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Abstract
Diffusion Magnetic Resonance Imaging (dMRI) is a meaningful technique for white

matter (WM) fiber-tracking and microstructural characterization of axonal/neuronal in-
tegrity and connectivity. By measuring water molecules motion in the three directions
of space, numerous parametric maps can be reconstructed. Among these, fractional
anisotropy (FA), mean diffusivity (MD), and axial (λa) and radial (λr) diffusivities have
extensively been used to investigate brain diseases. Overall, these findings demonstrated
that WM and grey matter (GM) tissues are subjected to numerous microstructural al-
terations in multiple sclerosis (MS). However, it remains unclear whether these tissue
alterations result from global processes, such as inflammatory cascades and/or neurode-
generative mechanisms, or local inflammatory and/or demyelinating lesions. Furthermore,
these pathological events may occur along afferent or efferent WM fiber pathways, leading
to antero- or retrograde degeneration. Thus, for a better understanding of MS pathological
processes like its spatial and temporal progression, an accurate and sensitive characteri-
zation of WM fibers along their pathways is needed.

By merging the spatial information of fiber tracking with the diffusion metrics derived
obtained from longitudinal acquisitions, WM fiber-bundles could be modeled and analyzed
along their profile. Such signal analysis of WM fibers can be performed by several methods
providing either semi- or fully unsupervised solutions.

In the first part of this work, we will give an overview of the studies already present in
literature and we will focus our analysis on studies showing the interest of dMRI for WM
characterization in MS.

In the second part, we will introduce two new string-based methods, one semi-supervised
and one unsupervised, to extract specific WM fiber-bundles. We will show how these al-
gorithms allow to improve extraction of specific fiber-bundles compared to the approaches
already present in literature. Moreover, in the second chapter, we will show an extension of
the proposed method by coupling the string-based formalism with the spatial information
of the fiber-tracks.

In the third, and last part, we will describe, in order of complexity, three different
fully automated algorithms to perform analysis of longitudinal changes visible along WM
fiber-bundles in MS patients. These methods are based on Gaussian mixture model, non-
negative matrix and tensor factorisation respectively. Moreover, in order to validate our
methods, we introduce a new model to simulate real longitudinal changes based on a
generalised Gaussian probability density function. For those algorithms high levels of per-
formances were obtained for the detection of small longitudinal changes along the WM
fiber-bundles in MS patients.

In conclusion, we propose, in this work, a new set of unsupervised algorithms to perform
a sensitivity analysis of WM fiber-bundle that would be useful for the characterisation of
pathological alterations occurring in MS patients.



Résumé
L’imagerie de résonance magnétique de diffusion (dMRI) est une technique très sensible

pour la tractographie des fibres de substance blanche et la caractérisation de l’intégrité et
de la connectivité axonale. À travers la mesure des mouvements des molécules d’eau dans
les trois dimensions de l’espace, il est possible de reconstruire des cartes paramétriques
reflétant l’organisation tissulaire. Parmi ces cartes, la fraction d’anisotropie (FA) et les
diffusivités axiale (λa), radiale (λr) et moyenne (MD) ont été largement utilisés pour carac-
tériser les pathologies du système nerveux central. L’emploi de ces cartes paramétriques a
permis de mettre en évidence la survenue d’altérations microstructurelles de la substance
blanche (SB) et de la substance grise (SG) chez les patients atteints d’une sclérose en
plaques (SEP). Cependant, il reste à déterminer l’origine de ces altérations qui peuvent
résulter de processus globaux comme la cascade inflammatoire et les mécanismes neu-
rodégénératifs ou de processus plus localisés comme la démyélinisation et l’inflammation.
De plus, ces processus pathologiques peuvent survenir le long de faisceaux de SB afférents
ou efférents, conduisant à une dégénérescence antéro- ou rétrograde. Ainsi, pour une
meilleure compréhension des processus pathologiques et de leur progression dans l’espace
et dans le temps, une caractérisation fine et précise des faisceaux de SB est nécessaire.

En couplant l’information spatiale de la tractographie des fibres aux cartes paramétriques
de diffusion, obtenues grâce à un protocole d’acquisitions longitudinal, les profils des fais-
ceaux de SB peuvent être modélisés et analysés. Une telle analyse des faisceaux de SB peut
être effectuée grâce à différentes méthodes, partiellement ou totalement non-supervisées.

Dans la première partie de ce travail, nous dressons l’état de l’art des études déjà
présentes dans la littérature. Cet état de l’art se focalisera sur les études montrant les ef-
fets de la SEP sur les faisceaux de SB grâce à l’emploi de l’imagerie de tenseur de diffusion.

Dans la seconde partie de ce travail, nous introduisons deux nouvelles méthodes,
“string-based”, l’une semi-supervisée et l’autre non-supervisée, pour extraire les faisceaux
de SB. Nous montrons comment ces algorithmes permettent d’améliorer l’extraction de
faisceaux spécifiques comparé aux approches déjà présentes dans la littérature. De plus,
dans un second chapitre, nous montrons une extension de la méthode proposée par le
couplage du formalisme “string-based” aux informations spatiales des faisceaux de SB.

Dans la troisième et dernière partie de ce travail, nous décrivons trois algorithmes au-
tomatiques permettant l’analyse des changements longitudinaux le long des faisceaux de
SB chez des patients atteints d’une SEP. Ces méthodes sont basées respectivement sur un
modèle de mélange Gaussien, la factorisation de matrices non-négatives et la factorisa-
tion de tenseurs non-négatifs. De plus, pour valider nos méthodes, nous introduisons un
nouveau modèle pour simuler des changements longitudinaux réels, basé sur une fonction
de probabilité Gaussienne généralisée. Des hautes performances ont été obtenues avec ces
algorithmes dans la détection de changements longitudinaux d’amplitude faible le long des
faisceaux de SB chez des patients atteints de SEP.

En conclusion, nous avons proposé dans ce travail des nouveaux algorithmes non-
supervisés pour une analyse précise des faisceaux de SB, permettant une meilleure carac-
térisation des altérations pathologiques survenant chez les patients atteints de SEP.
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Introduction

Multiple sclerosis (MS) is the most frequent disabling neurological disease in young
adults with a national prevalence of 95/100 000 in France. It is a chronic demyelinating
inflammatory disease of the central nervous system (CNS), mainly characterized by lesions
in white matter (WM) tissue but also in grey matter (GM). Disease onset is identified by
a first acute episode called clinically isolated syndrome (CIS), that evolves either into a
relapsing-remitting (RR) course in about 85% of cases or into a primary progressive (PP)
course in the remaining 15% of cases. RR patients will evolve into a secondary progres-
sive (SP) course after several years. Today’s neurologist challenge consists in providing
new markers that can accurately characterize pathological processes and predict clini-
cal outcomes. Achieving this goal is particularly crucial in MS since it remains without
well-known etiology.

Magnetic resonance imaging (MRI) is a powerful technology to investigate the effects of
MS in CNS. It is, de facto, an essential technique for the understanding of MS pathological
mechanisms.
With the evolution of MRI, non-conventional acquisition protocols, like diffusion tensor
imaging (DTI), allowed to obtain sensitive information essential for a deep characterization
of WM tissue. Indeed, DTI allows to obtain: in one hand, quantitative information
describing the microscopic status of the WM tissue and, in another hand, information
about brain structural connectivity. Those information can be merged in order to analyze
the diffusion signal changes in specific WM fiber-bundles, reconstructed from DTI data.
These new approaches were used in different works showing promising results useful for
the investigation of complex pathological mechanisms.

In the last years, interest in longitudinal MRI studies grown up exponentially. Indeed,
they showed that the investigation of longitudinal progression of brain damages in MS
could really help to better understand the disease. However, they remain challenging
especially using diffusion data. This is mainly related to the large numbers of scans
requiring a high quality of acquisition reproducibility; hence a homogeneous intensity
across scans and presence of methodological biases that could be introducing during the
image processing. By merging diffusion information with WM fiber-bundle, it is possible
to obtain a strong and specific characterization of the WM tissue. Unfortunately, the
approaches already published in literature, present certain limitations that do not allow
their direct application in longitudinal settings. For instance, they allow to perform only
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a global analysis of the WM structure and, as consequence, they are not sensitive enough
to detect small and rapid tissue alterations which typically occur in early MS patients like
CIS or RR subjects.

Since longitudinal analysis of WM fiber-bundles is not an easy task and requires differ-
ent data processing steps, we propose, in this work, new methods to extract and analyze
longitudinal changes along WM. This work is divided in three main parts.

The first part is divided in four chapters. In the first two, we will give a general
introduction about MRI, diffusion MRI (dMRI) and MS. In the third chapter, we will
report a series of studies in which dMRI techniques were successfully applied to MS in
order to investigate the correlations between MRI biomarkers and clinical status of the
patient. In the last chapter, we will discuss in more details the scope of this thesis.

In the second part, composed by two chapters, we will introduce the first piece of our
processing pipeline for the longitudinal analysis of WM fiber-bundle. The first chapter
will describe, in more details, our proposed string-based method to automatically extract
WM fiber-bundle from the whole tractogram of the brain. We will provide a complete
formalization of the proposed method and an extensive validation campaign. In the second
chapter, we will extend the proposed method in order to couple the information derived
from the string-based formalism with the spatial coordinate of each fiber of the tractogram.

In the third, and last part, composed by three chapters, we will present, according
to their order of complexity, three different algorithms for the longitudinal analysis of
the signal along WM fiber-bundles. The first chapter will describe a first simple model
based on the histogram analysis of the signal in each cross-section of the fiber-bundle.
Moreover, we will give a better overview of the problem showing how it can overcome the
limitations of classical global method. In the second chapter, we will extend this method by
proposing a non-negative matrix factorization algorithm capable to deal with information
derived from multiple diffusion features and with a large number of time-points. Finally,
in the third chapter, we will describe a more general model based on constrained tensor
factorization. This model, thanks to the “multi-dimensional” property of the tensor, is
capable to generalized the two methods previously described.

Finally, we will draw the conclusions of this work and highlight the most interesting
perspectives for clinical applications.
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CHAPTER 1. MAGNETIC RESONANCE IMAGING

1 Magnetic Resonance Imaging

1.1 Principle of Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) derives from the Nuclear Magnetic Resonance
(NMR). The basic idea of NMR is that certain nuclei will resonate and emit radio signal if
placed in a strong magnetic field and pulsed with a certain radiofrequency energy. In order
to clarify this concept, we will proceed with our explanation starting from the principal
subject of NMR: the atomic nuclei. Indeed, by studying the global effects of all the atomic
nuclei composing the matter it is possible to have indirect information about the matter
itself.

MRI relies upon the spin property of nuclear physics. When the spin is placed in a
magnetic field (denoted with ~B0) the direction of the spins follows the direction of ~B0. The
alignment of the spin with the magnetic field ~B0 generates a magnetization ~M defined as:

~M = Σ~µ
dV

where ~µ represents the magnetic moment in the magnetic field ~B0. Moreover, the spin
precesses about that field in a motion analogous to a spinning top. The frequency of
precession is governed by the Larmor equation, defined as:

~ω = −γ ~B0.

where γ is the magnetogyric ratio and every nucleus has its own specific value. Under
the influence of a radio frequency (RF) wave, it is possible to perturbate the magnetization
created by the field ~B0. This perturbation leads to the transition of the nuclei from
their state of energy, this phenomenon is called resonance. Spontaneously, the nuclei
recover their state of fundamental energy by the emission of a RF wave which will be the
NMR signal. This phenomenon corresponds to the rotating magnetisation decays due to
relaxation which can be subdivided into longitudinal or T1 recovery and transverse or T2
decay.

Longitudinal Recovery

The longitudinal recovery describes the regrowth of the magnetization component in
the z direction. It is a relaxation time constant which is an intrinsic property of each tissue.
After a 90◦ pulse, when all the z component is tipped into the transverse plane (M), T1
is the number of milliseconds it takes to grow to the 63% of the original orientation (Mz)
(Figure 1.1). The relationship is described by the following equation:

Mz(t) = Mz(0)
(
1− e−

t
T1
)

(1.1)
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1. MAGNETIC RESONANCE IMAGING

Figure 1.1: Relaxation of the longitudinal magnetization.

Transverse Decay

T2, or transverse, relaxation describes the decay of the signal in the xy plane. It occurs
due to the interactions between spins as energy is released followed an RF pulse. T2 decay
is the number of milliseconds for 37% of the magnetization in the xy (Mxy) plane (Figure
1.2). It is described by the equation:

Mxy(t) = Mxy(0)e−
t
T2 (1.2)

1.2 Conventional MRI Sequences

Since the first study [Damadian (1971)] where the author showed in vivo T1/T2 dif-
ferences between cancerous and normal tissue, the clinical interest of MRI exponentially
increased. Indeed, thanks to this noninvasive technique, in vivo investigation of human
structures, difficult to analyze, was finally possible.

The basic MRI techniques to obtain brain images are called conventional MRI (cMRI)
sequences. With this name, we usually refer to a well-defined set of standard MRI acqui-
sition techniques that allow to obtain rather simple, yet informative anatomical in-vivo
images of the brain, or, in general, human body. Since the beginning of MRI, two main
types of sequences were used: spin-echo and gradient-echo sequences. One of the first spin-
echo sequence was presented in [Hahn (1950)] (Figure 1.3). In this sequence, by tuning
specific acquisition parameters, it is possible to excite particular type of nuclei obtaining
different types of information. By referring to Figure 1.3 it is possible to see how in spin-
echo sequence two main parameters can be tuned: echo-time (TE) and the repetition-time
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CHAPTER 1. MAGNETIC RESONANCE IMAGING

Figure 1.2: Relaxation of the transverse magnetization.

(TR). Specific tuning of these parameters allows to underline different characteristics of
the tissue reflected by the T1 or T2 time.

Figure 1.3: Description of the classical spin-echo sequence.

T1-Weighted Imaging

The T1-weighted sequence is obtained by tuning two parameters in the pulse sequence
shown in Figure 1.3. In particular, the TR value is chosen to be less than the T1 time
(usually 500 ms) and the TE value is chosen to be less than T2 (usually 30 ms). Most
lesions have a prolonged T1 and they are dark in T1-weight images; hence, tumors or
infarctions could be missed [Hendee and Morgan (1984)]. An interesting property of T1
weighted sequence is related to its sensibility to obtain the best contrast for paramagnetic
contrast agents (e.g. a gadolinium-containing compounds). This property is extremely
important especially in clinical setting where contrast agents are essential to perform a
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2. DIFFUSION MRI

correct diagnosis, particularly in brain-related pathologies.

T2-Weighted Imaging

Like the T1-weighted imaging sequence, the T2-weighted sequence is obtained tuning
the values of the TR and TE acquisition parameters. Specifically, the TR value is chosen
to be greater than T1 (usually 2000 ms) and the TE values is chosen to be less than T2
(usually 100 ms). In principle, the T2-weighted images provide better contrast between
pathological tissue and normal tissue, and the T1-weighted provide better anatomical
details. In T2 weighted imaging the dominant signals come from: fluid (like Cerebrospinal
fluid), with high signal intensity (white), grey matter with intermediate signal intensity
(grey) and white matter: hypointense compared to grey matter.

T2 FLAIR Imaging

Fluid attenuation inversion recovery (FLAIR) is an important technique which allows
to remove the signal effects generated by the presence of fluids. In the T2 FLAIR images,
there is a complete suppression of the cerebrospinal fluid (CSF) signal (it is dark in the
obtained image) but the cerebral lesions appear intense; for this reason, T2-FLAIR images
are useful to help the diagnosis of several neurodegenerative pathologies.

An example of multiple sclerosis lesions visible in T1 weighted (after gadolinium in-
jection) and T2 FLAIR imaging is presented in Figure 1.4. In Chapter 2, we will discuss
how cMRI is used to perform a complete diagnosis of multiple sclerosis.

Figure 1.4: Example of multiple sclerosis lesions (red arrows) visible through: A) T1-
weighted imaging (after gadolinium injection) B) T2-FLAIR imaging.

2 Diffusion MRI

2.1 Physical Meaning and Biological Interest

The idea behind the diffusion MRI (dMRI) rely on the concept of Brownian motion
[Brown (1828)]. This term refers to the constant random microscopic molecular motion

Claudio STAMILE 9



CHAPTER 1. MAGNETIC RESONANCE IMAGING

due to heat. So, roughly speaking, Brownian motion is the macroscopic picture emerging
from a particle moving randomly in d-dimensional space due to the heat.

At a fixed temperature, the rate of diffusion was described by the Einstein, in 1905,
by the following equation [Einstein (1956)]:

r2 = 6Dt

where r2 is the mean square displacement of the molecules, t is the diffusion time and
D is a constant value defined as follow:

D = kBT

6πηR
kB is the Boltzmann constant, T is the temperature of the medium, η is the dynamic

viscosity of the medium and R is the radius of the spherical particle.
In our case, where we the goal is to study in vivo the brain structure in humans, the

type of diffusion being investigated is water self-diffusion, meaning the thermal motion of
water molecules in a medium that itself consists mostly of water [Thomsen et al. (1987),
Mukherjee et al. (2008)]. Diffusion MRI (dMRI) is a MRI technique that allows to observe
the thermal motion of water molecules.

In a first analysis the link between the concept of diffusion and its use in human
brain studies is not so clear. In order to simplify the transaction between the theory of
the diffusion and its application in human brain investigation we provided, in Figure 1.5,
a simple example. In the figure, three different types of tissue constituting the corpus
callosum are shown. As it is possible to see, the movement of the water molecules in the
tissue, is significant modified by the structure of the tissue itself. Indeed, in structured
tissue without myelin (described in Section 3) the diffusion is more “free” (is not subject
to strong physical constraints) compared to the diffusion in tissue with partial or total
myelin presence. This is a clear example that show what it is “indirectly” visible when we
study diffusion in human brain. So, analysis of diffusion in human brain is an important
tool to extract useful information describing the structure of the brain tissue.

2.2 Acquisition Sequence

In order to obtain in vivo images of the brain showing the diffusion in tissue, it is
important to have a MRI sequence capable to acquire those information. In [Stejskal
and Tanner (1965)] the authors developed a MRI acquisition sequence namely Pulsed
Gradient Spin-Echo (PGSE), capable to acquire diffusion information from human tissue.
The sequence is graphically represented in Figure 1.6

The diffusion-weighted pulse sequence is composed by the addition of a pair of diffusion
gradients. Those gradients can be oriented in specific directions in order to measure the
diffusivity. Gradients are created by combining the directions in the 3 dimensional space.
As reported in Figure 1.6 other parameters can be used in order to measure diffusion in a
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Figure 1.5: Diffusion in extracellular space of unmyelinated, partly myelinated, and myeli-
nated corpus callosum. Top: diffusion along increasingly myelinated axons. Bottom:
extracellular diffusion in direction perpendicular to orientation of axons, i.e., around ax-
ons, is compromised by number of myelin sheaths, number of myelinated axons, and length
of myelin sheaths along axons. Scheme demonstrates increased anisotropy as myelination
progresses. Image and caption from [Voříšek and Syková (1997)].

specific direction. Those are the duration of each gradient (δ) and the amplitude (G) of
the gradient itself.

Molecular motion thus results in loss of signal intensity due to incomplete rephasing
of water proton spins, which change position between and during the applications of the 2
diffusion-sensitizing gradients [Mukherjee et al. (2008)]. This diffusion-weighted contrast
can be fit to an exponential model:

S = S0e
−b·ADC

log (S) = log (S0)− b ·ADC (1.3)

where S represents the diffusion weighted intensity in a specific voxel, S0 is the signal
intensity in the same voxel obtained without the application of diffusion gradients, and
ADC is the apparent diffusion coefficient. The value of b, who represents a measure of the
diffusion weighting, is defined by the following equation:

b = γ2G2δ2
(

∆− δ

3

)
(1.4)

where γ is the gyromagnetic ratio, G is the amplitude of the diffusion gradient, δ
represents the duration of each gradient and ∆ is the interval between the onset of the
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Figure 1.6: Representation of Pulsed Gradient Echo-Spin sequence. δ represents the du-
ration of each gradient, ∆ is the interval between the onset of the diffusion gradient before
the refocusing pulse and that after the refocusing pulse, G is the amplitude of the diffusion
gradient and RF indicates radiofrequency pulses.

diffusion gradient before the refocusing pulse and that after the refocusing pulse. Its unity
is seconds per square millimetres. Typical values of b used in clinical applications range
from 600 to 1500.

According to the equation of S is then possible to obtain the value for the ADC in
each voxel. The equation can be rewritten as follow:

ADC =
log S

S0

b

ADC value is a quantitative parameter largely used to study and quantify the changes
in diffusion given by the presence of different brain related pathologies [Albers (1998),Maier
et al. (2010),Balashov and Lindzen (2012)].

2.3 Diffusion Tensor Imaging

As we showed in the last two sections, dMRI is a powerful tool to obtain a large
range of interesting information by simply studing the diffusion of the water in the brain.
Unfortunately, except for the ADC value, representing and exploiting dMRI information
is not an easy task and a big effort in development of new mathematical models is needed.
The first, and the most important formulation, is the diffusion tensor imaging (DTI) model
described in [Basser et al. (1992),Basser et al. (1994)a]. The model is rather simple, yet
powerful method to obtain quantitative diffusion properties in the brain. Due to these
characteristic DTI model is still used today.

DTI starts from the assumption made in [Bloch (1946)]. The hypothesis is that the
diffusion in each voxels follows a Gaussian distribution, and, as consequence, it follows
just one main direction.

According to this tensor model, it is possible to rewrite equation 1.3 as follow:
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2. DIFFUSION MRI

Figure 1.7: Representation of the diffusion tensor with its eigenvectors −→ε1 ,
−→ε2 ,
−→ε3 and

eigenvalues λ1, λ2, λ3. Image form http://mriquestions.com/diffusion-tensor.html.

log
(
S

S0

)
= −

∑
i

∑
j

bijDij

where b ∈ R3×3 is the extension of the equation 1.4 for the gradient in the 3d space:

bij = γ2GiGjδ
2
(

∆− δ

3

)
i, j = x, y, z

The symmetric matrix D ∈ R3×3 is the diffusion tensor matrix defined as follow:

Dij =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


Diagonalization of this matrix allows to obtain the eigenvalues and the eigenvectors.

The matrix D can be then written as:

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 =


λ1 0 0
0 λ2 0
0 0 λ3



−→ε1
−→ε2
−→ε3


λ1, λ2, λ3 represent the eigenvalues and −→ε1 ,−→ε2 ,−→ε3 represent the eigenvectors of the dif-

fusion ellipsoid. Those values and vectors allows to obtain simple and clear information
about the shape of the diffusion tensor model as showed in Figure 1.7.
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2.4 DTI Derived Metrics

The obtained eigenvalues and eigenvectors are really important to understand diffusion
properties of the diffusion tensor. Indeed, using the value of the eigenvalues it is possible to
quantify the diffusion of each tensor. These information are useful to investigate structural
properties of the tissue.

In [Kingsley (2006)b] the author reported a complete list of all the DTI derived metrics.
We will start to describe those metrics according to their order of complexity. The first
metric is the “axial diffusivity”. It is the value of the main eigenvalue (λ1) and represents
the part of the diffusion in a voxel who follows the principal diffusion direction. The “radial
diffusivity” λr = λ2+λ3

2 who represents the part of the diffusion who follows the direction
normal to the main eigenvector −→ε1 identified by the eigenvector −→ε2 ,−→ε3 . Another important
metric is the “mean diffusivity” MD =

∑3
i=1 λi
3 in all the three directions of a voxel. One

of the most important, and used, diffusivity metric is the “fractional anisotropy” (FA):

FA =
√

3
2

√∑3
i=1(λi −MD)2√∑3

i=1 λ
2
i

this metrics give a quantitative measure (0 ≤ FA ≤ 1) about the anisotropy of the
diffusion in a specific voxel. If in a voxel FA = 1, the diffusion in the specific voxel is
completely anisotropic and thus it follows perfectly one direction. Otherwise, if in a voxel
FA = 0 the diffusivity cannot be represented with a single direction since it follows all
the directions in the space. In voxels with a highly structured tissue, like corpus callosum,
usually we have high FA value (FA ≥ 0.8). Contrarily, in voxels without well defined
tissue, like in cerebrospinal fluid, low value of FA are present (FA ≤ 0.2).

Other new DTI derived metrics to measure the anisotropy are also proposed in [Prados
et al. (2010)]. In their paper, the authors proposed the Compositional Kullback-Leibler
(KLA) as a new anisotropy measure to study the properties of the brain tissue especially
in regions in which grey and white matter components are mixed.

In order to give a practical application of the DTI derived metrics in brain investigation,
in Chapter 3 we will discuss how those metrics can be used to study neurodegenerative
pathologies.

