional MRI consisted of four parameter maps, perfusion MRI
consisted of five parameter maps, and diffusion MRI consisted of seven parameter
maps. The same data from the previous chapter was used: follow-up MR data
acquired from 29 patients, summing up to 183 data points, 56 labelled and 127
unlabelled. For each scanning session from the total of 183, only one ROI
(total tumour) was manually delineated by an expert clinician, as opposed to
the previous chapter, where three ROI were manually delineated. Afterwards,
based on the total tumour T1pc voxels, contrast enhancing and non-enhancing
ROI were automatically delineated. Twenty-six statistical and 3-D texture
features were extracted from each MR parameter ROI, summing up to 416
multi-parametric MR features from one ROI: 104 conventional MR features (26
features × 4 maps), 130 perfusion MR features (26 features × 5 maps), and
182 diffusion MR features (26 features × 7 maps). In this chapter the complete
labelled dataset had 55 data points, compared to the previous chapter where it
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had only 18 data points. Therefore, the focus was only on the complete dataset,
and results based on the single manually delineated total tumour ROI were
compared to results based on the two semi-manually delineated ROI, contrast-
enhancing and non-enhancing. The performance of seven supervised classifiers
was measured using a leave-one-patient-out cross-validation scheme, after the
best ten features were selected based on the rank products of six independent
feature selection algorithms. The work presented in this chapter was published
in [115] in a slightly modified version.

3.1 Introduction

GBM is the most common and malignant intracranial tumour [26], representing
as much as 30% of primary brain tumours with increasing incidence in some
geographic regions [56]. The patients have a median survival of only 10 to 14
months after diagnosis with only 3 to 5% of patients surviving more than three
years. Recurrence is universal, and at the time of relapse, the median survival
is only five to seven months despite therapy [193]. The current standard of
care is surgical resection followed by radiotherapy and concomitant adjuvant
temozolomide chemotherapy [216].

MRI is the most widely used medical imaging technique for identifying the
location and size of brain tumours. However, cMRI has a limited specificity in
determining the underlying type and grade of the brain tumour [53,60]. More
advanced MR techniques like PWI and DKI are promising in the characterization
of brain tumours as they give potentially more physiological information [162,
184,235]. DKI visualize the tissue structure and are useful for assessing tumour
cellularity, as it gives information about the water movement inside different
tissues including biological barriers. Typical parameters related to diffusion are
FA, MD, and MK. FA is a general index of anisotropy, with a value of zero
corresponding to isotropic diffusion and a value of one corresponding to diffusion
only in one direction. MD is also a general parameter that accounts for the
mean diffusivity in all directions, while MK might be a specific parameter for
tissue structure [120]. PWI provides measurements that reflect changes in blood
flow and blood volume. Hypervascularity due to glioma-induced neoangiogenesis
may show up as high rCBV while necrosis of different tissues may show up as
low rCBV [147].

We studied patients with GBM that had their tumour surgically removed
and afterwards were treated according to two different protocols developed for
evaluating dendritic cell immuno-therapy: HGG-IMMUNO-2003 [51,52,194,234],
and HGG-IMMUNO-2010 [234].
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The focus of this chapter is the same as in the previous chapter, namely finding
a map between multi-parametric MRI data acquired during the follow-up of
GBM patients and the relapse of brain tumour after surgery, as described by
the clinically accepted RANO criteria [239]. We were motivated to conduct
this study because of our excellent previous results where we could differentiate,
based only on PWI features, between progressive and responsive follow-up
GBM patients with 100% accuracy one month before the patients were labelled
according to the RANO criteria. A drawback of our previous results was the
small sample size (18 patients, 27 data points), so in this study we want to
confirm our findings on an extended dataset of 29 patients, which includes data
from the previous study.

Additionally, we present two main improvements: (1) semi-manually delineating
contrast enhancing regions (CER) and non-enhancing regions (NER) and (2)
extracting additional texture and histogram features, with the purpose of
improving classification performance. The first improvement is to automatically
delineate CER, based on the manually delineated total tumour region.
Delineating CER by hand is a time consuming process and requires the
radiologist’s full attention to make sure that necrosis or non-enhancing regions
are not in CER. We select CER based on the T1pc main property of imaging the
contrast agent’s leakage into the active tumour, which determines high intensity
areas where the active tumour is located. The second improvement is extracting
histogram and texture features and selecting those with high differentiating
power. In the previous chapter we used only the average parameter values
from CER, NER, and total, while in this one we extract six histogram features
and twenty 3-D texture features based on the gray level co-occurence matrix
(GLCM), as described in Section 3.2.2. We do feature selection using six of the
most widely known features selection algorithms and combine feature rankings
using the rank product method, as described in Section 3.2.2. In Section 3.3,
linear and non-linear classifiers are tested on a varying number of features, and
their results are combined into separate groups, which are used as input to
non-parametric statistical tests to discover which combination of delineation,
MR modality, and classifier, achieves the highest rank.

3.2 Materials and Methods

3.2.1 Study setup

Study setup was described in Section 1.3.3. Each MRI time point for each
patient was assessed based on the RANO criteria, and assigned to two major
groups: either unlabelled for all time-points before the decision moment, or
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labelled as “responsive” or “progressive” for all time-points at and after the
decision moment. In total there are 183 time points, 56 are labelled and 127
are unlabelled.

3.2.2 MRI acquisition and processing

The MR images were acquired on a clinical 3 Tesla MR imaging system (Philips
Achieva, Best, The Netherlands), using a body coil for transmission and a
32-channel head coil for signal reception. The imaging protocol consisted of
cMRI, PWI, and DKI.

Conventional MRI

Four types of conventional MR images were acquired as previously described in
Section 1.3.3.

Perfusion MRI

Perfusion MRI data were acquired as previously described in Section 1.3.3. PWI
were processed using the DSCoMAN plugin [18] for ImageJ [200], which takes
into consideration the leakage correction and can easily be automated. For each
PWI acquisition, five parameter maps were extracted: corrected cerebral blood
volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), time to
peak (TTP), and R2 (Rsquare).

Diffusion MRI

DKI data were acquired as previously described in Section 1.3.3. For each DKI
acquisition, seven parameters maps were derived from the tensors [108, 120]:
fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial
diffusivity (RD), mean kurtosis (MK), axial kurtosis (AK), radial kurtosis (RK).

Delineations

A ROI was manually drawn around the Total tumour lesion, avoiding areas of
necrosis or cystic components such as the surgical cavity. A separate ROI was
drawn around the contra-lateral NAWM to standardize measurements extracted
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from the tumour region. The Total and NAWM ROIs were drawn by Dr. Sofie
Van Cauter, a radiologist with 5 years experience.

To automatically split the Total region in two ROIs, CER and NER, a threshold
was set at the 90th percentile of T1pc Total voxels. In this way, two semi-
manual ROIs were made for each patient based on the T1pc intensities selected
from Total: CER, containing very high T1pc intensity Total voxels, and NER,
containing the rest of Total voxels. The 90th percentile threshold was selected
after visually inspecting T1pc maps of multiple patients.

A typical example of manual and semi-manual ROIs on T1pc can be seen in
Figure 3.1, where red is CER and blue is NER.

Figure 3.1: Left - T1pc. Center - Manual delineations on top of T1pc. Right -
Semi-manual delineations on top of T1pc. In red there is the contrast enhancing
region (CER), while in blue it is the non-enhancing region (NER).

Co-registration

All four cMRI maps, T1, T1pc, T2, and FLAIR, were first skull-stripped using
FSL-BET with default parameters [209]. Afterwards, affine co-registration
of skull-stripped T1, T2, and FLAIR to skull-stripped T1pc was done using
NiftyReg [170] with default parameters. Three affine transformation matrices
were saved and used to re-sample the corresponding original T1, T2 and FLAIR
to the T1pc space.

To co-register PWI a similar protocol was used. Each PWI scan has 60 T2*
brain volumes that can be selected to be co-registered to T1pc. In this study
we select the first PWI brain volume and assume that the rest of them are
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well aligned with it, ignoring any artifacts. After skull-stripping the first PWI
volume using FSL-BET with default parameters, affine co-registration to skull-
stripped T1pc was done using NiftyReg with default parameters. We obtain
one affine transformation that is used to co-register all five PWI parameter
maps (described in Subsection 3.2.2) to T1pc.

To co-register DKI a similar protocol was used. Each DKI scan has 10 T2
brain volumes that can be selected to be co-registered to T1pc. In this study
we select the first DKI brain volume and assume that the rest of them are
well aligned with it, ignoring any artifacts. After skull-stripping the first DKI
volume using FSL-BET with default parameters, affine co-registration to skull-
stripped T1pc was done using NiftyReg with default parameters. We obtain
one affine transformation that is used to co-register all seven DKI parameter
maps (described in Subsection 1.3.3) to T1pc.

Visual inspection of the tumour’s centre in the axial plane of all maps for all
patients after co-registration to T1pc was done by AIM and found no major
misalignments. An example of all 16 maps for a random patient can be seen in
Figure 3.2.

Feature extraction

After co-registering all maps to T1pc, the three ROIs (Total, CER, NER) are
used as separate 3-D masks on each map to extract histogram and texture
features. On each map, voxel intensities from each mask were normalized to
the average value computed from the corresponding NAWM ROI. For each
mask six histogram measures are computed: mean, coefficient of variation, 90th
percentile, 10th percentile, skewness, and kurtosis. Additionally, twenty texture
features are extracted from the 3-D GLCM [93]. To compute the GLCM, each
map has been rescaled such that the voxel intensities are integers varying from
1 to 64.

The GLCM computation was done using the function graycomatrix implemented
in Matlab R2015a (MathWorks, Massachusetts, U.S.A.) with distance set to 1,
the ′Symmetric′ flag set to true, and 4 values of ′Offset′ set to the four main
directions: 0°, 45°, 90°, and 135°. Twenty 3-D texture features, as described
in [93], [211], and [37], were extracted from GLCM: autocorrelation, contrast,
correlation, cluster prominence, cluster shade, dissimilarity, energy, entropy,
homogeneity, maximum probability, sum of squares: variance, sum average,
sum variance, sum entropy, difference variance, difference entropy, information
measure of correlation (IMC) 1 and 2, inverse difference normalized (IDN), and
inverse difference moment normalized (IDMN).
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In the end 416 features are extracted from each ROI: 26 histogram and texture
features for each of the 16 maps. All features have been rescaled between 0 and
1, using all 183 labelled and unlabelled time points. In total, our dataset has 56
data points and 1248 features.

Datasets comparison

In this study we analyse two main influences: (1) features extracted from
CER&NER vs. features extracted from Total tumour; (2) cMRI vs. PWI vs.
DKI vs. all multi-parametric MRI features (cPD). Therefore, we split the
original dataset according to the two main influences and create eight smaller
datasets. These eight datasets were built using complete labelled time points,
meaning labelled time points which have all MRI data available. Only complete
time points were selected because in order to have a fair comparison between
different MRI modalities, the number of points must not differ between them.
All eight datasets have acquisitions from 29 patients and 55 time points. The
ratio between progressive and responsive time points is slightly unbalanced, 34
to 21, or 62% vs. 38%. Table A.9 from Appendix shows the number of features
in each dataset.

Feature selection methods

In order to avoid the curse-of-dimensionality [12], the number of data points
should be much larger than the number of features. Because there are only
55 data points, different feature selection methods were used to reduce the
dimension between 1 and 10 [106]. In this study six of the most widely
known feature selection algorithms were used: minimum redundancy maximum
relevance (mRMR) [55], RELIEFF [128], information gain (InfoGain) [246],
Pearson’s Chi2 [246], random forest - mean decrease in accuracy (RF-MDA) [21],
and random forest - mean decrease in Gini (RF-MDG) [21,27]. The first four
methods were run using the WEKA [89] application program interface (API) in
Matlab R2015a. The last two methods were run using a random forest (RF) of
10000 trees in the statistical environment R [142]. Principal component analysis
or other dimension reduction methods are not used because the biomedical
meaning of the extracted features is lost.

Cross validation and performance measure

Given the fact that multiple data points per patient were acquired from 29
patients, a LOPOCV setup is used. In this way 29 folds are created in which
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the test patient is always independent of the training patients: in each fold data
points from one patient are considered test points, while data points from the
remaining 28 patients are used for training.

In this study, two LOPOCV rounds are done, one for feature selection, and
another one for classification using fixed feature sets.

In the first round, feature rankings are learned on the training sets, with the
most important features at the top, and the least important at the bottom.
Because each fold will have 6 different feature rankings as outputs from mRMR,
Relieff, InfoGain, Chi2, RF-MDA, and RF-MDG, each dataset will have 174
feature rankings. Combining different rankings is done by computing rank
products [23] of each feature that appears at least once in top 10 of any feature
ranking. The output of the first round of LOPOCV is a fixed set of 10 features
selected by rank products per dataset shown in Table A.12 from Appendix.

In the second round, increasing number of features from 1 to 10 were used to
classify data points. Classifiers are trained on the training set of each fold, then
they assign a label to each testing data point from the test set. The assigned
labels are compared to the true labels by measuring the BAR of all 55 test points.
BAR, defined as the average between sensitivity and specificity, was preferred
as a performance measure because the interest is in classifying correctly both
labels (responsive and progressive). BAR can take values between 0 and 1, 1
pointing to a perfect classification and 0 to a completely wrong classification.
A random classifier should give a BAR value of 0.5.

3.2.3 Classifiers

Several supervised classifiers have been used, with the goal of testing if data
labelled according to the RANO criteria could have been reliably labelled using
histogram and 3-D texture measures extracted from multi-parametric MRI.
The list of classifiers as well as their software implementation environment is
presented in Table A.10 from Appendix .

The list of classifiers in Table A.10 is representative for most of the classification
algorithms, starting from simple linear ones such as Linear Discriminant Analysis
(LDA) and Support Vector Machines with linear kernel (SVM-lin) up to more
complex non-linear classifiers such as RF and Stochastic Gradient Boosting
(SGB).

Fisher’s LDA [73] is a classifier that finds a linear combination of input features
that best separates the two classes. It is also very easy to use as there are no
parameters that need to be set. Support Vector Machines [39, 43] is among
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the most popular machine learning models because of its simplicity: given a
training set with points from two classes, it tries to find the best hyperplane
to differentiate between the two types of points. It can be used in the original
feature space or the points can be mapped to another space by using kernel
transformations. Two types of SVM kernel were used in this study: linear
(SVMlin) and radial basis function (SVMrbf) with default settings (’C’ and
’sigma’ set to 1). Random forests [20, 21] are part of the ensemble methods for
classification that use a collection of decision trees. Each decision tree learns
a rule on a bootstrap sample of the original dataset and then it can classify
a new point. The new point is assigned to the class voted by the majority of
the trees. In this study RF was run with 1000 trees on all input features and
’class weight’ set to ’balanced subsample’, to adjust weights for each data point
inversely proportional to class frequencies for each individual tree. Boosting
algorithms [77,202] start with a collection of weak classifiers, in this case decision
trees, and with each iteration they try to improve the overall classification by
learning what was misclassified at the previous step. In this chapter the boosting
algorithms had the following parameters: AdaBoost was run with 1000 trees;
SGB was run with 1000 trees, ’learning rate’ set to 0.1 (default) and ’subsample’
set to 0.5, as suggested in [80]; Random Under Sampling Boosting (RUSBoost)
was run with 1000 trees and ’LearnRate’ set to 0.1.

3.3 Results

We compared seven classifiers, four MR modalities, two types of delineations,
with a variable number of features from one to ten, summing up to a total of 560
BAR values. These BAR values were grouped in several ways (e.g. 56 groups
of 10 values), and then a non-parametric comparison was made to account for
statistical differences between groups. Multiple Kruskal-Wallis [132] rank tests
were run in MATLAB R2015a to determine if all groups originate from the
same distribution, followed by Dunn-Šidák’s post-hoc test [59,205] to determine
which group had the highest rank (better accuracy results). The relationship
between BAR values and ranks is as follows: each BAR value is assigned a rank
value, ignoring group membership. The assigned rank should be an integer,
except for the case when there are multiple equal BAR values, then the assigned
rank is the average of the individual ranks. For example, the BAR sequence
[0.5, 0.7, 0.7, 0.9] is transformed into the rank sequence [1, 2.5, 2.5, 4].

Figures 3.3, 3.4, 3.5, and 3.6, show rank estimates and intervals of different
groups. Intervals are shown as horizontal lines, while rank estimates are in the
middle of the intervals. In each figure, the highest ranked group has its interval
limited by two vertical dotted lines. Groups that are significantly different
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from the highest ranked group have a filled diamond marker in the middle of
their interval, while groups that are not significantly different from the highest
ranked group have an empty circular marker in the middle of their interval.
Two groups are significantly different if their intervals are disjoint; they are not
significantly different if their intervals overlap.

Figure 3.3 shows 56 groups, each group containing 10 BAR values coming from
test runs with varying only the number of features. In the upper part there
are 28 groups using CER&NER features, while in the lower part there are 28
groups using Total tumour features. The highest ranked group is CER&NER-
cMRI-RUSBoost and its rank is significantly higher than 18 out of 28 groups
achieved with Total tumour features.
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Figure 3.2: Example of co-registration results to T1pc for all multi-parametric
magnetic resonance maps.
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Figure 3.3: Rank estimates and confidence intervals for all combinations of classifiers, delineations, and MR modalities.
Intervals are shown as horizontal lines, while rank estimates are in the middle of the intervals. The highest ranked
group has its interval limited by two vertical dotted lines. Groups that are significantly different than the highest
ranked group have a filled diamond marker in the middle of their interval, while groups that are not significantly
different than the highest ranked group have an empty circular marker in the middle of their interval. Two groups are
significantly different if their intervals are disjoint; they are not significantly different if their intervals overlap. Each
group has 10 BAR values, corresponding to 10 different features.
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Figure 3.4 shows 8 groups, each group containing 70 BAR values coming from
test runs with varying classifiers and number of features. In the upper part there
are 4 groups using CER&NER features, while in the lower part there are 4 groups
using Total tumour features. The highest ranked group has CER&NER-cMRI
features and its rank is significantly higher than all groups using Total tumour
features. Moreover, the CER&NER-cMRI group has a significantly higher rank
than CER&NER-PWI and CER&NER-DKI. This means that classification
based only on conventional MRI features performs better than the classification
based only on perfusion or diffusion features.

Figure 3.4: Rank estimates and confidence intervals for all combinations of
delineations and MR modalities. CER - contrast enhancing region, NER - non-
enhancing region. Intervals are shown as horizontal lines, while rank estimates
are in the middle of the intervals. The highest ranked group has its interval
limited by two vertical dotted lines. Groups that are significantly different
than the highest ranked group have a filled diamond marker in the middle of
their interval, while groups that are not significantly different than the highest
ranked group have an empty circular marker in the middle of their interval.
Two groups are significantly different if their intervals are disjoint; they are not
significantly different if their intervals overlap. Each group has 70 BAR values,
corresponding to 10 features and 7 classifiers.

Figure 3.5 shows 14 groups, each group having 40 BAR values coming from
test runs with varying MR modalities and number of features. In the upper
part there are 7 groups using CER&NER features, while in the lower part
there are 7 groups using Total tumour features. The highest ranked group is
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CER&NER-RUSBoost and its rank is significantly higher than all groups using
Total tumour features except AdaBoost.

Figure 3.5: Rank estimates and confidence intervals for all combinations of
delineations and classifiers. CER - contrast enhancing region, NER - non-
enhancing region. Intervals are shown as horizontal lines, while rank estimates
are in the middle of the intervals. The highest ranked group has its interval
limited by two vertical dotted lines. Groups that are significantly different
than the highest ranked group have a filled diamond marker in the middle of
their interval, while groups that are not significantly different than the highest
ranked group have an empty circular marker in the middle of their interval.
Two groups are significantly different if their intervals are disjoint; they are not
significantly different if their intervals overlap. Each group has 40 BAR values,
corresponding to 4 MR datasets and 10 features.

Figure 3.6 shows 20 groups, each group having 28 BAR values coming from test
runs with varying MR modalities and classifiers. In the upper part there are 10
groups using CER&NER features, while in the lower part there are 10 groups
using Total tumour features. The highest ranked group is CER&NER-Number
of features:3 and its rank is significantly higher than all groups using Total
tumour features except Total-Number of features:4.

Figure 3.7 shows the maximum BAR over all MR modalities for CER&NER
and Total tumour ROIs, when varying the number of features from 1 to 10.
In Appendix, associated with Figure 3.3, there is Table A.11. Figure A.1 and
Figure A.2 from Appendix show results of each classifier when varying the
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Figure 3.6: Rank estimates and confidence intervals for all combinations of
delineations and varying number of features. CER - contrast enhancing region,
NER - non-enhancing region. Intervals are shown as horizontal lines, while
rank estimates are in the middle of the intervals. The highest ranked group has
its interval limited by two vertical dotted lines. Groups that are significantly
different than the highest ranked group have a filled diamond marker in the
middle of their interval, while groups that are not significantly different than
the highest ranked group have an empty circular marker in the middle of their
interval. Two groups are significantly different if their intervals are disjoint;
they are not significantly different if their intervals overlap. Each group has 28
BAR values, corresponding to 4 MR datasets and 7 classifiers.

number of features from 1 to 10 for each MR modality, for CER&NER and
Total tumour ROIs, respectively.

Multiple remarks can be made after analysing the figures and tables previously
presented. One of the most important remarks is that there is no combination
of features, classifier, and delineations, that gives a perfect BAR value of
1. Although all post-hoc tests show the superiority of features extracted
from contrast-enhancing and non-enhancing regions, the highest BAR value
is achieved using total tumour features. To compare, the highest BAR value
obtained using total tumour features is 0.956, with AdaBoost on cMRI, between
7 and 9 features, while the highest BAR value obtained using contrast-enhanced
and non-enhanced features is 0.947, with SVMrbf trained on the first 3 cPD
features. It is interesting to note that the maximum BAR value using total
tumour features is achieved using only T1pc features, while the maximum BAR
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Figure 3.7: Maximum classification results over all MR modalities using 1 to 10
features. On y-axis are BAR values, and on x-axis the number of features used
for classification. BAR - balanced accuracy rate, CER - contrast enhancing
region, NER - non-enhancing region.

value using contrast-enhanced and non-enhanced features is achieved only after
combining perfusion features with T1pc features. To be more specific, the
maximum BAR value using contrast-enhanced and non-enhanced features is
achieved only after training SVMrbf on the following three features: T1pc-
average-CER, T1pc-90th percentile-CER, and CBV-90th percentile-CER.

Another notable result is the fact that RUSBoost trained only on just 1 feature
(T1pc-Average-CER) achieves a remarkable BAR value of 0.932. This BAR
value is maintained by RUSBoost trained on all 10 contrast-enhanced and
non-enhanced conventional MRI features, indicating a robust classification.
The same BAR value of 0.932 is achieved by RUSBoost also on the first 5
CER&NER-cPD features, which are histogram features extracted from T1pc,
CBV and CBF. When we add the sixth cPD feature, a diffusion texture feature
(ak-IMC2-CER), the BAR value drops to 0.86.

The post-hoc results reflect the consistent high BAR values of RUSBoost trained
on contrast-enhanced and non-enhanced features, placing it at the two highest
ranked positions in Figure 3.3. Although no group is significantly higher than
the rest of groups, CER&NER-cMRI-RUSBoost is ranked significantly higher
than most of Total-PWI and Total-DKI classifiers. Top 2 classifiers using Total
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tumour features that are not significantly different than CER&NER-cMRI-
RUSBoost are Total-AdaBoost-cMRI and Total-AdaBoost-cPD.

Figure 3.4 shows a surprising result: the best ranked group, compared to all
but one, is CER&NER-cMRI. This is surprising because it means that there
is no need to acquire perfusion or diffusion MRI, one can obtain high BAR
values using only conventional MRI features. Although we are aware that the
highest BAR value using contrast-enhanced and non-enhanced features was
obtained after combining perfusion and conventional MRI features, BAR values
obtained only on CER&NER-PWI or CER&NER-DKI features were ranked
significantly lower than CER&NER-cMRI. BAR values obtained using Total
tumour features with any kind of MR modality were also ranked significantly
lower than CER&NER-cMRI.

Analysing Figure 3.5 we can make two remarks: RUSBoost is the best classifier
using contrast-enhanced and non-enhanced features and AdaBoost is the best
classifier using total tumour features. Analysing Figure 3.6 we see that for
CER&NER, increasing the number of features above a threshold of 3 will
decrease the BAR values, although not significantly.