2.5 Fiber Tracking

DTI is not only capable to extract quantitative maps useful to understand the effects
of a disease, but it also allows to reconstruct the structure of the brain white matter
(WM) thanks to the use of fiber tracking algorithms [Mori et al. (1999)]. Indeed, in the
previous section we described how to exploit the eigenvalues in order to obtain quantitative
information. In this section, we will describe how eigenvectors information can be exploited
to reconstruct the inherent tissue.

We will start our dissertation by giving to the reader an intuition about the fiber
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reconstruction process. As we know from the previous section, the principal eigenvalue of
the DT model gives, in a particular voxel, the main diffusion direction. So, following the
main eigenvector of a specific voxel it is possible to follow the principal direction of the
water. This direction will point to one of its contiguous voxels. The voxel reached by the
diffusion direction can be used to find the direction pointing to the next contiguous. This
process can be repeated for a certain number of voxels since a termination criterion is met.
According to this simple concept, it is then possible to connect, using smooth lines, those
contiguous voxels in order to obtain all the fibers representing the WM structure. This
process is simply described in figure 1.8. The first set of voxels, also called “seed”, used to
start this iteration chain are usually selected in two different ways according to the type of
tractography. For global brain tractography, usually the seed voxels are randomly selected
from the whole WM. For structure analysis, like investigation of a specific WM tract, the
seed are selected by the user according to a specific anatomic knowledge i. e. atlas.

A large number of techniques have been proposed in the literature [Fillard et al. (2011),
Jbabdi and Johansen-Berg (2011), Mangin et al. (2013)] and an exhaustive evaluation
would be prohibitive. The algorithm we previously described belong to a particular family
of algorithm called deterministic. One of this algorithm was proposed in [Hagmann et al.
(2007)]. Deterministic algorithms for tractography are quite fast and allow to obtain quite
good results in terms of accuracy in WM fiber reconstruction. Limitation of this type
of tractography is related to the accuracy of the path followed by the fibers. Indeed,
these algorithms just follow one of the principal directions without taking into account
other options that could give better results. In order to overcome this limitation, a new
family of probabilistic algorithm was developed in [Behrens et al. (2003)]. Probabilistic
algorithms repeat the deterministic version many times by randomly perturbing the main
fiber directions each time, and produce maps of connectivity. Such maps indicate the
probability that a given voxel is connected to a reference position [Fillard et al. (2011)].

Figure 1.8: Schematic demonstrating the tractography algorithm using DTI information.
Arrows represent primary eigenvectors in each voxel. Red lines are reconstructed trajec-
tories.
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Orientation Distribution Function

As previously said, DTI is a simple model based on the hypothesis that in each voxel
the diffusion follows just one main direction [Bloch (1946)]. When we talk about brain
structures, this hypothesis cannot be always satisfied due to the complex structure of the
brain tissue. Indeed, it is well known that in a single voxel different types of tissue (with
different diffusion directions) can be present as showed in Figure 1.9. This example pro-
vides a clear proof that the assumption made by DTI is not general enough to describe
the real structure of WM tissue. A number of alternative models have been proposed to
provide a more adequate description of the diffusion. One of the first model was proposed
in [Tuch et al. (2002)]. In that paper, the authors fitted multiple diffusion tensors in
order to represent the whole fiber population of fibers within each voxel. As main limita-
tion, this method need to know a-priori the number of diffusion directions in each voxel.
Moreover, this technique is unstable if more than two diffusion directions are fitted for
each voxel [Tuch et al. (2002)]. Another method was proposed in [Wedeen et al. (2000)].
This approach allows to model the complex topology of WM fibers population by apply-
ing Fourier-transform to diffusion data. Unfortunately, in order to compute the correct
structure, this technique needs a large number of data sample. A good improvement of
these models to describe complex WM structure was proposed in [Tournier et al. (2004)]
with the introduction of the orientation distribution function (ODF). In their paper, the
authors proposed a method that is able to estimate directly the distribution of fiber orien-
tations within a voxel from high angular resolution diffusion-weighted (HARDI) MR data
without making prior assumptions regarding the number of fiber populations. Finally,
with this method was relatively simple and fast to compute the presence of multiple tissue
types in a given voxel. With the introduction of this new formalism, the quality of the
tractography algorithm was greatly improved as showed in Figure 1.10. Indeed, compared
to the tractography algorithm based on DTI information (Figure 1.8), it is finally possible
to reconstruct also fibers passing through voxels having multiple directions.

For sake of completeness, we should underline that, quantitative diffusion metrics can
also be obtained from FOD. For instance, generalized fractional anisotropy (GFA) [Tuch
(2004)], which is a HARDI anisotropy measure similar to the popular FA obtained from
DTI [Cohen-Adad et al. (2011)] can be computed. Those new diffusion metrics, computed
from other models different form DTI, are starting to be used in order to characterize
neurodegenerative pathologies.

2.6 dMRI for Microstructure Imaging

In the last paragraph, we described different diffusion models which aim to estimate the
diffusion direction(s) in each voxel. Their main interest is to give meaningful information to
build a robust tractogram capable to reflect the WM structure of brain tissue. The problem
related to studies based on tractogram analysis is related to their difficulty to generate
quantitative information that can explain, for example, the “quality” or the properties of
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Figure 1.9: Different tissue architectures in one voxel. In (iii) and (iv) it is possible to see
that the structure of the tissue, and consequently the diffusion directions does not follow
just one main direction. Image from [Tournier et al. (2011)].

the tissue. Indeed, the number of fibers generate by the tractography algorithms can not
be considered as a real quantitative measure [Jbabdi and Johansen-Berg (2011)].

In the last decade, a lot of efforts were made to extract, from diffusion data, quantita-
tive information to explain and quantify, at the voxel level, the true underlying neuronal
microstructure. The main idea of those methods, is to define “tissue specific” mathemati-
cal models capable to represent the different compartments of the neuronal microstructure.
In this way, the diffusion signal measured in a voxel can be represented as the “combina-
tion” of the diffusion signal in those compartments. For example, if we analyze Figure 1.5
a simple model could be to define the diffusion signal in that voxel as the combination of
the signal representing the water movement inside the axons and around the axons.

A good overview of the different mathematical models used to describe different com-
partments is presented in [Panagiotaki et al. (2012)]. In their work the authors showed,
and validated, different mathematical structures useful to model intra-axonal, extra-axonal
and isotropic restriction compartments. Unfortunately, some tissue parameters, such as
permeability, remain elusive because mathematical models are intractable. Recently, this
problem was overcome in [Nedjati-Gilani et al. (2017)]. In their work, the authors tried to
define different compartment models by applying machine learning algorithm on simulated
data with known tissue properties. Interesting, the authors found that in-vivo results are
consistent with pathology of MS lesions.

Recently, different techniques were developed in order to obtain quantitative infor-
mation using compartments-based models. Two of the most successful models are Acti-
vAx [Alexander et al. (2010)] and NODDI [Zhang et al. (2012)]. The main limitation of
those models is related to the computation time needed to calculate, for a given image, the
quantitative information in each voxel. In [Daducci et al. (2015)], the authors overcame
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Figure 1.10: Schematic demonstrating the tractography algorithm FOD information. Ar-
rows represent primary FOD peaks in each voxel. For voxels containing more than one
population of fibers multiple principal directions have found (blue arrows). Red lines are
reconstructed trajectories.

those limitations proposing a convex optimization framework to perform quantification of
micostructural information in each voxel.
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CHAPTER 2. MULTIPLE SCLEROSIS

1 Introduction

Multiple Sclerosis (MS) is a chronic disease of the central nervous system (CNS). It
constitutes the leading cause of non-traumatic disability in young adults (from 20 to 40
years old) and remains without well-known etiology [Compston and Coles (2008)]. In more
than two-thirds of the cases it affects mainly women. Multiple phenomena are known like
demyelination, inflammation and neurodegeneration. Usually, demyelination and inflam-
mation are considered as the initial and prominent mechanisms, while neurodegeneration
is more prominent in progressive phases of MS.

2 Epidemiology

Epidemiology of MS is an interesting subject of study, indeed it allows to better un-
derstand how “geographic” factors can influence the development of MS.

A pioneering study on that field is the one described in [Kurtzke (1980)] and later up-
dated in [Kurtzke (2000)]. These studies show the worldwide distribution of MS according
to its index of prevalence in different countries.

In this section we will first discuss about the general prevalence of MS in different
countries according to the results obtained in [Kurtzke (1980)] and next we will analyze
some interesting results found in [Kurtzke (2000)].

As reported in [Kurtzke (1980)] and how it is shown in 2.1, the geography repartition
of MS worldwide is not equally distributed. It is possible to identify “high risk” zones
like: Scandinavia, Scotland, Europe, Canada and United States and “Low risk” zones like:
south America or in Africa. Caucasoid are more exposed to the risk to get MS compared
to Negroid and Mongoloid.

Figure 2.1: Worldwide Multiple Sclerosis prevalence. Image and data from https://www.
msif.org/about-us/advocacy/atlas/.
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3. PATHOPHYSIOLOGY

In [Kurtzke (2000)] the authors studied the changes in the risk exposure to MS between
population migrating to different regions of risk. As major result, the authors found that
adolescents migrating before the age of 15, present the same risk factor of their original
region. Contrary, adults who migrate acquire the risk factor typical of the new risk zone.
These results show how the geographic partition of MS is related to environmental factors
linked to a genetic susceptibility.

3 Pathophysiology

As we already said in the introduction, main problem of MS is related to its etiology
who still remains elusive [Wu and Alvarez (2011)]. Before going deeper in the discussion
of the effect of MS on CNS, we need to give a brief description of the structure of the
neurons.

Neurons

Neurons, are the basic units of the nervous system. They have a diameter ranging
from 5 to 150 µm and they are composed by three parts: cell body, dendrites and axons
(Figure 2.2). The cell body is divided in nucleus and perinuclear cytoplasm. The cell
body represents the most voluminous portion of the neuron, from the cell body dendrites
and axon branch out. Dendrites are the expansion of the cytoplasmic membrane, they
principally receive stimuli from axons or other neurons. Axons are responsible for the
nerve impulse transmission and they are surrounded by myelin sheath cells in the CNS.

Myelin, a substance produced by oligodendrocytes, is a membrane who facilitates the
nerve impulse transmission along the axons. Oligodendrocytes produce myelin just in
short sections of the axon, this is why multiple cells are needed to surround the whole
axon. Along the axons, certain sections, called Nodes of Ranvier, are not surrounded by
myelin. Those small spots allow to the pulse to jump from a node to another, and thus
to speed up the nerve impulse transmission along the axon. Moreover, it is important to
underline that speed of impulse transmission is also correlated with the diameter of the
axons, indeed, axons with larger diameter, show higher conduction speed [Preston and
Shapiro (2005)].

Etiology

MS is characterized by an abnormal immune-mediated response who attacks the myelin
around nerve fibers in the CNS inducing a progressive destruction of myelin. As myelin
helps to speed up the nerve impulse transmission along the axon, a destruction of myelin
decreases the capability of the axon to transmit the nerve impulse.

In MS, immune cells induce an inflammatory response who is the main cause of the
demyelination in the axons. Inflammatory processes seem to start after a cell-mediated re-
sponse. In this part, macrophages recognize the myelin basic protein (MBP) and present
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this to the T lymphocytes. These, after their activation, cross the blood brain barrier
(BBB) and trigger the immune response and relative inflammation. Recent studies also
suggest that the beginning of an antibody-mediated response, with an abnormal produc-
tion of antibody for myelin destruction, plays an important role in the progression of the
inflammation with relative tissue damage [Disanto et al. (2012)].

Demyelination in specific tissue area usually start without axonal damage [Noseworthy
et al. (2000), Lucchinetti et al. (2000), Compston and Coles (2008)], oligodendrocytes
destruction and axonal damages are induced when repeated attacks appear in time.

At the beginning of the pathology, a remyelination process is opposed to the patho-
logical demyelination one. During this process, the oligodendrocyte progenitor cells dif-
ferentiate in oligodendrocytes in order to repair the damaged tissue [Goldschmidt et al.
(2009),Brück et al. (2003)]. Unfortunately, the capability of the oligodendrocyte progeni-
tor cells to differentiate oligodendrocytes is reduced in MS. This limitation influences the
capability to recover the damaged tissue.

In the intermediate phase, the myelin contained in the tissue affected by the disease,
is substituted with scarred tissue.

In the late part, demyelination effects are not present and the tissue area does not
contain inflammatory cells. The increased permeability of the BBB and the inflamma-
tory attacks increase the clinical effect related to the neurodegeneration and atrophy. In
this part, when all the reparation mechanisms of the tissue are exhausted, the disability
progression progressively increases.

Figure 2.2: Structure of a nerve cell. Image from http://hyperphysics.phy-astr.gsu.
edu/hbase/Biology/nervecell.html.

4 Clinical Forms

Since the progression of MS is not equal for each patient, the accurate prediction
of MS evolution is still an open challenge. According to the current clinical standards
four forms of MS are actually recognized (Figure 2.3) [Lublin et al. (1996), Lublin et al.
(2014),McDonald et al. (2001)].
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Figure 2.3: Classification of multiple sclerosis clinical forms according to the patients dis-
ability progression. Image from http://library.med.utah.edu/kw/ms/mml/ms_class.
html

4.1 Clinically Isolated Syndrome (CIS)

The first manifestation of the MS usually happens as a with the Clinically Isolated
Syndrome (CIS). This form of MS is the consequence of the series of one or two consecutive
attacks from which the patients recovered completely, generally quite quickly, and without
any progression or persistence of disability. Following this first attack, the progression to
a relapsing remitting form (RR) may occur more (few months) or less rapidly (few years)
depending on the patient.

4.2 Relapsing Remitting (RR)

In this form of MS, we often observe unpredictable attacks. During the presence of
those new attacks new clinical symptoms appear or old clinical symptoms evolve. This
phase has a variable duration and could be followed by a partial or total remission. At
this stage, the pathology can be inactive for months or years.

4.3 Secondary Progressive (SP)

Patients with a RR form can then develop a secondary progressive (SP) form charac-
terized by increased symptoms and a level of disability that increases independently of the
presence of inflammatory attacks.

Claudio STAMILE 23

http://library.med.utah.edu/kw/ms/mml/ms_class.html
http://library.med.utah.edu/kw/ms/mml/ms_class.html


CHAPTER 2. MULTIPLE SCLEROSIS

4.4 Primary Progressive (PP)

Primary progressive (PP) form is characterized by the absence of inflammatory attacks.
The patients suffer from an accumulation of deficits and disabilities. All these effects can
be stable for certain periods or can progressively degenerate in months or years.

5 Diagnosis

Since MS is characterised by multifocal effects that can change during the time, its
diagnosis is not trivial. Diagnosis of MS is based on the multifocal and evolutive char-
acteristics of the pathology. During the time, in order to help the physician to perform
a correct diagnosis, different recommendation based on MRI were suggested. The most
important and useful criteria for physician were identified in [McDonald et al. (2001)]
by collecting all the clinical and radiological knowledges of the pathology. Those criteria
take into account not only local effects of MS visible in a specific time-points, but also
the history of the evolution of the pathology. After their publication, these criteria were
largely used in clinical practice. Thanks to the advance in clinical research, these criteria
were then updated in 2005 [Polman et al. (2005)] and 2010 [Polman et al. (2011)].

Currently, two main approaches are used to perform a correct diagnosis of MS: differ-
ential diagnosis and positive diagnosis.

5.1 Differential Diagnosis

Generally speaking, differential diagnosis is relatively simple. In order to perform a
differential diagnosis, the physician need a table containing the symptoms of the pathology
and check if the patient has a subset or all the symptoms. In the diagnosis of MS, this
task can be really hard, indeed, due to the large variety of MS symptoms. It is not
possible to clearly define a complete and robust table of criteria describing the effect of
the pathology. Moreover, since the symptoms of MS evolve and change with time, the use
of the differential diagnosis is not sufficient to have a general overview of the pathology.
An example of a differential diagnosis table for MS, from [Noseworthy et al. (2000)], is
showed in Figure 2.4.

5.2 Positive Diagnosis

Positive diagnosis is more complex and more effective compared to the differential
diagnosis. It strongly uses MRI to perform the diagnosis since MRI is the best techniques
to obtain in vivo images of MS lesions. Indeed, with MRI it is possible to follow in time
and in space how MS lesions evolve in the brain. The positive diagnosis is based on four
essential criteria: i) temporal lesions dissemination, ii) spatial dissemination of MS lesions
in particular regions of the CNS, iii) presence of inflammatory processes in the CNS, and
iv) absence of other progressive diseases. In order to have a full picture of the damages
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Figure 2.4: Differential diagnosis table of Multiple Sclerosis. Table from [Noseworthy et al.
(2000)].

generated by MS in the brain the following three MRI sequences are needed to detect
different type of lesions:

• T2 sequence which allows to detect MS lesions as hyper-signal spots
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• T1 sequence where lesions are characterized by hypo-intensity signal spots

• T1 sequence acquired after injection of a contrast agent (like Gadolinium) to de-
tect regions where disruption of hematoencephalic barrier is present. With this
sequence it is possible to differentiate between active lesions (lesions with signal
hyper-intensity) and chronic lesions (lesions with signal hypo-intensity)

Information derived from MRI were used in [Barkhof et al. (1997)] to derive MRI
based criteria for the diagnosis of MS. Those criteria were used and update in [McDonald
et al. (2001), Polman et al. (2005), Polman et al. (2011)]. In order to have a correct
diagnosis of MS two different observations are needed: spatial and temporal dissemination
of lesions. To satisfy the presence of spatial dissemination of the lesions, at least two of
this four criteria must hold:

• Lesion showing hyper-intensity in T2 sequence in periventricular region

• Lesion showing hyper-intensity in T2 sequence in near to the cortex

• Lesion showing hyper-intensity in T2 sequence in the supra tentorial region

• Lesion showing hyper-intensity in T2 sequence in the spinal cord

To satisfy the presence of temporal dissemination of the lesions the following criteria
must hold:

• Lesion showing hyper-intensity in T1 acquired using contrast agent three months
after one attack

• A new lesions showing hyper-intensity in T2 sequence three months after the first
MRI exam

• If the first MRI exam was performed 3 months after the first attack, all the new
lesions showing hyper-intensity in T2 sequence are considered as expression of a
temporal dissemination

An overview of the spatial and temporal dissemination criteria are summarized in
Figure 2.5.

6 Medical Treatment

As we already discuss, MS is a really complex disease, and, as consequence, also its
treatment is complex since it strongly depends of the status of the disease when the
patient undergoes the clinical exam. The classical treatment of MS is usually divided in
three parts: i) treatment of the attacks, ii) treatment of the pathology, iii) treatment of
the symptoms.
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Figure 2.5: MS positive diagnosis criteria. Image from http://www.nationalmssociety.
org/For-Professionals/Clinical-Care/Diagnosing-MS/Diagnosing-Criteria.

6.1 Treatment of the attacks

The goal of this type of treatment is to reduce the number and the frequency of the
attacks and then reduce the progression of the disability by increasing the remission. This
type of treatment is mainly based on the assumption of corticoids usually methylpred-
nisolone. They are usually prescribed by infusion of 1 gram per day for 3 days.

6.2 Treatment of the pathology

The treatment of the pathology tries to control its evolution. The main idea is to
reduce the demyelination by stimulation of the remyelination process. This treatment
relies on the auto-immune nature of MS. Immunomodulators and Immunosuppressors
drugs are often use to reduce the effect of MS. In the category of immunomodulators, we
recall the interferon β and the Tysabri®. For the Immunosuppressors, mitoxantrone and
cyclophosphamide are the most used.

6.3 Treatment of the symptoms

Treatment of the symptoms aims to improve the quality of life of the patients. They
mainly help to reduce the manifestation of the symptoms without directly affect the patho-
logical process. For instance, for the spasticity injection of botulinum toxin or assumption
of antispasmodics are used. Paint is usually treated with the assumption of analgesics or
antiepileptic.
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7 Conclusion

In this chapter we briefly introduced and discussed MS. We gave a general overview
about the pathology and its epidemiology. We discussed about its physiopathology and the
different criteria used for its diagnosis. Finally, we showed the four different clinical forms
of the pathology and the classical treatments used to reduce the effect of the pathology.

From this general introduction, we can already see how cMRI acquisition are powerful
tools for clinicians to diagnose and study the effect of MS on the CNS. Those results
encouraged researcher on MS to use more complex MRI techniques like diffusion imaging
and spectroscopy to obtain more sensitive and specific information on normal appearing
WM useful for a deeper investigation of the pathology.
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1 Introduction

Diffusion MRI (dMRI) is a non-invasive imaging technique that, to date, is unique
in that it can be used to reveal the microstructure of the WM of human brain [Assaf
et al. (2013)]. Due to this advantage, it is largely used to investigate the effects that
neurodegenerative pathologies, like MS, have in the CNS.

The results achieved after the introduction of dMRI in the study of MS were interest-
ing. Indeed, after the introduction of classical MRI sequence (T1, T2, T2 FLAIR) used for
the MS diagnosis, poor correlations were found between lesion load measurements and pa-
tients’ disability [Barkhof (2002)]. The identification of this so-called “clinico-radiological
paradox” has led to several studies utilizing a multitude of MRI strategies such as mag-
netization transfer, spectroscopy, and DTI [Rovira et al. (2013)].

In case of complex diseases, like MS, dMRI seems to present a better correlation with
clinical disability [Ciccarelli et al. (2001)]. The pathologic damage detected by dMRI
derived metrics, like the one derived from DTI, in clinically eloquent NAWM regions,
showed a significant contribution in estimation of MS disability [da Cruz et al. (2011)].
Moreover, diffusion studies indicate that the severity of damage within T2-visible lesions
and in the normal appearing grey matter (NAGM), as well as in important WM tracts,
has a significant effect on neurologic disability [Rovaris et al. (2005)]. dMRI derived met-
rics may thus contribute to composite MR-based scores, explaining otherwise unexplained
variance in MS-related disability [Pulizzi et al. (2007), Mainero et al. (2001)]. These
promising results encouraged a deeper investigation of MS using dMRI derived metrics
and speed-up their use also in clinical setting. The main limitation of use of dMRI in real
clinical setting is related to the acquisition time needed to perform a robust and repro-
ducible acquisition [Tournier et al. (2004)], although further work is required to deliver
ultrahigh-resolution imaging in clinically relevant time frames [Koenig et al. (2013)].

In this chapter, we will give an overview of different studies where authors focused
their investigations on the effect of MS in the CNS using dMRI. We will introduce those
studies according to their order of technical complexity.

In Section 2, we will start from the description of classical studies based on the anal-
ysis of diffusion metrics in pre-segmented regions of interest (ROIs) or using voxel based
techniques like Tract-Based Spatial Statistics (TBSS) [Smith et al. (2006)]. We will focus
our attention on the correlations between diffusion derived metrics and disease found by
those studies.

In Section 3, an introduction on the new graph-based metrics derived from dMRI
is given. More in detail, we will describe several studies where authors used structural
information derived from the tractography to analyze the alterations of the CNS in MS
patients.

Finally, in Section 4, we will investigate one of the last trend in medical research: the
use machine learning algorithms. In more detail, we will show how the use of diffusion
derived metrics as features for machine learning algorithms can be useful to help clinicians
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to take their decision. In particular, we will show how the sensibility of diffusion metrics
is helpful to automatically classify the different MS clinical forms.

2 dMRI Studies in Pre-Segmented ROI

ROI based analysis is the principal way to analyze dMRI derived metric in specific
regions of the brain. The main idea is to select brain regions and quantify the value of
diffusion metrics, usually DTI derived metrics like FA, MD, λr, in these regions. This
approach allows to perform complex studies who aim to understand how the handicap
(other symptoms) caused by a pathology are related to damages detected in particular
brain regions.

A second common approach, is to perform a global analysis of the WM using specific
tools like TBSS [Smith et al. (2006)]. This analysis allows to detect, and study, diffuse
effects of the pathology in the whole WM. Thanks to this approach, it is possible to have
a global picture of the brain damages in relation to particular symptoms.

2.1 Region Specific Analysis

A first important study is the one described in [Filippi et al. (2001)]. In their paper, the
authors quantified FA in lesions and NAWM regions. The regions were delineated on image
of control participants and on a dataset composed by RR, SP, and PP MS patients. As
major result, the author found that average FA in lesions was lower than the corresponding
quantities of the NAWM. Moreover, in the overall patient sample, the authors also found
that DTI-derived measures are moderately correlated with clinical disability, especially
in SP MS patients. In this study, the authors suggested to use DTI as a tool for the
monitoring of advanced phases of the disease.

A similar pioneering study is also presented in [Ciccarelli et al. (2001)]. In their
paper, the authors focused their analysis in specific WM regions. More in detail, they
quantified in MS patients and control subjects quantitative diffusion indices, including
FA, volume ratio, and MD. The authors analyzed 30 ROIs located in normal-appearing
basal ganglia, cerebellar gray matter, and supratentorial and infratentorial NAWM. In the
study, interesting correlations between DTI metrics and clinical score were found. More in
detail, the authors showed that both FA and MD in the cerebral peduncles were inversely
correlated with the Expanded Disability Status Scale (EDSS) and pyramidal functional
scores. In RR patients, a strong correlation between EDSS and FA in both supratentorial
and infratentorial NAWM were also found. Finally, the authors found that in PP and SP
MS patients the disease duration correlated strongly with MD in infratentorial NAWM
and FA in the cerebral peduncles, respectively.

From this two important studies a large number of papers showing correlations between
DTI and MS symptoms started. Those new studies started to investigate important regions
in the brain like corpus callosum (CC). In [Sigal et al. (2012)] the authors investigated the
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relations between CC microstructure integrity by using DTI in RR MS patients. As major
result, the authors reported that DTI parameters, namely FA, MD, λ1, λ2, λ3 correlated
with neurological disability. Moreover they found correlations, in CC, between λ1 and
λ2, λ3 and disease duration. Other two studies describing relations between MS and DTI
parameters quantified in CC are reported in [Rueda et al. (2008), Braley et al. (2012)].
In both papers, the authors describe how changes in FA and MD, detected in different
regions of the CC, reflect axonal damage induced by MS.

Finally, we report an interesting region-based study who show how dMRI is a power-
ful tool also for investigation of GM damages. In [Hannoun et al. (2012)b], the authors
investigated DTI in deep GM. Left and right caudate and thalamus were manually seg-
mented in RR, SP MS patients and control subjects. Volume, mean FA and MD in each
structure were quantified. The authors found that FA was significantly increased in the
caudate and the thalamus of patients with MS compared with controls, and was higher
in SP compared with RR patients. Increased FA was associated with volume decreases of
caudate and thalamus in patients with MS. Caudate FA, and, to a lesser extent, thalamic
FA, were associated with functional deficits, as measured by EDSS and MSFC.

2.2 Global Brain Analysis

In the previous section, we described several published works based on regional analysis
of the brain. In this section, we will focus our attention on studies based on global
investigation of the brain in MS patients. All the studies described in this section, are
based on TBSS [Smith et al. (2006)], a neuroimaging tool that allows to perform statistical
voxelwise analysis of DTI metrics in different group subjects. Contrary to the previous
methods, the results of this analysis will generate a map describing all the WM voxels who
are significant different in the two groups of subjects. Moreover, compared to classical
ROI based methods, TBSS analysis is more reproducible since it does not depend of the
segmentation performed by the expert operator.

One of the first interesting paper about TBSS and MS is described in [Liu et al. (2012)].
In their work, the authors simply analyzed the changes visible through TBSS between RR
MS patients and control subjects. From all the diffuse change in WM, the authors identified
specific regions correlating with clinical score like EDSS and disease duration. The diffuse
effects of MS on WM is clearly confirmed by the results obtained. Indeed, MS patients
had significant decrease of FA, and increased MD, λ1 and λr in different WM regions.
Significant clinical correlations between the diffusion metrics and the EDSS scores were
identified, such as increasing EDSS and decreasing FA in the splenium of CC, left cingulum
bundle and bilateral cortico-spinal tracts. Regions with significant negative correlations
between the FA and the disease durations were identified in the whole corpus callosum
and bilateral cingulum bundles.

Recently, more specific studies were conducted using TBSS to investigate particular
effect of other MS related symptoms. In [Shen et al. (2014)] authors applied TBSS to RR
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MS patients and control subject to study the presence of correlations between statistical
significant regions found using TBSS and Hamilton depression rating scale (HAMD). As
major finding, the authors showed a positive correlation between HAMD and FA changes in
the right posterior middle cingulate gyrus, the right hippocampus, the left hypothalamus,
the right precentral gyrus, and the posterior cingulate. Those results demonstrated a link
between the depressive symptoms and clinically relevant brain areas in RR MS patients.

Global brain studies are also interesting for their capability to discover new predictor
of disability that could help to find the best medical treatment of the patient. Two studies
that show how it is possible, through global brain analysis, to identify disability predictor
are reported in [Kern et al. (2011)] and [Asaf et al. (2015)]. In [Kern et al. (2011)] the
authors focused their attention in the detection of DTI metrics capable to predict future
worsening of hand function in RR MS patients. Disability of each patient was assessed by
the nine-hole peg test (NHPT). Identification of important diffusion metrics was performed
using a two-step processing pipeline. In the first step, the TBSS map was computed in
order to detect the voxels who are significant different in the two groups. In the second
step, probabilistic tractography algorithm was performed in order to extract CST and
the transcallosal hand motor fibers (TCHM). After the analysis, the authors found that
λr of the TCHM fibers was predictive of NHPT decline over the next 12 months. The
conclusion is that the TCHM fibers may play an important role in modifying the effects of
MS pathology on fine motor control, and λr in these fibers may be a sensitive biomarker
for future disability.
In the second study, described in [Asaf et al. (2015)], the authors aimed to elucidate the
relationship of microstructural WM damage in patients with varying periods of disease
duration. They acquired different control subject and also MS patients with different
disease durations. They grouped them in three groups: patients with short, moderate
and long disease duration. TBSS was then applied on MS patients vs control and on the
different MS groups. As expected, significant results were found between control subject
and MS patients belonging to different disease duration. The most interesting results was
obtained in the comparison between short with long disease duration groups. They found
significant differences in 30 different WM tracts with a particular predominance in the
body of the CC. This difference show how the alterations detected at the beginning of the
pathology reach a plateau within the next 5 years, and, only later in time, additional WM
changes are detected. This 5 years window could be an important period to introduce
specific treatments to minimize the long term effects of the pathology.

3 Analysis of MS using dMRI Connectivity Information

As we already said in Chapter 2, dMRI is not only capable to extract quantitative maps
useful to understand the effects of a disease, but it allows also to reconstruct the structure
of the WM tissue thanks to fiber tracking [Mori et al. (1999)]. Those information can
be used to investigate: i) the relationship between GM and WM degeneration in MS ii)
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alterations in brain connection.

3.1 GM and WM Relations in MS

Combination of tractography with cortical measures is an useful approach to test spe-
cific hypotheses related to clinically relevant functional systems in MS [Gorgoraptis et al.
(2010)]. Using this methodology, an interesting study that we want to underline is the
one described in [Bergsland et al. (2015)]. In their paper, the authors investigated the
relationship between WM injury and cortical atrophy development in RR patients. In
order to study the relation between WM and GM damages, the authors studied the asso-
ciation between focal and NAWM injury of the cortico-spinal tract (CST) with thickness
and surface area measures of the primary motor cortex. The authors found that in MS
patients, decreased cortical thickness was related to increased cortico-spinal tract NAWM
mean, axial and radial diffusivities in addition to cortico-spinal tract lesion volume. This
study showed that microstructural damages, detected by DTI, manifest their effect also in
connected regions in the primary motor cortex.
A similar study was also proposed in [Tillema et al. (2016)]. The authors investigated the
relations between the connectivity of cortical and WM lesions using novel MRI methodol-
ogy including DTI. More in detail, they segmented GM and WM lesions and used DTI to
reconstruct the connectivity maps between those two regions. The authors found an ele-
vated connectivity between GM and WM lesions. These findings provide strong evidence
of inter-lesional connectivity between GM and WM lesions, supporting the hypothesis of
presence of intrinsic GM and WM lesions connectivity.
Other studies instead, focused their analysis in the investigation of relations between spe-
cific GM structure damages and WM. In [Anderson et al. (2011)] the authors assessed
the cerebellar WM and GM atrophy and the degree of fibre coherence in the main cere-
bellar connections. The authors investigated the contribution of those atrophy measures
in disability identification in RR and PP MS patients. For each group of MS patients, the
authors compared tractography-derived measures from the middle and superior cerebel-
lar peduncles, and quantitative diffusion measures like FA, MD and the other directional
diffusivities. As major result, the authors found significant relationships between superior
cerebellar peduncle FA and upper limb function, and between superior cerebellar peduncle
FA, MD, λr and speed of walking. These findings indicate how a reduced fibre coherence
in specific WM regions, visible through DTI, is related to motor deficit PP MS patients.

3.2 Analysis of MS using Structural Connectivity

Evolution of dMRI gave the opportunity to explore new biomarkers for investigation
of WM connectivity alterations. In this section, we will give a general overview of different
studies showing the application of WM connectivity to understand global WM alterations
in MS.

Connectivity based measures represent a new set of interesting biomarkers to explore
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alteration in brain [Rubinov and Sporns (2010)]. Based on the analysis of WM fibers
networks, a simple description of structural brain connectivity was introduced through
the application of a geometrical graph representation [Shuman et al. (2013)]. This graph
theory approach has become a sensitive tool to detect alterations in brain pathologies by
providing both local and global characterization of WM connections [Achard et al. (2012)].

In [Li et al. (2013)], the authors performed one of the first study using WM connec-
tivity in MS. They compared WM connectivity graphs obtained from RR MS patients
and control subjects. From the generated graphs different metrics were computed in order
to quantify the “quality” of WM connectivity. The authors found structurally relevant
alterations in fiber topology in early RR MS patients. Moreover, correlation between the
25-foot Walk test and the connectivity measured in the left superior frontal and the left
superior temporal gyrus were found. They also showed an increase in interhemispheric
and intrahemispheric white matter connectivity, probably related to compensatory mech-
anisms.
Similar studies were also performed in [Kocevar et al. (2016)] and [Nigro et al. (2015)].
In [Kocevar et al. (2016)], the authors studied how global graph-derived metrics change
according to the different clinical forms of MS and how they can discriminate each clinical
forms. The obtained results showed that those new graph-derived biomarkers are really
helpful to discriminate MS clinical forms. The authors also used this information to build
an automatic classifier as we will see in the next section.
Finally, in [Nigro et al. (2015)] the effect of the major depression disorder, present in
certain MS patients was studied using brain connectivity. The authors performed the
analysis on MS patients with and without major depression disorder and control subjects
as well. In this study the authors found some evidence that major depression disorder in
MS may be linked with connectivity alterations at the limbic-motor interface, a group of
regions that translates emotions into survival-oriented behaviors.

4 Automatic Classification of MS Clinical Forms using dMRI

Today’s neurologist challenge is to predict the individual patient evolution and re-
sponse to therapy based on the clinical, biological and imaging markers available from
disease onset. In this section, we will focus on automatic classification of MS patients in
different clinical forms based on dMRI information. We will show how different papers
available in the literature tried to solve this prognostic question using a computer-based
method. Due to the unknown etiology of MS and the variability of the patients’ clinical
history, “model based” approaches are not suitable or difficult to formalize. This limitation
could be overcame using “data-driven” approaches based on machine learning algorithms.
A first attempt was made in [Fiorini et al. (2015)]. In their paper, the authors used
only clinical information to automatically classify MS patients. If this method allows to
obtain good performances, it still needs clinical data to perform an accurate classifica-
tion. In [Wottschel et al. (2015)], the authors extended this concept to MRI data. In
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particular, they extracted several features form cMRI data in order to differentiate be-
tween clinically-definite Multiple Sclerosis and CIS MS patients. This method reached
acceptable performances but it contains a major limitation. Indeed, the extraction of the
features is strongly operator dependent since it needs some manual pre-processing opera-
tion. Moreover, this method is not capable to exploit all the MRI data. In [Stamile et al.
(2015)c], [Muthuraman et al. (2016)] and [Kocevar et al. (2016)], the authors tried to
use machine learning using diffusion data without performing any kind of manual a-priori
feature selection or definition.
In [Stamile et al. (2015)c], authors extracted DTI derived metrics in different WM fiber-
bundles obtained from an atlas. They tried to build a classifier capable to automatically
detect if a DTI data, acquired at a specific time-point, belongs to control subjects, RR or
SP MS patients. The authors found that specific diffusion metrics, extracted in specific
WM fiber-bundles, are capable to clearly classify MS patients in the appropriate clinical
form with high levels of accuracy.
In [Kocevar et al. (2016)] and [Muthuraman et al. (2016)], the authors exploited differ-
ently the dMRI data of MS patients. Indeed, in both papers, the authors, instead of using
value of DTI derived metrics quantified in specific WM regions, they used graph metrics
obtained from WM connectivity. In [Muthuraman et al. (2016)] those information were
used only to discriminate RR vs CIS patients while in [Kocevar et al. (2016)] the infor-
mation were used to classify all the clinical forms of MS patients. Interestingly, in both
papers the results present high values in terms of classification accuracy. Indeed, they can
automatically classify MS clinical form with a small error.

5 Conclusion

In this chapter, we gave a general overview of dMRI application in study of WM
alterations in MS patients. We showed that diffusion biomarkers give the opportunities
to investigate complex mechanisms of brain diseases. We focused our analysis on previous
works where dMRI was used to investigate the hidden relations between microstructural
damages and disability evolution in MS.

In the first part, we showed two different ways to analyze dMRI data using region
specific or global approach. The former allows to investigate correlation of specific brain
structures and symptoms, whereas the latter allows to have a global picture of the diffuse
effects of a neurodegenerative pathology in the whole WM. In order to show the potential
of dMRI, we described several studies showing direct connection between quantitative
findings and disability progression.

In the second part, a general overview of the new quantitative information that can
be derived from structural architecture of WM is given. In the first section, we described
how structural information derived from tractography can be couple with quantitative
information derived from DTI metrics to investigate connections between WM and GM
degeneration. In the second section, we showed how this concept can be extended to create
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a graph describing the whole connectivity map of the brain. This map of connections can be
used to extract specific metrics for to investigation of complex effects of neurodegenerative
mechanisms.

Finally, in the last part, we showed how dMRI can be used to help clinicians to estab-
lish the diagnosis of MS in the specific clinical form. The results obtained with dMRI in
automatic classification of MS clinical forms, underlined, what we already said in the intro-
duction: dMRI derived metrics may contribute to composite MR-based scores, explaining
otherwise unexplained variance in MS-related disability.
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Chapter 4

Topic of the thesis

Longitudinal analysis of neuroimaging data is becoming an important research area. In
the last few years, analysis of longitudinal data become a crucial point to better understand
pathological mechanisms of complex brain diseases such as MS where WM fiber-bundles are
variably altered by inflammatory and/or demyelinating events. Since pathological mech-
anisms remained unknown in certain brain diseases, the investigation of their temporal
progression using non-invasive neuroimaging techniques is essential to better understand
and predict the disease evolution and manage the therapeutic treatment [Nygaard et al.
(2015),Mak et al. (2015),Vandermosten et al. (2015)].

As the etiology of MS as well as the pathological mechanisms including inflammatory
and neurodegenerative processes, are not well understood, longitudinal studies using non-
conventional MRI techniques such as DTI, providing sensitive markers, like FA and λr,
constitute the best potential for the characterization of brain tissue alterations. For exam-
ple, the analysis of grey matter (GM) structures [Mesaros et al. (2011)] showed the capa-
bility to evaluate the dynamics disability progression; while in white matter (WM) [Rovira
et al. (2013)] a relationship between damaging and reparative mechanisms that occur in
the lesions formation is underlined.

In [Colby et al. (2012)], the authors combined, for the first time, quantitative informa-
tion extracted from the diffusion maps with the structural information obtained from fiber
tracking. They showed that this new combination constitutes a powerful tool to investigate
the diffuse effects of different pathologies. This new way to analyze WM was then used
in different works [Yeatman et al. (2012),Mårtensson et al. (2013)] showing interesting
results useful for the investigation of different pathological mechanisms. Unfortunately,
these global approaches to analyze disease evolution are not sensitive enough to detect
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small and short-term (daily/weekly) longitudinal variations occurring typically in RR or
CIS MS patients. A local scale approach is thus necessary to detect the presence of small
“pathological” changes that could only affect a small subset of the WM fiber-bundle.

In this work, we will describe different techniques to analyze longitudinal changes
occurring along WM fiber-bundles in MS patients. We will provide different methods
capable to analyze at different levels of granularity longitudinal diffusion data.

Since analysis of WM fiber-bundles is not an easy task and requires different data
processing steps, we divided the processing needed in two macro areas: i) fiber-bundle ex-
traction and ii) longitudinal fiber-bundle analysis described in Part II and IV respectively.

In Part II, we will illustrate a new string-based formalism to extract, from the whole
tractography, just specific fiber-bundles. In the first chapter, we will introduce the string-
based formalism used to represent WM fibers. We will also describe two algorithms, one
semi-supervised and one unsupervised, to extract specific fiber-bundle. We will test our
method using simulated diffusion phantoms and on real data from a healthy subject. In the
second chapter, we will extend the proposed algorithm in order to couple the string-based
formalism previously introduced with spatial information of the fiber-tracts.

In Part IV, we will describe three different algorithms to detect longitudinal changes
visible along WM fiber-bundles. More in detail, in the first chapter, we will describe a
dynamic threshold-based algorithm based on a Gaussian mixture model to detect and
isolate those changes. Moreover, in order to increase the sensibility of WM fiber-bundle
analysis, we introduce the definition of two new populations of fibers. In second chapter,
we will extend the previous method in order to take into account more than one diffusion
metric at time and more than two time-points. The method, based on non-negative matrix
factorization, is able to identify the time-points and the regions of the fiber-bundle affected
by longitudinal changes. Finally, in the last chapter, we will describe a third algorithm,
based on constrained tensor factorization, capable to generalize the two previous methods.
Indeed, thanks to the tensor formalism it is possible to build a tensor capable to represent
the complex structure of the fiber-bundle to analyze. We will also describe how we reduce
the computation time needed by the algorithm thanks to the parallel programming.
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1 Introduction

Reconstructing and visualizing in vivo White Matter (WM) fibers is a challenging
issue in the investigation of brain. For instance, the knowledge of these fibers is useful
to understand and predict the effects of some neurodegenerative pathologies, like multiple
sclerosis [Pantano et al. (2002),Wilson et al. (2003)]. Furthermore, they can be used
in neurosurgical planning to interactively guide the surgeon during an operation [Golby
et al. (2011)]. The most accurate method to perform this task is tractography [Mori
et al. (1999)], which is based on the analysis of the main diffusion directions of the water
molecules when they move through WM tissues. This movement can be analyzed by
a Magnetic Resonance Imaging (MRI) technique called Diffusion Tensor Imaging (DTI)
[Basser et al. (1994)b].

From an anatomic point of view, particular sets of fibers (called fiber-bundles) repre-
sent different WM structures [Catani and Thiebaut de Schotten (2008)]. These connect
different gray matter regions of the brain, allowing them to communicate. To analyze WM
structures, it is crucial to isolate subsets of fibers belonging to the WM regions into con-
sideration. This task is often performed manually by expert neuroanatomists that define
inclusion and exclusion criteria in such a way as to delineate regions of interests and isolate
specific WM fiber-bundles [Mårtensson et al. (2013), Hua et al. (2008)]. However, this
way of proceeding is time consuming and operator-dependent. With regard to this fact,
we observe that the amount of data to analyze when facing this problem is enormous.
For instance, a simple whole brain tractography could generate up to 106 fibers. As a
consequence, investigating the WM structures of a cohort of people becomes a big data
application and cannot be performed manually.

44 Claudio STAMILE



1. INTRODUCTION

In order to overcome this limitation, different automated approaches to extracting
and, then, characterizing WM fiber-bundles have been proposed in the past literature
(see, for instance, [Yeatman et al. (2012), O’Donnell et al. (2006), Zhang et al. (2008),
Garyfallidis et al. (2012)]). WM fiber-bundles models, usually constructed by experts,
provide a coincise representation of the bundles of interest. Then, given a set of models,
the extraction and characterization of WM fiber-bundles from tractography data resorts
to determining the real fiber-bundles corresponding to these models. A way to perform
this last task consists of clustering WM fibers derived from tractography data and, then,
applying a model-based characterization algorithm to identify fiber-bundles, starting from
available models and obtained clusters. As will be clear below, this way of proceeding
can guarantee the indispensable efficiency when the number of models to process is high.
Nevertheless, in case where this approach is applied as it is, fibers should be clustered on
the basis of their layout in the three-dimensional space. Therefore, we are in presence of
a multi-dimensional clustering problem. This can be considered as a simplified version
of the more complex multi-view clustering problem, which is well known for being a very
difficult problem in the literature [Cai et al. (2013),Sun (2013)]. As a further confirmation
of this fact, the approaches to clustering WM fibers, proposed in the past, present several
issues, as it will be explained in Section 2.

In this chapter, we aim at providing a contribution in this setting by proposing a new
automated approach that, given as input a set of WM fibers, generated from streamlines
produced by tractography, and a set of models, extracts fiber-bundles through clustering
and a subsequent model-based characterization.

The core “ingredients” (and the main contributions) of our proposal are: (i) a new
string-based formalism allowing an alternative representation of WM fibers, (ii) a new
string dissimilarity metric, and (iii) a model-based characterization algorithm.

Our approach consists of four main steps, namely:

1. representation of WM fibers as strings;

2. computation of the dissimilarity degree for each pair of available WM fibers;

3. clustering of involved WM fibers;

4. exploitation of obtained clusters to identify the fiber-bundles corresponding to the
models of interest.

In more detail, our approach represents a fiber as a sequence of m voxels in a three-
dimensional space. Then, it associates a color with each voxel, specifying its space ori-
entation. As an example, voxels parallel to the x (resp., y, z) axis are colored in red
(resp., green, blue). The color of a generic voxel, not parallel to an axis, is computed by
suitably mixing the colors corresponding to the axes on the basis of its orientation. As
a consequence of this notation, a fiber can be represented as a sequence of colors, each
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expressed in the RGB color space. Finally, by discretizing this last space, our approach
represents a fiber by means of a string.

Thanks to this fiber representation, our WM fiber clustering task reduces to a string
clustering one, which is much simpler to face. As a matter of fact, it is sufficient: (i) finding
a metric to measure string dissimilarity (and, in this chapter, we present a new suitable
metric, which represents the second main contribution of our approach); (ii) constructing
the dissimilarity matrix; (iii) applying a suitable clustering algorithm already proposed in
the literature.

After the set of WM fiber clusters has been determined, our approach is able to exploit
obtained clusters to extract the fiber-bundles corresponding to the models of interest.
Specifically, given a set of approximate models of fiber-bundles constructed by an expert,
our approach matches each model m with a corresponding cluster and, then, exploits this
matching to identify the WM fiber-bundles closest to m. Observe that, once clusters are
available, the matching process can be carried out efficiently, because it is not necessary to
compare each model with the whole set of available WM fibers. Indeed, it is sufficient to
exploit medoids to characterize clusters and, consequently, to compare each model m with
the medoids of extracted clusters to determine the one closest to m. Clearly, the number
of medoids is generally orders of magnitude smaller than the number of WM fibers. This
provides users with the possibility to dynamically change the models of interest and to
immediately obtain the corresponding bundles.

To verify the suitability of our approach, we have performed an experimental campaign.
Obtained results are very satisfying, as will be illustrated in detail in Section 4.

As for a further key issue of our approach, it can be applied not only to characterize
WM fiber-bundles, but also in all the other cases in which it is necessary to perform multi-
dimensional (and, more in general, multi-view) clustering and characterization activities.
In fact, it is sufficient to associate a color with each axis of the corresponding multi-
dimensional space, to suitably color the corresponding voxel, and, after all voxels have been
colored, to suitably discretize the corresponding color representation. As a consequence,
the approach proposed in this chapter can be adopted in all those biomedical contexts
someway requiring a multi-view clustering (think, for instance, of finding specific patterns
useful to monitoring the vital signs of a patient in intensive care [Ordóñez et al. (2008)])
and a possible model-guided characterization of obtained clusters. But, it could be adopted
also in contexts very different from the biomedical ones, whenever a multi-view clustering
and characterization must be carried out. Think, for instance, of the analysis of air flows
or of weather perturbations in meteorology.

Interestingly, the general philosophy underlying our approach can be extended to other
multi-view data applications. As an example, the search of frequent structures in a multi-
dimensional space can be reduced to the search of frequent patterns in a set of strings,
whereas the search of specific structures in a multi-dimensional space can be reduced to
the search of specific paths in a set of strings.

Last, but not the least, our dissimilarity metric allows the integrated analysis of data
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flows, which are (possibly) very heterogeneous but provide a multi-view representation of
a certain event. For instance, in the clinical observation of the vital parameters of a pa-
tient, it is possible to simultaneously consider several measures, such as electrocardiogram,
temperature, respiratory rate, etc. Thanks to our approach, all these measures can be an-
alyzed simultaneously and compared in such a way as to evidence possible correlations.
This application case shows how our approach can be exploited to integrate data coming
from different domains.

This chapter is structured as follows. In Section 2, we provide an overview of the
research background and the corresponding related work. In Section 3, we supply a detailed
description of our approach. In Section 4, we present our experimental campaign. In
section, 5 we discuss our results. Finally, in Section 6, we draw our conclusions.