It is clear from these four figures, Fig. 3.3, Fig. 3.4, Fig. 3.5, and Fig. 3.6,
that splitting the total tumour into two regions, contrast-enhancing and non-
enhancing, using a simple threshold like 90th percentile, can improve significantly
the classification accuracy.

3.4 Discussion

In Table A.12 we can see that feature selection for contrast-enhanced and
non-enhanced features revealed an interesting result: only one feature was
selected from the non-enhancing group (for DKI, 8th position). This means
that contrast-enhancing features are very meaningful and we could rely only on
them in future works involving classification or statistical analysis.

When comparing the number of features selected from histogram or texture,
even though we extracted more texture features (20 compared to 6), we can see
a relative balance in all MR modalities except DKI. In top 10 CER&NER-cMRI
features, 4 come from histogram; in top 10 CER&NER-PWI features, 4 come
from histogram; in top 10 CER&NER-cPD features, 6 come from histogram;
in top 10 CER&NER-DKI features, only 1 comes from histogram. In top 10
Total-cMRI features, 4 come from histogram; in top 10 Total-PWI features, 2
come from histogram; in top 10 Total-cPD features, 5 come from histogram; in
top 10 Total-DKI features, none come from histogram. These feature rankings
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strongly suggest that if only DKI data is available, one should definitely extract
texture features to assess tumour recurrence.

When selecting cPD features, for both CER&NER and Total tumour ROIs, we
can see in top 5 the same two features: T1pc-90th percentile and CBV-90th
percentile. This selection comes as a confirmation of the majority of literature
articles showing that contrast enhancement areas and CBV values are strongly
correlated to tumour progression [9, 104, 105, 147]. The main reason behind
this strong correlation is the fact that tumours grow uncontrollably, so they
require more nutrients compared to surrounding tissue, which is reflected in the
tumour’s angiogenesis. The increase in angiogenesis is visualised and measured
using T1pc and PWI.

There are multiple studies that focus on predicting the treatment outcome
of follow-up GBM patients using multi-parametric MR data. The majority
focuses mainly on overall survival, true progression vs. pseudo-progression or
true progression vs. radiation injury. Some recent examples are the following:
Elson et al. [64] show using DKI data from 52 patients that Apparent Diffusion
Coefficient (ADC) values strongly correlate to overall survival; Smets et al. [208]
conclude on 24 patients that absence of contrast enhancement on immediately
post-operative T1pc correlates to an increase in overall survival; Zhank et
al. [248] developed a new feature selection method using DKI data from 79
patients which gives an area under the receiver operating characteristic (ROC)
curve (AUC) of 0.86 for separating true from pseudo-progression, without any
manual segmentation; Bulik et al. [25] found significant differences in ADC
and spectroscopic metabolites values between patients with true and pseudo-
progression; Di Costanzo et al. [54] show, using data from 29 patients, that
LDA trained on ADC, CBV, and normalized Choline gives a 96.6% accuracy
in differentiating patients with true progression vs. radiation injury; Khalifa et
al. [123] show that the fraction of hypoperfused tumour volume gives a 79.2%
accuracy in anticipating tumour relapse at the next follow-up point.

Our study is, to our best knowledge, the only one that tries to classify progressive
vs. responsive follow-up GBM patients based on multi-parametric MR data
acquired at 3T. In the previous chapter we showed, using data from 18 patients,
that PWI is a very powerful predictor of tumour recurrence, obtaining 100%
accuracy in predicting the label one month before the label was put according to
RANO criteria. In this chapter we used data acquired from 29 patients, therefore
the classification problem is more difficult because of the increasing overlap
between the classes. However, we still obtained maximum BAR values higher
than 0.85 for each dataset: (i) Contrast-enhancing and Non-enhancing features
- cMRI-0.932, PWI-0.894, DKI-0.885, cPD-0.947; (ii) Total tumour features -
cMRI-0.956, PWI-0.85, DKI-0.879, cPD-0.932. Although the maximum value is
achieved using features extracted from Total tumour ROI and not CER&NER
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(0.956 vs. 0.947), we showed using non-parametric multiple comparison tests
that it is recommended to use features from CER&NER, which could be defined
by a simple threshold like the 90th percentile on T1pc-Total ROI.

3.5 Conclusions

We proposed an automatic pipeline for processing multi-parametric MR data
acquired at 3T and validated it after extracting histogram and GLCM 3-D
texture features. We determined the added value of extracting features from
semi-manually delineated contrast-enhancing and non-enhancing ROIs compared
to features extracted from manual total tumour ROIs using non-parametric
multiple comparison tests. We showed that AdaBoost, RUSBoost and SVM-rbf
trained mainly on features extracted from T1pc and CBV maps achieve the
highest ranked performance in classifying progressive vs. responsive follow-up
GBM patients. Finally, our results suggest that using only conventional MRI
features is better than using only perfusion or diffusion MRI features in the
same classification problem.





Chapter 4

Classification of Recurrent
Glioblastoma using modified
Parametric Response Maps of
contrast-enhanced
T1-weighted MRI and
Perfusion MRI

In this chapter the difference between progressive and responsive GBM patients
was analyzed based on conventional and perfusion MRI data, each of them
consisting of two MR parametric maps, T1pc and FLAIR for conventional MRI,
and CBV and CBF for perfusion MRI. For each scanning session from a total
of 268, the total tumour ROI was manually delineated by an expert clinician.
For each patient out of 29, all delineations from different scanning sessions were
grouped together, such that there is only one delineation per patient. The main
differences compared to the previous chapter are the fact that previously there
was one delineation per scanning session, as opposed to one delineation per
patient in the current chapter, and the increased number of scanning sessions,
from 183 to 268. Moreover, the number of labelled data points increased from
55 to 85. The new delineations were then used to follow the tumour evolution at
the pixel level. Two separate masks were derived based on the new delineations
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and using T1pc and CBV, indicating the most enhancing spots in time around
the tumour area, called positive parametric response maps. Four features were
extracted from each MR parametric map, summing up to 16 multi-parametric
MR features for one mask. The focus was again only on the complete dataset,
and results based on both masks, the positive parametric response T1pc map and
the positive parametric response CBV map, were compared. The performance of
SVM with linear and gaussian kernel was measured using a leave-one-patient-out
cross-validation scheme, after the features were ranked according to the minimum-
redundancy-maximum-relevance sorting algorithm. The work presented in this
chapter is under review.

4.1 Introduction

GBM is the most common and malignant intracranial tumor [26], representing
almost 30% of primary brain tumours with increasing incidence [56]. Patients
have a median survival around 10 months after diagnosis, with maximum 5% of
patients surviving more than three years. Recurrence is universal, and at the
time of relapse, the median survival is five to seven months despite therapy [193].
The current standard of care is surgical resection followed by radiotherapy and
concomitant temozolomide chemotherapy [216].

Identifying the location and size of brain tumours is done mainly by Magnetic
Resonance Imaging (MRI). However, conventional MRI (cMRI) has limited
specificity in determining the underlying type of brain tumour and tumour
grade [53,60]. Therefore, more advanced complementary magnetic resonance
(MR) acquisition techniques such as DWI and PWI have been studied and shown
to provide better tumour characterization [231]. DWI is a non-invasive imaging
technique which provides information about water movement in biological
environments, where it can interact with macromolecules, fibres, membranes, or
other cellular structures. PWI provides measurements that reflect changes in
blood volume, angiogenesis, and also glioma-induced neoangiogenesis, which
show up as high relative cerebral blood volume (rCBV) and relative cerebral
blood flow (rCBF) [147].

Parametric response map (PRM) is a voxel-wise approach for image analysis
and quantification of alterations during treatment of high-grade tumours, which
was proved to be a good predictor for the radiological response, OS, and PFS
of GBM patients. The PRM technique was first developed for the diffusion
parameter ADC, therefore it was first known as “functional diffusion map”
(fDM). There is a large body of research regarding fDM for glioma patients [61–
63,90,91,152,247], all articles showing that the amount of tumour volume which
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shows an increased ADC compared to baseline is a predictor of radiological
response, time to progression, OS, and PFS. PRM was then computed also
for rCBV and rCBF [82], not only for ADC, and showed a lot of success in
predicting overall survival, progression free survival, or discriminating true
progressive from pseudoprogressive forms of GBM [3,83,229].

In the previous two chapters we showed that discriminating between
responsive and progressive GBM patients treated with radio-chemotherapy
and immunotherapy could be done with high accuracy using features extracted
mainly from T1pc and PWI. Therefore, in this chapter we investigate the use of
conventional and perfusion MRI features extracted by enhancing PRM masks
computed using T1pc and rCBV, on a larger dataset than in our previous work.

4.2 Materials and Methods

4.2.1 Patient population

Study setup was described in Section 1.3.3. Each MRI time point for each
patient was assessed based on the RANO criteria, and assigned to two major
groups: either unlabelled for all time-points before the decision moment, or
labelled as “responsive” or “progressive” for all time-points at and after the
decision moment. In total there are 85 time points from 29 patients, with an
approximate average of 3 time points per patient, out of which 36 are responsive
and 49 are progressive, providing a relatively balanced dataset (42% vs. 58%).

4.2.2 MRI acquisition and processing

Magnetic Resonance (MR) scanning was performed on a clinical 3 Tesla MR
imaging system (Philips Achieva, Best, The Netherlands), using a body coil for
transmission and a 32-channel head coil for signal reception.

Conventional MRI

Conventional MR images were acquired as previously described in Section 1.3.3,
but in this work we studied only T1pc and FLAIR. Two ROIs were manually
drawn for each MRI session: a total tumour ROI on T2 maps around the entire
lesion, avoiding areas of necrosis or cystic components (e.g. the surgical cavity),
and a second ROI around the contralateral NAWM on T1pc to standardize the
MRI measurements. All manual delineations were drawn by a radiologist (Sofie
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Van Cauter) with 5 years experience on brain tumour MR imaging. For the
modified PRM analysis, one large tumour delineation was used as the reunion
of all tumour (RET) delineations from all time points, for each patient.

Perfusion MRI

PWI data were acquired as previously described in Section 1.3.3. Perfusion
MR images were processed using the DSCoMAN plugin [18] for ImageJ [200],
which takes into consideration leakage correction. We study only the two most
important perfusion parameter maps, cerebral blood volume (CBV) and cerebral
blood flow (CBF).

4.2.3 MRI Co-registration

For each patient, co-registration of all MRI maps was done with respect to
the baseline T1pc map, following four steps of pre-processing: denoising, skull-
stripping, bias field correction, and affine co-registration. To co-register the
perfusion maps, only the first T2* brain volume was selected from a total of
60 T2* volumes that were used for computing the perfusion parameter maps,
assuming the rest of the volumes are well aligned with the first one and ignoring
any artifacts.

In the first phase, the three MRI brain volumes (T1pc, FLAIR, T2*) were
denoised using the optimized blockwise nonlocal means denoising filter for 3D
magnetic resonance images [40,41], implemented in the MRIdenoisingPackage
Matlab package (Matlab R2016a, MathWorks, Massachusetts, U.S.A.). In
the second phase, skull-stripping was performed using FSL-BET with default
parameters [119, 209, 210, 244]. In the third phase, bias field correction was
performed using FSL-FAST with default parameters [249]. In the fourth and
final phase, affine co-registration with 12 degrees of freedom was done using
NiftyReg [170] with default parameters. The T2* affine transformation is then
used to co-register the two PWI parameter maps (CBV and CBF) to the baseline
T1pc.

The intensities of all four MRI maps were normalized by dividing to the
corresponding NAWM ROI average. Visual inspection of the tumour’s centre
in the axial plane of all maps for all patients after co-registration was done by
one author (AIM) and found no major misalignments. An example of 4 maps
from the baseline and the second time point for a random patient can be seen
in Figure 4.1.
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Figure 4.1: MRI Co-registration: on the top row there are baseline MRI maps,
while on the bottom one there are MRI maps from the second time point. On
both rows there are 5 columns, from left to right: (1) T1pc, (2) Reunion of total
tumour ROIs from all time points (red) and NAWM ROI (blue) superimposed
on T1pc, (3) FLAIR, (4) CBV, (5) CBF.

4.2.4 Feature extraction: Parameter Response Map

The classic PRM approach [82,152] can be described by the following steps:

• CE ROI intersection - compute the Intersection of CE ROIs (ICE) from
all time points

• Building linear model on NAWM voxels - fit a linear model using the
NAWM voxels from the baseline of a few randomly selected patients as
predictors for the NAWM voxels from the following time points

• Compute the 95% confidence interval - compute the 95% confidence
interval (CI): [Low Threshold (LT), High Threshold (HT)]

• Positive and Negative PRM - Split the ICE tumour voxels in three groups
based on the 95% CI: PRM0 - unchanged voxels, PRM+ and PRM− if
tumour voxel values are higher or lower than HT or LT, respectively

• PRM features - use as features the ICE volume fractions: NP RM+
NICE

, NP RM−
NICE

,
NP RM−+P RM+

NICE
, where Nx is the number of voxels in a given ROI ‘x’

We use a modified version of PRM, adapted for follow-up of post-operative
patients with variable CE ROIs. The classic PRM approach typically gives a
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small volume for follow-up, but there are patients who present little to none CE
volume, therefore there is a need to extend this approach to follow the whole
tumour volume, not only the CE volume. By doing so, we are also exploring
the possible transformation of non-enhancing tissue into active tumour. The
modified PRM approach can be described by the following steps, applied for
each patient:

• Total tumour ROI reunion - compute the REunion of Total tumour ROIs
(RET) from all time points

• Building linear model on NAWM voxels - fit a personalized linear model
using the NAWM voxels from the baseline of each patient as predictors
for the NAWM voxels from the following time points

• Compute the 99% CI - compute the 99% CI: [Low Threshold (LT), High
Threshold (HT)]. The higher confidence value will ensure that only the
most representative voxels will be selected from the extended tumour area

• Positive PRM - we study only the positive PRM, PRM+, when tumour
voxel values are higher than HT. We apply PRM+ as a mask on four types
of MRI difference maps: T1pck-T1pcbaseline, FLAIRk-FLAIRbaseline,
CBVk-CBVbaseline, and CBFk-CBFbaseline, where k is any time point
different than the baseline

• PRM features - From each MRI difference map masked by PRM+, we
extract four percentiles that describe the relative increase to the baseline
maps: 50th, 70th, 90th, and 99th percentiles, referred as 50p, 70p, 90p,
and 99p, respectively.

We compare results obtained with the positive mask (PRM+) computed using
T1pc values (T1pc-PRM+) and also using CBV values (CBV-PRM+), because
these two MRI maps are the most relevant for the follow-up of GBM patients,
as shown in our earlier works [115,116]. Examples of these two masks can be
seen in Figure 4.2.

4.2.5 Feature selection: Minimum Redundancy Maximum
Relevance

After extracting features as described above, using the PRM+ mask on either
T1pc or CBV, we will have a total of 16 features, from 4 difference MRI
maps (T1pc, FLAIR, CBV, CBF) × 4 percentiles. In order to obtain the
best classification results, we will apply a feature selection algorithm on three
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Figure 4.2: Comparison of T1pc-PRM+ and CBV-PRM+. First row, left corner:
T1pc difference map between time point 2 and baseline, white/dark limits are
+0.14 and -0.14. First row, right corner: T1pc-PRM+ on top of the T1pc
difference map. Second row, left corner: CBV difference map between time
point 2 and baseline, white/dark limits are +1.3 and -0.7. Second row, right
corner: CBV-PRM+ on top of the CBV difference map. PRM+ - positive
parametric response map.

groups of MRI maps: cMRI (8 features), PWI (8 features), and cMRI+PWI, or
cpMRI (16 features). Minimum Redundancy Maximum Relevance (mRMR) [55]
is one of the most widely known feature selection algorithm, combining two
major ideas: select features that are highly correlated to the class labels, or the
maximum relevance features, while in the same time provide complementary
information to each other, ensuring minimum redundancy. After using mRMR
we will get a sorted list of the most relevant features for each dataset (cMRI,
PWI, cpMRI).
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4.2.6 Classifiers

For classifying responsive vs. progressive patients we use one of the most
popular machine learning algorithm, support vector machines (SVM) [39].
Given a training set with data points from two classes, SVM tries to find the
best hyperplane to differentiate between the two types of points. It can be
used in the original feature space or the points can be mapped to another
space by using kernel transformations. In this study we used two kernels, linear
(SVM-lin) and radial basis function (SVM-rbf), implemented in Python 2.7.11
with scikit-learn 0.17.1 [171]. We tuned their parameters by optimizing the
accuracy over a 5-fold cross validation on the training set within a logarithmic
grid search: for SVM-lin we choose the best misclassification cost C between
[0.001, 0.002, 0.005, 0.01, 0.02, 0.05, .., 100, 200, 500, 1000], while for SVM-rbf
we choose the best pair of two parameters, the misclassification cost C, within
the same boundaries as before, and γ, which is proportional to the inverse of a
support vector’s radius of influence, within the same boundaries as before. The
small class unbalance was also adjusted by setting the class weight parameter
to balanced, for both SVM-lin and SVM-rbf.

4.2.7 Performance measures

For measuring the performance of different methods, we use a LOPOCV setup,
meaning that there are 29 folds and in each fold we learn a different classifier
and test it on all time points of a patient. Feature scaling was learned on the
training dataset from each fold and then applied to the test dataset. All time
points from each patient will be only once in the test set, and 28 times they
will be in the training set. In the end we aggregate the results from all 29 folds,
which are probabilities of being in one class or the other, and compute AUC
(Area Under receiver operating characteristic (ROC) Curve) [19]. Then, we find
the optimal operating point of the ROC curve, and for that specific point (i.e.
threshold) we compute three additional measures: sensitivity (TPR), specificity
(TNR), and BAR, defined in Section 1.1.4. In our case, the positive class is
the “progressive” label, while the negative class is the “responsive” label. The
ROC curve can be created when the classification model gives probability values
of test points belonging to one class, by plotting Sensitivity (y-axis) against
1-Specificity (x-axis) at various probability thresholds. A random classifier has
an AUC of 0.5 or 50%, while a perfect classifier will have an AUC of 1 or 100%.
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4.3 Results

AUC values obtained after training SVM-lin and SVM-rbf with features
extracted from cpMRI, cMRI, and PWI, can be visualized in Figure 4.3,
Figure 4.4, and Figure 4.5, respectively. For each figure, we compare results
of classifiers trained on an increasing number of features from 1 to 8 or from 1
to 16, features extracted after using the two different masks, T1pc-PRM+ and
CBV-PRM+.

Corresponding AUC, BAR, TPR, and TNR values associated with the 3 figures
can be found in Table A.17 and Table A.18 in Appendix. Features selected by
mRMR are listed in Table A.19, Table A.20, and Table A.21, also in Appendix.

Figure 4.3: Area under the curve (AUC) values obtained by training SVM-lin
and SVM-rbf using conventional and perfusion MRI (cpMRI) features extracted
separately by the two positive parametric response maps, T1pc-PRM+ and
CBV-PRM+. Training of the classifiers was done with an increasing number of
features from 1 to 16, sorted using minimum-redundancy-maximum-relevance
(mRMR).

The maximum AUC value for the multi-parametric MRI case (93%) is obtained
after training SVM-lin only on T1pc-99p, extracted using the T1pc-PRM+
mask. BAR, sensitivity, and specificity values associated to the maximum AUC
are 91%, 85%, and 97%, respectively.
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Figure 4.4: Area under the curve (AUC) values obtained by training SVM-lin
and SVM-rbf using only conventional MRI (cMRI) features extracted separately
by the two positive parametric response maps, T1pc-PRM+ and CBV-PRM+.
Training of the classifiers was done with an increasing number of features from
1 to 8, sorted using minimum-redundancy-maximum-relevance (mRMR).

The maximum AUC value for the conventional MRI case (93%) is obtained
as above: after training SVM-lin only on T1pc-99p, extracted using the T1pc-
PRM+ mask, with the same values for BAR, sensitivity, and specificity.

The maximum AUC value for the perfusion MRI case (73%) is obtained after
training SVM-lin only on CBV-99p, extracted using the T1pc-PRM+ mask,
with BAR, sensitivity, and specificity values of 74%, 63%, and 84%.

4.4 Discussion

In this work we present a new PRM approach, different from what was already
studied in the literature. Most of the published articles analyse only voxels from
the intersection of contrast enhancing ROIs delineated on T1pc at separate time
points, some of them imposing a minimum CE volume of 4 mL. Ellingson et
al. [62] are the first ones that validate ADC-PRM on larger contrast enhancing
ROIs delineated on FLAIR images. We extend this approach, by computing
PRM even though there is no enhancement at baseline on T1pc, FLAIR, or T2.
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Figure 4.5: Area under the curve (AUC) values obtained by training SVM-lin
and SVM-rbf using only perfusion MRI (PWI) features extracted separately
by the two positive parametric response maps, T1pc-PRM+ and CBV-PRM+.
Training of the classifiers was done with an increasing number of features from
1 to 8, sorted using minimum-redundancy-maximum-relevance (mRMR).

For this reason, the ROIs that we analyse could be regarded as the most likely
regions for tumour infiltration. Another difference is how we fit the linear model
and how we choose the confidence interval. While in the literature most authors
use a single linear regression model for all patients, we propose a custom model
designed for each patient. Because we use the ‘reunion of total tumour ROI’
(RET T2) which is clearly larger than the ‘intersection of contrast enhancement
ROI’ (ICE T1pc), we also increased the confidence value of the prediction to
99%, in order to select only the most representative voxels out of a larger ROI.

In [63] Ellingson et al. used ICE FLAIR ROIs to extract the rate of change in
ADC-PRM and report very high AUC values of 94% and 98%, for predicting
progressive disease for 30 patients treated with radiochemotherapy and 20
patients treated with anti-angiogenic agent, respectively. Other studies also
showed high AUC values when using ICE T1pc ROIs for computing ADC-PRM:
in [247] the authors found AUC values of 90% and 80% for detecting progressive
disease at 3 months and 1 year after baseline, respectively; in [91] the authors
found an AUC of 72% for detecting progressive disease on 55 patients; in [90]
the authors found an AUC of 83% for detecting progressive disease on 29
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patients, while in [152] the authors found 100% accuracy for detecting stable
and progressive disease on 20 patients.

In the four studies of CBV-PRM that we are aware of [3,82,83,229], there are no
AUC values reported, only statistical analysis and linear models fit for OS and
PFS. In [229] the authors report on 27 GBM patients that there are statistical
significant differences between pseudoprogressive forms and true progressive
forms using rCBV-PRM on ICE T1pc ROIs.

After analysing the figures presented in this study, we can safely conclude
that T1pc-PRM helps in the extraction of consistently better features when
compared to CBV-PRM. We also found the overall maximum AUC value of
93% using T1pc-PRM, while the maximum AUC value using CBV-PRM was
87%. After analysing Table A.17 and Table A.18 there are two clear conclusions:
(1) using only 1 to 3 features yields the highest classification results, and (2)
we obtain consistently high specificity values (i.e. 95%), and lower sensitivity
values (i.e. 85%), with both T1pc-PRM and CBV-PRM. Therefore our new
PRM approach is designed to detect mainly responsive GBM patients, and not
progressive ones.

We do not use as features the classical percentages of change in tumour ROI
because the RET T2 volume is significantly larger than the classical ICE T1pc
volume, and there would not be enough information in the classical PRM
features to discriminate progressive from responsive GBM patients. Therefore,
we used histogram features expected to have high discriminative power, and
sorted them using mRMR, a state of the art feature selection algorithm. In our
previous work we showed that high values of CE T1pc and CBV can classify
with very high accuracy progressive from responsive GBM patients. In this
work we showed that maximum AUC values are obtained with T1pc-99p for
T1pc-PRM and with CBV-99p for CBV-PRM.

Our study has several limitations that need to be discussed, considering that
PRM is a voxel-wise approach and any distortion between baseline and labelled
time points induces errors. First, only a relatively low number of patients are
included in the analysis, which could be increased by performing a multi-center
study. Second, the scanner’s magnetic field may not be perfectly homogeneous,
contributing to voxel-wise errors in each MRI acquisition. Third, quantification
of CBV and CBF is done taking account the leakage, but accurate values
are hard to obtain. Fourth, and last, coregistration effects are the ones that
induce the largest errors due to the nature of GBM, because tumour infiltration
and expansion are difficult to model. Therefore, we used a 12 degrees of
freedom affine coregistration, just as in previous studies. We reduced as much
as possible preprocessing errors by normalizing maps to their NAWM average,
and coregistration errors by applying denoising, skull-stripping, and bias field
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correction prior to coregistration, and checking the results visually.

Future studies are required, aimed on a larger number of patients, on minimizing
normal structural differences between time points, with the ultimate goal of
expanding the PRM analysis to the whole brain.