2 Background and related work

In the past literature, many approaches investigating fiber-bundles from several view-
points have been proposed. As an example, [Yeatman et al. (2012),Colby et al. (2012),
Mårtensson et al. (2013),Reich et al. (2007)] evidence the importance of WM structures
for better understanding and predicting the role of certain neurodegenerative pathologies
(such as multiple sclerosis) in causing motor disability [Pantano et al. (2002), Wilson
et al. (2003)] and other symptoms, like fatigue [Rocca et al. (2014),Reich et al. (2008)].
Other papers (e.g., [Golby et al. (2011)]) show how the knowledge of fiber-bundles can
interactively guide a surgeon in her activity.

[Mårtensson et al. (2013), Hua et al. (2008)] present some approaches to manually
extracting WM fiber-bundles. In these approaches, expert neuroanatomists define suitable
inclusion and exclusion criteria allowing the delineation of the regions of interest and,
ultimately, the isolation of specific WM fiber-bundles. Nevertheless, manual approaches
to extracting fiber-bundles are time consuming and operator-dependent. As a consequence,
they cannot be exploited to analyze large amounts of data.

To handle high volumes of data, some automatic approaches have been proposed [Yeat-
man et al. (2012),Zhang et al. (2008),Garyfallidis et al. (2012),Jin et al. (2014),Bénézit
et al. (2015), Prasad et al. (2014)]. They can be divided in two categories, namely: (i)
algorithms needing a priori knowledge about the location of certain WM brain regions
(which are based on suitable atlases [Yeatman et al. (2012),Zhang et al. (2008),Garyfal-
lidis et al. (2012), Jin et al. (2014),Bénézit et al. (2015),Prasad et al. (2014)]., and (ii)
algorithms that do not need a priori knowledge [Garyfallidis et al. (2012)].

Some approaches of the former category (e.g., the one described in [Yeatman et al.
(2012)]) are very simple and fast. They exploit pre-labeled WM fiber-bundle atlases on
the subject’s image (e.g., the atlas described in [Hua et al. (2008)]) and select only those
fibers belonging to the regions delineated in the atlas. These approaches present several
limitations. First, they can extract only fiber-bundles conforming to the ones specified
in the WM atlases, which make them applicable only in few cases. Second, the quality
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of extracted fibers depends on the algorithm used to register the atlases on the subject’s
image.

The approach of [Jin et al. (2014)] exploits quite a sophisticated multi-stage fiber clus-
tering scheme, based on a-priori knowledge of fibers at several levels. First, this approach
carries out a length-based clustering step, aimed to filter out short fibers1. Then, it exe-
cutes a clustering task, based on Regions of Interest (ROIs) and filters out all the fibers
external to these regions. This step is based on the assumption that anatomically well
known WM tracts interconnect ROIs. Finally, it performs a distance-based clustering; for
this purpose, the authors define a symmetric version of the asymmetric Hausdorff distance
to both compare and label fibers w.r.t. atlases.

In [Bénézit et al. (2015)], the authors present an approach to organizing WM fibers
in the context of isolated corpus callosum dysgenesis. Their ultimate goal is comparing
WM fibers of children presenting this pathology. The approach consists of a workflow
pipeline. One of the first steps of this pipeline consists of an intra-subject clustering of
WM tracts. This task aims at detecting groups of similar tracts that are large enough to
be reliable candidates when looking for a specific bundle in case a ROI-based strategy is
adopted. Clustering is intended as a pre-processing step and is applied on the geometric
representation of fiber voxels. To carry out fiber comparison, a symmetrized version of the
mean closest point distance is exploited. Since the proposed clustering method relies on
tract geometry, the authors show that, in some cases, their approach could cluster together
tracts close to each other but not belonging to the same structure.

In [Prasad et al. (2014)], a framework for analyzing a population of WM tracts is
proposed. Its main objective is the compact representation of bundles as paths following
points of maximum density (Maximum Density Paths - MDPs). In this way, the efficient
comparison of WM tracts across a population can be performed. MDPs are represented
by vector valued functions. The authors show that MDP representation reveals important
parts of WM structure and considerably reduces the problem dimensionality. The approach
of [Prasad et al. (2014)] is based on a set of prior knowledge from an atlas, which defines
ROIs. In this context, fiber bundle clustering reduces to measuring the intersection of
fibers with the ROI atlas. WM structures are represented as three-dimensional curves,
which, in their turn, represent paths among the most influential regions in tractography.
Shape matching among MDPs is achieved using a geodesic curve registration. The adopted
clustering method is quite simple. In particular, a fiber intersection score is determined
by computing the number of ROI voxels that intersect with the fiber tract. This score is
used to select fibers belonging to a ROI and, thus, WM tracts.

The approach presented in [Zhang et al. (2008)] consists of two steps. During the first
one, clustering is adopted to determine the best proximity measures, i.e., those measures
best separating the involved WM structures. This process is supervised by an expert,
who must tune some parameters. At the end of the first step, a template containing

1Here, the notion of “short” depends on the set of atlases to analyze.
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proximity measure thresholds between sets of WM fiber-bundles is generated. The second
step exploits this template to activate a clustering task aimed to select those fibers having
coherent proximity values. Even this step requires the presence of an expert, who tunes
some threshold values to generate the template. The approach of [Zhang et al. (2008)] is
interesting and sophisticated. However, the role played by the expert in tuning activities
is excessive in it. In fact, tuning is performed through a try-and-check activity, which
interactively sets parameters until they correctly separate the involved fiber-bundles. In
this approach, the method for parameter tuning should be as general as possible in such
a way as to avoid the need of re-executing supervision on each new set of data.

Approaches that do not need a priori knowledge are based on specific similarity and
proximity measures in R3 aiming at: (i) grouping in the same subset all fibers having the
same structures; (ii) maximizing the possibility of distinguishing fibers having different
forms. Among these approaches, we cite QuickBundles (QB) [Garyfallidis et al. (2012)].
QB is a simple and fast algorithm that extracts WM fiber-bundles without the need of any
a priori knowledge. It is based on centroids. All the fibers comprised in the neighborhood
of a centroid (whose radius is defined by an operator) are grouped in the same cluster. QB
is certainly fast. However, obtained clusters could not represent anatomically plausible
fiber-bundles.

As it will be clear below, one of the key components of our approach is a new string sim-
ilarity metric, called Semi-Blind Edit Distance (SBED). Therefore, it appears interesting
to have a quick overview to past metrics for string similarity computation.

To the best of our knowledge, no approach facing the same problem considered by
SBED has been presented in the literature. Nevertheless, some variants have been investi-
gated in the past. A very interesting approach facing a variant of the problem considered
by SBED is presented in [Baker (1996)]. This approach computes similarities over pa-
rameterized strings, i.e., strings having some symbols acting as parameters that can be
substituted at no cost. The approach presented in [Hazay et al. (2007)] aims at finding
all the locations in a string s for which there exists a global bijection π mapping a pattern
p into the substring of s that minimizes the Hamming distance. This approach allows
mismatches.

[Apostolico et al. (2007)] considers injective functions, instead of bijective ones. [Baker
(1999)] introduces the notion of p-edit distance. It handles insertions, deletions and exact
p-matches, but it does not handle mismatches. The approach of [Keller et al. (2009)]
extends the one of [Baker (1999)] by requiring the transformation function to have global
validity. However, even in this case, the set of allowed edit operations is limited (for
instance, substitutions are not permitted). [Greco and Terracina (2013)] presents a pre-
liminary approach to a many-to-many mapping function. The approach of [Gawrychowski
and Uznański (2016)] extends the one described in [Baker (1996)] by introducing an order-
preserving matching; in this approach, the number of mismatches is limited to k.

String matching has been also investigated for the clone detection problem, i.e., for
detecting if a code contains two or more cloned parts [Kamiya et al. (2002)]. A problem
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related to this last one, which has been largely investigated in the past, is the Longest
Common Subsequence (LCS) one. It was studied both in the classic version and in the
parameterized one [Gorbenko and Popov (2012),Blin et al. (2012)]. Recently, [Mendivelso
and Pinzón (2015)] presented a detailed survey on parameterized matching, which contains
a review of the corresponding solutions and extensions.

3 Description of the proposed approach

Our approach is aimed to extract White Matter (WM) fiber-bundles from a high num-
ber of streamlines produced by tractographies. To reach its goals, it compares models
provided by experts with clusters of WM fibers generated by itself. Since the fibers to
cluster are in a three-dimensional space, it is extremely difficult to carry our this task
directly. For this reason, an alternative way for fiber representation becomes necessary.

Our approach consists of the following steps:

• Step 1. Given a set of WM fibers, it maps them into a set of strings by applying the
new string-based formalism mentioned in the Introduction.

• Step 2. Given a set of strings representing WM fibers, it applies the new string
dissimilarity metric to construct the Dissimilarity Matrix relative to them. The
generic element D[i, j] of this matrix indicates the dissimilarity degree of the string
representations of the fibers fi and fj .

• Step 3. Given the Dissimilarity Matrix D relative to a set of WM fibers, it ap-
plies several existing clustering methods to D to group the involved WM fibers into
homogeneous clusters.

• Step 4. Given the set of clusters thus obtained, it exploits them to extract and charac-
terize the WM fiber-bundles through a model-based and clustering characterization
technique.

In the following, we describe these steps in all details.

3.1 Representation of WM fibers as strings

The main purpose of this step is to represent a three-dimensional fiber in a different
format, more compatible with clustering. In the past, several ways for representing a three
dimensional line have been proposed. These different representations depend on both the
context and the expected use.

In this chapter, we choose to represent a fiber as a sequence of voxels (volumetric
picture elements), representing, in their turn, values on a grid in a three-dimensional
space. By adopting this guideline, a generic fiber fi ∈ F can be represented as a sequence
fi = (vi1 , vi2 , . . . , vim) of voxels in the three-dimensional space. This sequence is aimed to
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approximate the corresponding three-dimensional line. As a consequence, the number of
voxels representing a fiber is proportional to its length. Therefore, fibers having different
lengths will be represented by a different number of voxels. The position of each voxel in
the three-dimensional space is determined on the basis of the position of the neighboring
voxels.

A color cij is assigned to each voxel vij ∈ fi. This color is determined by the orientation
of vij in the three-dimensional space [Douek et al. (1991)]. Specifically, let pxij (resp., pyij ,
pzij ) be the fraction of information of vij parallel to the x (resp., y, z) axis. A basic color cx

(resp., cy, cz) is associated with the x (resp., y, z) axis. On the basis of the standard code
of colors defined in [Le Bihan et al. (2001)], let cx = red, cy = green and cz = blue. cij
is, then, obtained by the weighted combination of cx, cy and cz. Clearly, adopted weights
are strictly related to the orientation of vij in the three-dimensional space. For instance,
if vij is parallel to the x axis, pxij = 1, pyij = 0, pzij = 0, and, consequently, cij = cx = red.

Thanks to this notation, a fiber fi ∈ F can be expressed as a sequence φi = (ci1 , ci2 , . . . , cim)
of colors. Each element cij corresponds to the color, expressed in the RGB color space, as-
sociated with vij . Thanks to the fiber discretization tasks described above, a fiber fi ∈ F ,
through its representation φi, can be easily translated into a string using a mapping func-
tion:

Υ : RGB → Σ

where |Σ| = s. In our approach, we decided to adopt the algorithm described in [Arvo
(2013)] for implementing Υ. Thanks to it, a fiber fi ∈ F can be expressed as a string in
Σm.

The algorithm for implementing Υ belongs to the family of minimum variance quanti-
zation algorithms [Heckbert (1982)]. Quantization is a technique extensively used in image
processing. It allows the reduction of the number of colors of an image. It clusters pixels
into groups on the basis of the variance among the corresponding pixel values. In this way,
it divides the RGB color cube into several smaller boxes and, then, maps all the colors
falling within each box into the color of its center. In carrying out this task, it exploits
the so-called RGB color cube, which is a three-dimensional array of all the colors that can
be defined in the selected space.

There are two main quantization methods proposed in the literature, namely uniform
quantization and minimum variance quantization (which is the one adopted in our ap-
proach). They differ for the technique used to divide up the RGB color cube. The former
cuts up the color cube into equally-sized boxes; the latter divides the color cube into boxes
of possibly different sizes, on the basis of the distribution of colors in the image.

If the number s of the boxes to obtain is an input parameter, the algorithm auto-
matically determines the position of boxes on the basis of the variance of the color data.
Once the image is partitioned into s optimally located boxes, the pixels within each box
are mapped to the pixel at the center of that box. Finally, a character is associated with
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each box center. In this way, an alphabet Σ, representing all the s boxes generated by the
algorithm, is defined.

At the end of all the activities described above, a set F = {f1, f2, . . . , fn} of fibers can
be represented as a set T = {t1, t2, . . . , tn} of strings. Specifically, each element ti ∈ T is
a string of Σm corresponding to fi.

To formally express these transformations, we introduce a function τ(·). First, it
performs the transformation of fi in a sequence of voxels; then, it associates a color with
each voxel; finally, it transforms each voxel into a string. In the following, we use the
notation ti = τ(fi) to represent the string ti that the function τ(·) returns when it takes
fi in input. The length of ti is equal to the number of voxels exploited to represent fi.
As a consequence, if two fibers fi and fj have different lengths in the three-dimensional
space, ti and tj have different lengths.

Algorithm Fibers-To-Strings (see Algorithm 1) describes the transformation of a
set F of fibers into a set T of strings.

It receives a set F = {f1, f2, . . . , fn} of WM fibers to transform, the cardinality s of
the alphabet Σ which strings belong to, the size vxS of voxels in the three-dimensional
space, and the size stS of the fiber step used by tractography algorithm. It returns a set
T = {t1, t2, . . . , tn} of strings representing the fibers in F .

The algorithm starts by computing the Step Rate stR, a parameter necessary for
normalization in the next steps. For this purpose, it sets stR as the ratio of the step size
stS of tractography to the norm of vxS. This computation of the norm of vxS is necessary
because vxS is three-dimensional whereas stS is scalar. As a consequence, to perform the
ratio, a scalar must be derived from vxS, representing it.

After the computation of stR, Fibers-To-Strings sets T to empty. Then, for each
fiber fi ∈ F , it performs some tasks devoted to obtain a string ti over the alphabet Σ
corresponding to fi.

Specifically, ti is initially empty. Then, on the basis of stS, a set Pi = {fi0 , fi1 , . . . , fiν}
of three-dimensional points representing fi are determined.

For each point fij , 0 ≤ j ≤ ν − 1, of Pi, Fibers-To-Strings performs two tasks,
namely:

• It determines the difference between fij and fij+1 , which indicates the direction of
the corresponding voxel in the three-dimensional space. Then, it normalizes this
difference by dividing it by stR; let pi = (pxi , p

y
i , p

z
i ) be the corresponding point in

the three-dimensional space.

• It calls the function Υ, illustrated above, for transforming the point pi in a character
of the alphabet Σ. This character is then concatenated to ti. The symbol ⊕ denotes
string concatenation.

Once all the points fij , 0 ≤ j ≤ ν − 1, of Pi have been processed, and ti is complete,
ti is added to T .
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Input : a set F = {f1, f2, . . . , fn} of fibers
the cardinality s of the alphabet Σ
the size vxS of voxels in the three-dimensional space
the size stS of the tractography step

Output: a set T = {t1, t2, . . . , tn} of strings
begin

stR = stS
norm(vxS) ;

T = ∅;
foreach fi ∈ F do

ti = ∅;
Pi = compute_representative(fi);
for 0 ≤ j < |Pi| do

(pxi , p
y
i , p

z
i ) =

(
fx

ij
−fx

ij+1
stR

,
f

y
ij
−fy

ij+1
stR

,
fz

ij
−fz

ij+1
stR

)
;

ti = t⊕Υ(pi, s);
end
T = T ∪ ti;

end
return T ;

end

Algorithm 1: Algorithm Fibers-To-Strings

Fibers-To-Strings terminates when all the fibers of F have been processed and,
therefore, T is complete. It returns T as output.

3.2 Construction of the Dissimilarity Matrix

The purpose of Step 2 is the construction of the Dissimilarity Matrix D associated with
F . D is a n×nmatrix; its generic element dij = D[i, j] is a real number in the interval [0, 1]
and indicates the dissimilarity degree of the string representations ti of fi and tj of fj . To
obtain the value of dij , it is necessary to apply a string-based dissimilarity metric on ti and
tj . With regard to this issue, we point out that, in our application context, classical string-
based dissimilarity metrics (like the Hamming or the Levenshtein distance [Levenshtein
(1965)]), which measure the minimum number of edit operations necessary to transform
the first string into the second one, would not work properly. In fact, they are based on
the assumption that one-to-one correspondences between the symbols of the two strings
are implicitly determined simply by identity.

Actually, in our scenario, the adoption of only one-to-one correspondences would be
reductive and could lead to either imprecise or wrong results. In fact, in our application
context, there could be different symbols expressing the same or similar concepts. Think,
for instance, of two symbols, one representing a horizontal voxel and the other denoting a
slightly oblique one, derived from an approximation during discretization: an error could
arise if they are considered different. Analogously, it could be extremely important to
be able to match a horizontal voxel with both another horizontal voxel and/or a slightly
oblique one. Clearly, to avoid over-matchings, the number of these exceptions should be
limited. Finally, there may exist pairs of symbols (e.g., a horizontal and a vertical voxel)
that clearly should not match. In this case, it would be necessary to constrain invalid
matches.
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To consider and, hopefully, generalize the previous observations, we have defined a
new string-based dissimilarity metric, called SBED (Semi Blind Edit Distance). It is
aimed to compute the minimum distance between two strings, provided that finding the
optimal matching schema, under a set of constraints, is part of the problem. Therefore,
the dissimilarity D[i, j] between ti = τ(fi) and tj = τ(fj) is obtained by computing their
SBED distance.

Our SBED metric takes a pair of ordered sequences of symbols (strings) in input.
These play the general role of parameters, i.e., their matching with other symbols is not
necessarily regulated by symbol identity.

Let Π1 and Π2 be two (possibly disjoint) alphabets of parameters. Throughout the
following sections, we assume that two strings s1 over Π1 and s2 over Π2 are given.

The length of the string si (i ∈ {1, 2}), i.e., the number of symbols in it, will be denoted
by len(si). Furthermore, for each position 1 ≤ j ≤ len(si), the j-th symbol of si will be
identified by si[j].

Let − be a symbol not included in Π1 ∪Π2. Then, a string s̄i over Π1 ∪Π2 ∪ {−} is a
transposition of si if it can be obtained from si by deleting all the occurrences of −. The
set of all the possible transpositions of si is denoted by T R(si).

An alignment of the strings s1 and s2 is a pair 〈s̄1, s̄2〉, where s̄1 ∈ T R(s1), s̄2 ∈
T R(s2) and len(s̄1) = len(s̄2). Here, − is meant to denote an insertion/deletion operation
performed on s1 or s2.

Given an alphabet Π and an integer π such that 0 < π ≤ |Π|, a π-partition is a partition
Φπ of Π such that 0 < |φv| ≤ π, for each φv ∈ Φπ.

Given two alphabets Π1 and Π2 and two integers π1 and π2, a 〈π1, π2〉-matching schema
is a function M〈π1,π2〉 : Φπ1

1 × Φπ2
2 → {true, false}, where Φπi

i (i ∈ {1, 2}) is a πi-partition
of Πi and, for each φv ∈ Φπ1

1 (resp., φw ∈ Φπ2
2 ), there is at most one φw ∈ Φπ2

2 (resp., φv ∈
Φπ1

1 ) such that M(φv, φw) = true. This means that all the symbols in φv match with all
the ones in φw. M(φv, φw) = false indicates that all the symbols in φv mismatch with all
the ones in φw.

A constraint χ associated with a matching schema M〈π1,π2〉 is a set of unordered pairs
of symbols (ci, cj), such that ci ∈ Π1, cj ∈ Π2 and, for each (ci, cj) ∈ χ, there exist no pair
(φv, φw), φv ∈ Φ1

π1 , φw ∈ Φ2
π2 , having ci ∈ φ1, cj ∈ φ2 and M(φ1, φ2) = true.

A constrained matching schema is represented by M〈π1,π2,χ〉 only if χ 6= ∅.
Let 〈s̄1, s̄2〉 be an alignment for s1 and s2, let M〈π1,π2,χ〉 be a 〈π1, π2, χ〉-matching

schema over π-partitions Φπ1
1 and Φπ2

2 and constraints χ, and let j be a position with
1 ≤ j ≤ len(s̄1) = len(s̄2). We say that 〈s̄1, s̄2〉 has a match at j if either:

• s1[j] ∈ Π1, s2[j] ∈ Π2 and s1[j] = s2[j], or

• s1[j] ∈ φv, s2[j] ∈ φw, φv ∈ Φπ1
1 , φw ∈ Φπ2

2 and M〈π1,π2,χ〉(φv, φw) = true.

The distance between s̄1 and s̄2 under M〈π1,π2,χ〉 is the number of positions at which
〈s̄1, s̄2〉 does not have a match.
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Given two integers π1 and π2 such that 0 < π1 ≤ |Π2| and 0 < π2 ≤ |Π1|, the 〈π1, π2, χ〉-
edit distance between s1 and s2 (L〈π1,π2,χ〉(s1, s2) for short) is the minimum distance that
can be obtained with any 〈π1, π2, χ〉-matching schema and any alignment 〈s̄1, s̄2〉.

Observe that, in order to properly compute L〈π1,π2,χ〉(s1, s2), several components play
a crucial role, namely:

• π1 and π2, which determine the (maximum) size of each partition;

• π-partitions Φπ1
1 and Φπ2

2 ; in fact there can be many π-partitions for the same set
Π1 (resp., Π2) of π1 (resp., π2);

• matching schemas M〈π1,π2,χ〉, which determine the way partitions of different sets
can be combined via matching;

• alignments; in fact there can be many possible alignments between two strings.

The general problem of computing L〈π1,π2,χ〉(s1, s2) is NP-Complete. To provide a
feasible solution, we designed heuristics that iteratively search for the optimal matching
schema. It is explained in detail in [Cauteruccio et al. (2015),Stamile et al. (2015)a].

The following example provides a practical explanation of the previous concepts.

Example 1. Let s1 = AAABCCDCAA and s2 = EEFGHGGFHH, which determines Π1 =
{A,B,C,D} and Π2 = {E,F,G,H}.

For π1 = π2 = 1, the best alignment 〈s̄1, s̄2〉 that can be computed is obtained by
matching {A}-{E}, {B}-{G}, {C}-{H}, and {D}-{F}. The aligment:

s1 : AAABCCDDCAA→ AAABCCDDCAA

s2 : EEFGHGGFHH → EEFGHGGFH-H

** ** **

gives L〈1,1〉(s1, s2) = 5.
Observe that the approach works properly even if Π1 ∩ Π2 = ∅ and if the input strings

are of different lengths.
If we set π1 = π2 = 2, the best alignment is the one obtained by matching {B,A}-{E,H},

and {C,D}-{G,F}, namely:

s1 : AAABCCDDCAA→ AAABCCDDCAA

s2 : EEFGHGGFHH → -EEFGHGGFHH

** * *****

which gives L〈2,2〉(s1, s2) = 3.
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Now, suppose to introduce the constraint χ = {〈A, E〉}. For π1 = π2 = 1, the best
alignment 〈s̄1, s̄2〉 is the following:

s1 : AAABCCDDCAA→ AAABC-CDDCAA

s2 : EEFGHGGFHH → –EEFGHGGFHH

** *****

which still gives L〈1,1,χ〉(s1, s2) = 5 but where A and E do not match anymore. Optimal
matchings are, in fact, {A}-{H}, {B}-{E}, {C}-{F}, and {D}-{G}.

We are, now, able to formally express how the Dissimilarity Matrix is computed. In
particular, given a set F = {f1, f2, . . . , fn} of WM fibers and the corresponding set T =
{t1, t2, . . . , tn} of strings, such that ti = τ(fi), given two integers π1 and π2 and a constraint
χ, the generic element D[i, j] of the Dissimilarity Matrix D associated with F is computed
as:

D[i, j] = L〈π1,π2,χ〉(ti, tj)

Observations

At the end of the presentation of this step, some observations about the SBED metric
are in order.

First, since the possible edit operations allowed during the computation of L〈π1,π2,χ〉(s1, s2)
are insertions, deletions and substitutions, SBED allows the comparison of strings of dif-
ferent lengths. As for this specific case, not only our approach works properly even in
presence of fibers of different lengths, but also it correctly returns a high dissimilarity
value, in case of very different lengths, because a high number of insertions/deletions will
be necessary. As a consequence of this fact, for instance, our approach is capable of rec-
ognizing as dissimilar two horizontal straight fibers having very different lengths, in spite
of their identical direction in the three-dimensional space.

As a further consideration, we observe that spatial metrics require a fine-grained ex-
amination of the spatial coordinates of involved fibers. In fact, they either consider the
Euclidean distance between fibers or require a fine-tuned registration of these last ones
before starting distance computation. Euclidean-distance-based approaches may fail to
identify similar fibers within thick bundles. In fact, if the proximity threshold is high,
they may put together fibers with very different shapes; on the other side, if the prox-
imity threshold is low, they may put in different bundles fibers approximatively having
the same shape. Registration-based approaches are strongly dependent on the accuracy
of the registration phase, which becomes a critical step. Our metric does not require any
registration phase for comparing the fibers of a certain brain, and does not depend on
spatial coordinates, since it exploits directionality information only. As a consequence,
when applied to compute fiber dissimilarity, it is capable of overcoming the drawbacks of
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Input : a set F = {f1, f2, . . . , fn} of fibers
Output: a set Cl = {cl1, cl2, . . . , clk} of clusters

the set Γ = {γ1, γ2, . . . , γk} of the medoids of the clusters of Cl
begin

foreach pair (fi, fj) s.t. fi ∈ F, fj ∈ F do
D[i, j] = L〈π1,π2,χ〉(τ(fi), τ(fj));

end
Cl = cluster(F,D, κ);
foreach clj ∈ Cl do

Cl=(Cl \ clj) ∪ split(clj);
end
Γ = computeMedoids(Cl);
return Cl,Γ

end

Algorithm 2: Algorithm WM-Fiber-Clusters

the two approach families mentioned above. As an example, fibers in a thick bundle will
be all considered similar, since they approximatively share the same shape.

A further positive feature of SBED w.r.t. spatial metrics consists in its capability of
avoiding the matching of two symbols representing totally different orientations (think,
for instance, of a horizontal voxel and a strictly vertical one), which, again, is useful to
discriminate similarities and dissimilarities of fibers despite their proximity in the three-
dimensional space.

Last, but not the least, our SBED-based approach is capable of supporting both expert
and inexpert people, without the need of information regarding spatial locations.

3.3 Clustering of WM fibers

This step is aimed to pre-process F by applying a clustering algorithm on it in such a
way as to group together anatomically homogeneous fibers. Thanks to the Dissimilarity
Matrix D, computed during Step 2, the problem of clustering three-dimensional curves
can be reduced to the one of clustering a set of strings, which can be faced by means of
one of the many classical clustering algorithms already proposed in the literature. For
instance, some clustering algorithms that can be easily incorporated in our approach are
k-means [MacQueen et al. (1967)], k-medoids [Kaufman and Rousseeuw (1987)], and
Expectation Maximization - EM [Dempster et al. (1977)].

Algorithm WM-Fiber-Clusters (see Algorithm 2) describes the clustering task of
our approach. It receives a set F = {f1, f2, . . . , fn} of WM fibers and returns a set
Cl = {cl1, cl2, . . . , clk} of clusters and the set Γ = {γ1, γ2, . . . , γk} of the corresponding
medoids2.

WM-Fiber-Clusters exploits the function τ(·), described in Section 3.1, to imple-
ment Step 1 of our approach, whereas it uses the first foreach cycle to implement Step
2.

The clustering of the fibers of F is carried out by the function cluster, which im-
2Recall that the medoid γ of a cluster cl is the element of cl “least dissimilar” from all the other ones.

Differently from other cluster representative elements (like mean), medoid is robust to noise and can be
always determined, even when the context of interest does not support Euclidean distance.
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plements the adopted clustering algorithm. The parameter κ is necessary if cluster

implements a clustering algorithm requiring the number κ of desired clusters in input.
The output of cluster is a set Cl = {cl1, cl2, . . . , clκ} of clusters; specifically, the cluster
clj ∈ Cl contains an anatomically homogeneous subset clj = {fj1 , fj2 , . . . , fjl} of the fibers
of F .

The clusters of Cl obtained at the end of this step may still have a problem. Indeed, as
pointed out in Section 3.2, SBED does not consider spatial information. As a consequence,
it may happen that a cluster clj ∈ Cl contains homogeneous fibers (i.e., all with similar
shapes), but some of them actually distant in space (for instance, in different hemispheres).
To face this issue, in our approach, each cluster clj undergoes a splitting phase aimed only
to separate fibers very far in space. As far as this task is concerned, we point out that: (i)
it does not require registration, because it compares fibers of the same brain; (ii) it is far
less sensitive to space coordinates than purely spatial methods, since it is devoted to just
identify very far fiber sets (for instance, fibers with homogeneous shape but belonging to
different hemispheres). Function split carries out this task.

Finally, function computeMedoids returns the set Γ = {γ1, γ2, . . . , γk} of the medoids
of the clusters of Cl. The medoid γj ∈ Γ is used as the representative of the cluster
clj ∈ Cl and is exploited to speed up the model characterization phase in Step 4. In
fact, as it will be clear in the next section, the computation of clusters can be considered
as a pre-processing phase of our fiber-bundle extraction and characterization technique.
This phase must be performed once and for all for each brain. As a consequence, once
it has been carried out, the derivation of the fiber-bundles associated with each model
ψl ∈ Ψ requires the examination of only k medoids, instead of the n available WM fibers.
Interestingly, k is, generally, orders of magnitude smaller than n.

3.4 Model-based WM fiber-bundles extraction and characterization

Once clusters and their medoids are available, our approach can perform the fiber-
bundle extraction and characterization activities. For this purpose, it carries out Step 4,
which, essentially, consists of the Algorithm WM-Fiber-Bundles (see Algorithm 3).

This algorithm receives a set Cl = {cl1, cl2, . . . , clk} of clusters, the set Γ = {γ1, γ2, . . . , γk}
of the medoids of the clusters of Cl, and a set Ψ = {ψ1, ψ2, . . . , ψq} of models. Each model
ψl ∈ Ψ represents the approximate shape of a fiber-bundle of interest. It could be ob-
tained in two different ways, namely: (i) by exploiting a spline curve to draw the profile of
the fiber-bundle of interest; (ii) by importing the mean-line profile of the fiber-bundle of
interest from an atlas of pre-labeled fiber-bundles. Interestingly, the approximate model
adopted to extract a specific fiber-bundle may be adopted also to extract the same fiber-
bundle from other images characterized by different resolutions, and possibly acquired
from other subjects. Indeed, the representation of our model is based on its shape and is
independent of its spatial location.

As previously pointed out, our approach does not require a complex registration phase.
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Input : a set Cl = {cl1, cl2, . . . , clk} of clusters
a set Γ = {γ1, γ2, . . . , γk} of the medoids of the clusters of Cl
a set Ψ = {ψ1, ψ2, . . . , ψq} of models

Output: a set Θ = {θ1, θ2, . . . , θq} of bundles corresponding to Ψ
begin

Θ = ∅;
foreach ψl ∈ Ψ do

∆l = ∅;
foreach γj ∈ Γ do

∆l = ∆l ∪ L〈π1,π2,χ〉(τ(ψl), τ(γj));
end
µ = argmin(∆l);
Θ = Θ ∪ clµ;

end
return Θ

end

Algorithm 3: Algorithm WM-Fiber-Bundles

In fact, it only needs a smooth alignment of the reference axes of both the models and
the brain. This because SBED disallows the matching of lines having completely different
directions (such as a straight horizontal line and a straight vertical one), but allows the
matching of lines with slightly different directions (such as a horizontal line and a slightly
oblique one).

The output of WM-Fiber-Bundles is a set Θ = {θ1, θ2, . . . , θq} of derived fiber-
bundles such that each θl ∈ Θ contains a subset of the fibers of F .

In more detail, for each model ψl ∈ Ψ, WM-Fiber-Bundles generates the corre-
sponding fiber-bundle by associating the most appropriate cluster of Cl with it. For this
purpose, it constructs the set ∆l of the distances between each medoid of Γ and ψl. In
order to compute the distance between ψl and a medoid γj ∈ Γ, WM-Fiber-Bundles
transforms both of them into two strings sl = τ(ψl) and sj = τ(γj) by applying the func-
tion τ(·), described in Section 3.1. Then, it computes the SBED distance between sl and
sj . After this, it determines the minimum value δµ of ∆l. Clearly, δµ corresponds to a
medoid γµ ∈ Γ and to a cluster clµ ∈ Cl. Finally, it identifies clµ as the cluster of WM
fibers having the closest structure and features to ψl and returns clµ as the fiber-bundle
corresponding to ψl.

We point out, again, that, thanks to the pre-processing clustering phase, this step
requires the examination of only k medoids, instead of the n available WM fibers. This
feature, and the consequent efficiency of our approach, make it possible to easily apply
the same models to different subjects (and, consequently, to the results of different trac-
tographies) in a reasonable time. This way, it is possible, for instance, to compare the
fiber-bundles of different people, such as healthy and ill patients.

4 Experiments

This section is devoted to present our experimental campaign conceived to test our
approach. It is organized as follows: first we test the pre-processing phase (Section 4.1)
and our SBED metric (Section 4.2). Then, we test the speed of our approach (Section
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Figure 1.1: The virtual phantom used for our experimental campaign

4.3). For this purpose, we exploit suitable virtual phantoms. Finally, we test our approach
on the whole for a real case study (Section 4.4).

4.1 Test of the pre-processing phase

As previously pointed out, the pre-processing phase of our approach includes the string-
based representation and the clustering of available fibers. To validate this phase (mea-
suring its effectiveness and efficiency), we performed several tests on a virtual phantom
created by the phantom generator described in [Caruyer et al. (2014)]. Figure 1.1 graphi-
cally displays this phantom. We asked an expert to manually annotate the corresponding
data. Annotations performed by him are represented in the same figure; in particular, a
number is associated with each bundle. As shown in Figure 1.1, the expert defined four
fiber-bundles, namely: (1-2) diagonal, (3) vertical, and (4) horizontal bundles, which were
used as a gold standard. Indeed, our validation task required a ground truth and, in our
opinion, the best possible ground truth was represented by a set of fiber-bundles manually
annotated by an expert.

To perform our test activity, we compared the results of four approaches, namely:
(i) our approach, with the usage of k-means as clustering algorithm in Step 3; (ii) our
approach, with the exploitation of EM as clustering algorithm; (iii) QuickBundles, applied
directly on the phantom; (iv) a baseline feature-based k-means, applied directly on the
string-based representation of the phantom.

Whenever necessary (in particular, for cases (i), (ii), and (iv)), fibers were transformed
into strings by applying the technique presented in Section 3.1; each fiber turned out to
be characterized by 30 voxels. We set the cardinality of the string alphabet to 6. As for
cases (i) and (iv), we set the number of required clusters (i.e., k) to 4. As for cases (i)
and (ii), we set π1 = 1 and π2 = 1 for SBED and specified a constraint set χ aimed to
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Precision Recall F-measure Overall
Our approach - k-means 0.72 0.98 0.83 0.60

Our approach - EM 0.77 0.89 0.83 0.63
QuickBundles 0.91 0.55 0.69 0.50

K-means Baseline 0.44 0.44 0.44 -0.12

Table 1.1: Results for Cluster 1

Precision Recall F-measure Overall
Our approach - k-means 0.75 0.97 0.85 0.65

Our approach - EM 0.76 0.92 0.83 0.63
QuickBundles 0.94 0.51 0.66 0.48

K-means Baseline 0.47 0.41 0.44 -0.05

Table 1.2: Results for Cluster 2

Precision Recall F-measure Overall
Our approach - k-means 0.92 0.32 0.48 0.29

Our approach - EM 0.70 0.51 0.59 0.30
QuickBundles 0.51 0.78 0.62 0.04

K-means Baseline 0.48 0.35 0.40 -0.03

Table 1.3: Results for Cluster 3

Precision Recall F-measure Overall
Our approach - k-means 0.93 0.99 0.96 0.92

Our approach - EM 0.98 0.94 0.96 0.92
QuickBundles 0.82 0.99 0.90 0.78

K-means Baseline 0.33 0.64 0.44 -0.63

Table 1.4: Results for Cluster 4

avoid, for instance, matches between horizontal and vertical voxels. As for case (iii), we
run QuickBundles with a threshold value equal to 6mm, which empirically was proved to
produce the best results. Finally, as for (iv), we considered each of the 30 voxels of a fiber as
a feature of the fiber itself. Therefore, we defined the input of the feature-based clustering
algorithm as a set of feature vectors wi = (xi1 , . . . , xim), where each wi corresponded to a
fiber fi and each xij corresponded to a voxel vij of fi. The approach delineated by (iv)
can be used as a baseline of comparison because the only pre-processing task it requires
consists of the transformation of fibers into strings. Therefore, it is lightweight and fast,
and, if it provided satisfying results, it should be preferred to the other ones.

To evaluate the accuracy of all the four approaches, we compared the results obtained
by them with the expert’s annotation in such a way as to compute Precision, Recall, F-
measure and Overall [Powers (2011)]. Obtained results are reported in Tables 1.1 – 1.4.
Furthermore, qualitative and graphical representations of the clusters computed by cases
(i) and (iii) are shown in Figures 1.2 and 1.3, respectively.

From the analysis of Tables 1.1 – 1.4, we can draw the following conclusions:

• The baseline approach is light and quick; however, its accuracy is so low to make it
inapplicable in our context. In more detail, the values of Precision, Recall, F-measure
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Figure 1.2: The clusters generated by our approach with the adoption of k-means as
clustering algorithm

Figure 1.3: The clusters generated by QuickBundles

and Overall returned by it are worse than the ones of all the other approaches and,
in any case, are unsatisfying for all clusters.

• QuickBundles guarantees a very high Precision only for Clusters 1 and 2. As for these
clusters, it obtains the best Precision among the four approaches into consideration.
However, this result is obtained at the price of having a very low Recall. This
behavior is caused by the fact that QuickBundles ignores information about voxel
directionality and considers only voxel proximity. The same reasons represent the
cause of the low value of Precision obtained by QuickBundles for Cluster 3. By
contrast, QuickBundles shows a high value of Recall for this last cluster, which, if
related with the low value of Recall for Clusters 1 and 2, testifies the difficulty of
this approach to distinguish among bundles near in space.

• If we focus on cases (i) and (ii), which correspond to two versions of our approach,
we cannot observe a substantial difference between the results obtained by applying
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k-means and those returned by adopting EM. This fact represents a proof of the
good robustness degree characterizing SBED.

• Results obtained for all the clusters testify that the Precision of our approach is gen-
erally higher than the one of the other approaches. At the same time, our approach
can guarantee a satisfying level of completeness testified by a satisfying value of Re-
call. The satisfying results of our approach are further confirmed by the analysis of
F-measure and Overall. In fact, QuickBundles returns a higher F-measure than the
one obtained by our approach only for Cluster 3. However, for this cluster, as shown
above, the Precision of QuickBundles is unacceptable, and this fact produces a very
low value of Overall.

Summarizing, the previous test shows that our approach can guarantee a good balance
between Precision and Recall in the extraction and characterization of fiber bundles when
directionality information plays a key role.

4.2 Test of the SBED metric

In this test, we validated our approach’s capability of characterizing WM fiber-bundles.
The input dataset consisted of a virtual diffusion MR phantom, generated by Phan-
tomas [Caruyer et al. (2014)]. This phantom accurately simulated the brain complexity
with the fiber geometry used in the 2nd HARDI Reconstruction Challenge (ISBI 2013).
The ground truth was obtained by requiring our expert to manually segment all the fiber-
bundles in the phantom. In this way, the approximate shapes of these fiber-bundles were
defined and 17 models were identified. These are illustrated in Figure 1.4. In this figure,
each bundle is colored on the basis of the standard code of colors for tractography defined
in [Le Bihan et al. (2001)] and described in Section 3.1.

To perform our validation, we measured the distance between each of the 17 models and
the fibers in the phantom. To carry out this task, we applied both SBED and the classic
edit distance. We compared each obtained result with the ground truth and computed
Precision, Recall, F-measure and Overall [Powers (2011)] for both SBED and the edit
distance. In Table 1.5, we illustrate the results obtained for each model, whereas, in Table
1.6, we present the average values of Precision, Recall, F-measure and Overall for the two
distances. Before illustrating obtained results, we must preliminarily observe that, in our
reference context, Precision is more important than Recall because the number of fibers
generated by tractography algorithms usually does not reflect the number of real fibers of
a human brain.

From the analysis of obtained results, it is possible to draw the following conclusions:

• SBED reaches a very high average Precision (i.e., 78.85%).

• It also reaches a satisfying average Recall (i.e., 36.37%) with peaks of 92%.

Claudio STAMILE 63



CHAPTER 1. A STRING-BASED FORMALISM FOR FIBER-BUNDLE EXTRACTION

Figure 1.4: The 17 bundles identified in the diffusion MR phantom adopted in our test

• The average Precision, Recall, F-measure and Overall of SBED are higher than the
ones of the edit distance (i.e., +27.60%, +5.70%, +9.69%, +17.66%, respectively).

• There are few models (i.e., 3 and 17), where both SBED and the edit distance do
not work properly. These cases need deep analyses in the future, which, probably,
will lead to perform some corrections on both approaches.

All the previous results allow us to conclude that the adoption of the new metric
SBED (which, as specified above, represents one of the main contributions of this chapter)
represents a step forward in the computation of string similarity and dissimilarity.
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Model

1 2 3 4 5 6 7 8

SBED
Precision 1 1 0.2081 0.4069 1 0.5194 0.9412 0.9474
Recall 0.0220 0.1111 0.7701 0.6344 0.4886 0.6505 0.3556 0.3462
F-measure 0.0430 0.2000 0.3277 0.4958 0.6565 0.5776 0.5162 0.5071
Overall 0.0220 0.1111 −2.1604 −0.2903 0.4886 0.0486 0.3334 0.3270

Edit
Precision 0 0 0.3602 0.4143 0 0.5276 1 1
Recall 0 0 0.7701 0.6236 0 0.6505 0.3556 0.3270
F-measure NULL NULL 0.4908 0.4978 NULL 0.5826 0.5246 0.4928
Overall NULL NULL −0.5978 −0.2580 NULL 0.0681 0.3556 0.3270

9 10 11 12 13 14 15 16 17

SBED
Precision 0.7333 0.6689 1 1 1 1 0.9797 1 0
Recall 0.9245 0.6689 0.0577 0.0198 0.1154 0.0155 0.7472 0.2553 0
F-measure 0.8179 0.6689 0.1091 0.0388 0.2069 0.0305 0.8478 0.4068 NULL
Overall 0.5883 0.3378 0.0577 0.0198 0, 1154 0.0155 0.7317 0.2553 NULL

Edit
Precision 0.7333 0.6972 1 0 0 1 0.9797 1 0
Recall 0.9245 0.6689 0.0192 0 0 0.0199 0.7472 0.1064 0.0007
F-measure 0.8179 0.6828 0.0377 NULL NULL 0.0390 0.8478 0.1923 NULL
Overall 0.5883 0.3784 0.0192 NULL NULL 0.0199 0.7317 0.1064 NULL

Table 1.5: Results obtained by applying SBED and the edit distance on the 17 models
into consideration

Avg. Precision Avg. Recall Avg. F-measure Avg. Overall
SBED 0.7885 0.3637 0.4032 0.3346

Edit Distance 0.5124 0.3067 0.3063 0.1581

Table 1.6: Comparison of the average Precision, Recall, F-measure and Overall obtained
by applying SBED and the edit distance

4.3 Speed test of the string-based algorithm

In carrying out this test, we started from the following considerations: (i) the pre-
processing phase of our approach must be carried out once and for all for each brain; as a
consequence, it is possible to exclude it from our test; (ii) one of the quickest approaches
for the extraction of WM fiber-bundles is QuickBundles; as a consequence, it appears
reasonable to compare our approach with it.

We applied both our approach (after the pre-processing phase) and QuickBundles to
the virtual diffusion MR phantoms shown in Figures 1.1 and 1.4.

At the end of these tests, we obtained that, on average, our approach showed to be
2.54 times slower than QuickBundles. For instance, to process the phantom of Figure 1.4,
QuickBundles took 0.87 seconds, whereas our approach needed 2.21 seconds.

However, in our opinion, with regard to these results, two considerations are in order.
In fact: (i) even if slower than QuickBundles, our approach show a quickness acceptable for
real cases; (ii) as previously pointed out, QuickBundles has an important limitation in that
it is incapable of distinguishing among bundles near in space; our approach overcomes this
limitation, as testified by the higher values of accuracy measures obtained in the previous
tests.

As a consequence, it appears reasonable to partially sacrifice quickness in favor of
accuracy (and, therefore, to choose our approach instead of QuickBundles) in all those
cases in which the accuracy of results is the most important feature.
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4.4 Application on a control subject

Till now, we carried out our tests on virtual phantoms. Now, it is time to test our
approach as a whole and on a real case. For carrying out this task, we required the
collaboration of a healthy volunteer, on whom our approach could have been applied.
This volunteer underwent a MR examination on a 3 Teslas Siemens Prisma MR System
(64 channels head-coil). Diffusion protocol consisted on the acquisition of 100 slices in
the AC-PC plane, TR/TE = 13700/69 ms, FOV = 160× 160, with a spatial resolution of
1.5 mm3 along 45 gradient directions (b = 3000 s.mm−2). The Orientation Distribution
Function (ODF) and the probabilistic tractography were computed using the algorithms
of MRtrix [Tournier et al. (2012)].

We required our expert to draw approximate shapes in such a way as to extract two
fiber bundles. These were Corpus Callosum (CC) forceps minor - Figure 1.5(a) - and right
Cortico-Spinal Tract (CST) - Figure 1.6(a).

To carry out our validation task, first we transformed the available tractography fibers
into strings. Then, we computed the Dissimilarity Matrix and performed the clustering
activity (in particular, we chose EM as clustering algorithm). Finally, we carried out the
extraction of fiber-bundles and, next, their characterization.

The extracted fibers are shown in Figure 1.5(b) and 1.6(b). An anatomical analysis of
these figures is already sufficient to verify that our approach was capable of well extracting
both forceps minor of CC (Figure 1.5(b)) and right CST (Figure 1.6(b)).

5 Discussion

After having described our approach, we want to point out that it can be easily ex-
tended from fiber-bundle extraction and characterization to several other contexts in which
it is necessary to perform multi-dimensional (and, more in general, multi-view) clustering
and characterization activities and/or in tasks requiring the integration of data belonging
to different domains. In fact, it is sufficient to associate a color with each axis of the cor-
responding multi-dimensional domain to suitably color the corresponding voxel, and, after
all voxels have been colored, to suitably discretize the corresponding color representation.

For instance, our approach can be adopted in all those biomedical contexts in which
it is necessary to perform multi-dimensional (and, more in general, multi-view) clustering
and characterization activities. Moreover, it can be adopted in those contexts someway
requiring a multi-view clustering and a possible model-guided characterization of obtained
clusters. As an example, in the clinical observation of the vital parameters of a patient
[Ordóñez et al. (2008)], it is possible to simultaneously consider several measures, such as
electrocardiogram, temperature, respiratory rate, etc. Thanks to our approach, all these
measures can be analyzed simultaneously and compared in such a way as to evidence
possible correlations.

Furthermore, our approach could be adopted also in contexts very different from the
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Figure 1.5: a. Approximate shape of Corpus Callosum (CC) and its axis of symmetry
(black dotted line) drew by the operator; b. Extracted forcep minor of CC fibers (green)

biomedical ones, whenever multi-view clustering and characterization tasks must be car-
ried out. Think, for instance, of the analysis of air flows or of weather perturbation in
meteorology or to the discovery of hidden correlations in multi-sensor (and possibly het-
erogeneous) data streams related to a unique phenomenon.

Finally, the general philosophy underlying our approach can be extended to other
multi-view data applications. As an example, the search of frequent structures in a multi-
dimensional space can be reduced to the search of frequent patterns in a set of strings. An
analogous consideration holds for the search of specific structures in a multi-dimensional
space.
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Figure 1.6: a. Approximate shape of Cortico-Spinal Tract (CST) and its axis of symmetry
(black dotted line) drew by the operator; b. Extracted right CST fibers (green)

6 Conclusion

In this chapter, we have proposed a string-based approach to extracting and charac-
terizing WM fiber-bundles. Our approach exploits a new string-based formalism, allowing
an alternative representation of WM fibers, a new string similarity metric, a WM fiber
clustering technique and a new model-based characterization algorithm. We have also
collocated our approach in the context of related literature and we have performed an
experimental campaign to test it.

Our approach overcomes different limitations of the related ones proposed in the past.
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For instance, it allows a better integration of a-priori information provided by a neu-
roanatomist (which is not possible in QuickBundles). Indeed, the usage of a string-based
model, representing the shape of a particular fiber-bundle, allows an easy extraction of
just those fibers having the same structure as the provided model.