4.5 Conclusions

In this study we present a modified PRM approach, which is based on larger
ROIs than classical PRM, taking into consideration a likely infiltrating area of
the tumour and not only the contrast enhancing ROI. We test it on T1pc and
CBV maps, and extract histogram features from 4 difference MRI maps: T1pc,
FLAIR, CBV, and CBF. We sort features using mRMR and tune SVM-lin and
SVM-rbf to discriminate progressive from responsive GBM patients. We report
maximum AUC values of 93% and 87% with features extracted from T1pc-PRM
and CBV-PRM, respectively. Therefore, we conclude that for GBM patients
treated with radiochemotherapy and immunotherapy, T1pc-PRM may yield
better results than CBV-PRM.





Chapter 5

Machine learning approach
for classifying Multiple
Sclerosis courses by
combining clinical data with
lesion loads and Magnetic
Resonance metabolic features

In this chapter the difference between the four main multiple sclerosis courses
(CIS, RR, PP, SP) was analyzed based on clinical and multi-parametric MRI
data (conventional MRI and MRSI). A total of seven features were analyzed:
clinical data consisted of three features (patient age, disease age, and EDSS),
conventional MRI consisted of only one feature (lesion load), computed based on
T1 and FLAIR, while MRSI consisted on three metabolic features (NAA/Cho,
Cho/Cre, NAA/Cre). Eighty seven patients were scanned multiple times,
summing up to 619 scans (data points), but because of missing data, in the
end there were 592 scans with full complete data. Results based on different
combinations of features are compared after training three supervised classifiers
using a leave-one-patient-out cross-validation scheme. The work presented in
this chapter was published in [114] in a slightly modified version.
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FEATURES

5.1 Introduction

Multiple sclerosis (MS) is an inflammatory disorder of the brain and spinal
cord in which focal lymphocytic infiltration leads to damage of myelin and
axons [38]. MS affects approximately 2.5 million people worldwide, with an
onset age commonly between 20 and 40 years, and an incidence more than twice
as high in women compared to men [149].

The majority of MS patients (85%) usually experience a first attack defined as
CIS, and will develop an RR form [151]. Two thirds of the RR patients will
develop an SP form, while the other third will follow a benign course [198]. The
rest of MS patients (15%) will start directly with a PP form.

The criteria to diagnose MS forms was originally formulated by McDonald in
2001 [150] and revised by Polman in 2005 [174] and 2011 [173]. They all rely on
cMRI (T1, T1pc, T2, FLAIR) due to the high sensitivity for visualizing MS
lesions. Conventional MRI is also used for quantifying lesion load (LL), a marker
of inflammation process but only a moderate predictor of MS evolution [69].

More recently, advanced magnetic resonance techniques such as MRSI, DTI
and MTI have been shown [191] to provide a better characterization of NAWM
and thus a better understanding of the pathological mechanisms of MS. MTI
metrics reflect the demyelination and remyelination processes and have been
shown to predict the evolution of MS lesions. DTI metrics are very sensitive to
the MS pathology and have been shown to be mainly affected by myelin loss
and decreased neuronal integrity. MRS metrics provide high MS pathological
specificity as well as high sensitivity to biochemical changes. Decrease of
N -acetyl-aspartate (NAA) was observed in both chronic lesions and NAWM,
reflecting a neuronal integrity loss [191]. Choline (Cho) and Creatine (Cre)
contents were found to be increased in WM lesions and in NAWM, indicating
the presence of severe demyelination and cell proliferation in relation with
inflammatory processes [195,223].

Therefore, in this chapter we investigate the added value of magnetic resonance
metabolic features (NAA/Cho, NAA/Cre, Cho/Cre) combined with routinely
collected clinical MS data (e.g. patient age, disease duration (DD), Expanded
Disability Status Scale (EDSS)) and lesion load values (LL). To this purpose, we
build multiple binary classifiers to automatically discriminate between different
clinical forms of MS patients, by training each classifier on combinations of
clinical data, lesion loads and metabolic features.
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5.2 Materials and Methods

5.2.1 Patient population

The patient population was described in Section 1.4.3, while the most relevant
information is condensed in Table 5.1. Eighty-seven MS patients (12 CIS, 30
RR, 28 SP and 17 PP) part of the AMSEP project were studied against 18
volunteers without any neurological disorders, who served as healthy control
(HC) subjects. Diagnosis and disease course were established according to the
McDonald criteria [146,150].

CIS RR PP SP
Number of patients (Male/Female) 12 (6/6) 30 (6/24) 17 (6/11) 28 (17/11)

Age at first scan [years] 31.8 (6.4) 33.2 (7) 39.5 (6) 41.1 (4.8)
Disease duration [years] 2.9 (1.9) 8.3 (4.8) 7.5 (2.9) 14.9 (6.1)
EDSS median [range] 1 (0-4) 2 (0-5.5) 4 (2-7.5) 5 (3-8.5)

Lesion Load [ml] 6.6 (3.5) 16.7 (12.6) 20.8 (13) 31 (12.9)
Total number of scans (data points) 62 226 125 206

Table 5.1: Patient population: Age - average value (standard deviation); Disease
duration - average value (standard deviation); EDSS - median (minimum -
maximum); Lesion Load - average value (standard deviation). The four multiple
sclerosis (MS) groups are: CIS - clinically isolated syndrome, RR - relapsing-
remitting, PP - primary progressive, SP - secondary progressive.

5.2.2 Longitudinal MS data

In total there are 619 MS scans, but because of missing lesion loads and
metabolic features, there are 592 (95.6%) scans with full complete data, leading
to an average of 6-7 complete scans/patient.

5.2.3 MRI acquisition and processing

All patients and control subjects underwent MR examination using a 1.5 Tesla
MR system (Sonata Siemens, Erlangen, Germany) and an 8 elements phased-
array head-coil.
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Conventional MRI

Conventional MRI data (T1 and FLAIR) was acquired as previously described
in Section 1.4.3.

MRSI acquisition and processing

MRSI data was acquired and processed as previously described in Section 1.4.3,
resulting in the quantification of three metabolites: NAA, Choline, and Creatine.

Quality control

Voxels with CRLB lower than 10% for each of the three metabolites (NAA,
Cho, and Cre) were kept as having “good quality” for the next step of feature
extraction. If the number of “good quality” voxels is lower than 50% of the total
amount of voxels in the MRSI grid, then the acquisition is discarded. All 18
Control subjects had MRSI data with a number of “good quality” voxels higher
than 50% of the total amount of voxels, and 606 out of 619 (97.9%) MRSI data
from MS patients had good quality as defined earlier.

5.2.4 Feature extraction

In this study we use three types of features: clinical (e.g. patient age, disease
duration, and EDSS), lesion loads, and metabolic features. The clinical features
are routinely acquired in the hospital. The lesion loads were computed based
on T1 and FLAIR, using the MSmetrix software [118] developed by icometrix
(Leuven, Belgium). The computation of metabolic features was performed
in two steps: three metabolic ratios (NAA/Cho, NAA/Cre, Cho/Cre) were
computed for each “good quality” voxel and then averaged, leading to three
metabolic features extracted from each MRSI grid.

5.2.5 Training approach

Nine binary classification tasks were studied: HC vs. CIS, HC vs. RR, HC vs. PP,
HC vs. RR+SP, HC vs. PP+SP, CIS vs. RR, CIS vs. RR+SP, RR vs. PP, RR vs.
SP. The first three tasks investigated differences between HC and the starting
MS forms (CIS, RR, and PP). The next task investigated differences between
HC and MS patients that are likely to evolve or had evolved into secondary
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progressive form (RR+SP). Afterwards, we investigated differences between
HC and definite progressive forms (PP+SP). The next two tasks investigated
differences between CIS patients and the most likely progression of CIS, namely
RR and RR+SP. From a neurological point of view, the last two tasks were
the most intriguing, as they were discriminating between the most common
inflammatory MS form (RR) and the two progressive forms, PP and SP.

For each task, data normalization was performed. We use a LOPOCV setup
combined with 100 random patient-based bootstrap selections for the training
set. In this way, the test set has all data points of one patient, while the training
set has n− 1 data points corresponding to n− 1 patients, where n is the total
number of patients, different for each classification task (e.g. for HC vs. CIS,
n = 30). Basically, to construct the training set, we randomly select one data
point from each patient assigned to the training set. The test set always includes
all data points of the test patient. We repeat the procedure 100 times and store
the results. Each data point from the test set will be assigned 100 times to
either class 1 or class 2, and in the end it will be assigned to one of the classes
according to majority voting. This procedure is repeated until all patients from
each classification task have been tested.

By using this random patient-based bootstrap selection, the two classes in the
training set have a more balanced distribution of points (18 HC, 12 CIS, 30 RR,
17 PP, 28 SP), compared to using the total number of points of each class (18
HC, 61 CIS, 214 RR, 121 PP, 196 SP).

5.2.6 Performance measures and statistical testing

For each task we computed and reported four measures, in percentage: F1-score,
sensitivity, specificity, and BAR, which were explained in Section 1.1.4.

Throughout our study the positive class was the first class from each of the
nine binary classification tasks: HC for the first 5 tasks, CIS for the 6th and
7th tasks, and RR for 8th and 9th tasks.

In order to correctly assess if there are significant differences between the four
MS groups, we built several linear mixed effects models which were able to
incorporate the temporal evolution of each patient’s MS course. We used five
fixed effects and two random effects. The fixed effects are: MS course, gender,
disease onset age, disease duration, and the interaction between MS course
and disease duration. The random effects are set for each patient allowing
an individual starting point and an individual disease evolution. The most
interesting fixed effect for this study is the first one, which represents the average
of the response variable at the beginning of the MS course, or when ‘disease
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duration’ = 0. We built four linear mixed effects models, one for each response
variable: NAA/Cho, NAA/Cre, Cho/Cre, and lesion load. All statistical models
were built in the ‘R’ software using the “lme4” package [11], statistical testing
was done using the “lmerTest” package [134] and post-hoc analysis was done
using the “multcomp” package [102]. All tests were done for a significance level
(α) of 0.05.

5.2.7 Classifiers

Three supervised classifiers implemented in Python 2.7.11 with scikit-learn
0.17.1 [171] have been used: LDA, SVM, and RF. We tuned each classifier’s
parameters by optimizing the F1-score over a 5-fold cross validation on the
training set within a grid search of individual parameters, specified further for
each particular classifier. Fisher’s LDA [73] is based on a linear combination
of input features, with three possible solvers: singular value decomposition,
least squares solution, and eigenvalue decomposition. Tuning involved choosing
between the first solver and the last two solvers combined with shrinkage
varying from 0 to 1 in steps of 0.1. Class unbalance was adjusted by setting
the priors parameter equal to class probabilities. We use SVM [39,43] with a
radial basis function kernel (SVM-rbf), defined by two parameters: C, or the
misclassification cost, and γ, which is proportional to the inverse of a support
vector’s radius of influence. We tuned C and γ by performing a logarithmic grid
search between 0.00001 and 100000. Class unbalance was adjusted by setting
the class weight parameter to balanced. Random Forests [21] is based on a
group of decision trees. We tune the number of decision trees between 200, 400,
600, 800, and 1000. Class unbalance was adjusted by setting the class weight
parameter to balanced subsample.

5.3 Results

Figure 5.1 shows boxplots comparing MR metabolic features (A, B, C) and
lesion loads (D) extracted from HC and each MS course. Boxplots are drawn
using default style in MatLab, meaning the middle line inside the box represents
the median value, the vertical limits are the 25th and 75th percentiles (q1 and
q3), each whisker covers 1.5 the interquartile range (i.e. q3−q1), and the crosses
outside the whiskers represent outliers. Figures A.3, A.4, A.5, and A.6 from
Appendix show the MS data points in various 2-D feature spaces.

Using the previously described (Section 5.2.6) linear mixed-effects models we
found that the fixed effect MS course is statistically significant in the evolution
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Figure 5.1: Box-plots of magnetic resonance metabolic features and lesion loads
extracted from healthy controls (HC) and multiple sclerosis (MS) patients: A.
NAA/Cho; B. NAA/Cre; C. Cho/Cre; D. Lesion load (LL). The four MS groups
are: CIS - clinically isolated syndrome, RR - relapsing-remitting, PP - primary
progressive, SP - secondary progressive.

of NAA/Cho, NAA/Cre, Cho/Cre, and LL, with corresponding p-values of:
3.4× 10−6, 2× 10−4, 2.3× 10−2, and 2.6× 10−4. Table 5.2 provides adjusted
p-values for multiple comparisons between the MS groups.

CIS - RR RR - PP RR - SP
NAA/Cho - ** **
NAA/Cre - - *
Cho/Cre - - -

LL - - *

Table 5.2: Adjusted p-values for multiple comparisons between multiple sclerosis
(MS) groups modelled by linear mixed effects model, tested using the “multcomp”
package in ‘R’ (* for p < 0.05 and ** for p < 0.01). The four MS groups are:
CIS - clinically isolated syndrome, RR - relapsing-remitting, PP - primary
progressive, SP - secondary progressive.

Table 5.3 shows F1-scores after training LDA using only metabolic ratios,
as clinical data and lesion loads were not available for healthy controls.
Corresponding BAR, sensitivity and specificity values of this table can be
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found in Table A.13 in Appendix. If F1-scores are missing, then the classifier
assigned all data points to the negative class (second MS group).

NAA/Cho NAA/Cre Cho/Cre All 3 metabolic ratios
HC vs. CIS 35 33 43 36
HC vs. RR 6 16 - 14
HC vs. PP 47 45 19 49

HC vs. RR+SP 8 19 - 16
HC vs. PP+SP 21 26 - 28
CIS vs. RR 15 - - 21

CIS vs. RR+SP 3 - - 19
RR vs. PP 75 78 75 74
RR vs. SP 60 67 58 69

Table 5.3: F1-scores for all nine classification tasks (rows) after training LDA
using only metabolic ratios. Values above 75 are coloured in light gray. HC -
healthy controls, CIS - clinically isolated syndrome, RR - relapsing-remitting,
PP - primary progressive, SP - secondary progressive.

Surprisingly, the F1-scores for separating HC from any MS course are very low,
and the same holds true for separating very early MS form (CIS) and the most
likely MS evolution, RR and RR+SP. In contrast, for RR vs. PP we find that
all three metabolic ratios have F1-scores higher than 75, with a maximum of 78
for NAA/Cre. For RR vs. SP the F1-scores are lower, with a maximum of 69
after combining all metabolic features.

Table 5.4 shows F1-scores of classification tasks involving only MS patients.
Training was done on seven different combinations of features to evaluate
the classification power of clinical data, lesion loads, and metabolic features.
Corresponding BAR, sensitivity, and specificity values can be found in Appendix
in Tables A.14, A.15, andA.16, respectively. If F1-scores are missing, then the
classifier assigned all data points to the negative class (second MS group).

The highest F1-scores for CIS vs. RR and CIS vs. RR+SP, respectively 71 and
72, were achieved by SVM-rbf trained on clinical data and lesion loads. Training
any classifier only on metabolic features yielded very low F1-scores.

The highest F1-score for RR vs. PP (85) was achieved by LDA using patient
age, disease age, and EDSS. Adding all spectroscopic information maintained
the F1-score at 85, while adding lesion load lowered the F1-score at 79. LDA
outperformed SVM-rbf and RF in all RR vs. PP cases, always achieving an
F1-score higher than 70.

The highest value for RR vs. SP (87) was first achieved after training SVM-
rbf on clinical and metabolic features, but also with LDA trained on all
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CIS vs. RR CIS vs. RR+SP RR vs. PP RR vs. SP
LDA SVM-rbf RF LDA SVM-rbf RF LDA SVM-rbf RF LDA SVM-rbf RF

M 21 48 11 19 31 - 74 52 73 69 70 67
LL - 51 27 - 40 24 71 19 73 75 77 68

Age + DD 48 58 51 44 56 50 79 64 74 76 75 71
Age + DD + EDSS 55 65 49 57 66 48 85 81 79 84 85 84

Age + DD + EDSS + LL 67 71 59 63 72 60 79 75 79 86 86 86
Age + DD + EDSS + M 56 59 48 60 59 51 85 83 80 86 87 85

Age + DD + EDSS + LL + M 65 64 57 65 63 57 83 81 78 87 87 86

Table 5.4: F1-scores for classification tasks (columns) involving only multiple
sclerosis (MS) patients. Abbreviations: M = all three average metabolic ratios;
Age = patient age; DD = disease duration; LL = lesion load; EDSS = Expanded
Disability Status Scale. Values between 75 and 79 are coloured in light gray,
values between 80 and 84 are coloured in medium gray, while values larger
than 85 are coloured in dark gray. CIS - clinically isolated syndrome, RR -
relapsing-remitting, PP - primary progressive, SP - secondary progressive.

features combined (clinical data, lesion loads, and metabolic features). SVM-rbf
outperformed LDA in the majority RR vs. SP cases, but only with 1 to 2%.

5.4 Discussion

In this chapter, we present results for nine binary classification problems using
clinical data, lesion loads and metabolic features extracted from MS patients
and healthy controls. We focused on metabolic features as numerous studies
showed significant metabolic alterations in MS patients of different MS forms.
It has been demonstrated that metabolic abnormalities in MS patients are not
restricted to lesions alone [57,81,96,109,158,160,196] and NAWM tissue is well
known to be altered in MS [50,157]. Concentrations of NAA in NAWM were
shown to be significantly lower in MS patients [14, 15, 112, 219, 226, 237, 238].
Concentrations of Cho and Cre in NAWM were shown to be significantly higher
in MS patients [112,158,219,223,227]. Concentrations of NAA/Cre in NAWM
were shown to be significantly lower in MS patients [140, 159]. Multiple studies
also report significant differences between metabolite concentrations in lesions vs.
NAWM of HC: lower NAA and increased Cho and Cre [4,47,48,96,137,158,243].

Our findings are in agreement with these previous reports as decreased NAA
and increased Cho and Cre contents were measured in NAWM and lesions of
MS patients. After building linear mixed-effects models to properly analyse the
statistical difference between the four clinical courses, we observed significant
differences at the disease starting points of all MS courses using four response
variables, namely the lesion load, NAA/Cre, NAA/Cho, and Cho/Cre ratios. A
cross-sectional study [92] based on a subset of our MRSI data found statistical
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differences in the NAA/Cre and NAA/Cho ratios between HC and RR, PP,
SP, and RR+PP+SP patients. To our knowledge, there is only one study that
reports sensitivity and specificity values for classifying healthy controls from
MS patients based on spectroscopic features. Inglese et al. show in [112] that
absolute values of choline in NAWM can differentiate 9 controls and 10 out of
11 RR patients.

Other MS classification studies are [155] and [127], both based on diffusion
features. The first one reports a classification accuracy of 97% between 20 CIS
and 33 RR patients. The second one analyses classification tasks based on
DTI data from a cross-sectional subset of our database. They found very high
F1-scores (91.8% for both HC-CIS and CIS-RR) after training SVM-rbf on six
global brain connectivity metrics. For RR vs. PP their maximum F1-score was
75.6%, which is lower than our results based on metabolic features, while for
RR vs. SP, their maximum F1-score was 85.5%, which is comparable to our
results. It is also worth mentioning that they did not use any clinical data,
which might improve their results.

In this study, we analysed the added value of combining standard clinical data
with quantitative magnetic resonance features. To this purpose, we trained
linear and non-linear classifiers only on advanced MR features, and then only
on clinical data. Afterwards we train the classifiers on clinical data combined
with lesion loads and metabolic features.

Although MS patients are expected to have significantly different WM
metabolism compared to healthy controls, this difference was not reflected
in the metabolic average obtained from “good quality” voxels (Figure A.3, A
and B). This result is not entirely surprising, considering that we averaged
over a high number of voxels, and the subtle lesion information could be lost
in the average. However, we can visually see in Figure A.3:C&D that the two
progressive MS courses tend to have lower NAA/Cho and NAA/Cre ratios than
healthy controls.

CIS and RR patients’ distribution over the NAA/Cho and NAA/Cre feature
space do not differ much, as seen in Figure A.4:A. Disease duration interval for
RR patients is much larger than for CIS patients, as most of CIS patients have a
disease duration lower than 5 years, which can be seen in Figure A.5:A. Because
RR patients have more relapses than CIS patients, the number of lesions will be
higher and the lesion volume as well, while EDSS scores are mainly in the same
range, as seen in Figure A.6:A. BAR values in Table A.14 show a maximum
of 85, when combining patient age, disease duration, EDSS, and lesion load.
However, the corresponding maximum F1-score of 71 is much lower because the
dataset is unbalanced (61 CIS vs. 214 RR), heavily influencing the classifier’s
precision. In this case the F1-score reflects better than BAR the difficulty of
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discriminating CIS from RR forms.

CIS and SP patients’ distribution over different features is visible in Figure A.4:B,
Figure A.5:B, and Figure A.6:B, and it is clear that these two are the least and
most advanced forms of MS. Because RR patients will eventually evolve into
SP forms during their lifetime, we grouped together RR and SP patients for a
separate classification task versus CIS patients. BAR values in Table A.14 show
a maximum of 92, when combining patient age, disease duration, EDSS and
lesion load. The same discussion as for CIS vs. RR apply: the corresponding
maximum F1-score is only 72 because the dataset is very unbalanced (61 CIS
vs. 410 RR+SP) and the precision will be very low.

RR and PP patients can be discriminated using only EDSS by visually inspecting
Figure A.6:C. Training a linear classifier on clinical data (patient age, disease
duration, and EDSS) gives the maximum F1-score of 85. Adding the 3 metabolic
features keeps the score at 85, while adding lesion load information lowers the
score to 79. This drop in the F1-score suggests that lesion load is not useful
in differentiating RR from PP patients. Indeed, these two MS forms have the
closest lesion load averages (16.7 ml and 20.8 ml), as shown in Table 5.1. In
contrast, the clinical status of RR and PP patients are very different, as reflected
by the EDSS values of 2 for RR and 4 for PP. Moreover, training LDA on
individual metabolic features always provided higher F1-scores than lesion load,
therefore we can conclude that for RR vs. PP, metabolic features have a higher
discrimination power than LL. BAR values in Table A.14 are also closer to
the F1-scores in Table 5.4 because the dataset is more balanced compared to
previous cases.

RR and SP patients can also be discriminated using only EDSS by visually
inspecting Figure A.6:D. Our results showed that EDSS is very important in
differentiating RR patients from primary or secondary progressive patients. We
also report consistent higher F1-scores for classifiers trained only on lesion load
compared to classifiers trained only on metabolic features. Furthermore, it is
clearly visible in Table 5.3 that we obtain higher F1-scores for this classification
task using multiple features, compared to the rest of 8 tasks. These findings
suggest that in the future it might be possible to build a decision support system
using clinical data combined with lesion loads and metabolic features.

However, this study suffers from a few limitations caused by the low scanning
frequency of only 1.5 Tesla. Firstly, it is known that the sensitivity of lesion load
segmentation is improved by scanning at higher frequencies [204]. Therefore,
our LL values may not reflect entirely the pathological changes inside the brain.
Secondly, the signal to noise ratio of MRSI is proportional to the scanning
frequency, meaning our metabolites’ quantification is not entirely accurate. In
order to obtain true metabolites values, we would have to measure T1 and T2
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relaxation times of water for each patient, which would be impossible in clinical
practice. Moreover, spectroscopic signal scales can differ from patient to patient,
resulting in large metabolite variations. To overcome some of these limitations,
we use as features all three metabolite ratios (NAA/Cho, NAA/Cre, Cho/Cre).
By doing so, we expect to retain the most valuable information.

When comparing classification tasks from a computational point of view, LDA
is clearly the winner as the training period last only 3 hours using a computer
with 8 threads. Training both SVM-rbf and RF took around 20 days in total
and it was done using 60 threads, meaning LDA is approximately 600 times
faster than SVM-rbf or RF. Also, the maximum F1-scores for RR vs. PP and
RR vs. SP were obtained with LDA and SVM-rbf, suggesting that a linear
classifier performs equally good as a non-linear classifier in these cases.

This study is a proof of concept that investigates the added value of MR
metabolites combined with clinical data and lesion loads, in classifying MS
patients and healthy controls. Clinical data is routinely collected by doctors,
lesion load is a known marker of neurodegeneration, while MR metabolites
have been shown to provide high specificity of MS pathology. In order to
better understand the underlying MS pathological mechanisms, we used three
different machine learning methods, one linear and two non-linear, and had a
strict quality control for extracting metabolic features. Despite all our efforts,
averaging metabolite ratios over “good quality” voxels provides only moderate
biomarkers for discriminating MS groups (i.e. RR vs. PP). In general, combining
patient age, disease duration, EDSS, and averaged metabolic ratios, leads to
the highest classification results. We believe extracting metabolic information
from specific brain sub-regions of the MRSI grid (e.g NAWM) should provide a
more detailed view of MS pathology and help the classification tasks. Therefore,
further investigations about the MS patients’ evolution will be done in the
future on sub-regions metabolite quantification, DTI-based brain connectivity
metrics, patient treatment, and multi-class classification.

5.5 Conclusions

In this chapter we performed nine binary classification tasks and report F1-scores
and BAR values after learning linear and non-linear classifiers on combinations
of clinical data, lesion loads, and metabolic features. We presented a simple
method to compute metabolic features by averaging metabolite ratios over
“good quality” voxels of an MRSI grid. Using linear mixed-effects models we
found that the MS course is statistically significant in the evolution of four
response variables: Lesion Load, NAA/Cre, NAA/Cho, and Cho/Cre ratios.
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Our results showed that the best classifier for discriminating CIS from RR or
RR+SP is SVM-rbf trained on clinical data and lesion loads. We also showed
that discriminating RR from PP or SP with high accuracy is possible when
training LDA on clinical data. For RR vs. PP, adding metabolic features will
not change the results, while for RR vs. SP, adding metabolic features and
lesion loads will slightly improve the results.





Chapter 6

A comparison of Machine
Learning approaches for
classifying Multiple Sclerosis
courses using MRSI and brain
segmentations

In this chapter the difference between the four main multiple sclerosis courses
(CIS, RR, PP, SP) was analyzed based only on multi-parametric MRI data
(conventional MRI and MRSI). Four feature extraction models (M1, M2, M3,
M4) were compared after training classifiers using a two-fold cross-validation
scheme. The four models had different input dimensionality: (M1) the whole
spectroscopic Fourier domain (81 features), (M2) only three features computed
based on the spectroscopic Fourier domain, (M3) six features: the three
spectroscopic features computed in M2 and three conventional MRI features,
and (M4) the spectrogram of the time-domain spectroscopic signal, of size
128×57. The same dataset as in the previous chapter was used, consisting
of eighty-seven patients scanned multiple times, summing up to approximately
51000 spectroscopy voxels, or data points. The work presented in this chapter
was accepted for publication as a conference paper at “The 26th International
Conference on Artificial Neural Networks, ICANN2017”, in a slightly modified
version.
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6.1 Introduction

Multiple sclerosis (MS) is an inflammatory disorder of the brain and spinal
cord [38], affecting approximately 2.5 million people worldwide.

The majority of MS patients (85%) usually experience a first attack defined as
Clinically Isolated Syndrome (CIS), and will develop a relapsing-remitting (RR)
form [151]. Two thirds of the RR patients will develop a secondary progressive
(SP) form, while the other third will follow a benign course [198]. The rest of
MS patients (15%) will start directly with a primary progressive (PP) form.

The criteria to diagnose MS forms were originally formulated by McDonald
in 2001 [150] and revised by Polman in 2005 [174] and 2011 [173]. They all
rely on using conventional magnetic resonance imaging techniques (MRI), such
as T1 and FLAIR, due to high sensitivity in visualizing MS lesions. More
recently [191], 1H-Magnetic Resonance Spectroscopic Imaging (MRSI) has been
shown to provide a better understanding of the pathological mechanisms of MS.

The objective of this study is to fully explore the potential of MRSI for automatic
classification of MS courses. To this purpose we use four different machine
learning approaches to classify individual spectroscopic voxels inside the brain.
We start by using simple machine learning methods (i.e. Linear Discriminant
Analysis (LDA)) trained on low-level features commonly used in MRSI, and
advance up to state-of-the-art methods (e.g. Convolutional Neural Networks
(CNN)) trained on high-level MRSI features.

6.2 Materials and Methods

6.2.1 Patient population

The patient population was described in Section 1.4.3, while the most relevant
information is condensed in Table 6.1.

CIS RR PP SP
Number of patients 12 30 17 28

Total number of scans 60 212 117 192
Total number of voxels 5916 18682 10830 17377

Table 6.1: Multiple sclerosis (MS) patient population details. CIS - clinically
isolated syndrome, RR - relapsing-remitting, PP - primary progressive, SP -
secondary progressive.
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6.2.2 Magnetic Resonance data acquisition and processing

All patients underwent MR examination using a 1.5 Tesla MR system (Sonata
Siemens, Erlangen, Germany) and an 8 elements phased-array head-coil.

MRI acquisition and processing

Conventional MRI data (T1 and FLAIR) was acquired as previously described in
Section 1.4.3. Three tissues of the brain, gray matter (GM), white matter (WM),
and lesions, were segmented based on T1 and FLAIR, using the MSmetrix
software [118] developed by icometrix (Leuven, Belgium).

MRSI acquisition and processing

MRSI data was acquired and processed as previously described in Section 1.4.3,
resulting in the quantification of three metabolites, NAA, Cho, and Cre.

Quality control

For each voxel inside a grid, we performed three outlier detections, corresponding
to each metabolite, using the median absolute deviation filtering. Next step
keeps only voxels with a maximum CRLB error of 20% for each metabolite,
preserved by all three outlier detection mechanisms. In the end, the average
voxel exclusion rate was 31%, with 6% standard deviation, and only 2 out of
581 spectroscopy grids had an exclusion rate higher than 50%.

6.2.3 Classification tasks and performance measures

We study four binary classification tasks, relevant from a clinical point of view:
CIS vs. RR, CIS vs. PP, RR vs. PP, and RR vs. SP. For each task we set the less
represented class between the two to be the positive class, or the class of interest.
Therefore, we set the positive class to CIS, CIS, PP, and SP, corresponding to
each task. When classifying, we perform a 2-fold stratified cross-validation at
the patient level, meaning that each patient will be assigned once to training,
and once to testing. The training dataset includes all voxels from all patients
assigned to training. When testing, a voxel will be assigned to one of the two
classes. For each grid, we compute the probability to be assigned to the positive
class by measuring the percentage of voxels assigned to the positive class. We
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measure and report the area under receiver operating characteristic curve (AUC)
and sensitivity and specificity at the optimal operating point of ROC.

6.2.4 Feature extraction models

Model nr.1 (M1)

We use the absolute values of the complex frequency spectrum cut by a pass-band
filter between 1.2 and 4.2 ppm, so that we retain the most useful information.
In order to have a perfect alignment of all spectra for all patients, we detect
the highest peak in the low frequencies (NAA) and shift to the NAA peak of a
randomly assigned reference voxel. In this case, each voxel is represented by
the filtered frequency vector, which has 81 points. We normalize each vector to
its L2-norm.

Model nr.2 (M2)

We use the three quantified metabolite concentrations (NAA, Cho, Cre) to
compute three ratios: NAA/Cho, NAA/Cre, and Cho/Cre. Mean values and
standard deviations for each MS group can be found in Table 6.2.

CIS RR PP SP
NAA/Cho 2.21 (0.24) 2.02 (0.25) 1.83 (0.18) 1.86 (0.32)
NAA/Cre 1.36 (0.1) 1.35 (0.11) 1.27 (0.11) 1.22 (0.12)
Cho/Cre 0.63 (0.07) 0.69 (0.08) 0.72 (0.1) 0.69 (0.1)

Table 6.2: Multiple sclerosis (MS) metabolite ratios - mean (standard deviation).
CIS - clinically isolated syndrome, RR - relapsing-remitting, PP - primary
progressive, SP - secondary progressive.

Model nr.3 (M3)

For each voxel, we measure the percentage of each tissue of the brain (GM, WM,
lesions). In this case, each voxel is represented by 6 features: three metabolic
ratios and three tissues percentages.
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Model nr.4 (M4)

For each voxel, we compute the spectrogram of its time-domain signal. First,
we interpolate the time-domain signal from 512 to 1024 points. We compute
the spectrogram using a moving window of 128 points, with an overlap of 112
points. In the end, each voxel will be represented by a 128×57 image. These
values have been especially selected such that the final image is large enough to
be used as input in CNNs.

6.2.5 Classifiers

For each classification task and for each of the first three feature extraction
models, we used three supervised classifiers: (1) LDA [73] without adjusting
for class unbalance, (2) Random Forest [21] with 1000 trees, adjusted for class
unbalance by setting the class weight parameter to balanced subsample, and (3)
SVM-rbf [39], adjusted for class unbalance by setting the class weight parameter
to balanced, and tuned the misclassification cost “C” by searching between [0.1,
1, 10, 100] over a 5-fold cross-validation loop. The gamma parameter was set to
auto. All classifiers were built in Python 2.7.11 with scikit-learn 0.17.1 [171].
Feature scaling was performed using the training set, only for the second and
third model.

For the last feature extraction model and for each classification task, we built
a CNN inspired by [207] using the Keras package [36] based on Theano [225].
Our architecture consists of 8 weighted layers: 6 convolutional (conv) and 2
fully connected (FC). All convolutional layers have a receptive field of 3×3
and the border mode parameter set to ‘same’. All weighted layers are equipped
with the rectification non-linearity (ReLU). Spatial pooling is carried out by
3 max-pooling (MP) layers over a 2×2 window with stride 2. The first FC
layer has 64 channels, while the second one has only 2, because it performs the
two-class classification. The final layer is the sigmoid layer. To regularise the
training, we used a Dropout layer (D) between the two FC layers, with ratio set
to 0.8. A simplified version of our architecture is (conv-conv-MP-conv-conv-MP-
conv-conv-MP-FC(64)-D(0.8)-FC(2)-Sigmoid). When training each CNN, we
used the ‘adadelta’ optimizer, the ‘categorical crossentropy’ loss function, and
we split the training dataset into 70-30 training-validation data. We stopped
training after 200 epochs, and for each classification task, validation accuracy
was at a stable value over 85%, signalling that training was performed correctly.
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6.3 Results and Discussion

All performance measures can be found in Table 6.3. Maximum AUC values for
each classification task are highlighted in gray.

Percentage [%] M1 M2 M3 M4
LDA RF SVM-rbf LDA RF SVM-rbf LDA RF SVM-rbf CNN

CIS vs. RR
AUC 65 50 63 53 55 66 63 76 77 71

Sensitivity 0 0 38 2 0 13 2 28 25 17
Specificity 100 100 83 100 100 99 100 96 100 98

CIS vs. PP
AUC 89 92 88 87 90 90 88 91 95 83

Sensitivity 68 68 63 67 72 78 65 77 83 73
Specificity 93 95 94 91 90 89 91 87 90 82

RR vs. PP
AUC 66 62 68 64 64 68 55 54 57 68

Sensitivity 21 17 50 29 37 56 0 0 0 28
Specificity 93 94 78 87 82 76 100 100 100 92

RR vs. SP
AUC 72 72 73 73 71 72 73 71 71 69

Sensitivity 60 54 57 40 43 48 51 38 29 56
Specificity 75 84 77 90 86 81 82 92 97 75

Table 6.3: Area under the curve (AUC), Sensitivity, and Specificity values
for all classifiers, feature extraction models (M1-M4), and classification tasks.
Dimensionality of the models: M1 - 81 (metabolic spectra), M2 - 3 (metabolic
features), M3 - 6 (3 metabolic and 3 tissue percentages), M4 - CNN - input
image is 128×57. CIS - clinically isolated syndrome, RR - relapsing-remitting,
PP - primary progressive, SP - secondary progressive.

For CIS vs. RR we obtain a maximum AUC of 77% when combining metabolite
ratios with GM, WM, and lesions percentage. The increase in AUC for both
SVM-rbf and RF is higher than 10% when we compare M3 to M1 or M2,
therefore we can conclude that adding GM, WM, and lesions percentage, is
indeed beneficial when classifying CIS vs. RR courses. This is most probably
due to the fact that RR patients have more lesions than CIS patients. It is worth
mentioning that the CNN, which takes as input only the MRSI spectrogram,
performs better than all other classifiers based on spectroscopic features.

For CIS vs. PP we obtain a maximum AUC of 95% when combining metabolite
ratios with GM, WM, and lesion percentages in each voxel. The increase in
AUC for SVM-rbf is higher than 5% when we compare M3 to M1 or M2. This
task is not too interesting from the medical point of view, because we know
that PP patients have a more aggressive form of MS and a higher lesion load
than CIS patients. Our results confirm the clinical background and provide an
accurate classification with high sensitivity for PP.

For RR vs. PP we obtain the lowest AUC value of the four classification tasks,
only 68%. It is interesting to see that adding GM, WM, and lesion percentages
did not improve the results, but on the contrary. This indicates an opposing
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effect between brain segmentation percentages and metabolic ratios. Another
interesting fact is that maximum results obtained with M1, M2, or M4, are
exactly the same, indicating that spectroscopy is not sensitive enough to classify
these two MS courses.

For RR vs. SP we obtain a maximum AUC value of 73%, if we use M1, M2, or
M3. The are two main observations to be made: (1) LDA trained on metabolic
ratios can be regarded as the best classifier for this task, due to a simple
feature extraction model and high computational speed, and (2) adding brain
segmentation percentages did not improve the results.

The main goal of this study was to compare different levels of extracting
information from the MRSI voxels. To that extent, at the low-level we used
only 3 metabolite ratios, at the mid-level we used the entire absolute frequency
spectrum of 81 points, and at the high-level we used the MRSI spectrograms,
of size 128×57. To boost the low-level features, we added the brain tissue
segmentations percentages of WM, GM, and lesions. We used spectrograms
as input to state of the art classifiers (e.g. CNNs), and compared the results
with widely used machine learning algorithms (e.g. LDA, RF, SVM-rbf) trained
on features commonly used in MRSI. We observe that results obtained with
CNNs are not significantly worse or better than the rest. It is worth noting
that overall, training CNN provides a pipeline for both feature extraction and
classification, and is less time-consuming than all MRSI pre-processing and
quantification needed for classical machine learning algorithms.

Our results show that there is an inherent limitation of our particular MRSI
protocol to classify MS courses. Combining low-level MRSI features with
brain tissue segmentations percentages can improve classification between the
least aggressive MS course (CIS) and the moderate-severe courses (RR and
PP). However, there are obvious limitations on any level of the MRSI features
when classifying moderate (RR) from severe MS courses (PP and SP). Recent
results [127] have shown that features extracted from MR diffusion brain maps
can improve classification between RR and SP. In the future we will also
incorporate diffusion features and perform multi-class classification.

6.4 Conclusions

In this chapter we performed four binary classification tasks for discriminating
between MS courses. We report AUC, sensitivity, and specificity values, after
training simple and complex classifiers on four different types of features. We
show that combining metabolic ratios with brain tissue segmentation percentages
can improve classification results between CIS and RR or PP patients. Our
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best results are always obtained with SVM-rbf, there we can conclude that
our CNN architecture does not add any improvement over classical machine
learning methods.



Chapter 7

Conclusions

7.1 General conclusions

In this thesis we proved the applicability of supervised machine learning
algorithms to multi-parametric MRI data in order to predict and discriminate
the evolution of abnormal brain injuries, such as GBM and MS, by always
obtaining high classification accuracies.

In Chapter 1 we gave a soft introduction into the fields of machine learning and
MRI. We described three of the most popular classifiers’ concepts: (1) SVM, the
most widely used algorithm in the last 20 years, (2) RF, the best off-the-shelf
algorithm, and (3) deep learning, which is the current paradigm when working
on big data and will probably shape the future of every possible field. We
also described basic physical concepts of MRI, as well as the complementarity
of conventional MRI (T1,T2, FLAIR, T1pc) and advanced MRI (PWI, DKI,
MRSI). Afterwards, MRI acquisition sequences and data preprocessing pipelines
were described for two large clinical centres, UZ Leuven (Belgium) and CERMEP
(France), investigating two of the most important brain diseases, GBM and MS,
respectively.

Then, the thesis was branched into two parallel tracks, one for GBM data
analysis and the other for MS data analysis.

In Chapter 2 we analysed the difference between progressive and responsive
GBM patients based only on advanced MRI data: PWI, DKI, and MRSI. The
main conclusion was that it is possible, using ensemble classifiers (e.g. Random
Forest) trained only on PWI data, to perfectly separate between progressive and
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responsive GBM patients, and moreover, perfect classification was possible with
one month prior to the doctor’s decision. However, this study was limited by
three factors: (1) a relatively low number of patients (i.e. 18), mainly influenced
by the low quality of the MRSI data, (2) extraction of multi-parametric MRI
features was done separately for each MRI map, therefore it was very time
consuming, and (3) a clinician had to manually delineate for each map two
ROIs, contrast enhancing and total tumour.

In Chapter 3 we focused on the same problem as in the previous chapter,
but tried to solve its limitations. Therefore, instead of MRSI data we used
conventional MRI data, we developed an automated preprocessing pipeline for
PWI and DKI, and we proposed a new way of delineating CE ROIs based
on the T1pc map and the total tumour ROI. With these modifications we
increased the number of patients to 29, we were able to do batch preprocessing,
with the final MRI parameter maps not showing any major errors on a visual
validation, and we theoretically reduced by half the time spent by clinician for
delineations. We did a thorough comparison between the impact of manual
ROIs and semi-manual ROIs by searching for the best histogram and texture
features, then training classifiers on subsets of the best 10 features, separately
for cMRI, PWI, and DKI, but also on all of them combined. Following a
post-hoc statistical analysis, we came to three main conclusions: (1) results
obtained with features extracted from semi-manual ROIs are better than the
ones obtained with features extracted from manual ROIs, (2) the best machine
learning algorithm suited for this problem was, again, an ensemble classifier
(i.e. RUSBoost), and (3) conventional MRI features gave the best results. Some
limitations remained still unsolved, such as the moderate number of patients,
which could not be changed, and the fact that for each MR scanning session a
clinician still had to delineate a total tumour ROI.

In Chapter 4 we focused only on the last limitation from the previous study and
analysed only the most sensitive MRI modalities for GBM detection, grading,
and follow-up: T1pc, FLAIR, CBV, and CBF. Therefore, we defined a new
total tumour ROI by reuniting all tumour delineations done on T2 from all
time points of a patient. This new large area can be regarded as the most likely
infiltration area of the tumour. We coregistered all MRI data of each patient
to its baseline T1pc and performed a PRM anaylsis, which is a voxel-wise
selection of enhancing areas between two time points. We compared the effects
of computing PRM using T1pc and CBV separately, by extracting histogram
features and training SVM with linear and gaussian kernels. Our final results
show that using the T1pc-PRM mask is clearly superior to using CBV-PRM.

In Chapter 5 we analysed the difference between 18 healthy control subjects
and 87 patients affected by four different MS forms (CIS, RR, PP, SP), based
on three types of features: (1) clinical data (e.g. patient age, disease age,
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EDSS), (2) lesion loads, and (3) metabolic ratios averaged over a MRSI grid
(NAA/Cho, NAA/Cre, Cho/Cre). After training LDA separately on the three
metabolic ratios, we found only moderate discrimination results between the
18 healthy subjects and any MS group, although statistical differences were
observed. After training linear and non-linear classifiers on different feature
combinations, we determined the following: CIS form is very difficult to detect
from RR, or RR+SP; RR form could be discriminated from PP or SP only
based on clinical data; lesion load does not help in discriminating RR from
PP, while metabolic ratios could help; both lesion loads and metabolic ratios
could help in discriminating RR from SP; LDA performed equally good as
SVM-rbf or RF, but in a much shorter time. The limitations of this study were
mainly related to the scanner frequency, because lesion loads quantification
and metabolites quantification would have been more reliable if the scanner
frequency was larger than 1.5 Tesla. However, this was a hard limit as the data
was already acquired and could not be overcome.

In Chapter 6 we focused on the MRSI voxel-wise analysis of MS patients,
without the use of any clinical data. We estimated the percentage of white
matter, gray matter, CSF, and lesions, inside every MRSI voxel of every grid,
and used them as new features. We trained simple and complex classifiers
on four different types of features: (1) the full spectroscopy signal, (2) the
estimated NAA/Cho, NAA/Cre, Cho/Cre, (3) the estimated metabolic ratios
and the estimated brain tissue percentages, and (4) the spectrograms of the
time-domain spectroscopic signal. Three classical machine learning algorithms
(LDA, RF, and SVM-rbf) were trained on the first three types of features, while
state of the art convolutional neural networks were trained on the fourth type.
We determined that combining metabolic ratios with brain tissue percentages
can improve discrimination results between CIS and RR or PP patients, while
for RR and PP or SP we obtained only moderate results, lower than in the
previous study. Moreover, our best results for classifying MS forms were always
obtained with SVM-rbf, so we can conclude that our CNN design does not add
any improvement over classical machine learning methods.

7.2 Future perspectives

In this thesis, classical and state of the art machine learning algorithms were
utilised to discriminate between GBM progressive and responsive patients, and
between healthy subjects and four MS courses.

The GBM analysis has shown that machine learning can clearly help clinicians
with their task, at the same time cutting down the time required for delineating
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tumours. There is also a big parallel focus on using machine learning for tumour
segmentation, and it is only a matter of time until full trust of clinical centres
will be gained to use machines smartly, with the latest development in deep
learning. However, a machine can learn a task only if the input information is
reliable, meaning the MR scanner should provide medical images of sufficient
quality, or available images could be preprocessed and their quality improved.
If this step is not met, then any further discussion is irrelevant.

Perspectives in the near future of GBM research should include the following
ideas: detecting progression using deep learning methods, which could be CNN
or long short term memory blocks; upscaling low-resolution MRI (e.g. MRSI,
PWI) by using mutual information from multi-parametric MRI; creating an
online repository for anonymised MRI data collection; augmenting MR data.

In the distant future, with the increase of the magnetic field of the scanner,
sharper images with better resolution and better contrast will be available.
Therefore, the focus will change on detecting small changes at the voxel level,
and not on the ROI level. Methods like PRM analysing the whole brain,
combined with deep learning, will probably become more relevant and will be
implemented in hospitals and clinics. Partially intrusive MR techniques like
T1pc and perfusion MRI, which require the injection of a contrast agent, will
probably become less utilised in favour of ASL and diffusion MRI.

The same discussion applies also for the MS analysis: the use of a greater
magnetic field will help for better lesion segmentations and metabolic
quantifications. Diffusion tensor imaging will definitely benefit from a higher
magnetic field, but also from better diffusion models, for resolving fiber crossings
and computing graph based measures.

As a distant end, for the major purpose of individual personalised medicine,
there is a need for combining radiomics (MRI, PET, CT) with genomics and
proteomics in a greater anonymised public database, where biomedical feature
interactions can be better studied.
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Appendix

In the next tables we use balanced error rate (BER), weighted balanced error
rate (wBER), and balanced accuracy rate (BAR) to present the performance of
the classifiers. BER and wBER are numbers between 0 and 1, 0 being perfect
classification and 1 being total misclassification. BAR is also a number between
0 and 100, 100 being perfect classification and 0 being total misclassification.
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Weighted BER Complete features Imputed features Average
dLDA 0.172 0.216 0.194
SVM-lin 0.276 0.242 0.259
SVM-poly 0.285 0.334 0.310
SVM-rbf 0.493 0.520 0.507
SVM-mlp 0.136 0.352 0.244

Bayesian LSSVM 0.371 0.469 0.420
LSSVM-lin 0.452 0.280 0.366
LSSVM-poly 0.462 0.362 0.412
LSSVM-rbf 0.408 0.320 0.364

Random forests 0.148 0.294 0.221
AdaBoost 0.505 0.324 0.415
LogitBoost 0.148 0.335 0.242
GentleBoost 0.296 0.308 0.302
RobustBoost 0.148 0.325 0.237
LPBoost 0.505 0.256 0.381
TotalBoost 0.505 0.289 0.397
RUSBoost 0.281 0.308 0.295

Classification Tree 0.268 0.346 0.307
3-NN (correlation) 0.357 0.428 0.392

Pattern Net 0.449 0.288 0.366
Feed Forward Net 0.399 0.411 0.405

Cascade forward Net 0.586 0.485 0.535
Fit Net 0.535 0.350 0.443
LDS 0.442 0.534 0.488
SMIR 0.278 0.436 0.357
S4VM 0.456 0.473 0.465

Table A.1: Weighted BER for supervised and semi-supervised classifiers trained
on complete and imputed data. We highlight the best 6 classifiers.
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Table A.2: Detailed BER results for each time point for the best 6 supervised
classifiers when using the leave-one-patient-out method on complete perfusion
features. The decision (i.e. labelling) moment ‘L’ is highlighted. Some
time points do not have results because there were no complete perfusion
measurements.