The key ideas of our approach can be applied in many other contexts, even very far
from the biomedical ones. In Section 5, we have discussed some of these contexts, which
we consider particularly interesting. As for future work, we plan to explore this possibility
and to possibly define some approaches that apply the leading ideas presented in this
chapter in the research scenarios mentioned in Section 5 and in further ones that could
prove promising.
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CHAPTER 2. EXTENSION OF STRING-BASED ALGORITHM WITH INTEGRATION OF SPATIAL
INFORMATION
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1 Introduction

In the past, White Matter (WM) fiber-bundles have been largely investigated from
several viewpoints. Different papers (e.g., [Yeatman et al. (2012), Colby et al. (2012)])
show how the analysis of WM structures is important to better understand and predict
how the effects caused by certain neurodegenerative pathologies, such as multiple sclerosis,
affect the brain, causing motor disability [Pantano et al. (2002)] and other symptoms, like
fatigue [Rocca et al. (2014)]. Furthermore, [Golby et al. (2011)] shows how fiber-bundles
extraction is used in neurosurgical planning to help the surgeon during an operation.

WM fiber-bundles could be extracted with the support of expert neuroanatomists, who
manually delineate the regions of interest [Mårtensson et al. (2013)]. However, this way of
proceeding is time consuming and operator dependent, avoiding the possibility to analyze
data derived from the analysis of large cohorts.

To overcome such limitations, different automatic algorithms for isolating and extract-
ing WM fiber-bundles have been proposed in the literature [Yeatman et al. (2012),Zhang
et al. (2008),Garyfallidis et al. (2012)]. We can group them in two categories, namely:
(i) atlas-based algorithms [Yeatman et al. (2012), Zhang et al. (2008)], which need an a
priori knowledge about the location of certain WM brain regions, and (ii) algorithms that
do not need a priori knowledge [Garyfallidis et al. (2012)].

Atlas-based approaches are very simple and fast. They are based on the registration of
pre-labeled WM fiber-bundles atlases on the subject’s image. However, these approaches
suffer of different limitations, e.g., only the fiber-bundles specified in the WM atlases can
be extracted, and the quality of the extracted fibers depends on the algorithm used to
register the atlases. Interestingly, these approaches could integrate enhancing techniques,
such as clustering [Zhang et al. (2008)], which are supervised and tuned by experts through
some parameters.

The approaches that do not need a priori knowledge are based on the formalization of
particular similarity and proximity measures in R3 aimed to: (i) group in the same subset
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those fibers having the same structure; (ii) maximize the discrimination of fibers having
different forms. Among them, QuickBundles (QB) [Garyfallidis et al. (2012)] is, probably,
the most famous one. Due to its simplicity, QB showed good results in terms of fiber-
bundle extraction and execution time. However, as a side effect, the pure unsupervised
approach used by it could lead to the extraction of anatomically incoherent regions. In-
deed, the process of fiber generation adopted by QB does not take prior information from
neuroanatomists into consideration. Nevertheless, this last information could play a key
role for obtaining more satisfying results. As a consequence, this limitation could generate
a bias in real applications, where anatomical information is important for analysis.

In this chapter, we propose an approach that integrates QB with a string-based fiber
representation in such a way as to extract anatomically homogeneous WM fiber-bundles.
Given a set F = {f1, f2, . . . , fn} of WM fibers to cluster and a set M = {m1,m2, . . . ,mk}
of models, our approach consists of the following steps: (i) application of a string-based
fiber representation formalism to construct the set T (resp., V ) of the strings corresponding
to F (resp., M); (ii) construction of a matrix D such that D[i, j] indicates the dissimi-
larity degree between the string corresponding to fi and the one associated with mj ; (iii)
assignment of each fiber of F to at most one model ofM on the basis of D in such a way as
to produce a set B = {b1, b2, . . . , bk} of WM fiber-bundles; interestingly, at this stage, it is
not possible to distinguish symmetrical structures; (iv) application of QB to each bundle
of B for overcoming this limitation. We conducted an experimental campaign to compare
the performance of our approach with that of QB. As will be clear below, obtained results
are very encouraging.

This chapter is organized as follows: in Section 2, we present QB and the string-based
fiber representation. In Section 3, we provide a technical description of the proposed ap-
proach. In Section 4, we illustrate the experimental campaign conducted to evaluate it.
Finally, in Section 5, we draw our conclusion and delineate some possible future develop-
ments of this research.

2 Preliminaries

QuickBundles. QuickBundles (QB, for short) [Garyfallidis et al. (2012)] is an efficient
unsupervised algorithm to cluster WM fiber-bundles. The idea behind it is simple. At
each iteration, a given fiber of the tractography could be assigned to a pre-existing cluster
or it could generate a new cluster. Initially, the first fiber is simply assigned to a first
cluster containing only it. As for the other fibers, the assignment of a fiber to a cluster
is performed according to a given threshold θ. If the distance between the current fiber
and the centroid of at least one cluster is less than θ, the fiber is assigned to the cluster
corresponding to the minimum distance. Otherwise, if there does not exist any cluster
whose centroid has a distance from the current fiber less than θ, a new cluster is created and
the fiber is assigned to it. This process is repeated until all the fibers in the tractography
are assigned to a cluster. In order to measure the distance between two fibers, a new
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metric, called Minimum Average Direct Flip (MDF), is introduced. Differently from most
classical clustering algorithms, like K-Means, in QB there is no re-assignment or updating
step. So, when a fiber is assigned to one cluster, it is not possible for that fiber to change
its cluster.

String-based fiber representation. In our application scenario, involved fibers are
translated into strings and they represent multi-view data. As a consequence, the one-
to-one matching assumption used in classical string-based distance metrics (like the Lev-
enshtein distance [Levenshtein (1965)]) is weak and the corresponding metric could not
work properly. The Semi-Blind Edit Distance (SBED, for short) [Cauteruccio et al.
(2015), Stamile et al. (2015)a] was conceived to overcome this assumption and to al-
low the computation of the minimum edit distance between two strings, provided that
finding the optimal matching schema, under a set of constraints, is part of the problem.
It can be summarized as follows.

Let 〈s̄1, s̄2〉 be an alignment (in classical terms) for s1 and s2, let M〈π1,π2,χ〉 be a
〈π1, π2, χ〉-matching schema with constraints χ. We say that 〈s̄1, s̄2〉 has a match at j if
either: (i) s̄1[j] ∈ Π1, s̄2[j] ∈ Π2 and s̄1[j] = s̄2[j], or (ii) s̄1[j] and s̄2[j] match, according
to M〈π1,π2,χ〉. The distance between s̄1 and s̄2 under M〈π1,π2,χ〉 is the number of positions
at which 〈s̄1, s̄2〉 does not have a match.

Given two integers π1 and π2, such that 0 < π1 ≤ |Π2| and 0 < π2 ≤ |Π1|, the
〈π1, π2, χ〉-edit distance between s1 and s2 (L〈π1,π2,χ〉(s1, s2) for short) is the minimum
edit distance that can be obtained according to any 〈π1, π2, χ〉-matching schema and over
any string alignment 〈s̄1, s̄2〉 of s1 and s2.1

As an example, let s1 = AAABCCDCAA and s2 = EEFGHGGFHH, which determines Π1 =
{A,B,C,D} and Π2 = {E,F,G,H}. For π1 = π2 = 1 and the constraint χ = {〈A, E〉},
the best alignment gives L〈1,1,χ〉(s1, s2) = 5 with the optimal matching schema {A}-{H},
{B}-{E}, {C}-{F}, and {D}-{G}.

To the best of our knowledge, there is no approach in the literature facing the same
problem handled by SBED, even if there are some variants. In fact, several approaches have
been proposed to carry out the computation of the similarity of parameterized strings, i.e.,
strings where some of the symbols act as parameters that can be properly substituted at no
cost (see, [Baker (1996),Hazay et al. (2007),Apostolico et al. (2007),Greco and Terracina
(2013)]. Recently, a detailed survey on parameterized matching appeared in [Mendivelso
and Pinzón (2015)].

3 Technical description of the proposed approach

Our approach joins together QB and SBED and aims at overcoming the main problem
of the former by using the latter. Its first ingredient is a WM fiber-bundle reference

1The interested reader can find all details about SBED and algorithms for its computation in [Cauteruc-
cio et al. (2015),Stamile et al. (2015)a].
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model, which must represent an approximate shape of the fiber-bundle to extract. It
could be obtained in two different ways, namely: (i) by exploiting a spline curve to draw
the profile of the fiber-bundle of interest, or (ii) by importing the mean-line profile of the
fiber-bundle of interest from an atlas of pre-labeled fiber-bundles. Both kinds of models
can be constructed either by a generic user or with the support of an expert one. The
second ingredient of our approach is a fiber representation formalism allowing fibers to
be mapped on strings. Actually, a bijective mapping is needed. For this purpose, let
F = {f1, f2, . . . , fn} be a set of fibers. Here, a generic fiber fi ∈ F is defined as a sequence
fi = (v1, v2, . . . , vm) of voxels in the three-dimensional space. We can assume, without
loss of generality [Stamile et al. (2015)a], that all the fibers of F have the same number m
of voxels. A color can be associated with each voxel vr ∈ fi, derived from its orientation
in the space. Thus, a fiber fi ∈ F can be represented by using colors in the RGB color
space. By discretizing the RGB space, we define a map Ψ : RGB → Σ, where Σ ⊂ N0 and
|Σ| = s. With the support of this map, a generic fiber fi can now be expressed as a string
in Σm.

Once the two main ingredients of our approach have been defined, it is possible to
describe it. Specifically, let F = {f1, f2, . . . , fn} be a set of WM fibers to cluster and let
M = {m1,m2, . . . ,mk} be the set of models. Our approach consists of the following steps:

• Construction of the set T = {t1, t2, . . . , tn} of the strings corresponding to F and of
the set V = {v1, v2, . . . , vk} of the strings corresponding to M . For this purpose, the
fiber representation formalism described above is applied.

• Construction of a n×k matrix D. The element D[i, j] of D indicates the dissimilarity
degree computed by applying SBED on the string ti, associated with fi, and the
string vj , associated with mj .

• Assignment of each fiber of F to at most one model of M as follows:

– for each row i of D, let µ be the minimum value of this row and let jµ be the
corresponding column;

– if µ is lesser than a certain threshold Th then fi is assigned to mjµ ; otherwise,
fi is not assigned to any model.

• At the end of this step, we have a set B = {b1, b2, . . . , bk} of WM fiber-bundles,
one for each model of M . However these bundles have a weak point. Indeed, the
assignment approach above is incapable of distinguishing among symmetrical struc-
tures [Stamile et al. (2015)a]. To overcome this limitation, for each bundle bl ∈ B, we
apply QB to it. QB returns the same bundle bl if it does not present a symmetrical
structure. Otherwise, QB splits bl into two symmetrical bundles b′l and b′′l .
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Figure 2.1: The two phantoms used in our experimental campaign

4 Experiments

Our experimental campaign consisted of two phases. The former was devoted to tune
our approach. The latter aimed to compare it with the classical QB. In both cases we
exploited simulated diffusion phantoms, as well as some classical performance measures,
namely, Precision, Recall, F-Measure and Overall [Powers (2011)].

Phase 1: Parameter Tuning. As for this phase, the input dataset consisted of the vir-
tual phantom shown in Figure 2.1(a) and created by Phantomas [Caruyer et al. (2014)].
In order to obtain the ground truth, experts segmented this phantom manually into 4
fiber-bundles, which are numbered in Figure 2.1(a). To find the best value of the input
parameter Th, we considered different values of it ranging from 0.20 to 0.50. The corre-
sponding values of Precision, Recall, F-Measure and Overall for the four models are re-
ported in Figure 2.2. From the analysis of this figure, we can observe that, from Th = 0.20
to Th = 0.36, an increase of Th leads to an increase of at least one between Precision and
Recall and to an increase of both F-Measure and Overall, which (we recall) are parameters
combining Precision and Recall. Starting from Th = 0.36 no further increase of the values
of performance measures can be observed in any model, and our approach shows a stable
behavior. As a consequence, we chose to set Th to the middle of this range and we set it
to 0.44.

Phase 2: Comparison with the classical QB. After having tuned Th, we applied
the classical QB on the previous phantom to compare the performance of our approach
(with Th = 0.44) with that of QB. The obtained results are reported in Table 2.1. From
the analysis of this table we can observe that our approach shows a much higher average
Precision, a slightly lower average Recall, a higher average F-Measure and a much higher
average Overall than QB.

To obtain a (possible) confirmation of this result, we applied both our approach, with
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Figure 2.2: Variation of the four performance measures against the threshold Th for each
model of the phantom of Figure 2.1(a)

Our approach QB
Model Precision Recall F-Measure Overall Precision Recall F-Measure Overal

1 0.99 0.72 0.83 0.71 0.96 1.00 0.98 0.95
2 0.84 0.96 0.90 0.78 0.54 0.77 0.64 0.12
3 0.97 0.81 0.88 0.78 0.54 0.77 0.64 0.12
4 0.99 0.94 0.96 0.93 1.00 0.93 0.96 0.93

Avg values 0.95 0.85 0.89 0.80 0.76 0.87 0.80 0.54

Table 2.1: Performance values obtained by our approach and QB when applied on the
phantom of Figure 2.1(a)

Th = 0.44, and QB on a second phantom shown in Figure 2.1(b). This consisted of a
virtual diffusion MR phantom that accurately simulates the brain complexity with the
fiber geometry used in the 2nd HARDI Reconstruction Challenge (ISBI 2013). Data were
generated by means of Phantomas [Caruyer et al. (2014)]. To obtain the ground truth,
experts segmented all the fiber-bundles in the phantom manually. At the end of this task,
they defined the approximate shapes of these fiber-bundles; in particular, they identified
17 models. Numbering these models in Figure 2.1(b) was not possible due to the 3D nature
of this image.

Because of its fully unsupervised nature, QB was capable of extracting just 8 out of
the 17 fiber-bundles of the phantom. Our approach, instead, extracted all the 17 fiber
bundles. As a consequence, a comparison between our approach and QB was possible only
for the 8 models detected by QB. Obtained results are reported in Table 2.2.

From the analysis of this table we can observe that QB generally shows a higher value
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Our approach QB
Model Precision Recall F-Measure Overall Precision Recall F-Measure Overal

1 0.94 0.71 0.81 0.67 0.91 0.70 0.79 0.63
2 0.90 0.64 0.75 0.57 0.33 0.71 0.45 -0.76
3 0.78 0.41 0.54 0.29 0.31 0.75 0.44 -0.90
4 0.89 0.69 0.77 0.60 0.85 0.75 0.80 0.62
5 0.77 0.57 0.66 0.40 0.80 0.78 0.79 0.58
6 0.96 0.68 0.79 0.65 0.29 0.79 0.43 -1.13
7 0.94 0.29 0.45 0.27 0.14 0.82 0.24 -4.33
8 0.68 0.33 0.45 0.18 0.13 0.91 0.23 -4.96

Avg values 0.86 0.54 0.63 0.45 0.47 0.78 0.52 -1.28

Table 2.2: Performance values obtained by our approach and QB when applied on the
phantom of Figure 2.1(b)

of Recall than our approach (this can be observed in 7 out of 8 models), but lower values of
Precision (which were much lower in 5 cases, lower in 2 cases and slightly higher in only 1
case). As for the combined parameters F-Measure and Overall, our approach shows better
results than QB in 6 out of 8 cases. Finally, if we consider the average values of these
measures, we obtain that our approach shows a better Precision, a better F-Measure, a
better Overall and a worse Recall than QB.

As previously pointed out, this difference of behavior is due to the nature of the
structures extracted by QB. In fact, the fiber-bundles obtained by QB are not isolated but
they are merged with other structures that are spatially near to them (even if they present
a completely different anatomical meaning). By contrast, the fiber-bundles obtained by our
approach are “purer”, since they contain only anatomically uniform fibers, corresponding
to the fiber bundles of our interest. In support of this reasoning, it is well known that, in
this application field, Precision is much more important than Recall.

5 Conclusion

In this chapter, we have proposed an approach that integrates QuickBundle with a
string-based fiber representation for extracting anatomically coherent WM fiber-bundles.
Our approach overcomes the main problem of QB, i.e., the possibility that it returns
anatomically incoherent fiber clusters, in which the desired fiber-bundles are not isolated
but merged with other structures spatially near to them (even if they present a completely
different anatomical meaning). This work must not be considered as an ending point of our
research efforts. Indeed, several developments are possible. First of all, we plan to extend
our experiments from phantoms to real cases. After this, we would like to further improve
QB in such a way as to correct fiber assignments to clusters when these assignments appear
uncorrect in a second time. Finally, we will work on the SBED constraint optimizations
in such a way as to define an approach that allows the discovery of the best constrains for
improving the extraction of specific WM fiber-bundles.
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R.G. Guttmann, D. Rousseau, D. Sappey-Marinier, “Detection of Longitudinal
DTI Changes in Multiple Sclerosis Patients Based on Sensitive WM Fiber
Modeling,” PLoS ONE 11(5): e0156405. doi:10.1371/journal.pone.0156405, 2016.

1 Introduction

A major challenge of neuroimaging research consists in identifying new markers that
can accurately characterize pathological processes and predict clinical outcomes. Achieving
this goal is particularly crucial in Multiple Sclerosis (MS), the primary cause of neurological
disability in young adults and remains without well-known etiology [Compston and Coles
(2008)]. MS is a chronic demyelinating inflammatory disease of the central nervous system,
characterized by white matter (WM) lesions that are well detected by conventional MRI.
However, T2 lesion load is moderately correlated with the patient clinical status leading to
the development of more sensitive techniques such as diffusion tensor imaging (DTI). DTI
is a promising technique for white matter WM fiber-tracking and microstructural charac-
terization of axonal/neuronal integrity and connectivity. By measuring water molecules
motion in the three directions of space, numerous parametric maps can be reconstructed
based on eigenvalues of the diffusion tensor. Among these, fractional anisotropy (FA),
mean diffusivity (MD), and axial (λa) and radial (λr) diffusivities have extensively been
used to investigate brain diseases [Basser et al. (1994)b, Rovaris et al. (2005), Kingsley
(2006)a,Kingsley (2006)b] such as stroke [Lai et al. (2014),Zhang et al. (2013)], Parkin-
son disease [Nicoletti et al. (2006), Nicoletti et al. (2008)], brain tumors [Server et al.
(2014),Sternberg et al. (2014)] and also normal aging [Cavallari et al. (2013), Inano et al.
(2011)]. In MS, DTI has proved to be sensitive enough to detect microscopic changes
occurring in WM lesions, normal appearing white matter (NAWM) and subcortical grey
matter (GM). Indeed, several studies have demonstrated higher MD and lower FA in
lesions when compared to NAWM of MS patients [Filippi et al. (2000),Werring et al.
(1999), Assaf and Pasternak (2008)] and to NAWM of healthy controls [Ciccarelli et al.
(2001),Hannoun et al. (2012)a]. In contrast, FA was increased in subcortical GM struc-
tures such as the caudate nuclei and thalami of MS patients that are supposed to reflect
dendritic neurodegeneration mechanisms [Hannoun et al. (2012)b]. Overall, these find-
ings demonstrated that WM and GM tissues are subjected to numerous microstructural
alterations in MS. However, it remains unclear whether these tissue alterations result from
global processes, such as inflammatory cascades and/or neurodegenerative mechanisms, or
local inflammatory and/or demyelinating lesions. Furthermore, these pathological events
may occur along afferent or efferent WM fiber pathways, leading to antero- or retrograde
degeneration [Mukherjee et al. (2002)]. Thus, for a better understanding of MS patholog-
ical processes spatial progression, an accurate and sensitive characterization of WM fibers
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along their pathways is needed. By merging the spatial information of fiber tracking [Mori
et al. (1999)] with the diffusion metrics derived from the tensor, WM fiber-bundles could
be modeled and analyzed along their profile. Such signal analysis of WM fibers can be
performed by several methods providing either semi- or automated extraction of WM
fiber-bundles. Semi-automated algorithms consisted in a manual extraction of the bun-
dle by defining a set of regions of interest (ROIs) [Colby et al. (2012),Mårtensson et al.
(2013), Corouge et al. (2006)] based on neuroanatomical knowledge. However, this task
usually performed by an expert is time consuming and operator dependent. In order to
overcome such limitations, fully automated algorithms have been implemented [Yeatman
et al. (2012),Grigis et al. (2013)]. These methods enable systematic, large-scale analysis
of fiber bundles in large subject populations. However they remain relatively insensitive to
changes affecting only a small portion of fibers within a bundle. In this work, we introduce
an automated method for the analysis of WM fascicles from DTI data, and the detection of
small longitudinal changes along the fiber-tracts. Based on a Gaussian mixture model, this
method provides a fine cross-sectional fiber-bundle analysis allowing the differentiation of
“changed” and “unchanged” fibers of the bundle.

2 Material and Methods

2.1 Subjects

Five relapsing-remitting (RR) MS patients (4 women and 1 man, mean (±SD) age:
36.8±9.5 years; media disease duration: 4.24y; max 16.5 y) (median EDSS=2.5, range=[0-
4]) and one healthy control (HC) subject (age: 24 years) were included in this study.
Inclusion criteria specified that studied patients were diagnosed as RR MS and present
at least one new Gadolinium-enhancing lesion during the six months preceding study
enrollment. All patients were not treated with disease modifying drugs for at least one
year before inclusion in the study, and remained untreated during the study period. In
order to limit the nephrogenic damage risks associated to Gadolinium injection, creatinine
clearance was checked every 2 weeks after inclusion. A clearance higher than 60ml/min
was an exclusion criterion. This study was approved by the local ethics committee (CPP
Sud-Est IV) and the French national agency for medicines and health products safety
(ANSM). Written informed consents were obtained from all patients and control subjects
prior to study initiation.

2.2 MRI protocol

All subjects underwent a weekly examination for a period of two months (8 time-
points from W1 to W8). MRI protocol included a DTI and a FLAIR acquisition, that
were performed on a 3T Philips Achieva system (Philips Healthcare, Best, The Nether-
lands) with a 16-channels head-coil. The DTI image set consisted in the acquisition of
60 contiguous 2mm-thick slices parallel to the bi-commissural plane (AC-PC), and were
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acquired using a 2D Echo-Planar Imaging (EPI) sequence (TE/TR = 60/8210 ms, FOV
= 224 × 224 × 120mm) with 32 gradient directions (b = 1000 s.mm-2). The nominal
voxel size at acquisition (2 × 2 × 2 mm) was interpolated to 0.875 × 0.875 × 2mm af-
ter reconstruction. The FLAIR Vista 3D sequence (TE/TR/TI = 356/8000/2400 ms,
FOV=180× 250× 250mm) consisted in the acquisition of 576 slices of 0.43 mm thickness
oriented in the AC-PC axis with a nominal voxel size of 0.6× 0.43× 0.43mm.

2.3 Longitudinal Variations Simulation

Two time-points of the control subject (W1 and W2) were used to simulate longitu-
dinal variations. 120 different lesions were simulated on the control subject’s FA maps
obtained at W2. All the lesions were generated in 6 different fiber-bundles, namely, left
and right, Cortico-spinal tract, inferior-fronto occipital fasciculi and forceps major and
minor of corpus callosum extracted from the atlas [Hua et al. (2008)]. Small spherical
variations (radius of 2 voxels) of FA values were generated according to the following equa-
tion: FA(x) = α ∗ FA(x) where α (called reduction coefficient) varies from 0 to 1, and x
is a voxel belonging to the spherical region.

3 Longitudinal Fiber-bundle Analysis Methods

The processing pipeline of DTI data is composed of three steps: 1) co-registration
and diffusion metrics computation, 2) tractography bundle extraction and processing,
and 3) longitudinal fiber-bundle analysis (Figure 1.1). In the following, we assume that
each subject underwent a longitudinal DTI examination. Each longitudinal acquisition is
composed of k time-points from 1 (W1) to k (Wk).