BER on PWI Random Forests dLDA SVM-lin LogitBoost RobustBoost SVM-mlp
L+5 − − − - - -
L+4 − − − - - -
L+3 0 0 0 0 0 0
L+2 0 0 1 0 0 0
L+1 0 0 1 0 0 0
L 0 0.217 0.05 0 0 0.05
L-1 0 0.187 0.187 0 0 0.187
L-2 0.25 0.25 0.375 0.25 0.25 0.25
L-3 0.5 0.5 0.5 0.5 0.5 0.5
L-4 1 1 1 1 1 0.5
L-5 0.25 0.25 0.25 0.5 0.5 0.5
L-6 0.5 0.5 0.5 0.5 0.5 0.5
L-7 1 1 1 1 1 1
L-8 − − − − − −
L-9 0 0 0 0 0 0
L-10 − − − − − −
L-11 0 0 0 0 0 0
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Table A.3: Detailed BER results for each time point for the best 6 supervised
classifiers when using the leave-one-patient-out method on complete diffusion
features. The decision (i.e. labelling) moment ‘L’ is highlighted. Some
time points do not have results because there were no complete diffusion
measurements.

BER on DKI Random Forests dLDA SVM-lin LogitBoost RobustBoost SVM-mlp
L+5 − − − − − −
L+4 − − − − − −
L+3 0 0 0 0 0 1
L+2 0 0.25 0 0 0 0.5
L+1 0 0 0 0 0 0
L 0.217 0.1 0.1 0.217 0.217 0.267
L-1 0.562 0.25 0.125 0.562 0.562 0.562
L-2 0.5 0.25 0.5 0.5 0.5 0.375
L-3 0.5 0.75 0.75 0.5 0.5 0.25
L-4 0.5 1 0.5 0.5 0.5 0.5
L-5 0.25 0.25 0.5 0.5 0.5 0
L-6 0.5 0 0.5 0.5 0.5 0
L-7 0 0 0 0 0 0
L-8 − − − − − −
L-9 1 1 1 1 1 0
L-10 − − − - - -
L-11 1 1 1 1 1 0
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Table A.4: Detailed BER results for each time point for the best 6 supervised
classifiers when using the leave-one-patient-out method on complete spectroscopy
features. The decision (i.e. labelling) moment ‘L’ is highlighted. Some
time points do not have results because there were no complete spectroscopy
measurements.

BER on MRSI Random Forests dLDA SVM-lin LogitBoost RobustBoost SVM-mlp
L+5 − − − − − −
L+4 − − − − − −
L+3 0 0 0 0 0 0
L+2 1 0.75 0.75 1 1 1
L+1 1 1 1 1 1 0
L 0.55 0.583 0.632 0.6 0.55 0.583
L-1 0.562 0.562 0.813 0.5 0.562 0.687
L-2 0.625 0.625 0.25 0.625 0.75 0.875
L-3 0.25 0.5 0.25 0.5 0.5 0.25
L-4 0.5 0.5 1 0.5 0.5 1
L-5 0.5 0.5 0 1 1 1
L-6 0.5 0 0.5 0.5 0.5 0.5
L-7 0 0 1 0 0 0
L-8 − − − − − −
L-9 1 1 1 1 1 0
L-10 − − − - - -
L-11 1 1 1 1 1 0

Table A.5: Detailed BER results for each time point for the best 6 supervised
classifiers when using the leave-one-patient-out method on imputed perfusion
features. The decision (i.e. labelling) moment ‘L’ is highlighted.

BER on PWI Random Forests dLDA SVM-lin LogitBoost RobustBoost SVM-mlp
L+5 0 0 0 0 0 0
L+4 0 0 0 0 0 0
L+3 0 0.25 0 0 0 0.25
L+2 0.125 0 0 0.125 0 0.125
L+1 0.171 0.071 0.071 0.171 0.071 0
L 0.127 0.109 0.043 0.127 0.043 0.109
L-1 0.130 0.196 0.152 0.214 0.130 0.279
L-2 0.444 0.528 0.472 0.389 0.444 0.417
L-3 0.418 0.464 0.418 0.373 0.418 0.281
L-4 0.475 0.475 0.475 0.412 0.475 0.512
L-5 0.687 0.687 0.687 0.625 0.687 0.562
L-6 0.567 0.567 0.567 0.567 0.567 0.567
L-7 0.5 0.5 0.5 0.5 0.5 0.5
L-8 0.5 0.5 0.5 0.5 0.5 0.5
L-9 0.333 0.5 0.5 0.333 0.333 0.333
L-10 0.5 0.5 0.5 0.5 0.5 0.25
L-11 0.5 0.5 0.5 0.5 0.5 0
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Table A.6: Detailed BER results for each time point for the best 6 supervised
classifiers when using the leave-one-patient-out method on imputed diffusion
features. The decision (i.e. labelling) moment ‘L’ is highlighted.

BER on DKI Random Forests dLDA SVM-lin LogitBoost RobustBoost SVM-mlp
L+5 0 0 0 0 0 0
L+4 0 0 0 0 0 0
L+3 0 0 0 0 0 0.25
L+2 0 0.125 0 0 0 0
L+1 0.1 0.243 0.243 0.1 0.1 0.314
L 0.105 0.297 0.192 0.105 0.105 0.420
L-1 0.254 0.257 0.257 0.254 0.254 0.424
L-2 0.361 0.25 0.25 0.361 0.361 0.278
L-3 0.282 0.473 0.473 0.282 0.282 0.436
L-4 0.45 0.637 0.637 0.45 0.45 0.387
L-5 0.562 0.5 0.562 0.562 0.562 0.437
L-6 0.433 0.367 0.533 0.433 0.433 0.433
L-7 0.5 0.5 0.5 0.5 0.5 0.75
L-8 0.667 0.167 0.667 0.667 0.667 0.667
L-9 0.667 0.667 0.667 0.667 0.667 0.5
L-10 0.75 0.75 0.75 0.75 0.75 0.75
L-11 1 0.5 1 1 1 1

Table A.7: Detailed BER results for each time point for the best 6 supervised
classifiers when using the leave-one-patient-out method on imputed spectroscopy
features. The decision (i.e. labelling) moment ‘L’ is highlighted.

BER on MRSI Random Forests dLDA SVM-lin LogitBoost RobustBoost SVM-mlp
L+5 0 0 0 0 0 0
L+4 0 0 0 0 0 0
L+3 0 0 0 0 0 0.25
L+2 0.25 0.25 0.125 0.25 0.25 0.25
L+1 0 0 0 0 0 0
L 0.562 0.504 0.609 0.587 0.543 0.569
L-1 0.293 0.337 0.380 0.315 0.293 0.359
L-2 0.389 0.389 0.389 0.389 0.389 0.389
L-3 0.436 0.436 0.381 0.436 0.436 0.336
L-4 0.55 0.55 0.612 0.55 0.55 0.55
L-5 0.687 0.687 0.562 0.687 0.687 0.687
L-6 0.433 0.433 0.533 0.6 0.433 0.433
L-7 0.75 0.75 0.875 0.75 0.75 0.75
L-8 0.667 0.667 0.667 0.667 0.667 0.667
L-9 0.667 0.167 0.667 0.667 0.667 0.667
L-10 0.75 0.75 0.25 0.75 0.75 0.75
L-11 1 1 1 0.5 1 1
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Table A.8: Number of data points acquired at each time point. The decision
(i.e. labelling) moment ‘L’ is highlighted.

Nr. of complete data points Nr. of total data points (complete+imputed)
L+5 0 2
L+4 0 2
L+3 1 3
L+2 3 8
L+1 1 12
L 13 29
L-1 9 29
L-2 6 24
L-3 3 16
L-4 2 13
L-5 2 12
L-6 2 8
L-7 1 6
L-8 0 5
L-9 1 4
L-10 0 3
L-11 1 2

Table A.9: Number of features per MRI modality and delineation.

CER&NER Total ROI
cMRI PWI DKI cPD cMRI PWI DKI cPD

Number of features 208 260 364 832 104 130 182 416

Table A.10: Supervised classifiers used in Chapter 3 and their software
implementations.

Classifiers Software
Linear Discriminant Analysis (LDA) Matlab R2015a - Statistics and Machine Learning Toolbox
Support Vector Machine (SVM) Matlab R2015a - Statistics and Machine Learning Toolbox

Random Forests (RF) Python 2.7.6 - sklearn.ensemble.RandomForestClassifier
Adaptive Boosting (AdaBoost) Python 2.7.6 - sklearn.ensemble.AdaBoostClassifier

Stochastic Gradient Boosting (SGB) Python 2.7.6 - sklearn.ensemble.GradientBoostingClassifier
Random Under Sampling Boosting (RUSBoost) Matlab R2015a - Statistics and Machine Learning Toolbox
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Table A.11: Maximum BAR of all MR modalities over all classifiers. CER -
contrast enhancing region, NER - non-enhancing region.

Dataset Nr of features cMRI PWI DKI cPD
1 0.9321 0.8936 0.8571 0.9321
2 0.9321 0.8459 0.8277 0.9321
3 0.9321 0.8550 0.8662 0.9468
4 0.9321 0.8256 0.8606 0.9321

CER&NER 5 0.9321 0.8403 0.8606 0.9321
6 0.9321 0.8697 0.8368 0.8606
7 0.9321 0.8312 0.8368 0.8606
8 0.9321 0.8221 0.8368 0.8606
9 0.9321 0.8221 0.8221 0.8606
10 0.9321 0.8312 0.8845 0.8606
1 0.8018 0.7598 0.8459 0.8459
2 0.8789 0.7836 0.8368 0.8368
3 0.8200 0.7836 0.8550 0.8606
4 0.8312 0.7927 0.8165 0.8992

Total ROI 5 0.9412 0.7689 0.8165 0.8754
6 0.9412 0.8494 0.8789 0.8754
7 0.9559 0.8403 0.8459 0.8606
8 0.9559 0.7927 0.8312 0.9321
9 0.9559 0.7927 0.7780 0.8845
10 0.8459 0.7927 0.8074 0.8789
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Table A.12: Top 10 selected features according to rank products for each dataset

Dataset cMRI PWI DKI cPD
T1pc-average-CER CBV-average-CER ak-IMC2-CER T1pc-average-CER

T1pc-90th_percentile-CER MTT-homogeneity-CER ak-IMC1-CER T1pc-90th_percentile-CER
T1pc-10th_percentile-CER CBV-90th_percentile-CER fa-autocorrelation-CER CBV-90th_percentile-CER
FLAIR-cluster shade-CER MTT-IDN-CER fa-sum variance-CER CBV-average-CER

CER&NER FLAIR-skewness-CER MTT-maximum probability-CER fa-sum of squares-CER CBF-90th_percentile-CER
FLAIR-sum of squares:variance-CER CBF-90th_percentile-CER fa-average-CER ak-IMC2-CER

T2-cluster shade-CER MTT-dissimilarity-CER fa-sum average-CER MTT-homogeneity-CER
FLAIR-autocorrelation-CER Rsquare-homogeneity-CER ad-cluster prominence-NER CBF-average-CER
FLAIR-sum variance-CER MTT-difference entropy-CER mk-IMC2-CER MTT-IDN-CER
FLAIR-sum average-CER CBF-average-CER mk-IMC1-CER ak-IMC1-CER
T1pc-90th_percentile CBV-90th_percentile ad-cluster prominence ad-cluster prominence

T1pc-coefficient of variation Rsquare-IMC2 md-cluster prominence md-cluster prominence
T1pc-cluster shade Rsquare-IMC1 ad-cluster shade T1pc-90th_percentile
T1pc-sum average CBF-90th_percentile rd-sum entropy T1pc-coefficient of variation

Total ROI T1pc-skewness CBV-IMC2 md-cluster shade CBV-90th_percentile
T1pc-sum variance MTT-correlation md-sum entropy ad-cluster shade
T1pc-autocorrelation CBF-IMC2 rd-cluster prominence T1pc-skewness

T1pc-sum of squares:variance Rsquare-contrast rd-cluster shade rd-sum entropy
T1pc-maximum probability Rsquare-dissimilarity ak-cluster prominence T1pc-sum average

T1pc-average Rsquare-IDMN rk-sum entropy T1pc-cluster shade
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Figure A.1: Classification results on CER & NER semi-manual delineations, using 1 to 10 features assigned by rank
products per each dataset. On y-axis are BAR values, and on x-axis the number of features used for classification.
CER - contrast enhancing region, NER - non-enhancing region.
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Figure A.2: Classification results on Total manual delineations, using 1 to 10 features assigned by rank products per
each dataset. On y-axis are BAR values, and on x-axis the number of features used for classification.
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NAA/Cho NAA/Cre Cho/Cre All 3 metabolites
BAR TNR TPR BAR TNR TPR BAR TNR TPR BAR TNR TPR

HC vs. CIS 47 0 94 46 15 78 61 39 83 53 39 67
HC vs. RR 50 94 6 55 82 28 50 100 0 52 76 28
HC vs. PP 76 80 72 78 72 83 45 29 61 77 82 72

HC vs. RR + SP 52 98 6 60 92 28 50 100 0 59 90 28
HC vs. RR + PP 61 89 33 66 88 44 50 100 0 52 88 16

CIS vs. RR 52 95 10 50 100 0 50 99 0 52 88 16
CIS vs. RR + SP 51 100 2 49 99 0 50 100 0 54 94 15

RR vs. PP 59 37 81 63 38 88 48 2 95 63 49 77
RR vs. SP 57 53 62 65 62 69 39 0 79 66 62 70

Table A.13: Balanced accurary rates (BAR), sensitivity (TPR), and specificity
(TNR) values, for all 9 classification tasks (rows) after training LDA using only
metabolic ratios. Values between 75 and 79 are coloured in light gray, values
between 80 and 84 are coloured in medium gray, values between 85 and 89 are
coloured in dark gray, while values higher than 90 are coloured in very dark
gray.

CIS vs. RR CIS vs. RR+SP RR vs. PP RR vs. SP
LDA SVM-rbf RF LDA SVM-rbf RF LDA SVM-rbf RF LDA SVM-rbf RF

M 52 68 49 54 63 49 63 28 59 66 66 63
LL 48 70 52 50 73 56 43 12 58 74 75 68

Age + DD 66 75 68 66 83 70 67 38 62 75 76 71
Age + DD + EDSS 71 80 67 77 89 69 81 78 70 84 85 84

Age + DD + EDSS + LL 79 85 73 81 92 76 71 72 69 86 86 85
Age + DD + EDSS + M 72 76 66 81 82 70 80 81 71 86 87 84

Age + DD + EDSS + LL + M 78 80 71 82 83 73 78 78 68 86 86 86

Table A.14: BAR values for classification tasks involving only MS patients
(columns). Abbreviations: M = all three average metabolic ratios; Age =
patient age; DD = disease duration; LL = lesion load; EDSS = Expanded
Disability Status Scale.Values between 75 and 79 are coloured in light gray,
values between 80 and 84 are coloured in medium gray, values between 85 and
89 are coloured in dark gray, while values higher than or equal to 90 are coloured
in very dark gray.
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CIS vs. RR CIS vs. RR+SP RR vs. PP RR vs. SP
LDA SVM-rbf RF LDA SVM-rbf RF LDA SVM-rbf RF LDA SVM-rbf RF

M 16 79 8 15 67 0 77 56 78 70 75 72
LL 0 80 30 0 80 23 87 16 78 77 80 67

Age + DD 41 77 49 36 84 46 84 75 78 74 70 70
Age + DD + EDSS 56 82 44 62 92 43 84 75 80 80 83 81

Age + DD + EDSS + LL 69 87 56 69 93 57 81 69 83 85 84 85
Age + DD + EDSS + M 59 74 41 74 79 44 84 76 82 84 85 84

Age + DD + EDSS + LL + M 67 79 49 72 77 51 83 75 81 87 87 86

Table A.15: Sensitivity values for classification tasks involving only MS patients
(columns). Abbreviations: M = all three average metabolic ratios; Age =
patient age; DD = disease duration; LL = lesion load; EDSS = Expanded
Disability Status Scale. Values between 75 and 79 are coloured in light gray,
values between 80 and 84 are coloured in medium gray, values between 85 and
89 are coloured in dark gray, while values higher than or equal to 90 are coloured
in very dark gray.

CIS vs. RR CIS vs. RR+SP RR vs. PP RR vs. SP
LDA SVM-rbf RF LDA SVM-rbf RF LDA SVM-rbf RF LDA SVM-rbf RF

M 88 57 89 94 59 98 49 0 40 62 56 54
LL 96 60 75 100 66 89 0 7 37 70 70 69

Age + DD 91 74 87 96 83 94 50 0 46 76 82 72
Age + DD + EDSS 87 79 89 91 87 95 78 81 60 89 87 86

Age + DD + EDSS + LL 89 83 90 92 90 95 60 75 55 87 87 85
Age + DD + EDSS + M 85 78 91 89 86 95 75 86 60 88 88 84

Age + DD + EDSS + LL + M 88 81 93 92 89 96 74 82 56 85 86 85

Table A.16: Specificity values for classification tasks involving only MS patients
(columns). Abbreviations: M = all three average metabolic ratios; Age =
patient age; DD = disease duration; LL = lesion load; EDSS = Expanded
Disability Status Scale. Values between 75 and 79 are coloured in light gray,
values between 80 and 84 are coloured in medium gray, values between 85 and
89 are coloured in dark gray, while values higher than or equal to 90 are coloured
in very dark gray.
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Figure A.3: Healthy Controls (HC) vs. Multiple Sclerosis (MS) groups in 2-D
feature space: x-axis is NAA/Cho and y-axis is NAA/Cre. The four MS groups
are: CIS - clinically isolated syndrome, RR - relapsing-remitting, PP - primary
progressive, SP - secondary progressive.

Conventional and Perfusion MRI (cpMRI)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T1pc-PRM+

SVM-lin

AUC 93 92 90 88 81 83 87 85 82 85 84 84 81 79 79 80
BAR 91 89 90 86 79 83 86 82 82 83 83 85 80 80 81 81
TPR 85 83 83 81 69 77 85 75 69 77 71 73 71 63 65 65
TNR 97 95 97 92 89 89 86 89 95 89 95 97 89 97 97 97

SVM-rbf

AUC 88 86 85 75 80 82 84 83 84 81 80 77 80 76 74 77
BAR 87 84 90 72 74 78 78 80 80 76 73 75 73 76 75 78
TPR 83 85 83 87 87 73 83 71 81 81 87 77 87 77 75 67
TNR 92 84 97 57 62 84 73 89 78 70 59 73 59 76 76 89

CBV-PRM+

SVM-lin

AUC 86 87 85 82 79 80 83 79 81 78 81 81 81 74 76 73
BAR 86 87 85 85 78 80 83 81 82 78 78 77 78 74 74 73
TPR 77 83 75 75 62 67 71 69 71 62 62 71 77 63 73 62
TNR 95 92 95 95 95 92 95 92 92 95 95 84 78 84 76 84

SVM-rbf

AUC 83 86 72 82 64 57 59 55 66 60 60 55 55 67 56 56
BAR 85 79 73 77 68 62 63 64 64 64 59 58 59 61 58 57
TPR 81 83 73 81 98 92 94 92 92 100 87 83 94 94 96 87
TNR 89 76 73 73 38 32 32 35 35 27 32 32 24 27 19 27

Table A.17: Performance measures computed with SVM-lin and SVM-rbf
trained on an increasing number of features from 1 to 16 for Conventional and
Perfusion MRI (cpMRI), extracted using the two positive parametric response
maps (PRM+), T1pc-PRM+ and CBV-PRM+. Values over 90% are highlighted
in gray.
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Figure A.4: Comparison of Multiple Sclerosis (MS) groups in 2-D feature space:
x-axis is NAA/Cho and y-axis is NAA/Cre. The four MS groups are: CIS -
clinically isolated syndrome, RR - relapsing-remitting, PP - primary progressive,
SP - secondary progressive.

cMRI PWI
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

T1pc-PRM+

SVM-lin

AUC 93 92 90 87 88 86 85 87 73 66 63 65 61 59 58 65
BAR 91 89 87 83 84 80 80 84 74 71 69 69 67 67 67 73
TPR 85 83 83 71 73 77 67 79 63 56 38 58 40 40 40 52
TNR 97 95 92 95 95 84 92 89 84 86 100 81 95 95 95 95

SVM-rbf

AUC 88 86 85 87 85 85 89 85 55 57 62 53 56 65 62 60
BAR 87 84 81 80 79 81 82 81 67 66 69 60 65 64 66 62
TPR 83 85 87 77 77 69 77 73 56 65 62 77 62 85 65 62
TNR 92 84 76 84 81 92 86 89 78 68 76 43 68 43 68 62

CBV-PRM+

SVM-lin

AUC 86 87 85 82 80 81 84 84 52 48 38 36 29 31 32 39
BAR 86 87 85 81 80 80 82 80 63 63 46 43 34 48 39 50
TPR 77 83 75 67 67 67 77 77 58 62 52 48 37 38 42 44
TNR 95 92 95 95 92 92 86 84 68 65 41 38 32 57 35 57

SVM-rbf

AUC 83 86 72 73 68 71 69 74 11 3 14 9 11 8 14 7
BAR 85 79 73 66 70 72 66 73 60 34 22 23 32 22 33 24
TPR 81 83 73 87 81 96 92 62 58 58 44 38 50 38 58 48
TNR 89 76 73 46 59 49 41 84 62 11 0 8 14 5 8 0

Table A.18: Performance measures computed with SVM-lin and SVM-rbf trained
on an increasing number of features from 1 to 8 for cMRI and PWI separately,
features extracted using the two positive parametric response maps (PRM+),
T1pc-PRM+ and CBV-PRM+. Values over 90% are highlighted in gray.
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Figure A.5: Comparison of Multiple Sclerosis (MS) groups in 2-D feature space: x-axis is disease age and y-axis
is Cho/Cre. The four MS groups are: CIS - clinically isolated syndrome, RR - relapsing-remitting, PP - primary
progressive, SP - secondary progressive.
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Figure A.6: Comparison of Multiple Sclerosis (MS) groups in 2-D feature space: x-axis is lesion load and y-axis is
EDSS. The four MS groups are: CIS - clinically isolated syndrome, RR - relapsing-remitting, PP - primary progressive,
SP - secondary progressive.
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Conventional and Perfusion MRI (cpMRI)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T1pc-PRM+ T1pc-99p T1pc-50p CBF-70p F-50p F-90p CBV-90p T1pc-70p F-99p F-70p CBV-70p T1pc-90p CBV-50p CBF-90p CBF-50p CBV-99p CBF-99p
CBV-PRM+ T1pc-99p F-70p T1pc-70p CBF-50p F-99p T1pc-50p F-50p T1pc-90p F-90p CBV-50p CBV-90p CBV-70p CBF-90p CBF-70p CBV-99p CBF-99p

Table A.19: Conventional and Perfusion MRI (cpMRI) features selected with minimum-redundancy-maximum-relevance
(mRMR) after applying separately the two positive parametric response maps (PRM+), T1pc-PRM+ and CBV-PRM+,
where “F" stands for FLAIR. Features are ‘X’-percentile, where ‘X’ can be 50, 70, 90, and 99.

Conventional MRI
1 2 3 4 5 6 7 8

T1pc-PRM+ T1pc-99p T1pc-50p FLAIR-50p FLAIR-90p T1pc-70p FLAIR-99p FLAIR-70p T1pc-90p
CBV-PRM+ T1pc-99p FLAIR-70p T1pc-70p FLAIR-99p T1pc-90p T1pc-50p FLAIR-50p FLAIR-90p

Table A.20: Conventional MRI features selected with minimum-redundancy-maximum-relevance (mRMR) after
applying separately the two positive parametric response maps (PRM+), T1pc-PRM+ and CBV-PRM+. Features are
‘X’-percentile, where ‘X’ can be 50, 70, 90, and 99.

Perfusion MRI
1 2 3 4 5 6 7 8

T1pc-PRM+ CBV-99p CBF-50p CBV-70p CBV-50p CBF-70p CBF-90p CBV-90p CBF-99p
CBV-PRM+ CBV-99p CBV-50p CBF-50p CBV-70p CBF-70p CBV-90p CBF-90p CBF-99p

Table A.21: Perfusion MRI features selected with minimum-redundancy-maximum-relevance (mRMR) after applying
separately the two positive parametric response maps (PRM+), T1pc-PRM+ and CBV-PRM+. Features are ‘X’-
percentile, where ‘X’ can be 50, 70, 90, and 99.



Bibliography

[1] Akbari, H., Macyszyn, L., Da, X., Bilello, M., Wolf, R. L.,
Martinez-Lage, M., Biros, G., Alonso-Basanta, M., O’Rourke,
D. M., and Davatzikos, C. Imaging surrogates of infiltration obtained
via multiparametric imaging pattern analysis predict subsequent location
of recurrence of glioblastoma. Neurosurgery 78, 4 (2016), 572–580.

[2] Amato, M., Portaccio, E., Stromillo, M., Goretti, B., Zipoli,
V., Siracusa, G., Battaglini, M., Giorgio, A., Bartolozzi, M.,
Guidi, L., et al. Cognitive assessment and quantitative magnetic
resonance metrics can help to identify benign multiple sclerosis. Neurology
71, 9 (2008), 632–638.

[3] Aquino, D., Di Stefano, A. L., Scotti, A., Cuppini, L., Anghileri,
E., Finocchiaro, G., Bruzzone, M. G., and Eoli, M. Parametric
response maps of perfusion MRI may identify recurrent glioblastomas
responsive to bevacizumab and irinotecan. PLoS One 9, 3 (2014), e90535.

[4] Arnold, D., De Stefano, N., Narayanan, S., and Matthews, P.
Proton MR spectroscopy in multiple sclerosis. Neuroimaging clinics of
North America 10, 4 (2000), 789–98.

[5] Artzi, M., Liberman, G., Nadav, G., Blumenthal, D. T.,
Bokstein, F., Aizenstein, O., and Bashat, D. B. Differentiation
between treatment-related changes and progressive disease in patients
with high grade brain tumors using support vector machine classification
based on DCE MRI. Journal of neuro-oncology 127, 3 (2016), 515–524.

[6] Atlas of MS 2013: Mapping Multiple Sclerosis Around the
World. London: Multiple Sclerosis International Federation.
http://www.msif.org/about-ms/publications-and-resources/.
[Online; accessed 05-June-2017].

137

http://www.msif.org/about-ms/publications-and-resources/


138 BIBLIOGRAPHY

[7] Bammer, R., Augustin, M., Strasser-Fuchs, S., Seifert, T.,
Kapeller, P., Stollberger, R., Ebner, F., Hartung, H.-P.,
and Fazekas, F. Magnetic resonance diffusion tensor imaging for
characterizing diffuse and focal white matter abnormalities in multiple
sclerosis. Magnetic Resonance in Medicine 44, 4 (2000), 583–591.

[8] Banwell, B., Giovannoni, G., Hawkes, C., and Lublin, F. Editors’
welcome and a working definition for a multiple sclerosis cure. Multiple
sclerosis and related disorders 2, 2 (2013), 65–67.

[9] Barajas Jr, R. F., Chang, J. S., Segal, M. R., Parsa, A. T.,
McDermott, M. W., Berger, M. S., and Cha, S. Differentiation of
recurrent glioblastoma multiforme from radiation necrosis after external
beam radiation therapy with dynamic susceptibility-weighted contrast-
enhanced perfusion MR imaging 1. Radiology 253, 2 (2009), 486–496.

[10] Basser, P. J., Mattiello, J., and LeBihan, D. MR diffusion tensor
spectroscopy and imaging. Biophysical journal 66, 1 (1994), 259–267.

[11] Bates, D. M. lme4: Mixed-effects modeling with R. Springer New York,
2010.

[12] Bellman, R. E. Adaptive control processes: a guided tour. Princeton
university press, 2015.

[13] Bertholdo, D., Watcharakorn, A., and Castillo, M. Brain
proton magnetic resonance spectroscopy: introduction and overview.
Neuroimaging Clinics of North America 23, 3 (2013), 359–380.

[14] Bitsch, A., Bruhn, H., Vougioukas, V., Stringaris, A.,
Lassmann, H., Frahm, J., and Brück, W. Inflammatory CNS
demyelination: histopathologic correlation with in vivo quantitative proton
MR spectroscopy. American Journal of Neuroradiology 20, 9 (1999), 1619–
1627.

[15] Bjartmar, C., Kinkel, R. P., Kidd, G., Rudick, R. A., and Trapp,
B. D. Axonal loss in normal-appearing white matter in a patient with
acute ms. Neurology 57, 7 (2001), 1248–1252.

[16] Bobek-Billewicz, B., Stasik-Pres, G., Majchrzak, H., and
Zarudzki, Ł. Original article differentiation between brain tumor
recurrence and radiation injury using perfusion, diffusion-weighted imaging
and mr spectroscopy. Folia Neuropathologica 48, 2 (2010), 81–92.

[17] Bottomley, P. A. Spatial localization in NMR spectroscopy in vivo.
Annals of the New York Academy of Sciences 508, 1 (1987), 333–348.



BIBLIOGRAPHY 139

[18] Boxerman, J., Schmainda, K., and Weisskoff, R. Relative cerebral
blood volume maps corrected for contrast agent extravasation significantly
correlate with glioma tumor grade, whereas uncorrected maps do not.
American Journal of Neuroradiology 27, 4 (2006), 859–867.

[19] Bradley, A. P. The use of the area under the roc curve in the evaluation
of machine learning algorithms. Pattern recognition 30, 7 (1997), 1145–
1159.

[20] Breiman, L. Bagging predictors. Machine learning 24, 2 (1996), 123–140.

[21] Breiman, L. Random forests. Machine learning 45, 1 (2001), 5–32.

[22] Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A.
Classification and regression trees. CRC press, 1984.

[23] Breitling, R., Armengaud, P., Amtmann, A., and Herzyk, P.
Rank products: a simple, yet powerful, new method to detect differentially
regulated genes in replicated microarray experiments. FEBS letters 573,
1 (2004), 83–92.

[24] Brück, W., Porada, P., Poser, S., Rieckmann, P., Hanefeld, F.,
Kretzschmarch, H. A., and Lassmann, H. Monocyte/macrophage
differentiation in early multiple sclerosis lesions. Annals of neurology 38,
5 (1995), 788–796.

[25] Bulik, M., Kazda, T., Slampa, P., and Jancalek, R. The Diagnostic
Ability of Follow-Up Imaging Biomarkers after Treatment of Glioblastoma
in the Temozolomide Era: Implications from Proton MR Spectroscopy and
Apparent Diffusion Coefficient Mapping. BioMed research international
2015 (2015).

[26] Burger, P. C., Vogel, F. S., Green, S. B., and Strike, T. A.
Glioblastoma multiforme and anaplastic astrocytoma pathologic criteria
and prognostic implications. Cancer 56, 5 (1985), 1106–1111.

[27] Calle, M. L., and Urrea, V. Letter to the editor: stability of random
forest importance measures. Briefings in bioinformatics 12, 1 (2010),
86–89.

[28] Caravan, P., Ellison, J. J., McMurry, T. J., and Lauffer, R. B.
Gadolinium (iii) chelates as mri contrast agents: structure, dynamics, and
applications. Chemical reviews 99, 9 (1999), 2293–2352.

[29] Cavassila, S., Deval, S., Huegen, C., van Ormondt, D., and
Graveron-Demilly, D. Cramer Rao bounds: an evaluation tool for
quantitation. NMR in Biomedicine 14, 4 (2001), 278–283.



140 BIBLIOGRAPHY

[30] Cha, J., Kim, S., Kim, H.-J., Kim, B.-j., Kim, Y., Lee, J., Jeon,
P., Kim, K., Kong, D.-s., and Nam, D.-H. Differentiation of
tumor progression from pseudoprogression in patients with posttreatment
glioblastoma using multiparametric histogram analysis. American Journal
of Neuroradiology 35, 7 (2014), 1309–1317.

[31] Cha, S., Knopp, E. A., Johnson, G., Wetzel, S. G., Litt, A. W.,
and Zagzag, D. Intracranial mass lesions: Dynamic contrast-enhanced
susceptibility-weighted echo-planar perfusion mr imaging 1. Radiology
223, 1 (2002), 11–29.

[32] Chang, K., Zhang, B., Guo, X., Zong, M., Rahman, R., Sanchez,
D., Winder, N., Reardon, D. A., Zhao, B., Wen, P. Y., et al.
Multimodal imaging patterns predict survival in recurrent glioblastoma
patients treated with bevacizumab. Neuro-oncology 18, 12 (2016), 1680–
1687.

[33] Chapelle, O. http://olivier.chapelle.cc/lds/. [Online; accessed
09-August-2014].

[34] Chapelle, O., and Zien, A. Semi-supervised classification by low
density separation. In AISTATS (2005), pp. 57–64.

[35] Chen, J. T., Collins, D. L., Atkins, H. L., Freedman, M. S., and
Arnold, D. L. Magnetization transfer ratio evolution with demyelination
and remyelination in multiple sclerosis lesions. Annals of neurology 63, 2
(2008), 254–262.

[36] Chollet, F. Keras. https://github.com/fchollet/keras, 2015.

[37] Clausi, D. A. An analysis of co-occurrence texture statistics as a
function of grey level quantization. Canadian Journal of remote sensing
28, 1 (2002), 45–62.

[38] Compston, A., and Coles, A. Multiple sclerosis. The Lancet 372,
9648 (Oct. 2008), 1502–1518.

[39] Cortes, C., and Vapnik, V. Support-vector networks. Machine learning
20, 3 (1995), 273–297.

[40] Coupé, P. Mri denoising package. http://sites.google.com/
site/pierrickcoupe/softwares/denoising-for-medical-imaging/
mri-denoising/mri-denoising-software. Accessed: 2017-04-05.

[41] Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., and
Barillot, C. An optimized blockwise nonlocal means denoising filter for

http://olivier.chapelle.cc/lds/
https://github.com/fchollet/keras
http://sites.google.com/site/pierrickcoupe/softwares/denoising-for-medical-imaging/mri-denoising/mri-denoising-software
http://sites.google.com/site/pierrickcoupe/softwares/denoising-for-medical-imaging/mri-denoising/mri-denoising-software
http://sites.google.com/site/pierrickcoupe/softwares/denoising-for-medical-imaging/mri-denoising/mri-denoising-software


BIBLIOGRAPHY 141

3-d magnetic resonance images. IEEE transactions on medical imaging
27, 4 (2008), 425–441.

[42] Cover, T., and Hart, P. Nearest neighbor pattern classification.
Information Theory, IEEE Transactions on 13, 1 (1967), 21–27.

[43] Cristianini, N., and Shawe-Taylor, J. An introduction to support
vector machines and other kernel-based learning methods. Cambridge
university press, 2000.

[44] Croitor-Sava, A. R., Sima, D. M., Poullet, J.-B., Wright, A. J.,
Heerschap, A., and Van Huffel, S. Exploiting spatial information
to estimate metabolite levels in two-dimensional MRSI of heterogeneous
brain lesions. NMR in Biomedicine 24, 7 (2011), 824–835.

[45] Cutter, G. R., Baier, M. L., Rudick, R. A., Cookfair, D. L.,
Fischer, J. S., Petkau, J., Syndulko, K., Weinshenker, B. G.,
Antel, J. P., Confavreux, C., et al. Development of a multiple
sclerosis functional composite as a clinical trial outcome measure. Brain
122, 5 (1999), 871–882.

[46] da Cruz, L. H., Rodriguez, I., Domingues, R., Gasparetto, E.,
and Sorensen, A. Pseudoprogression and pseudoresponse: imaging
challenges in the assessment of posttreatment glioma. American Journal
of Neuroradiology 32, 11 (2011), 1978–1985.

[47] Davie, C., Barker, G., Thompson, A., Tofts, P., McDonald, W.,
and Miller, D. 1H magnetic resonance spectroscopy of chronic cerebral
white matter lesions and normal appearing white matter in multiple
sclerosis. Journal of Neurology, Neurosurgery & Psychiatry 63, 6 (1997),
736–742.

[48] Davie, C., Hawkins, C., Barker, G., Brennan, A., Tofts, P.,
Miller, D., and McDonald, W. Serial proton magnetic resonance
spectroscopy in acute multiple sclerosis lesions. Brain 117, 1 (1994),
49–58.

[49] De Brabanter, K., Karsmakers, P., Ojeda, F., Alzate, C.,
De Brabanter, J., Pelckmans, K., De Moor, B., Vandewalle,
J., and Suykens, J. LS-SVMlab toolbox user’s guide. ESAT-SISTA
Technical Report (2011), 10–146.

[50] De Stefano, N., and Filippi, M. MR spectroscopy in multiple sclerosis.
Journal of Neuroimaging 17, s1 (2007), 31s–35s.



142 BIBLIOGRAPHY

[51] De Vleeschouwer, S., Fieuws, S., Rutkowski, S., Van Calen-
bergh, F., Van Loon, J., Goffin, J., Sciot, R., Wilms, G.,
Demaerel, P., Warmuth-Metz, M., et al. Postoperative adjuvant
dendritic cell–based immunotherapy in patients with relapsed glioblastoma
multiforme. Clinical Cancer Research 14, 10 (2008), 3098–3104.

[52] De Vleeschouwer, S., Van Calenbergh, F., Demaerel, P.,
Flamen, P., Rutkowski, S., Kaempgen, E., Wolff, J. E., Plets,
C., Sciot, R., and Van Gool, S. W. Transient local response and
persistent tumor control in a child with recurrent malignant glioma:
treatment with combination therapy including dendritic cell therapy: case
report. Journal of Neurosurgery: Pediatrics 100, 5 (2004), 492–497.

[53] Dean, B. L., Drayer, B. P., Bird, C. R., Flom, R. A., Hodak,
J. A., Coons, S. W., and Carey, R. G. Gliomas: classification with
MR imaging. Radiology 174, 2 (1990), 411–415.

[54] Di Costanzo, A., Scarabino, T., Trojsi, F., Popolizio, T.,
Bonavita, S., de Cristofaro, M., Conforti, R., Cristofano,
A., Colonnese, C., Salvolini, U., et al. Recurrent glioblastoma
multiforme versus radiation injury: a multiparametric 3-t mr approach.
La radiologia medica 119, 8 (2014), 616–624.

[55] Ding, C., and Peng, H. Minimum redundancy feature selection
from microarray gene expression data. Journal of bioinformatics and
computational biology 3, 02 (2005), 185–205.

[56] Dobes, M., Khurana, V. G., Shadbolt, B., Jain, S., Smith,
S. F., Smee, R., Dexter, M., and Cook, R. Increasing incidence
of glioblastoma multiforme and meningioma, and decreasing incidence
of schwannoma (2000–2008): findings of a multicenter Australian study.
Surgical neurology international 2 (2011), 176.

[57] Doyle, T. J., Pathak, R., Wolinsky, J. S., and Narayana, P. A.
Automated proton spectroscopic image processing. Journal of Magnetic
Resonance, Series B 106, 1 (1995), 58–63.

[58] Droogan, A., Clark, C., Werring, D., Barker, G., McDonald,
W., and Miller, D. Comparison of multiple sclerosis clinical subgroups
using navigated spin echo diffusion-weighted imaging. Magnetic resonance
imaging 17, 5 (1999), 653–661.

[59] Dunn, O. J. Multiple comparisons using rank sums. Technometrics 6, 3
(1964), 241–252.



BIBLIOGRAPHY 143

[60] Earnest 4th, F., Kelly, P., Scheithauer, B., Kall, B., Cascino,
T., Ehman, R., Forbes, G., and Axley, P. Cerebral astrocytomas:
histopathologic correlation of MR and CT contrast enhancement with
stereotactic biopsy. Radiology 166, 3 (1988), 823–827.

[61] Ellingson, B. M., Cloughesy, T. F., Lai, A., Mischel, P. S.,
Nghiemphu, P. L., Lalezari, S., Schmainda, K. M., and Pope,
W. B. Graded functional diffusion map–defined characteristics of apparent
diffusion coefficients predict overall survival in recurrent glioblastoma
treated with bevacizumab. Neuro-oncology 13, 10 (2011), 1151–1161.

[62] Ellingson, B. M., Malkin, M. G., Rand, S. D., Connelly, J. M.,
Quinsey, C., LaViolette, P. S., Bedekar, D. P., and Schmainda,
K. M. Validation of functional diffusion maps (fDMs) as a biomarker for
human glioma cellularity. Journal of Magnetic Resonance Imaging 31, 3
(2010), 538–548.

[63] Ellingson, B. M., Malkin, M. G., Rand, S. D., LaViolette,
P. S., Connelly, J. M., Mueller, W. M., and Schmainda, K. M.
Volumetric analysis of functional diffusion maps is a predictive imaging
biomarker for cytotoxic and anti-angiogenic treatments in malignant
gliomas. Journal of neuro-oncology 102, 1 (2011), 95–103.

[64] Elson, A., Bovi, J., Siker, M., Schultz, C., and Paulson, E.
Evaluation of absolute and normalized apparent diffusion coefficient (ADC)
values within the post-operative T2/FLAIR volume as adverse prognostic
indicators in glioblastoma. Journal of neuro-oncology 122, 3 (2015),
549–558.

[65] Enzinger, C., Barkhof, F., Ciccarelli, O., Filippi, M., Kappos,
L., Rocca, M. A., Ropele, S., Rovira, À., Schneider, T.,
De Stefano, N., et al. Nonconventional mri and microstructural
cerebral changes in multiple sclerosis. Nature Reviews Neurology 11, 12
(2015), 676–686.

[66] ESAT. http://www.esat.kuleuven.be/sista/lssvmlab/. [Online;
accessed 09-August-2014].

[67] Filippi, M. Enhanced magnetic resonance imaging in multiple sclerosis.
Multiple Sclerosis Journal 6, 5 (2000), 320–326.

[68] Filippi, M., Cercignani, M., Inglese, M., Horsfield, M., and
Comi, G. Diffusion tensor magnetic resonance imaging in multiple
sclerosis. Neurology 56, 3 (2001), 304–311.

http://www.esat.kuleuven.be/sista/lssvmlab/


144 BIBLIOGRAPHY

[69] Filippi, M., Horsfield, M., Morrissey, S., MacManus, D., Rudge,
P., McDonald, W., and Miller, D. Quantitative brain MRI lesion
load predicts the course of clinically isolated syndromes suggestive of
multiple sclerosis. Neurology 44, 4 (1994), 635–635.

[70] Filippi, M., Iannucci, G., Cercignani, M., Rocca, M. A., Pratesi,
A., and Comi, G. A quantitative study of water diffusion in multiple
sclerosis lesions and normal-appearing white matter using echo-planar
imaging. Archives of neurology 57, 7 (2000), 1017–1021.

[71] Filippi, M., and Rocca, M. A. Magnetization transfer magnetic
resonance imaging of the brain, spinal cord, and optic nerve.
Neurotherapeutics 4, 3 (2007), 401–413.

[72] Filippi, M., Rocca, M. A., Barkhof, F., Brück, W., Chen,
J. T., Comi, G., DeLuca, G., De Stefano, N., Erickson, B. J.,
Evangelou, N., et al. Association between pathological and mri
findings in multiple sclerosis. The Lancet Neurology 11, 4 (2012), 349–360.

[73] Fisher, R. A. The use of multiple measurements in taxonomic problems.
Annals of eugenics 7, 2 (1936), 179–188.

[74] Fox, R. J., and Cohen, J. A. Multiple sclerosis: the importance of
early recognition and treatment. Cleveland Clinic journal of medicine 68,
2 (2001), 157–171.

[75] Frahm, J., Merboldt, K.-D., and Hänicke, W. Localized proton
spectroscopy using stimulated echoes. Journal of Magnetic Resonance
(1969) 72, 3 (1987), 502–508.

[76] Freund, Y. A more robust boosting algorithm. arXiv preprint
arXiv:0905.2138 (2009).

[77] Freund, Y., and Schapire, R. E. A desicion-theoretic generalization
of on-line learning and an application to boosting. In Computational
learning theory (1995), Springer, pp. 23–37.

[78] Friedman, J., Hastie, T., and Tibshirani, R. The elements of
statistical learning, vol. 1. Springer series in statistics Springer, Berlin,
2001.

[79] Friedman, J., Hastie, T., Tibshirani, R., et al. Additive logistic
regression: a statistical view of boosting (with discussion and a rejoinder
by the authors). The annals of statistics 28, 2 (2000), 337–407.

[80] Friedman, J. H. Stochastic gradient boosting. Computational Statistics
& Data Analysis 38, 4 (2002), 367–378.



BIBLIOGRAPHY 145

[81] Fu, L., Matthews, P., De Stefano, N., Worsley, K., Narayanan,
S., Francis, G., Antel, J., Wolfson, C., and Arnold, D. Imaging
axonal damage of normal-appearing white matter in multiple sclerosis.
Brain 121, 1 (1998), 103–113.

[82] Galbán, C. J., Chenevert, T. L., Meyer, C. R., Tsien, C.,
Lawrence, T. S., Hamstra, D. A., Junck, L., Sundgren, P. C.,
Johnson, T. D., Ross, D. J., et al. The parametric response map
is an imaging biomarker for early cancer treatment outcome. Nature
medicine 15, 5 (2009), 572–576.

[83] Galbán, C. J., Chenevert, T. L., Meyer, C. R., Tsien, C. I.,
Lawrence, T. S., Hamstra, D. A., Junck, L., Sundgren, P.,
Johnson, T. D., Galbán, S., et al. Prospective analysis of parametric
MRI biomarkers: Identification of early and distinct glioma response
patterns not predicted by standard radiographic assessment. Clinical
Cancer Research (2011), clincanres–2098.

[84] Gantz, J., and Reinsel, D. The digital universe in 2020: Big data,
bigger digital shadows, and biggest growth in the far east. IDC iView:
IDC Analyze the future 2007, 2012 (2012), 1–16.

[85] Giovannoni, G., Cook, S., Rammohan, K., Rieckmann, P.,
Sørensen, P. S., Vermersch, P., Hamlett, A., Viglietta, V.,
Greenberg, S., et al. Sustained disease-activity-free status in patients
with relapsing-remitting multiple sclerosis treated with cladribine tablets
in the CLARITY study: a post-hoc and subgroup analysis. The Lancet
Neurology 10, 4 (2011), 329–337.

[86] Gladwish, A., Koh, E.-S., Hoisak, J., Lockwood, G., Millar,
B.-A., Mason, W., Yu, E., Laperriere, N. J., and Ménard, C.
Evaluation of early imaging response criteria in glioblastoma multiforme.
Radiation Oncology 6, 1 (2011), 121.

[87] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[88] Hagan, M. T., and Menhaj, M. B. Training feedforward networks
with the Marquardt algorithm. Neural Networks, IEEE Transactions on
5, 6 (1994), 989–993.

[89] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., and Witten, I. H. The WEKA data mining software: an update.
ACM SIGKDD explorations newsletter 11, 1 (2009), 10–18.

http://www.deeplearningbook.org


146 BIBLIOGRAPHY

[90] Hamstra, D. A., Chenevert, T. L., Moffat, B. A., Johnson,
T. D., Meyer, C. R., Mukherji, S. K., Quint, D. J., Gebarski,
S. S., Fan, X., Tsien, C. I., et al. Evaluation of the functional
diffusion map as an early biomarker of time-to-progression and overall
survival in high-grade glioma. Proceedings of the National Academy of
Sciences of the United States of America 102, 46 (2005), 16759–16764.

[91] Hamstra, D. A., Galbán, C. J., Meyer, C. R., Johnson, T. D.,
Sundgren, P. C., Tsien, C., Lawrence, T. S., Junck, L., Ross,
D. J., Rehemtulla, A., et al. Functional diffusion map as an early
imaging biomarker for high-grade glioma: correlation with conventional
radiologic response and overall survival. Journal of clinical oncology 26,
20 (2008), 3387–3394.

[92] Hannoun, S., Bagory, M., Durand-Dubief, F., Ibarrola, D.,
Comte, J.-C., Confavreux, C., Cotton, F., and Sappey-Marinier,
D. Correlation of diffusion and metabolic alterations in different clinical
forms of multiple sclerosis. PLoS One 7, 3 (2012), e32525.

[93] Haralick, R. M., Shanmugam, K., and Dinstein, I. H. Textural
features for image classification. Systems, Man and Cybernetics, IEEE
Transactions on, 6 (1973), 610–621.

[94] Havrdova, E., Galetta, S., Hutchinson, M., Stefoski, D., Bates,
D., Polman, C. H., O’Connor, P. W., Giovannoni, G., Phillips,
J. T., Lublin, F. D., et al. Effect of natalizumab on clinical and
radiological disease activity in multiple sclerosis: a retrospective analysis
of the natalizumab safety and efficacy in relapsing-remitting multiple
sclerosis (affirm) study. The Lancet Neurology 8, 3 (2009), 254–260.

[95] Hayton, T., Furby, J., Smith, K., Altmann, D., Brenner, R.,
Chataway, J., Hughes, R. A., Hunter, K., Tozer, D., Miller,
D., et al. Grey matter magnetization transfer ratio independently
correlates with neurological deficit in secondary progressive multiple
sclerosis. Journal of neurology 256, 3 (2009), 427–435.