3.1 Co-registration and Diffusion Metrics Computation

Diffusion images were processed using the FMRIB software Library (FSL) [Jenkinson
et al. (2012)]. Eddy current correction was first applied on the diffusion volumes using
the b0 volume (b = 0 s.mm-2) as reference. The tensor model was then fitted using the
FDT module of FSL Longitudinal data co-registration was performed using the method
described in [Keihaninejad et al. (2013)] based on DTI ToolKit (DTI-TK) including the
following procedures: 1) generation of a patient specific template obtained from longi-
tudinal diffusion tensor images, 2) co-registration of the resulting template to the Illinois
Institute of Technology (IIT) atlas [Varentsova et al. (2014)], and 3) co-registration of each
time-point data into the IIT atlas space by applying the previously obtained transforma-
tions to the initial longitudinal data. The resulting images were then used to compute
diffusion metrics maps (FA, MD, . . .).
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Figure 1.1: General overview of the processing pipeline for fiber-bundles longitudinal anal-
ysis: 1) Co-registration and diffusion metrics computation: DTI data were longitudinally
co-registered and diffusion metrics were computed, 2) Tractography, bundle extraction
and processing, 3) Longitudinal fiber-bundle analysis using both ‘mean” and “histogram”
methods.
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3.2 Tractography, Bundle Extraction and Processing

Probabilistic streamline tractography was performed using MRTrix [Tournier et al.
(2012)] based on the fiber orientation density (FOD) information of the IIT Atlas. Twenty
fiber bundles were extracted using 20 ROIs of the JHU atlas [Hua et al. (2008)] as seed
and mask. Before the extraction of diffusion metrics, each fiber-bundle underwent a three-
steps processing pipeline. The first step consisted in defining the start and end points of
each fiber within the bundle. A classical K-Means algorithm [MacQueen et al. (1967)]
was applied to the extracted raw fiber-bundle to generate two different clusters, R1 for
the starting points and R2 for the ending points. Fiber points were reordered from R1 to
R2 and fibers that did not link the two clusters were automatically removed. In a second
step we resampled each fiber with c = 100 equidistant points (also called nodes). The
third and last step consisted in the removal of fibers that were too distant from the center
of the fiber-bundle. The mean fiber of the entire bundle was first computed using the
method described by Klein and coworkers [Klein et al. (2007)]. Let F be a fiber-bundle
F = {f1, f2, . . . , fm} composed of m fibers of 100 points each, such as fi = {p1, . . . , p100}
1 ≤ i ≤ c, pq = (xq, yq, zq) and letMF = {(pµ,1, pσ,1), . . . , (pµ,c, pσ,c)} be the mean skeleton
of the fiber-bundle where pµ,i and pσ,i 1 ≤ i ≤ c represent respectively the mean and the
standard deviation (SD) of computed from every point belong to the i− th cross-section.
A fiber fot was considered an “outlier” if it contains at least one point pr that was more
than 3 SD away from the corresponding node in the mean fiber. The last step consisted
in the automatic extraction of the diffusion metrics from the fiber-bundle. Based on the
resampled fibers, each fiber point (xi, yi, zi) was associated with the diffusion metric value
of its corresponding voxel. Thus, every point of the fiber-bundle was associated with a set
of diffusion metrics values allowing the characterization of the diffusion properties of the
entire bundle. In this report, we focused on the FA metric, but the method is designed
for any diffusion metrics that can be derived from the tensor.

3.3 Longitudinal Fiber-Bundle Analysis

Previous fiber-tract profile approaches [Mårtensson et al. (2013),Yeatman et al. (2012),
Colby et al. (2012),O’Donnell et al. (2009)] were based on representing diffusion metrics
along a given fiber-bundle by averaging the signal value at every cross-section of the bundle.
This “mean” approach allowed first, to represent the mean and SD of any diffusion metric
and second, to detect any changes along the fiber-bundle, as illustrated in Figure 1.2.
In order to improve the sensitivity of the “mean” approach to detect small pathological
changes along a fiber-bundle, the following “histogram” approach was developed. The
histogram of FA values of a given bundle was fitted with a distribution model for every
cross-section of the bundle. For a reference time-point i (Wi) and for a successive time-
point i + s (Wi+s), two histograms were independently fitted by means of a Gaussian
mixtures model (Di, Di+q) (Figure 1.3A1). The number of mixture components used to
fit the histogram with the Gaussian model was computed by solving the following multi-
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objective optimization problem:

minimize
n≥1n≥1n≥1

=


C(Di(n)) = ∑n

t=1 log(Di(xt))

C(Di+s(n)) = ∑n
t=1 log(Di+s(xt))

where Di and Di+s represent the Gaussian mixture model with n component and∑n
t=1 log(D(xt)) represents the log-likelihood of the distribution model calculated using

the histogram of the cross-section. Parameters of Di and Di+s were estimated by the
maximum likelihood estimation (MLE) algorithm [Myung (2001)]. The NSGA-II algo-
rithm [Deb et al. (2002)] was used to solve the optimization problem. From the multiple
Pareto’s solutions, the one with the smallest number of mixture was selected. Then, both
distributions (Di, Di+s) were compared and local changes were detected by solving the
following optimization problem:

minimize
β,γ

PD =
∫ γ

β
Di+s

subject to PF =
∫ γ

β
Di ≤ ζ

PD > PF

(1.1)

where ζ is an input value called the tolerated error of the test. If no longitudinal
variations were detected between Wi and Wi+s, the problem did not admit solutions. The
obtained values β and γ were then used to differentiate fibers in two subsets. In the specific
case of FA (but any other diffusivity metric can be used), fibers showing β ≤ FA ≤ γ

were labeled as “changed” while the other fibers were labeled as “unchanged” (Figure
1.3A2,B). The graphic representation of the diffusion metric values along the fiber-bundle
was performed as previously described using the “mean” approach (Figure 1.3C) [Colby
et al. (2012)]. For each subset of fibers (“changed” and “unchanged”), the mean and SD
values of FA were computed for every cross-section of the bundle.

4 Results

4.1 Validation on Simulated Longitudinal Variations

The “histogram” method was applied on simulated longitudinal variations of FA (de-
scribed in section 2.3) between two time-points (W1-W2) and was evaluated by measuring
true positive (TP), true negative (TN), false positive (FP) and false negative (FN) in or-
der to compute sensitivity, precision and F-Measure. Since our Gaussian mixture model
depends on two parameters (ζ and β) the method was tested with different values of
ζ, {0.02, 0.05, 0.08, 0.10, 0.12, 0.14} and β was fixed to 0 in order to detect decreased FA
changes as usually observed in pathological WM. As shown in Table 1.1, our method
is strongly dependent on the parameter ζ. Low ζ values (ζ = 0.02) makes the method
more conservative and a large number of FN are thus detected. In contrast, high ζ value
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Figure 1.2: (A1) “Mean” cross-sectional analysis of the inferior fronto-occipital fasciculi
(IFOF). (A2) FA values are represented by the mean (black solid line) and standard
deviation (green bands) in each cross-section of the fiber-bundle. B) Longitudinal analysis
of FA values between the first (blue) and fourth time-point (red) showing a significant FA
decrease (no intersection in standard deviation) in several cross-sections (dashed box) of
the IFOF.
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Figure 1.3: Global overview of the “histogram” approach. As first step (A1) the histogram
of the data extracted from time point i and time-point i+ p in the same cross-section are
fitted using Gaussian mixture model. As second step (A2) our method detects a patho-
logical longitudinal variation between the two time-points in the histogram. The obtained
threshold value γ is then used to differentiate between “changed” and “unchanged” fibers
(B). Plotted FA signal profile of the two subset of fiber and cross-sectional view of the
labeled fibers (C).
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(ζ = 0.14) results in a large number of FP. The best performance, in terms of average
F-Measure (65.58%) for all the α, was reached for ζ = 0.12. High performances were
reached for α ≥ 0.2 showing the ability of our method to detect small pathological longi-
tudinal variations. While low performance were obtained with α = 0.1, probably due to
FA variability. The “mean” method was also applied on these simulated variations. In or-
der to check the presence of longitudinal changes, manual inspection of the obtained plot
was performed to find cross-sections where no overlap between the confidence intervals
(defined by one standard deviation) are visible in the signal profile generated from the two
time-points. No differences were found between the two time-points with any value of α.

4.2 Application in MS Follow-up

DTI data of each patient were processed using our proposed pipeline including “mean”
and “histogram” fiber-bundle analysis. Among the 20 fiber-bundles extracted in each pa-
tient, the Cortico-Spinal Tract (CST) and the Inferior Fronto-Occipital Fasciculi (IFOF)
were selected to detect longitudinal changes. Based on our simulated results, we selected
ζ = 0.12. Significant changes were validated by our neurologist (FDD) and neuroradiolo-
gist (FC) experts. An example of application of our “histogram” method on the CST of a
MS patient is illustrated in Figure 1.4.

4.3 Analysis of whole Fiber-Bundles

Three typical cases of longitudinal lesion evolution were selected for illustration. First,
the case of two lesions preexisting atW1 in the left CST of Patient1 is shown in Figure 1.5A.
The first lesion was well detected by the “histogram” method due to its size increase, while
the second lesion was not detected due to its lack of change during the follow-up period.
Second, a new lesion was detected atW6 in the right IFOF of Patient2 (Figure 1.5B). Third,
the case of two lesions preexisting at W1 and a new lesion appearing at W7 in the same
cross-section of the right IFOF of Patient2 is presented in Figure 1.5C. In these three cases,
the “mean” method failed to detect any changes in contrast to our “histogram” method
that allowed to differentiate “changed” fibers, characterized by significant longitudinal
changes, from “unchanged” fibers.

4.4 “Changed” Fiber-Subsets Analysis

Following this previously described identification of the “changed” fiber-subsets; we it-
eratively applied our method to further characterize their spatial and temporal evolutions,
as illustrated in the right CST of Patient1 through the W6-W8 period (Figure 1.6A). The
analysis of the fiber-subset’s signal revealed a new lesion occurring at W6 and evolving
through W7 and W8. The “histogram” method was able to identify at W7 the progres-
sion and expansion of a preexisting lesion in a neighboring fiber-bundle of the CST, and
to detect new changes at W8. Also, a second preexisting lesion was detected at W8 in
another cross-section of the CST. This lesion, already present at W1, started to evolve
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Figure 1.4: Longitudinal analyses of the FA values along the right CST of Patient1. (A)
The “mean” method analysis showed no changes in the fiber-bundle between time-point
1 (W1, blue) and the other 7 time-points (yellow). (B) The “histogram” method analy-
sis showed significant FA changes (red) between the reference time-point W1 (blue) and
the others 7 time-points (W2 to W8) in different cross-sections of the fiber-bundle. (C)
The “histogram” method allowed the distinction of “unchanged” fiber-subset (green) from
“changed” fiber-subset (red) compared to the reference (W1) fiber-bundle (blue) as shown
on the cross-sectional view of the CST. (D) FLAIR images of Patient1 showing the cor-
responding lesions.
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Figure 1.5: Detection of longitudinal variations by applying the “mean” and “histogram”
methods: (A) On the left CST of Patient1 between W1 and W8 time-points, detecting a
change in two preexisting lesions (L1, L2); (B) On the right IFOF of Patient2 betweenW1
and W6 detecting a new lesion; (C) On the right IFOF of Patient2 between W1 and W7
detecting a change in two preexisting lesions (L1, L2) and the apparition of a new lesion
(L3). Lesions are shown on FLAIR images. Fiber-subsets labeled as “unchanged” (green)
and “changed” (red) are shown on top of FLAIR images.
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Figure 1.6: Iterative analysis of the “changed” fiber-subset of Patient1’s left CST (A) and
of Patient2’s right IFOF (B) at different time-points; (A) Detection of a new lesion (L1)
at W6 and at W8, and a preexisting lesion at W7, evolving by contaminating the CST).
(B) Detection of a preexisting lesion (L4) and a new lesion (L5) at W6, both evolving in
size and degree of FA alteration at W7, and remaining unchanged at W8.

at W8. In Figure 1.6B the analysis of the “changed” fiber-subset in the right IFOF of
Patient2 through the W6-W8 period showed the presence of a new lesion appearing at
W6 and evolved at W7 and W8. The “histogram” method was able to identify at W6 a
preexisting lesion and to follow its evolution through W7 and W8 time-points.

5 Discussion

The combination of fiber-tracking and DTI-derived measures, such as FA or other
tensor metrics, offers a novel opportunity for the characterization of tissue properties along
the WM fiber-tracks. In this work, we presented a new methodology providing automatic
processing and detection of “changed” fibers subset of the bundle. The major interest
of our “histogram” analysis method relies in its sensitivity to detect small FA changes
at multiple locations along the fiber-bundle. In contrast to the “mean” analysis where
local scale information contained in each cross-section of the bundle was lost, our method
reduced the scale analysis, compatible with a “single” fiber scale. This scale reduction
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provided two main advantages. First, the detection sensitivity was greatly improved.
Second, this fine scale approach allowed us to discriminate “changed” from “unchanged”
fibers coexisting in a same bundle.

5.1 Clinical Interest

This new method was applied in MS patients to demonstrate its clinical interest for the
characterization of MS pathological processes and its potential to detect fine longitudinal
tissue damages based on diffusion metrics. For example the analysis of the fiber properties
along and inside the tract showed various profiles of occurrence and evolution of lesions.
Indeed, WM fibers of MS patients are subjected to several and complex pathological
mechanisms such as inflammation, demyelination and Wallerian degeneration that occur
in various WM regions and at different time intervals. Thus, this approach could be
applied to study the propagation of tissue damages along the “changed” fiber-subsets and
investigate the relationship between WM lesions and their neighboring WM tracts, as well
as distant cortical and subcortical GM structures. Indeed, WM lesions might have a role
in deep GM atrophy as previously shown in MS patients [Henry et al. (2009),Hannoun
et al. (2012)b]. Finally, the detection of “changed” fiber-subsets based on their diffusion
properties may constitute a promising tool to measure the gradient of alterations inside
and along the fiber, and potentially to better understand the disease progression [Stoll
et al. (2002)].

5.2 Methodological Limitations

Our method provided a complete, operator independent and automated processing
pipeline applicable in large cohort studies. The reliability of the proposed approach stands
on the accuracy and robustness of the pre- and post-processing procedures of the fiber
tracking. First, each patient’s time-points images were co-registered to a common diffu-
sion atlas in order to use the atlas tractography as a reference model for the longitudinal
acquisition of the subject. A major limitation stemming from the longitudinal registration
pipeline used in this work could be the introduction of new biases. Specifically, regions af-
fected by pathology might potentially be improperly registered due to the use of nonlinear
registration. Second, our approach provided an automatic fiber-bundle extraction by us-
ing an atlas-based extraction method. Third, the resulting bundles were post-processed to
remove improper fibers generated by the tractography algorithm. This step was performed
in order to improve the reliability of the local cross-sectional fiber analysis. Despite the
great interest of our method to provide a better differentiation of “changed” fiber-subsets,
we should keep in mind that absolute measurement of fibers number is out of reach due
to intrinsic limitations of tractography algorithms [Jones (2010)]. However, if the tracking
algorithm is compatible with crossing fibers, FA and other tensor-derived measures are
not. This means that, in regions containing crossing fibers, if a difference appears in the
metric, it will be attributed to all fiber-bundles traversing the region. The capability of
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our method to detect small longitudinal alterations in FA maps was tested using simu-
lated lesions generated on a control subject’s data. This test showed that our “histogram”
approach is more sensitive to detect very small spherical alterations than the “mean” ap-
proach that failed to detect any of them. These results suggest that our method enables
the detection of small alterations that remained undetectable by the classical “mean” ap-
proach. The sensitivity of our proposed method appeared adequate in studying MS lesions,
but will require more formal sensitivity assessment in future work, to quantify its limits
and potentials in this regard. It should be noted that the proposed approach constitutes a
detection mechanism; it does not perform genuine statistical analysis of the data. Indeed,
the detection of change presented in this work could also been accomplished in simpler
fashion: voxel-wise analysis of change could easily be combined with tractographic iden-
tification of fibers and bundles. We expect that the strength of our approach will come
to bear in situations where properties (e.g. FA) need to be grouped for voxels along a
specific fiber bundle or across its cross-section. One can for instance envision increasing
the sensitivity of change detection within a given fiber tract by integrating change specif-
ically along a given tract. This is straightforward to accomplish by simple adaptation of
the proposed formalism. Since a number of recent reports in the literature have demon-
strated that normal appearing white matter (i.e. tissue outside of overt lesions) plays an
important role in MS [Steenwijk et al. (2014),Bergsland et al. (2015)], in the future we
also plan to apply our method to the assessment of more subtle changes to the properties
of specific tracts.

6 Conclusion

We have described a new fully automated tool for analyzing longitudinal changes in
WM fiber-bundles of MS patients. Compared to previous methods developed for the
characterization of fiber-tract profiles, our approach provides a fine detection of local scale
longitudinal variations along the fiber-bundle, such as those expected to occur during
inflammatory or neurodegenerative processes in MS patients. This new approach allows
the discrimination of affected fiber-subsets within a bundle, and holds the potential for
more detailed and topographically specific description of disease-induced disruption of
connectivity in the brain, with implications for specific functional losses associated with
disease progression.
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Published papers in this chapter

• C. Stamile, G. Kocevar, F. Cotton, F. Maes, D. Sappey-Marinier, S. Van Huf-
fel “Multiparametric Nonnegative Matrix Factorization for Longitudinal
Variations Detection in White-Matter Fiber Bundles,” IEEE Journal of
Biomedical and Health Informatics, 2016, in press.

• C. Stamile, F. Cotton, D. Sappey-Marinier, S. Van Huffel, “Longitudinal Neu-
roimaging Analysis Using Non-Negative Matrix Factorization,” in: Pro-
ceeding of The 12th International Conference on Signal Image Technology & Internet
Systems (SITIS), pp. 55-61, 2017.

1 Introduction

Analysis and processing of longitudinal magnetic resonance imaging (MRI) data is a
crucial problem in image analysis. Since pathological mechanisms remained unknown in
certain brain diseases, the investigation of their temporal progression using non-invasive
neuroimaging techniques is essential to better understand and predict the disease evolution
and manage the therapeutic treatment [Vandermosten et al. (2015),Mak et al. (2015)]. As
the etiology of multiple sclerosis (MS) as well as the pathological mechanisms including in-
flammatory and neurodegenerative processes, are not well understood, longitudinal studies
using advanced MRI techniques such as diffusion tensor imaging (DTI) providing sensitive
markers of the underlying tissue microstructure, such as fractional anisotropy (FA) and
radial diffusivity (λr), constitute the best potential for the characterization of brain tis-
sue alterations. For example, the analysis of grey matter (GM) structures [Mesaros et al.
(2011)] showed the capability to evaluate the dynamics disease progression; in white matter
(WM) [Rovira et al. (2013)] a relationship between damaging and repairing mechanisms
that occur in the lesions formation is revealed. By merging the spatial information of fiber
tracking [Mori et al. (1999)] with the diffusion metrics derived from the diffusion tensor, it
is possible to characterize the presence of “pathological” events that may occur along affer-
ent WM fiber pathways leading to antero- or retrograde degeneration. Thus, for a better
understanding of the spatial and temporal progression of MS pathological processes, an
accurate and sensitive characterization of WM fibers along their pathways is needed. As
shown in our previous work [Stamile et al. (2016)a] a global approach to analyze disease
evolution was not sensitive enough to detect small and short-term (daily/weekly) longi-
tudinal variations occurring typically in relapsing remitting (RR) MS patients. A local
scale approach is thus necessary to detect the presence of small “pathological” changes
that could only affect a small subset of the WM fiber-bundle. A first model was proposed
in [Grigis et al. (2013)]. Due to its simplicity, important assumptions about classical
longitudinal biases like noise and registration errors [Reuter et al. (2012)] are not taken
into account. In order to overcome this limitation in [Stamile et al. (2015)b] we proposed
a genetic algorithm to detect longitudinal variations on the FA histogram occurring along
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WM fiber-bundles in MS patients. In this model assumptions about noise and registra-
tion errors are taken into account in order to detect pathological longitudinal variations.
Unfortunately the model is limited by its computational complexity. Since it is based on a
genetic algorithm the analysis of a specific region could take a large amount of time. More-
over another limitation of the models [Grigis et al. (2013)] [Stamile et al. (2015)b] is given
by their incapability to manage multi-modal/parametric data and multiple time-points.

In order to overcome all these limitations, in this work we present a new fully automated
method based on non-negative matrix factorization (NMF). The method allows using
multi-parametric DTI derived metrics to detect small longitudinal variations occurring
along WM fiber-bundles in MS patients. Since NMF is a blind source separation (BSS)
technique we don’t need to provide a model to describe the temporal evolution of the
pathology in the brain tissues.

This paper is structured as follows. In Section 2, we provide a detailed description
of our approach. In Section 3, we present our experimental campaign. In Section 4 we
show our results. In Section 5 we discuss the performances, benefits and limitations of our
method. Finally, in Section 6, we draw our conclusions.

2 Material and Methods

The proposed method is divided in three main parts: i) preprocessing of longitudinal
diffusion acquisitions, ii)WMfiber-bundle extraction, iii) application of NMF and Density-
based Local Outliers (LOF) algorithms to detect and delineate longitudinal variations
appearing in the cross-section of the WM fiber-bundle.

2.1 Data preprocessing

As first step, each of the t time-points (T1 . . . Tt) of DTI longitudinal acquisitions, are
processed. Eddy current correction [Jenkinson and Smith (2001)] was first applied on
the diffusion volumes using the b0 volume (b = 0s.mm−2) as reference. The corrected
volumes were then used in order to compute the tensor model using the FDT module of
FSL [Jenkinson and Smith (2001)]. Longitudinal data co-registration is performed using
the method described in [Keihaninejad et al. (2013)] based on DTI ToolKit (DTI-TK)
including the following procedures: i) generation of a patient-specific template obtained
from longitudinal diffusion tensor images, ii) co-registration of the resulting template to
the Illinois Institute of Technology (IIT) atlas [Varentsova et al. (2014)], and iii) co-
registration of each time-point data into the IIT atlas space by applying the previously
obtained transformations to the initial longitudinal data. The resulting tensor image is
then used to compute 6 diffusion metric maps: fractional anisotropy (FA), mean diffusivity
(MD), radial diffusivity (λr) and the three eigenvalues of the diffusion tensor (λ1, λ2,
λ3). Moreover, two diffusion anisotropy measurements were computed: Compositional
Kullback-Leibler Anisotropy (KLA) and Angular Anisotropy (AA) [Prados et al. (2010)].
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2.2 Fiber-bundle extraction

Probabilistic streamline tractography was performed using MRTrix [Tournier et al.
(2012)] based on the fiber orientation density (FOD) information of the IIT Atlas. Twenty
fiber-bundles were extracted using a semi-automatic algorithm [Stamile et al. (2015)a]
coupled with the prior knowledge extracted from the 20 regions of interest (ROI) of the
JHU fiber-bundle atlas [Hua et al. (2008)]. In order to analyze fiber-bundles an additional
step is needed. Indeed the output of the tractography could not be directly used for
the analysis of the fiber-bundle since the number of points used to reconstruct the fibers
varies. Moreover, start and end point of each fiber are not consistent within the same
fiber-bundle. Fibers could start randomly from the two extremities of the bundle. In
order to overcome those problems part of the pipeline described in [Stamile et al. (2016)a]
was applied to process the fiber-bundle. As first step we define common start/end points
of each fiber within the bundle. A classical K-Means algorithm [MacQueen et al. (1967)]
is performed to generate two different clusters, R1 for the starting points and R2 for the
ending points. Fiber points are then reordered from R1 to R2 and fibers that did not link
the two clusters (broken fibers) are automatically removed. As final post-processing step
each fiber is resampled with the same number c = 100 of points (also called nodes).

After the post-processing we can formalize the extracted fiber-bundle as set F =
{f1, f2, . . . , fn} composed of n fibers fi = {p1p1p1, . . . , pcpcpc} where pqpqpq = (xq, yq, zq) | 1 ≤ q ≤ c.
The coordinate pqpqpq is used to extract the voxel’s value of one of the six diffusion maps
(FA(pqpqpq) in case of FA) in the corresponding location of fi. By fixing the index q in each
fiber f ∈ F it is possible to analyze the global diffusion values in a particular cross-section
of F . More in detail we can collect all the FA values belonging to a given cross-section of
F defining the following set: Rq = {FA(pqpqpq) | pqpqpq ∈ f ∀ f ∈ F} where q is the fixed index
representing the cross-section to analyze.

2.3 A Non-Negative Matrix Factorization based algorithm for longitu-
dinal change detection

The NMF based model to detect longitudinal changes is composed of two main steps:
i) recursive application of NMF algorithm to the data, ii) detection of “time-point outliers”
in the source matrix W .

Recursive application of NMF

NMF is a blind source separation technique [Lee and Seung (1999)], in which a data
matrix V is approximately factorized into the product of a source matrix W and an
abundance matrix H:

V ≈W ×H

V ∈ Rn×r is a set of non-negative data, with r data points along its columns and n features
per data point on its rows. The columns of W ∈ Rn×k represent the k sources. H ∈ Rk×r
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Figure 2.1: Extraction of all Mi signals in a cross-section of the fiber-bundle from time-
point 1 to t and application of our NMF method to detect longitudinal variations.

contains per column the abundance of each of the k sources for one particular data point.
In this way, NMF describes each point in a dataset by a linear combination of a predefined
number of sources.