[96] He, J., Inglese, M., Li, B. S., Babb, J. S., Grossman, R. I.,
and Gonen, O. Relapsing-Remitting Multiple Sclerosis: Metabolic
Abnormality in Nonenhancing Lesions and Normal-appearing White
Matter at MR Imaging: Initial Experience 1. Radiology 234, 1 (2005),
211–217.

[97] He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE international conference on computer vision
(2015), pp. 1026–1034.



BIBLIOGRAPHY 147

[98] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition (2016), pp. 770–778.

[99] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r.,
Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath,
T. N., et al. Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. IEEE Signal
Processing Magazine 29, 6 (2012), 82–97.

[100] Hochmeister, S., Grundtner, R., Bauer, J., Engelhardt, B.,
Lyck, R., Gordon, G., Korosec, T., Kutzelnigg, A., Berger,
J. J., Bradl, M., et al. Dysferlin is a new marker for leaky brain blood
vessels in multiple sclerosis. Journal of Neuropathology & Experimental
Neurology 65, 9 (2006), 855–865.

[101] Hornik, K., Stinchcombe, M., and White, H. Multilayer feedforward
networks are universal approximators. Neural networks 2, 5 (1989), 359–
366.

[102] Hothorn, T., Bretz, F., and Westfall, P. Simultaneous inference
in general parametric models. Biometrical journal 50, 3 (2008), 346–363.

[103] Hu, L., Baxter, L., Pinnaduwage, D., Paine, T., Karis, J.,
Feuerstein, B., Schmainda, K., Dueck, A., Debbins, J., Smith,
K., et al. Optimized preload leakage-correction methods to improve the
diagnostic accuracy of dynamic susceptibility-weighted contrast-enhanced
perfusion MR imaging in posttreatment gliomas. American Journal of
Neuroradiology 31, 1 (2010), 40–48.

[104] Hu, L. S., Eschbacher, J. M., Heiserman, J. E., Dueck, A. C.,
Shapiro, W. R., Liu, S., Karis, J. P., Smith, K. A., Coons,
S. W., Nakaji, P., et al. Reevaluating the imaging definition of
tumor progression: perfusion MRI quantifies recurrent glioblastoma tumor
fraction, pseudoprogression, and radiation necrosis to predict survival.
Neuro-oncology 14, 7 (2012), 919–930.

[105] Hu, X., Wong, K. K., Young, G. S., Guo, L., and Wong,
S. T. Support vector machine multiparametric MRI identification
of pseudoprogression from tumor recurrence in patients with resected
glioblastoma. Journal of Magnetic Resonance Imaging 33, 2 (2011),
296–305.

[106] Hua, J., Xiong, Z., Lowey, J., Suh, E., and Dougherty, E. R.
Optimal number of features as a function of sample size for various
classification rules. Bioinformatics 21, 8 (2005), 1509–1515.



148 BIBLIOGRAPHY

[107] Huang, J. Accelerating AI with GPUs: A New Computing
Model. https://blogs.nvidia.com/blog/2016/01/12/
accelerating-ai-artificial-intelligence-gpus/. Accessed:
2017-07-06.

[108] Hui, E. S., Cheung, M. M., Qi, L., and Wu, E. X. Towards better
MR characterization of neural tissues using directional diffusion kurtosis
analysis. Neuroimage 42, 1 (2008), 122–134.

[109] Husted, C., Goodin, D., Hugg, J., Maudsley, A. A., Tsuruda,
J., De Bie, S., Fein, G., Matson, G., and Weiner, M. Biochemical
alterations in multiple sclerosis lesions and normal-appearing white matter
detected by in vivo 31P and 1H spectroscopic imaging. Annals of neurology
36, 2 (1994), 157–165.

[110] Indicators, O. Health at a glance 2011. OECD Indicators, OECD
Publishing, Paris 15 (2015), 2016.

[111] Inglese, M., and Bester, M. Diffusion imaging in multiple sclerosis:
research and clinical implications. NMR in Biomedicine 23, 7 (2010),
865–872.

[112] Inglese, M., Li, B. S., Rusinek, H., Babb, J. S., Grossman, R. I.,
and Gonen, O. Diffusely elevated cerebral choline and creatine in
relapsing-remitting multiple sclerosis. Magnetic resonance in medicine 50,
1 (2003), 190–195.

[113] Ioffe, S., and Szegedy, C. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International
Conference on Machine Learning (2015), pp. 448–456.

[114] Ion-Mărgineanu, A., Kocevar, G., Stamile, C., Sima, D. M.,
Durand-Dubief, F., Van Huffel, S., and Sappey-Marinier, D.
Machine learning approach for classifying multiple sclerosis courses by
combining clinical data with lesion loads and magnetic resonance metabolic
features. Frontiers in neuroscience 11 (2017).

[115] Ion-Mărgineanu, A., Van Cauter, S., Sima, D. M., Maes, F.,
Sunaert, S., Himmelreich, U., and Van Huffel, S. Classifying
glioblastoma multiforme follow-up progressive vs. responsive forms using
multi-parametric mri features. Frontiers in neuroscience 10 (2016).

[116] Ion-Mărgineanu, A., Van Cauter, S., Sima, D. M., Maes, F.,
Van Gool, S. W., Sunaert, S., Himmelreich, U., and Van Huffel,
S. Tumour relapse prediction using multiparametric MR data recorded
during follow-up of GBM patients. BioMed research international 2015
(2015).

https://blogs.nvidia.com/blog/2016/01/12/accelerating-ai-artificial-intelligence-gpus/
https://blogs.nvidia.com/blog/2016/01/12/accelerating-ai-artificial-intelligence-gpus/


BIBLIOGRAPHY 149

[117] Iranzo, A., Moreno, A., Pujol, J., Martí-Fàbregas, J., Domingo,
P., Molet, J., Ris, J., and Cadafalch, J. Proton magnetic resonance
spectroscopy pattern of progressive multifocal leukoencephalopathy in
AIDS. Journal of Neurology, Neurosurgery & Psychiatry 66, 4 (1999),
520–523.

[118] Jain, S., Sima, D. M., Ribbens, A., Cambron, M., Maertens, A.,
Van Hecke, W., De Mey, J., Barkhof, F., Steenwijk, M. D.,
Daams, M., et al. Automatic segmentation and volumetry of multiple
sclerosis brain lesions from MR images. NeuroImage: Clinical 8 (2015),
367–375.

[119] Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich,
M. W., and Smith, S. M. Fsl. Neuroimage 62, 2 (2012), 782–790.

[120] Jensen, J. H., Helpern, J. A., Ramani, A., Lu, H., and Kaczynski,
K. Diffusional kurtosis imaging: The quantification of non-gaussian water
diffusion by means of magnetic resonance imaging. Magnetic Resonance
in Medicine 53, 6 (2005), 1432–1440.

[121] Kappos, L., De Stefano, N., Freedman, M. S., Cree, B. A.,
Radue, E.-W., Sprenger, T., Sormani, M. P., Smith, T., Häring,
D. A., Piani Meier, D., et al. Inclusion of brain volume loss in a
revised measure of ‘no evidence of disease activity’(NEDA-4) in relapsing–
remitting multiple sclerosis. Multiple Sclerosis Journal 22, 10 (2016),
1297–1305.

[122] Karpathy, A. CS231n convolutional neural networks for visual
recognition.

[123] Khalifa, J., Tensaouti, F., Chaltiel, L., Lotterie, J.-A.,
Catalaa, I., Sunyach, M., Ibarrola, D., Noël, G., Truc, G.,
Walker, P., et al. Identification of a candidate biomarker from
perfusion mri to anticipate glioblastoma progression after chemoradiation.
European radiology (2016), 1–10.

[124] Kirov, I. I., Liu, S., Tal, A., Wu, W. E., Davitz, M. S., Babb, J. S.,
Rusinek, H., Herbert, J., and Gonen, O. Proton MR spectroscopy
of lesion evolution in multiple sclerosis: Steady-state metabolism and its
relationship to conventional imaging. Human Brain Mapping 38, 8 (2017),
4047–4063.

[125] Kleihues, P., and Ohgaki, H. Phenotype vs genotype in the evolution
of astrocytic brain tumors. Toxicologic pathology 28, 1 (2000), 164–170.



150 BIBLIOGRAPHY

[126] Kocevar, G. Développement de Méthodes d’IRM Avancées pour l’Etude
Longitudinale de la Sclérose en Plaques. PhD thesis, Claude Bernard
Lyon 1, 2017.

[127] Kocevar, G., Stamile, C., Hannoun, S., Cotton, F., Vukusic, S.,
Durand-Dubief, F., and Sappey-Marinier, D. Graph theory-based
brain connectivity for automatic classification of multiple sclerosis clinical
courses. Frontiers in Neuroscience 10 (2016), 478.

[128] Kononenko, I., Šimec, E., and Robnik-Šikonja, M. Overcoming
the myopia of inductive learning algorithms with RELIEFF. Applied
Intelligence 7, 1 (1997), 39–55.

[129] Koshy, M., Villano, J. L., Dolecek, T. A., Howard, A.,
Mahmood, U., Chmura, S. J., Weichselbaum, R. R., and
McCarthy, B. J. Improved survival time trends for glioblastoma using
the SEER 17 population-based registries. Journal of neuro-oncology 107,
1 (2012), 207–212.

[130] Kreis, R. Issues of spectral quality in clinical 1H-magnetic resonance
spectroscopy and a gallery of artifacts. NMR in Biomedicine 17, 6 (2004),
361–381.

[131] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems (2012), pp. 1097–1105.

[132] Kruskal, W. H., and Wallis, W. A. Use of ranks in one-criterion
variance analysis. Journal of the American statistical Association 47, 260
(1952), 583–621.

[133] Kurtzke, J. F. Rating neurologic impairment in multiple sclerosis
an expanded disability status scale (EDSS). Neurology 33, 11 (1983),
1444–1444.

[134] Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B.
Package ‘lmertest’. R package version (2015).

[135] Lamborn, K. R., Chang, S. M., and Prados, M. D. Prognostic
factors for survival of patients with glioblastoma: recursive partitioning
analysis. Neuro-oncology 6, 3 (2004), 227–235.

[136] LAMDA. http://lamda.nju.edu.cn/Data.ashx. [Online; accessed
09-August-2014].

http://lamda.nju.edu.cn/Data.ashx


BIBLIOGRAPHY 151

[137] Larsson, H., Christiansen, P., Jensen, M., Frederiksen, J.,
Heltberg, A., Olesen, J., and Henriksen, O. Localized in vivo
proton spectroscopy in the brain of patients with multiple sclerosis.
Magnetic resonance in medicine 22, 1 (1991), 23–31.

[138] Lassmann, H., Van Horssen, J., and Mahad, D. Progressive multiple
sclerosis: pathology and pathogenesis. Nature Reviews Neurology 8, 11
(2012), 647–656.

[139] Le Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis,
E., and Laval-Jeantet, M. MR imaging of intravoxel incoherent
motions: application to diffusion and perfusion in neurologic disorders.
Radiology 161, 2 (1986), 401–407.

[140] Leary, S. M., Davie, C. A., Parker, G. J., Stevenson, V. L.,
Wang, L., Barker, G. J., Miller, D. H., and Thompson, A. 1H
magnetic resonance spectroscopy of normal appearing white matter in
primary progressive multiple sclerosis. Journal of neurology 246, 11 (1999),
1023–1026.

[141] Li, Y.-F., and Zhou, Z.-H. Towards making unlabeled data never hurt.
IEEE Transactions on Pattern Analysis and Machine Intelligence 37, 1
(2015), 175–188.

[142] Liaw, A., and Wiener, M. Classification and regression by
randomforest. R News 2, 3 (2002), 18–22.

[143] Lippmann, R. P. An introduction to computing with neural nets. ASSP
Magazine, IEEE 4, 2 (1987), 4–22.

[144] Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K.,
Burger, P. C., Jouvet, A., Scheithauer, B. W., and Kleihues,
P. The 2007 WHO classification of tumours of the central nervous system.
Acta neuropathologica 114, 2 (2007), 97–109.

[145] Louppe, G. Understanding random forests: From theory to practice.
arXiv preprint arXiv:1407.7502 (2014).

[146] Lublin, F. D., Reingold, S. C., et al. Defining the clinical course
of multiple sclerosis results of an international survey. Neurology 46, 4
(1996), 907–911.

[147] Lund, R., Rand, S., Krouwer, H., Schultz, C., and Schmainda,
K. Using rCBV to distinguish radiation necrosis from tumor
recurrence in malignant gliomas. International Journal of Radiation
Oncology*Biology*Physics 63, Supplement 1, 0 (2005), S65 – S66.



152 BIBLIOGRAPHY

Proceedings of the American Society for Therapeutic Radiology and
Oncology 47 th Annual Meeting American Society for Therapeutic
Radiology and Oncology 47th Annual Meeting.

[148] Macyszyn, L., Akbari, H., Pisapia, J. M., Da, X., Attiah, M.,
Pigrish, V., Bi, Y., Pal, S., Davuluri, R. V., Roccograndi, L.,
et al. Imaging patterns predict patient survival and molecular subtype
in glioblastoma via machine learning techniques. Neuro-oncology 18, 3
(2016), 417–425.

[149] McAlpine, D., and Compston, A. McAlpine’s multiple sclerosis.
Elsevier Health Sciences, 2005.

[150] McDonald, W. I., Compston, A., Edan, G., Goodkin, D.,
Hartung, H.-P., Lublin, F. D., McFarland, H. F., Paty, D. W.,
Polman, C. H., Reingold, S. C., et al. Recommended diagnostic
criteria for multiple sclerosis: guidelines from the international Panel
on the diagnosis of multiple sclerosis. Annals of neurology 50, 1 (2001),
121–127.

[151] Miller, D. H., Chard, D. T., and Ciccarelli, O. Clinically isolated
syndromes. The Lancet Neurology 11, 2 (2012), 157–169.

[152] Moffat, B. A., Chenevert, T. L., Lawrence, T. S., Meyer, C. R.,
Johnson, T. D., Dong, Q., Tsien, C., Mukherji, S., Quint, D. J.,
Gebarski, S. S., et al. Functional diffusion map: a noninvasive
MRI biomarker for early stratification of clinical brain tumor response.
Proceedings of the National Academy of Sciences of the United States of
America 102, 15 (2005), 5524–5529.

[153] Möller-Hartmann, W., Herminghaus, S., Krings, T., Mar-
quardt, G., Lanfermann, H., Pilatus, U., and Zanella, F. Clinical
application of proton magnetic resonance spectroscopy in the diagnosis of
intracranial mass lesions. Neuroradiology 44, 5 (2002), 371–381.

[154] Mukherjee, P., Berman, J., Chung, S., Hess, C., and Henry,
R. Diffusion tensor MR imaging and fiber tractography: theoretic
underpinnings. American journal of neuroradiology 29, 4 (2008), 632–641.

[155] Muthuraman, M., Fleischer, V., Kolber, P., Luessi, F., Zipp, F.,
and Groppa, S. Structural brain network characteristics can differentiate
CIS from early RRMS. Frontiers in neuroscience 10 (2016).

[156] Nakahara, J., Maeda, M., Aiso, S., and Suzuki, N. Current
concepts in multiple sclerosis: autoimmunity versus oligodendrogliopathy.
Clinical reviews in allergy & immunology 42, 1 (2012), 26–34.



BIBLIOGRAPHY 153

[157] Narayana, P. A. Magnetic resonance spectroscopy in the monitoring of
multiple sclerosis. Journal of Neuroimaging 15, s4 (2005), 46S–57S.

[158] Narayana, P. A., Doyle, T. J., Lai, D., and Wolinsky, J. S. Serial
proton magnetic resonance spectroscopic imaging, contrast-enhanced
magnetic resonance imaging, and quantitative lesion volumetry in multiple
sclerosis. Annals of neurology 43, 1 (1998), 56–71.

[159] Narayana, P. A., Wolinsky, J. S., Rao, S. B., He, R., Mehta,
M., et al. Multicentre proton magnetic resonance spectroscopy imaging
of primary progressive multiple sclerosis. Multiple Sclerosis 10, 3 suppl
(2004), S73–S78.

[160] Narayanan, S., Fu, L., Pioro, E., De Stefano, N., Collins, D.,
Francis, G., Antel, J., Matthews, P., and Arnold, D. Imaging
of axonal damage in multiple sclerosis: spatial distribution of magnetic
resonance imaging lesions. Annals of neurology 41, 3 (1997), 385–391.

[161] Nasseri, M., Gahramanov, S., Netto, J. P., Fu, R., Muldoon,
L. L., Varallyay, C., Hamilton, B. E., and Neuwelt, E. A.
Evaluation of pseudoprogression in patients with glioblastoma multiforme
using dynamic magnetic resonance imaging with ferumoxytol calls RANO
criteria into question. Neuro-oncology (2014), 328.

[162] Nelson, S. J., and Cha, S. Imaging glioblastoma multiforme. The
Cancer Journal 9, 2 (2003), 134–145.

[163] Nguyen, C., Wang, Y., and Nguyen, H. N. Random forest classifier
combined with feature selection for breast cancer diagnosis and prognostic.
Journal of Biomedical Science and Engineering 6, 05 (2013), 551.

[164] Nielsen, M. A. Neural networks and deep learning, 2015.

[165] Niu, G., Jitkrittum, W., Dai, B., Hachiya, H., and Sugiyama,
M. Squared-loss mutual information regularization: A novel information-
theoretic approach to semi-supervised learning. In Proceedings of The
30th International Conference on Machine Learning (2013), pp. 10–18.

[166] Ohgaki, H. Epidemiology of brain tumors. Cancer Epidemiology:
Modifiable Factors (2009), 323–342.

[167] Ohgaki, H., and Kleihues, P. Genetic alterations and signaling
pathways in the evolution of gliomas. Cancer science 100, 12 (2009),
2235–2241.



154 BIBLIOGRAPHY

[168] Østergaard, L., Weisskoff, R. M., Chesler, D. A., Gyldensted,
C., and Rosen, B. R. High resolution measurement of cerebral blood flow
using intravascular tracer bolus passages. part i: Mathematical approach
and statistical analysis. Magnetic resonance in medicine 36, 5 (1996),
715–725.

[169] Ostrom, Q. T., Gittleman, H., Farah, P., Ondracek, A., Chen,
Y., Wolinsky, Y., Stroup, N. E., Kruchko, C., and Barnholtz-
Sloan, J. S. CBTRUS statistical report: Primary brain and central
nervous system tumors diagnosed in the United States in 2006-2010.
Neuro-oncology 15, suppl 2 (2013), ii1–ii56.

[170] Ourselin, S., Stefanescu, R., and Pennec, X. Robust registration
of multi-modal images: towards real-time clinical applications. Medical
Image Computing and Computer-Assisted Intervention—MICCAI 2002
(2002), 140–147.

[171] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss,
R., Dubourg, V., et al. Scikit-learn: Machine learning in python.
Journal of Machine Learning Research 12, Oct (2011), 2825–2830.

[172] Phuphanich, S., Wheeler, C., Rudnick, J., Hu, J., Mazer, M.,
Sanchez, C., Nuno, M., Chu, R., Black, K., and Yu, J. ATIM-
25. TEN-YEAR FOLLOW UP WITH LONG TERM REMISSION IN
PATIENTS WITH NEWLY DIAGNOSED GLIOBLASTOMA (GBM)
TREATED WITH ICT-107 VACCINE (PHASE I). Neuro-Oncology 18,
suppl 6 (2016), vi23–vi23.

[173] Polman, C. H., Reingold, S. C., Banwell, B., Clanet, M., Cohen,
J. A., Filippi, M., Fujihara, K., Havrdova, E., Hutchinson, M.,
Kappos, L., et al. Diagnostic criteria for multiple sclerosis: 2010
revisions to the McDonald criteria. Annals of neurology 69, 2 (2011),
292–302.

[174] Polman, C. H., Reingold, S. C., Edan, G., Filippi, M., Hartung,
H.-P., Kappos, L., Lublin, F. D., Metz, L. M., McFarland, H. F.,
O’Connor, P. W., et al. Diagnostic criteria for multiple sclerosis:
2005 revisions to the “McDonald Criteria”. Annals of neurology 58, 6
(2005), 840–846.

[175] Poot, D. H., den Dekker, A. J., Achten, E., Verhoye, M., and
Sijbers, J. Optimal experimental design for diffusion kurtosis imaging.
Medical Imaging, IEEE Transactions on 29, 3 (2010), 819–829.



BIBLIOGRAPHY 155

[176] Pope, W. B., Kim, H. J., Huo, J., Alger, J., Brown, M. S.,
Gjertson, D., Sai, V., Young, J. R., Tekchandani, L., Cloughesy,
T., et al. Recurrent glioblastoma multiforme: ADC histogram analysis
predicts response to bevacizumab treatment. Radiology 252, 1 (2009),
182–189.

[177] Posse, S., Otazo, R., Dager, S. R., and Alger, J. MR spectroscopic
imaging: principles and recent advances. Journal of Magnetic Resonance
Imaging 37, 6 (2013), 1301–1325.

[178] Poullet, J.-B. Quantification and classification of magnetic resonance
spectroscopic data for brain tumor diagnosis. PhD thesis, KU Leuven,
2008.

[179] Poullet, J.-B., Sima, D., Luts, J., Garcia, M. O., Croitor, A.,
and Van Huffel, S. Manual: Simulation Package based on In vitro
Databases (SPID). Accessed: 2015-02-10.

[180] Poullet, J.-B., Sima, D. M., Simonetti, A. W., De Neuter, B.,
Vanhamme, L., Lemmerling, P., and Van Huffel, S. An automated
quantitation of short echo time MRS spectra in an open source software
environment: AQSES. NMR in Biomedicine 20, 5 (2007), 493–504.

[181] Provencher, S. W. Estimation of metabolite concentrations from
localized in vivo proton NMR spectra. Magnetic resonance in medicine
30, 6 (1993), 672–679.

[182] Ranjeva, J.-P., Audoin, B., Duong, M. V. A., Ibarrola, D.,
Confort-Gouny, S., Malikova, I., Soulier, E., Viout, P., Ali-
Chérif, A., Pelletier, J., et al. Local tissue damage assessed
with statistical mapping analysis of brain magnetization transfer ratio:
relationship with functional status of patients in the earliest stage of
multiple sclerosis. American Journal of Neuroradiology 26, 1 (2005),
119–127.

[183] Ratiney, H., Sdika, M., Coenradie, Y., Cavassila, S., Ormondt,
D. v., and Graveron-Demilly, D. Time-domain semi-parametric
estimation based on a metabolite basis set. NMR in Biomedicine 18, 1
(2005), 1–13.

[184] Rees, J. Advances in magnetic resonance imaging of brain tumours.
Current opinion in neurology 16, 6 (2003), 643–650.

[185] Rinck, P. A. The basic textbook of the european magnetic
resonance forum. http://www.magnetic-resonance.org/ch/21-01.
htm. Accessed: 2017-04-05.

http://www.magnetic-resonance.org/ch/21-01.htm
http://www.magnetic-resonance.org/ch/21-01.htm


156 BIBLIOGRAPHY

[186] Ropele, S., and Fazekas, F. Magnetization transfer MR imaging in
multiple sclerosis. Neuroimaging Clinics of North America 19, 1 (2009),
27–36.

[187] Rosen, B. R., Belliveau, J. W., Vevea, J. M., and Brady, T. J.
Perfusion imaging with NMR contrast agents. Magnetic resonance in
medicine 14, 2 (1990), 249–265.

[188] Rosenblatt, F. Principles of neurodynamics. Spartan Book, 1962.

[189] Rovaris, M., Gass, A., Bammer, R., Hickman, S., Ciccarelli,
O., Miller, D., and Filippi, M. Diffusion mri in multiple sclerosis.
Neurology 65, 10 (2005), 1526–1532.

[190] Rovaris, M., Judica, E., Sastre-Garriga, J., Rovira, A.,
Pia Sormani, M., Benedetti, B., Korteweg, T., De Stefano,
N., Khaleeli, Z., Montalban, X., et al. Large-scale, multicentre,
quantitative MRI study of brain and cord damage in primary progressive
multiple sclerosis. Multiple Sclerosis Journal 14, 4 (2008), 455–464.

[191] Rovira, À., Auger, C., and Alonso, J. Magnetic resonance
monitoring of lesion evolution in multiple sclerosis. Therapeutic advances
in neurological disorders 6, 5 (2013), 298–310.

[192] Roychowdhury, S., Maldjian, J. A., and Grossman, R. I. Multiple
sclerosis: comparison of trace apparent diffusion coefficients with mr
enhancement pattern of lesions. American journal of neuroradiology 21, 5
(2000), 869–874.

[193] Rulseh, A. M., Keller, J., Klener, J., Sroubek, J., Dbaly, V.,
Syrucek, M., Tovarys, F., and Vymazal, J. Long-term survival
of patients suffering from glioblastoma multiforme treated with tumor-
treating fields. World Journal of Surgical Oncology 10, 1 (2012), 220.

[194] Rutkowski, S., De Vleeschouwer, S., Kaempgen, E., Wolff,
J., Kühl, J., Demaerel, P., Warmuth-Metz, M., Flamen, P.,
Van Calenbergh, F., Plets, C., et al. Surgery and adjuvant dendritic
cell-based tumour vaccination for patients with relapsed malignant glioma,
a feasibility study. British journal of cancer 91, 9 (2004), 1656–1662.

[195] Sajja, B. R., Wolinsky, J. S., and Narayana, P. A. Proton
magnetic resonance spectroscopy in multiple sclerosis. Neuroimaging
clinics of North America 19, 1 (2009), 45–58.

[196] Sarchielli, P., Presciutti, O., Pelliccioli, G., Tarducci, R.,
Gobbi, G., Chiarini, P., Alberti, A., Vicinanza, F., and Gallai,



BIBLIOGRAPHY 157

V. Absolute quantification of brain metabolites by proton magnetic
resonance spectroscopy in normal-appearing white matter of multiple
sclerosis patients. Brain 122, 3 (1999), 513–521.

[197] Sauwen, N. Unsupervised and semi-supervised Non-negative Matrix
Factorization methods for brain tumor segmentation using multi-
parametric MRI data. PhD thesis, KU Leuven, 2016.

[198] Scalfari, A., Neuhaus, A., Degenhardt, A., Rice, G. P., Muraro,
P. A., Daumer, M., and Ebers, G. C. The natural history of multiple
sclerosis, a geographically based study 10: relapses and long-term disability.
Brain 133, 7 (2010), 1914–1929.

[199] Schmainda, K. M., Prah, M., Connelly, J., Rand, S. D., Hoffman,
R. G., Mueller, W., and Malkin, M. G. Dynamic-susceptibility
contrast agent mri measures of relative cerebral blood volume predict
response to bevacizumab in recurrent high-grade glioma. Neuro-oncology
16, 6 (2014), 880–888.

[200] Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. Nih
image to imagej: 25 years of image analysis. Nature methods 9, 7 (2012),
671–675.

[201] Seber, G. A. Multivariate observations, vol. 252. John Wiley & Sons,
2009.

[202] Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., and
Napolitano, A. Rusboost: Improving classification performance when
training data is skewed. In Pattern Recognition, 2008. ICPR 2008. 19th
International Conference on (2008), IEEE, pp. 1–4.

[203] Shu, N., Liu, Y., Li, K., Duan, Y., Wang, J., Yu, C., Dong, H.,
Ye, J., and He, Y. Diffusion tensor tractography reveals disrupted
topological efficiency in white matter structural networks in multiple
sclerosis. Cerebral Cortex 21, 11 (2011), 2565–2577.

[204] Sicotte, N. L., Voskuhl, R. R., Bouvier, S., Klutch, R., Cohen,
M. S., and Mazziotta, J. C. Comparison of multiple sclerosis lesions
at 1.5 and 3.0 Tesla. Investigative radiology 38, 7 (2003), 423–427.

[205] Šidák, Z. Rectangular confidence regions for the means of multivariate
normal distributions. Journal of the American Statistical Association 62,
318 (1967), 626–633.

[206] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,



158 BIBLIOGRAPHY

Panneershelvam, V., Lanctot, M., et al. Mastering the game
of go with deep neural networks and tree search. Nature 529, 7587 (2016),
484–489.

[207] Simonyan, K., and Zisserman, A. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[208] Smets, T., Lawson, T. M., Grandin, C., Jankovski, A., and
Raftopoulos, C. Immediate post-operative MRI suggestive of the
site and timing of glioblastoma recurrence after gross total resection: a
retrospective longitudinal preliminary study. European radiology 23, 6
(2013), 1467–1477.

[209] Smith, S. M. Fast robust automated brain extraction. Human brain
mapping 17, 3 (2002), 143–155.

[210] Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F.,
Behrens, T. E., Johansen-Berg, H., Bannister, P. R., De Luca,
M., Drobnjak, I., Flitney, D. E., et al. Advances in functional and
structural mr image analysis and implementation as fsl. Neuroimage 23
(2004), S208–S219.

[211] Soh, L.-K., and Tsatsoulis, C. Texture analysis of SAR sea ice
imagery using gray level co-occurrence matrices. Geoscience and Remote
Sensing, IEEE Transactions on 37, 2 (1999), 780–795.

[212] SPID. http://homes.esat.kuleuven.be/~biomed/software.php#
SpidGUI. [Online; accessed 09-August-2014].

[213] Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine Learning Research 15, 1
(2014), 1929–1958.

[214] Stejskal, E. O., and Tanner, J. E. Spin diffusion measurements: spin
echoes in the presence of a time-dependent field gradient. The journal of
chemical physics 42, 1 (1965), 288–292.

[215] Stewart, G. Researches on the circulation time in organs and on the
influences which affect it: Parts i.—iii. The Journal of Physiology 15, 1-2
(1893), 1.

[216] Stupp, R., Mason, W. P., Van Den Bent, M. J., Weller, M.,
Fisher, B., Taphoorn, M. J., Belanger, K., Brandes, A. A.,
Marosi, C., Bogdahn, U., et al. Radiotherapy plus concomitant
and adjuvant temozolomide for glioblastoma. New England Journal of
Medicine 352, 10 (2005), 987–996.

http://homes.esat.kuleuven.be/~biomed/software.php#SpidGUI
http://homes.esat.kuleuven.be/~biomed/software.php#SpidGUI


BIBLIOGRAPHY 159

[217] Sugahara, T., Korogi, Y., Tomiguchi, S., Shigematsu, Y.,
Ikushima, I., Kira, T., Liang, L., Ushio, Y., and Takahashi, M.
Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive
contrast-enhanced MR imaging for differentiating tumor recurrence
from nonneoplastic contrast-enhancing tissue. American Journal of
Neuroradiology 21, 5 (2000), 901–909.

[218] Sugiyama, M. http://www.ms.k.u-tokyo.ac.jp/software.html.
[Online; accessed 09-August-2014].

[219] Suhy, J., Rooney, W., Goodkin, D., Capizzano, A., Soher, B.,
Maudsley, A. A., Waubant, E., Andersson, P., and Weiner, M.
1H MRSI comparison of white matter and lesions in primary progressive
and relapsing-remitting MS. Multiple sclerosis 6, 3 (2000), 148–155.

[220] Sundin, T., Vanhamme, L., Van Hecke, P., Dologlou, I., and
Van Huffel, S. Accurate quantification of 1 H spectra: From finite
impulse response filter design for solvent suppression to parameter
estimation. Journal of Magnetic Resonance 139, 2 (1999), 189–204.

[221] Suykens, J. A., Van Gestel, T., De Brabanter, J., De Moor,
B., and Vandewalle, J. Least squares support vector machines. World
Scientific, 2002.

[222] Suykens, J. A., and Vandewalle, J. Least squares support vector
machine classifiers. Neural processing letters 9, 3 (1999), 293–300.

[223] Tartaglia, M., Narayanan, S., De Stefano, N., Arnaoutelis, R.,
Antel, S., Francis, S., Santos, A., Lapierre, Y., and Arnold,
D. Choline is increased in pre-lesional normal appearing white matter in
multiple sclerosis. Journal of neurology 249, 10 (2002), 1382–1390.

[224] Thakkar, J. P., Dolecek, T. A., Horbinski, C., Ostrom, Q. T.,
Lightner, D. D., Barnholtz-Sloan, J. S., and Villano, J. L.
Epidemiologic and molecular prognostic review of glioblastoma. Cancer
Epidemiology and Prevention Biomarkers 23, 10 (2014), 1985–1996.

[225] Theano Development Team. Theano: A Python framework for fast
computation of mathematical expressions. arXiv e-prints abs/1605.02688
(May 2016).

[226] Tiberio, M., Chard, D., Altmann, D., Davies, G., Griffin, C.,
McLean, M., Rashid, W., Sastre-Garriga, J., Thompson, A.,
and Miller, D. Metabolite changes in early relapsing–remitting multiple
sclerosis. Journal of neurology 253, 2 (2006), 224–230.

http://www.ms.k.u-tokyo.ac.jp/software.html


160 BIBLIOGRAPHY

[227] Tourbah, A., Stievenart, J.-L., Abanou, A., Iba-Zizen, M.-T.,
Hamard, H., Lyon-Caen, O., Cabanis, E., and Stievenart, L.
Normal-appearing white matter in optic neuritis and multiple sclerosis:
a comparative proton spectroscopy study. Neuroradiology 41, 10 (1999),
738–743.

[228] Tran, B., and Rosenthal, M. Survival comparison between
glioblastoma multiforme and other incurable cancers. Journal of Clinical
Neuroscience 17, 4 (2010), 417–421.

[229] Tsien, C., Galbán, C. J., Chenevert, T. L., Johnson, T. D.,
Hamstra, D. A., Sundgren, P. C., Junck, L., Meyer, C. R.,
Rehemtulla, A., Lawrence, T., et al. Parametric response map as
an imaging biomarker to distinguish progression from pseudoprogression in
high-grade glioma. Journal of Clinical Oncology 28, 13 (2010), 2293–2299.

[230] Tsuruda, J. S., Kortman, K. E., Bradley, W. G., Wheeler, D. C.,
Van Dalsem, W., and Bradley, T. P. Radiation effects on cerebral
white matter: MR evaluation. American Journal of Roentgenology 149, 1
(1987), 165–171.

[231] Van Cauter, S., De Keyzer, F., Sima, D., Croitor Sava, A.,
D’Arco, F., Veraart, J., Peeters, R. R., Leemans, A., Van Gool,
S., Wilms, G., et al. Integrating diffusion kurtosis imaging, dynamic
susceptibility-weighted MR imaging and short echo time chemical shift
imaging for grading gliomas. Neuro-oncology 16, 7 (2014), 1010–1021.

[232] Van Cauter, S., Sima, D. M., Luts, J., ter Beek, L., Ribbens,
A., Peeters, R. R., Osorio Garcia, M. I., Li, Y., Sunaert, S.,
Van Gool, S. W., et al. Reproducibility of rapid short echo time CSI
at 3T for clinical applications. Journal of Magnetic Resonance Imaging
37, 2 (2013), 445–456.

[233] Van Cauter, S., Veraart, J., Sijbers, J., Peeters, R. R.,
Himmelreich, U., De Keyzer, F., Van Gool, S. W.,
Van Calenbergh, F., De Vleeschouwer, S., Van Hecke, W.,
et al. Gliomas: diffusion kurtosis MR imaging in grading. Radiology
263, 2 (2012), 492–501.

[234] Van Gool, S., Maes, W., Ardon, H., Verschuere, T.,
Van Cauter, S., and De Vleeschouwer, S. Dendritic cell therapy
of high-grade gliomas. Brain Pathology 19, 4 (2009), 694–712.

[235] Vrabec, M., Van Cauter, S., Himmelreich, U., Van Gool, S. W.,
Sunaert, S., De Vleeschouwer, S., Šuput, D., and Demaerel,



BIBLIOGRAPHY 161

P. MR perfusion and diffusion imaging in the follow-up of recurrent
glioblastoma treated with dendritic cell immunotherapy: a pilot study.
Neuroradiology 53, 10 (2011), 721–731.

[236] Wang, S., Martinez-Lage, M., Sakai, Y., Chawla, S., Kim, S.,
Alonso-Basanta, M., Lustig, R., Brem, S., Mohan, S., Wolf,
R., et al. Differentiating tumor progression from pseudoprogression in
patients with glioblastomas using diffusion tensor imaging and dynamic
susceptibility contrast MRI. American Journal of Neuroradiology 37, 1
(2016), 28–36.

[237] Wattjes, M., Harzheim, M., Lutterbey, G., Klotz, L., Schild,
H., and Träber, F. Axonal damage but no increased glial cell activity
in the normal-appearing white matter of patients with clinically isolated
syndromes suggestive of multiple sclerosis using high-field magnetic
resonance spectroscopy. American Journal of Neuroradiology 28, 8 (2007),
1517–1522.

[238] Wattjes, M. P., Harzheim, M., Lutterbey, G. G., Bogdanow,
M., Schild, H. H., and Träber, F. High field MR imaging and 1H-
MR spectroscopy in clinically isolated syndromes suggestive of multiple
sclerosis. Journal of neurology 255, 1 (2008), 56–63.

[239] Wen, P. Y., Macdonald, D. R., Reardon, D. A., Cloughesy,
T. F., Sorensen, A. G., Galanis, E., DeGroot, J., Wick, W.,
Gilbert, M. R., Lassman, A. B., et al. Updated response assessment
criteria for high-grade gliomas: response assessment in neuro-oncology
working group. Journal of Clinical Oncology 28, 11 (2010), 1963–1972.

[240] Wen, Q., Jalilian, L., Lupo, J. M., Molinaro, A. M., Chang,
S. M., Clarke, J., Prados, M., and Nelson, S. J. Comparison
of adc metrics and their association with outcome for patients with
newly diagnosed glioblastoma being treated with radiation therapy,
temozolomide, erlotinib and bevacizumab. Journal of neuro-oncology
121, 2 (2015), 331–339.

[241] Werring, D., Clark, C., Barker, G., Thompson, A., and Miller,
D. Diffusion tensor imaging of lesions and normal-appearing white matter
in multiple sclerosis. Neurology 52, 8 (1999), 1626–1626.

[242] Weybright, P., Sundgren, P. C., Maly, P., Hassan, D. G., Nan,
B., Rohrer, S., and Junck, L. Differentiation between brain tumor
recurrence and radiation injury using MR spectroscopy. American Journal
of Roentgenology 185, 6 (2005), 1471–1476.



162 BIBLIOGRAPHY

[243] Wolinsky, J. S., Narayana, P. A., and Fenstermacher, M. J.
Proton magnetic resonance spectroscopy in multiple sclerosis. Neurology
40, 11 (1990), 1764–1764.

[244] Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M.,
Makni, S., Behrens, T., Beckmann, C., Jenkinson, M., and
Smith, S. M. Bayesian analysis of neuroimaging data in fsl. Neuroimage
45, 1 (2009), S173–S186.

[245] Yamasaki, F., Sugiyama, K., Ohtaki, M., Takeshima, Y., Abe, N.,
Akiyama, Y., Takaba, J., Amatya, V. J., Saito, T., Kajiwara,
Y., et al. Glioblastoma treated with postoperative radio-chemotherapy:
prognostic value of apparent diffusion coefficient at MR imaging. European
journal of radiology 73, 3 (2010), 532–537.

[246] Yang, Y., and Pedersen, J. O. A comparative study on feature
selection in text categorization. In ICML (1997), vol. 97, pp. 412–420.

[247] Yoon, R. G., Kim, H. S., Kim, D. Y., Hong, G. S., and Kim,
S. J. Apparent diffusion coefficient parametric response mapping MRI for
follow-up of glioblastoma. European radiology 26, 4 (2016), 1037–1047.

[248] Zhang, J., Yu, H., Qian, X., Liu, K., Tan, H., Yang, T., Wang,
M., Li, K. C., Chan, M. D., Debinski, W., et al. Pseudo progression
identification of glioblastoma with dictionary learning. Computers in
Biology and Medicine 73 (2016), 94–101.

[249] Zhang, Y., Brady, M., and Smith, S. Segmentation of brain mr
images through a hidden markov random field model and the expectation-
maximization algorithm. IEEE transactions on medical imaging 20, 1
(2001), 45–57.

[250] Zhang, Y., Li, A., Peng, C., and Wang, M. Improve glioblastoma
multiforme prognosis prediction by using feature selection and multiple
kernel learning. IEEE/ACM transactions on computational biology and
bioinformatics 13, 5 (2016), 825–835.

[251] Zhu, X., and Goldberg, A. B. Introduction to semi-supervised
learning. Synthesis lectures on artificial intelligence and machine learning
3, 1 (2009), 1–130.

[252] Zierler, K. L. Equations for measuring blood flow by external
monitoring of radioisotopes. Circulation research 16, 4 (1965), 309–321.



Curriculum Vitae

Adrian Ion-Mărgineanu was born on March 29, 1988, in Constanta, Romania. He
received the Bachelor degree in the field of Telecommunications and Electrical
Engineering from the Polytechnic University of Bucharest (Romania) in July
2010. He received the M.Sc. degree in the field of Information Technology and
Computing in September 2012. For his master thesis he worked in collaboration
with SensoMotoric Instruments in Berlin (Germany), on the subject of 3-D
modelling of light tracking inside the eye.

Between October 2012 and March 2013 he was employed as a software engineer
at S.C. Comsys SRL in Bucharest (Romania), where he worked in the analysis
of financial data. Between March and August 2013 he worked as a scientific
researcher at the Institute for Neuro- and Bio-Informatics in Lübeck (Germany),
on adaptive sampling of the visual world. In October 2013 he joined the
KU Leuven Electrical Engineering Department (ESAT-STADIUS) as a PhD
student under the supervision of Prof. Sabine Van Huffel. His research has been
part of TRANSACT, a European Union funded FP7-PEOPLE Marie Curie
Initial Training Network (PITN-GA-2012-316679), with the aim of Transforming
Magnetic Resonance Spectroscopy into a Clinical Tool.

163





List of publications

Papers in international journals
1. Ion-Mărgineanu, A., Kocevar, G., Stamile, C., Sima, D.M., Durand-
Dubief, F., Van Huffel, S., and Sappey-Marinier, D. Machine learning approach
for classifying Multiple Sclerosis courses by combining clinical data with lesion
loads and Magnetic Resonance metabolic features. Frontiers in Neuroscience:
Neurodegeneration, 2017. (Accepted)

2. Ion-Mărgineanu, A., Van Cauter, S., Sima, D.M., Maes, F., Sunaert,
S., Himmelreich, U., and Van Huffel, S. Classifying Glioblastoma Multiforme
Follow-Up Progressive vs. Responsive Forms Using Multi-Parametric MRI
Features. Frontiers in Neuroscience: Brain Imaging Methods, vol. 10, page 615,
2017.

3. Ion-Mărgineanu, A., Van Cauter, S., Sima, D.M., Maes, F., W. Van Gool,
S., Sunaert, S., Himmelreich, U., and Van Huffel, S. Tumour Relapse Prediction
Using Multiparametric MR Data Recorded during Follow-Up of GBM Patients.
BioMed Research International, vol. 2015, Article ID 842923, 13 pages, 2015.

Papers in preparation for submission to international
journals
1. Ion-Mărgineanu, A., Van Cauter, S., Sima, D.M., Maes, F., Sunaert, S.,
Himmelreich, U., and Van Huffel, S. Classification of Recurrent Glioblastoma
using modified Parametric Response Maps of contrast-enhanced T1-weighted
MRI and Perfusion MRI.

Papers accepted in proceedings of international confer-
ences
1. Ion-Mărgineanu, A., Kocevar, G., Stamile, C., Sima, D.M., Durand-
Dubief, F., Van Huffel, S., and Sappey-Marinier, D. A comparison of Machine

165



166 LIST OF PUBLICATIONS

Learning approaches for classifying Multiple Sclerosis courses using MRSI and
brain segmentations. The 26th International Conference on Artificial Neural
Networks, ICANN2017, Alghero, Italy, September 2017.

2. Ion-Mărgineanu, A., Van Cauter, S., Sima, D.M., Maes, F., Sunaert,
S., Himmelreich, U., and Van Huffel, S. Comparison of manual and semi-
manual delineations for classifying glioblastoma multiforme patients based on
histogram and texture MRI features. European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning, ESANN2017,
Bruges, Belgium, April 2017.

Abstracts in proceedings of international conferences
1. Ion-Mărgineanu, A., Van Cauter, S., Sima, D.M., Maes, F., Sunaert, S.,
Himmelreich, U., and Van Huffel, S. Classifying GBM follow-up outcome using
semi-manual delineations and multi-parametric MRI. 6th Dutch Bio-Medical
Engineering Conference, Egmond aan Zee, January 2017.

2. Ion-Mărgineanu, A., Van Cauter, S., Sima, D.M., Maes, F., Sunaert,
S., Himmelreich, U., and Van Huffel, S. Impact of semi-automatic delineation
of hotspots of contrast enhancing region in predicting the outcome of GBM
patients after brain surgery. 24th Annual Conference of the International Society
for Magnetic Resonance in Medicine (ISMRM 2016), Singapore, May 2016.

3. Ion-Mărgineanu, A., Van Cauter, S., Sima, D.M., Maes, F., Sunaert,
S., Himmelreich, U., and Van Huffel, S. Impact of semi-automatic delineation
of hotspots of contrast enhancing region in predicting the outcome of GBM
patients after brain surgery. 7th Annual meeting of the International Society for
Magnetic Resonance in Medicine, Benelux Chapter (ISMRMB 2016), Eindhoven,
The Netherlands, Jan. 2016.

4. Ion-Mărgineanu, A., Van Cauter, S., Sima, D.M., Maes, F., Sunaert, S.,
Himmelreich, U., and Van Huffel, S. Tumour relapse prediction using multi-
parametric MR data recorded during follow-up of GBM patients. 23rd Annual
Conference of the International Society for Magnetic Resonance in Medicine
(ISMRM 2015), Toronto, Canada, Jun. 2015.

5. Ion-Mărgineanu, A., Van Cauter, S., Sima, D.M., Maes, W. Van Gool, S.,
F., Sunaert, S., Himmelreich, U., and Van Huffel, S. Tumour relapse prediction
using multi-parametric MR data recorded during follow-up of GBM patients.
7th Annual meeting of the International Society for Magnetic Resonance in
Medicine, Benelux Chapter (ISMRMB 2015), Ghent, Belgium, Jan. 2015.





FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF ELECTRICAL ENGINEERING

ESAT-STADIUS-BIOMED
Kasteelpark Arenberg 10, box 2446

B-3001 Leuven


	Abstract
	List of Abbreviations
	Contents
	List of Figures
	List of Tables
	Introduction
	Machine Learning
	Support Vector Machines
	Random Forests
	Deep learning
	Cross-Validation and Performance measures

	Magnetic Resonance Imaging
	Principles of MRI
	Conventional MRI
	Perfusion weighted MRI
	Diffusion MRI
	Magnetic Resonance Spectroscopic Imaging

	Glioblastoma Multiforme
	Glioblastoma Multiforme Overview
	Advanced MRI in the post-operative GBM follow-up
	UZ Leuven post-operative GBM dataset

	Multiple Sclerosis
	Multiple Sclerosis Overview
	Advanced MRI in the longitudinal MS follow-up
	AMSEP longitudinal dataset

	Objectives of the thesis and main contributions
	Outline of the thesis
	Conclusion

	Tumour relapse prediction using multi-parametric MR data recorded during follow-up of GBM patients
	Introduction
	Materials and Methods
	Study setup
	MRI acquisition and processing
	Classifiers
	In-house imputation method
	Performance indices

	Results and Discussion
	Results
	Discussion

	Conclusions

	Classifying glioblastoma multiforme follow-up progressive vs. responsive forms using multi-parametric MRI features
	Introduction
	Materials and Methods
	Study setup
	MRI acquisition and processing
	Classifiers

	Results
	Discussion
	Conclusions

	Classification of Recurrent Glioblastoma using modified Parametric Response Maps of contrast-enhanced T1-weighted MRI and Perfusion MRI
	Introduction
	Materials and Methods
	Patient population
	MRI acquisition and processing
	MRI Co-registration
	Feature extraction: Parameter Response Map
	Feature selection: Minimum Redundancy Maximum Relevance
	Classifiers
	Performance measures

	Results
	Discussion
	Conclusions

	Machine learning approach for classifying Multiple Sclerosis courses by combining clinical data with lesion loads and Magnetic Resonance metabolic features
	Introduction
	Materials and Methods
	Patient population
	Longitudinal MS data
	MRI acquisition and processing
	Feature extraction
	Training approach
	Performance measures and statistical testing
	Classifiers

	Results
	Discussion
	Conclusions

	A comparison of Machine Learning approaches for classifying Multiple Sclerosis courses using MRSI and brain segmentations
	Introduction
	Materials and Methods
	Patient population
	Magnetic Resonance data acquisition and processing
	Classification tasks and performance measures
	Feature extraction models
	Classifiers

	Results and Discussion
	Conclusions

	Conclusions
	General conclusions
	Future perspectives

	Appendix
	Bibliography
	Curriculum Vitae
	List of publications