In particular, NMF based methods have been applied successfully in MRI-based tumor
segmentation [Sajda et al. (2004),Ortega-Martorell et al. (2012), Sauwen et al. (2015)].
NMF aims to extract physically meaningful sources, corresponding to tissue-specific pat-
terns. It is an unsupervised technique, i.e. it can be applied on a patient-by-patient basis
without the need for any training dataset. NMF assesses the relative contribution of each
tissue type within each voxel, assuming the dataset can be modeled as a linear combination
of the constituent tissue types. The mathematical formulation of the basic NMF problem
to perform the factorization is given below.

minimize
WWW,HHH

f(WWW,HHH) = 1
2‖V −W ×H‖

2
F

subject to ∀ i, j : Wi,j , Hi,j ≥ 0

Let vvv ∈ R3 be a voxel of a given image I. We define as I(vvv) the intensity value of the
image I in the voxel vvv. Let m be the number of DTI maps used in the analysis, in our
longitudinal framework, we define as Ii,Mj the image of DTI derived map Mj 1 ≤ j ≤ m

acquired at time-point 1 ≤ i ≤ t.
Since we apply the algorithm in each cross-section separately, we define with D (|D| =

s) the set of voxels dj ∈ R3, j = 1, . . . , s contained in the specific cross-section of the
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V

(V1, H1,W1)

(V11, H11,W11)

...

. . . . . .

(V12, H12,W12)

...

(V12...1, H12...1,W12...1) (V12...2, H12...2,W12...2)

(V2, H2,W2)

(V21, H21,W21)

...

. . . . . .

(V22, H22,W22)

...

. . . . . .

Figure 2.2: Tree generated by the recursive application of NMF.

fiber-bundle to analyze.

Our NMFmethod is based on a sequential application of NMF as described in algorithm
4.

rNMF (N, cl, l, ω);
Input : N root node containing the matrix to factorize, cl current level of the tree

(initialized to zero), l total depth of the tree, ω threshold parameter
Output: T tree containing the recursive factorization
if l == cl then

return T ;
else

[H,W ]← NMF (NV );
V1 = {v ∈ V [i, j] | ∀ dj ∈ D H[1, dj ] ≥ ω};
V2 = {v ∈ V [i, j] | ∀ dj ∈ D H[2, dj ] ≥ ω};
N1 ← (V1, H[1, :],W [:, 1]);
N2 ← (V2, H[2, :],W [:, 2]);
T ← addLeftChild(N,N1);
T ← addRightChild(N,N2);
return rNMF(N1, cl + 1, l, ω);
return rNMF(N2, cl + 1, l, ω);

end
Algorithm 4: Algorithm for recursive NMF

In the first level, the data matrix V ∈ Rt∗m×s containing the longitudinal signal infor-
mation is factorized in k = 2 sources using NMF. The matrix is defined as:
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V =



d1 d2 . . . ds

I1,M1 v1
1,1 v1

1,2 . . . v1
1,s

...
...

... . . . ...
I1,Mm . . . v1

m,2 . . . v1
m,s

...
...

... . . . ...
ItM1 . . . . . . . . . . . .
...

...
... . . . ...

It,Mm . . . . . . . . . . . .


V contains the voxels intensity for each of the m DTI metrics in each of the t time-

points (Ii,Mj 1 ≤ i ≤ t, 1 ≤ j ≤ m) for all the voxels dj ∈ D extracted in a given cross
section q.

The application of the first level of our hierarchical NMF model to V allows to obtain
a source matrix W and an abundance matrix H. In this paper, W1 and W2 denote
respectively the two source vectors obtained from the first and the second column of W .
Similarly, H1 and H2 denote respectively the two abundance vectors obtained from the
first and the second row of H.

Let hi,j ∈ H be the j − th element of the i− th abundance vector, the elements in the
k (in our case k = 2) vectors are normalized according to the following equation:

hi,j = hi,j∑k
r=1 hr,j

∀ 1 ≤ j ≤ s , 1 ≤ i ≤ k (2.1)

The normalized vectors are used to split the voxel set D in two sets (D1, D2) according
to the following rule: D1 = {dj ∈ D | H[1, dj ] ≥ ω} and D2 = {dj ∈ D | H[2, dj ] ≥ ω}
where ω ∈ R is a given threshold. Similarly to V , we can generate two new data matrices
V1 and V2 using respectively the voxels contained in D1 and D2. The NMF factorization
could then be applied recursively to V1 and V2 in order to create a second level of matrices
generated by the factorization. In general, the algorithm 4 could be applied to generate
l ∈ N levels. The recursive application of NMF to each level could be formalized using a
tree (Figure 2.2). Each level of the tree contains the abundance vector (Hi...), the source
vector (Wi...) and the data matrix (Vi...) obtained from the application of NMF of the
previous level data.

Detection of “time-point outliers” in the source matrix

In order to check and, eventually, isolate voxels affected by longitudinal changes, abun-
dance and source vectors obtained at the lowest level of the hierarchy (the leaves of the
tree) are used. If the analysis of the abundance vectors gives information about the single
voxel, the analysis of the source vectors gives information about the contribution of each
diffusion feature in each time-point. In the rest of this section we assume that V∗, H∗1, H∗2
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Figure 2.3: On the left, the NMF source vectors (W∗1, W∗2) of one leaf of the tree. For
each of the 8 time-points with m = 5, diffusion metrics (FA, MD, λr, λ2, λ3) are used
for a total of 40 features. The outliers’ peak visible at time-point 5 (T5) shows that the
longitudinal alteration appears only at T5. On the right, the voxels segmented using the
information contained in the abundance vectors.

and W∗1,W∗2 are respectively the data matrix, abundance and source vectors obtained in
a generic leaf of the tree. In order to detect if, during the longitudinal follow-up, longitudi-
nal variations are present we look for the presence of anomalies in the source vectors. More
in detail, we say that a longitudinal variation appears during the follow-up if longitudinal
variations are present in all the diffusion metrics belonging to certain time-points of W
(Figure 2.3). We define these “changed time-points” as outliers. In order to detect these
points, the Density-based Local Outliers (LOF) algorithm [Breunig et al. (2000)] is used.
This clustering algorithm allows to detect outliers by computing the LOF value for each
element in the cluster. The LOF value of each object represents the degree of the object to
be an outlier compared to the other elements in the cluster. This value strongly depends
on a single parameter MinPts which represents the number of nearest neighbors used in
defining the local neighborhood of the object [Breunig et al. (2000)]. The main problem
related to the LOF is the difficulty to interpret resulting LOF scores since there are no
clear rules that define when a point is an outlier. In order to properly detect the outliers
this value should be carefully selected for the specific dataset. For a given source vector
Wg, the input of the LOF algorithm is a matrix F ∈ Rt×m where fi,j ∈ F contains the
contribution of the j− th diffusion parameter at the i− th time-point. The LOF algorithm
is then applied independently to W∗1 and W∗2. If outliers are detected in one of the two
source vectors (W∗1, W∗2) the voxels belonging to the corresponding abundance matrix
(H∗1, H∗2) having value ≥ ω are marked as “evolving voxels” (Figure 2.3). These voxels
delineate the region in the image affected by the longitudinal variation.
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2.4 Subjects

Five relapsing-remitting (RR) MS patients (4 women and 1 man, mean (± SD) age:
36.8± 9.5 years; median disease duration: 4.24y; max 16.5 y) (median Expanded Disability
Status Scale (EDSS)=2.5, range=[0; 4]) and one healthy control (HC) subject (age: 24
years) were included in this study. Inclusion criteria specified that studied patients were
diagnosed as RR MS if they present at least one new Gadolinium-enhancing lesion during
the six months preceding study enrollment. All patients had stopped their treatment for
at least one year and have not started any during the study period. In order to limit the
nephrogenic damage risks associated to Gadolinium injection, creatinine clearance was
checked every 2 weeks after inclusion. A clearance higher than 60ml/min was an exclusion
criterion. This study was approved by the local ethics committee (CPP Lyon Sud-Est IV)
and the French national agency for medicine and health products safety (ANSM). Written
informed consent was obtained from all patients and the control subject prior to study
initiation.

2.5 MRI Protocol

All subjects underwent a weekly examination for a period of two months (8 time-points
from T1 to T8). MRI protocol included a DTI and a FLAIR acquisition, that were per-
formed on a 3T Philips Achieva system (Philips Healthcare, Best, The Netherlands) with
a 16-channels head-coil. The DTI image set consisted of the acquisition of 60 contiguous
2mm-thick slices parallel to the bi-commissural plane (AC-PC), and were acquired using
a 2D Echo-Planar Imaging (EPI) sequence (TE/TR = 60/8210 ms, FOV = 224x224x120
mm) with 32 gradient directions (b = 1000s.mm−2). The nominal voxel size at acquisi-
tion (2x2x2 mm) was interpolated to 0.875x0.875x2 mm after reconstruction. The FLAIR
Vista 3D sequence (TE/TR/TI = 356/8000/2400 ms, FOV=180x250x250 mm) consisted
of the acquisition of 576 slices of 0.43 mm thickness.

2.6 Longitudinal Variations Simulator (LVS)

As in [Grigis et al. (2013)], in order to generate real differences between scans such as
noise induced by acquisition and changes in subject positioning, our algorithm was tested
on simulated longitudinal changes generated along different fiber-bundles in the control
subject described in section 5.1.

In this section we describe a new model to simulate pathological longitudinal changes
on multi-parametric diffusion data. The idea behind our model is the simulation of the
MS longitudinal changes using two properties: shape size and diffusion value changes.
We assume that the variation takes a spherical shape of radius r that could change on
time. Moreover, we assume that diffusion values of voxels belonging to this region could
change during the longitudinal evolution of a factor ρ, called reduction coefficient. This
coefficient ρ is used to change the voxel’s diffusion values inside the spherical region in a
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given time-point according to the following equations:

λ∗2 = λ2 + ρ ∗ (λ1 − λ2) λ∗3 = λ3 + ρ ∗ (λ1 − λ3)

with 0 ≤ ρ ≤ 1. FA, MD, and other tensor metrics are then recomputed in the given
time-point using λ1 and the new λ∗2, λ

∗
3 values.

The proposed LVS model could be summarized using the parametric function S defined
as:

S :


r(t) = G(t, µr, αr, βr)

ρ(t) = G(t, µρ, αρ, βρ)

the function G is the generalized Gaussian probability density function (GGPDF) de-
fined as follows:

G(x, µ, α, β) = β

2αΓ( 1
β )
e−( |x−µ|

α
)β

where x, µ, α, β ∈ R with α, β ≥ 0 and Γ denotes the gamma function. This particular
distribution includes the normal Gaussian distribution N when β = 2 (with mean µ and
variance α2

2 ) and it includes also the Laplace distribution when β = 1.
Since the values of r(t) and ρ(t) given by the function S are such that 0 ≤ r ≤ 1 the

range of values is rescaled in order to match the interval [0, ψ] for r and [0, ξ] for ρ.
Using the parametric function S we can generate several longitudinal lesions in different

cross-sections of a given fiber-bundle. Since the longitudinal behavior of a lesion is not a-
priori predictable, the µr, αr, βr and µρ, αρ, βρ parameters are randomly selected in order
to simulate different kinds of longitudinal variations. Several examples of longitudinal
simulated lesions are visible in Figure 2.4.

The function S could also be generalized in order to simulate appearing and disap-
pearing lesions. The model could be easily extended by using a mixture of GGPDFs. The
function G could then be replaced withM defined as:

M(x, µ̄, ᾱ, β̄) =
v∑
i=1

ιi
βi

2αiΓ( 1
βi

)
e
−( |x−µi|

αi
)βi

where v is the number of reappearing peaks of the lesions and ιi ∈ R |
∑v
i=1 ιi = 1 is

a weighting factor given to each mixture component.
The method could also be extended with other lesion shapes. For instance, an ellipsoid

could be used to model the shape of the variation. In this case the function S could be
extended to Sellipsoid. This new function uses three different radii r1, r2, r3 respectively
representing the size of the three axes of the ellipsoid.

In the rest of this paper when we refer to the function S, we assume as GGPDF the
function G and as lesion shape a sphere of radius r.
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Figure 2.4: Example of function S corresponding to longitudinal simulated variations
evolving in shape (blue function) and in reduction coefficient (red function). a) Single
time-point appearing variation. b) Variation with longitudinal stable shape (radius r)
and evolving diffusion changes ρ.

3 Experiments

3.1 Simulation of longitudinal variations

100 different longitudinal variations were simulated on the control subject’s diffusion
maps obtained using the model described in section 2.6. All the variations were generated
along 10 different fiber-bundles, namely, left and right, cortico-spinal tract, inferior-fronto
occipital fasciculi, cingulum, and forceps major and minor of corpus callosum. In order to
simulate small variations, we fixed ψ = 2 and ξ = 0.5. Since different NMF implementa-
tions performed differently according to the domain of application, as reported in [Li et al.
(2012),Sauwen et al. (2015)], in this work three different algorithms to compute NMF are
used and compared: alternating least-squares algorithm [Gillis and Glineur (2012)] (ALS),
hierarchical alternating least-squares algorithm (HALS) [Cichocki and Phan (2009)] and
multiplicative update (MUL) [Lee and Seung (1999)]. For each NMF analysis, the source
and the aboundance matrices were initialized randomly, the NMF procedure was repeated
20 times and the output with the best objective function value was withheld.

The capability to detect the presence of longitudinal variations was tested. For each
algorithm three different tests were performed: i) binary classification for longitudinal
detection, ii) find the time-points affected by the longitudinal alterations and iii) delineate
the regions affected by the longitudinal changes. Each test was performed with l = 1 and
l = 2 only. Due to the number of voxels in each cross-section, with l > 2 we do not obtain
enough voxels to apply NMF.

In order to find the best values of the threshold ω, MinPts and the LOF different tests
were performed using a range of values. The ω-interval (0.5 ≤ ω ≤ 1) was divided into
11 steps, as a finer step size did not significantly improve the results any further. MinPts
values range from 1 to 8 (the total number of time-points) and the LOF interval was given
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by {2, 2.5, 2.8, 3, 3.5, 3.8, 4, 4.5, 4.8}.

Binary classification for longitudinal detection

In order to quantify how many simulated longitudinal variations were correctly iden-
tified by our method, we tested the capability of our method to detect if in a given
cross-section longitudinal changes are present during the follow-up. True positives (TP)
and false negatives (FN) were computed to assess the Recall ( TP

TP+FN ).

Longitudinal change detection

We tested the capacity of our method to detect the time-points affected by the lon-
gitudinal variations. More in detail, we check for each simulated variation, whether each
time-point is correctly classified as “normal” or “outlier”. TP, false positives (FP) and FN
were then used to compute the F-Measure ( 2∗TP

2∗TP+FP+FN ) for the variation. Since multiple
longitudinal variations were simulated along the fiber-bundles, mean (F −Measure) and
standard deviation (σ(F −Measure)) of F-Measure were computed.

Longitudinal change delineation

We tested the capability of our method to well delineate the region affected by the
longitudinal changes. In other words, we tested the capability of our algorithm to detect
the simulated spherical regions in which we simulated the signal changes. In order to
quantify the quality of the delineation, the Sørensen-Dice Score Coefficient (DSC) [Zou
et al. (2004)] was computed according to the following equation:

DSC = 2 ∗ |A ∩B|
|A|+ |B|

where A is the voxel set containing the regions with the simulated longitudinal variation
and B is the voxel set with the region detected by our method. According to this index,
we can have three different cases:

1. DSC = 0: No overlap

2. 0 < DSC < 1: Partial overlap

3. DSC = 1: Complete overlap

Since multiple longitudinal variations were simulated along the fiber-bundles, mean
(DSC) and standard deviation (σ(DSC)) of DSC were computed.

In order to generalize the capability of the proposed method to detect longitudinal
changes, two steps are performed. In the first step, a nested search of the parameters of
the algorithm is performed, on simulated variations, for each combination of features and
for each NMF algorithm. In the second step, the method was applied on a new set of
simulated variations using the best parameters discovered in the first step.
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3.2 Application on MS patients follow-up

Two RR MS patients (see section 5.1) were selected due to the presence of visible
longitudinal alterations assessed by our neuroradiologist (FC). DTI data of each patient
were processed using our proposed pipeline described in section 2. Among the 20 fiber-
bundles (contained in the JHU atlas), the Cortico-Spinal Tract (CST) was selected by our
neuroradiologist (FC) because of the presence of longitudinal MS alterations.

4 Results

4.1 Simulated longitudinal data

Best results for all three experiments, described in the previous section 3, are reported
in Table 2.1 for l = 1 and in Table 2.2 for l = 2. In these tables we show how, for each
combination of diffusion parameters and for each NMF algorithm, different performances
were obtained. In the tables we denote with “All” the case obtained when all 7 diffusion
parameters (FA, MD, λ2, λ3, λr, KLA, AA) are used as features.

For l = 1, best results in terms of Recall are obtained using HALS algorithm with
KLA as feature (0.97). Best DSC (0.67) is obtained using HALS algorithm and λ2, λ3 as
features while best F −Measure (0.78) is obtained using ALS algorithm and FA as feature.
Compared to the other algorithms and features, ALS globally shows a better capability
to delineate the longitudinal evolutions with high values of Recall (0.82), F −Measure

(0.70) and DSC (0.60) reached using λ2, λ3 as features and with the following parameters:
ω = 0.55, MinPts = 3 and LOF = 2.5. With respect to the other two algorithms MUL
shows comparable performances.

For l = 2, similar results are obtained for HALS, ALS and MUL having respectively
0.73, 0.80, 0.75 as Recall, 0.70, 0.68, 0.74 as F −Measure and 0.57, 0.59, 0.61 as DSC
with λ2, λ3 as features. Moreover, as for l = 1, HALS algorithm shows the highest
performances in terms of Recall (0.99) with the following three features’ sets i) KLA ii)
KLA, FA and iii) KLA, AA. Also ALS algorithm reaches a high value of Recall (0.99) but
just having as feature KLA, FA.

In Tables 2.3, 2.4 and 2.5 we show how the time-point detection and delineation per-
formances change according to ω, LOF and MinPts parameters.

We tested our method with different parameters by using MUL algorithm and two
levels (l = 2) with a feature vector composed of FA, MD, λr, λ2 and λ3. Values with
7 ≤ MinPts ≤ 8 are not shown in the tables since for these parameters the values are
all zero. As expected, the ω parameter mainly influences the DSC performances. Low
values of ω (0.5 ≤ ω ≤ 0.6) show high DSC values, while, large values of ω (ω ≥ 0.65)
yield a degradation of the DSC performances. This behavior is justified by the fact that
the ω parameter is used as threshold to decide which voxels should be selected from the
abundance vectors.
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Table 2.1: Best values of Recall, mean (F −Measure, DSC) and standard deviation
(σ(F −Measure), σ(DSC)) in parenthesis of F-Measure and DSC for longitudinal time-
points identification using one level (l = 1) and different combinations of diffusion param-
eters

Recall F −MeasureF −MeasureF −Measure DSCDSCDSC

HALS

All 0.68 0.72 (0.34) 0.50 (0.27)
KLA 0.97 0.65 (0.25) 0.25 (0.10)

KLA,FA 0.71 0.72 (0.32) 0.29 (0.10)
KLA,AA 0.70 0.56 (0.20) 0.24 (0.12)

FA,MD,λr,λ2,λ3 0.67 0.56 (0.35) 0.39 (0.25)
FA 0.88 0.74 (0.32) 0.17 (0.26)
MD 0.71 0.52 (0.32) 0.63 (0.34)

FA,MD 0.64 0.52 (0.37) 0.31 (0.25)
FA,MD,λr 0.70 0.54 (0.36) 0.37 (0.24)

λ2,λ3 0.72 0.66 (0.37) 0.67 (0.30)

ALS

All 0.71 0.52 (0.20) 0.34 (0.15)
KLA 0.93 0.71 (0.20) 0.26 (0.11)

KLA,FA 0.85 0.60 (0.18) 0.30 (0.16)
KLA,AA 0.80 0.59 (0.20) 0.35 (0.15)

FA,MD,λr,λ2,λ3 0.70 0.57 (0.36) 0.38 (0.25)
FA 0.80 0.78 (0.30) 0.25 (0.32)
MD 0.72 0.64 (0.32) 0.52 (0.35)

FA,MD 0.65 0.52 (0.35) 0.35 (0.20)
FA,MD,λr 0.68 0.53 (0.35) 0.38 (0.24)

λ2,λ3 0.82 0.70 (0.36) 0.60 (0.33)

MUL

All 0.62 0.54 (0.25) 0.34 (0.15)
KLA 0.87 0.61 (0.22) 0.32 (0.18)

KLA,FA 0.77 0.53 (0.20) 0.30 (0.15)
KLA,AA 0.79 0.57 (0.24) 0.23 (0.12)

FA,MD,λr,λ2,λ3 0.69 0.54 (0.35) 0.41 (0.28)
FA 0.86 0.68 (0.34) 0.23 (0.32)
MD 0.74 0.62 (0.33) 0.55 (0.31)

FA,MD 0.63 0.48 (0.38) 0.33 (0.22)
FA,MD,λr 0.67 0.55 (0.35) 0.37 (0.22)

λ2,λ3 0.71 0.74 (0.33) 0.61 (0.33)
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Table 2.2: Best values of Recall, mean (F −Measure, DSC) and standard deviation
(σ(F −Measure), σ(DSC)) in parenthesis of F-Measure and DSC for longitudinal time-
points identification using two levels (l = 2) and different combination of diffusion param-
eters

Recall F −MeasureF −MeasureF −Measure DSCDSCDSC

HALS

All 0.72 0.69 (0.25) 0.52 (0.24)
KLA 0.99 0.48 (0.20) 0.25 (0.12)

KLA,FA 0.99 0.50 (0.22) 0.25 (0.11)
KLA,AA 0.99 0.52 (0.21) 0.22 (0.09)

FA,MD,λr,λ2,λ3 0.79 0.66 (0.34) 0.54 (0.29)
FA 0.89 0.60 (0.33) 0.21 (0.26)
MD 0.82 0.54 (0.31) 0.40 (0.29)

FA,MD 0.72 0.68 (0.33) 0.23 (0.23)
FA,MD,λr 0.72 0.67 (0.35) 0.46 (0.27)

λ2,λ3 0.73 0.70 (0.26) 0.57 (0.26)

ALS

All 0.75 0.62 (0.22) 0.36 (0.10)
KLA 0.94 0.55 (0.23) 0.30 (0.12)

KLA,FA 0.99 0.49 (0.20) 0.30 (0.19)
KLA,AA 0.97 0.52 (0.21) 0.29 (0.15)

FA,MD,λr,λ2,λ3 0.75 0.68 (0.32) 0.48 (0.30)
FA 0.88 0.63 (0.32) 0.18 (0.24)
MD 0.86 0.56 (0.35) 0.47 (0.31)

FA,MD 0.74 0.66 (0.33) 0.34 (0.28)
FA,MD,λr 0.72 0.67 (0.34) 0.39 (0.34)

λ2,λ3 0.80 0.68 (0.33) 0.59 (0.29)

MUL

All 0.86 0.64 (0.21) 0.40 (0.20)
KLA 0.98 0.48 (0.22) 0.26 (0.12)

KLA,FA 0.98 0.51 (0.25) 0.27 (0.15)
KLA,AA 0.94 0.42 (0.21) 0.26 (0.11)

FA,MD,λr,λ2,λ3 0.75 0.66 (0.33) 0.51 (0.27)
FA 0.97 0.52 (0.25) 0.29 (0.25)
MD 0.82 0.53 (0.32) 0.43 (0.28)

FA,MD 0.73 0.60 (0.35) 0.34 (0.27)
FA,MD,λr 0.71 0.69 (0.32) 0.42 (0.30)

λ2,λ3 0.75 0.74 (0.30) 0.61 (0.25)
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In addition, LOF and MinPts parameters are used for the LOF outlier detection al-
gorithm, and they mainly influence the Recall and F −Measure performances. With
1 ≤ MinPts ≤ 4 and 2 ≤ LOF ≤ 3.8 high values of Recall and F −Measure are
obtained.

4.2 MS patients follow-up

In order to show how the combination of the five diffusion parameters could be helpful
in application on real data, a feature vector composed by FA, MD, λr, λ2 and λ3 (m = 5)
was used. Based on the results obtained in the simulated validation, we used HALS as
algorithm since it globally reached, for these five features, the best results in the three
tests. The following parameters l = 2, LOF = 2.8, MinPts = 4 were selected.

As illustrated in Figure 2.5 and Figure 2.6, both small and large “pathological” lon-
gitudinal variations occurring along the two WM fiber-bundles were correctly identified
using the proposed method. In both figures, it is possible to see how MS modifies, longi-
tudinally, the diffusion values in a specific WM region. With our method it is possible to
identify where these regions are located along specific WM fiber-bundles and which part
of these bundles are affected by the longitudinal changes. We can thus extract two types
of information: i): segmentation of the regions affected by the longitudinal variations and
ii): the delineation of the time-points affected by the longitudinal variations. Detection
of significant changes were validated by our neuroradiologist (FC).

5 Discussion

We described a new fully automated tool to analyze longitudinal changes in the WM
fiber-bundles of MS patients. Particularly, we developed a new NMF based method to
detect local scale longitudinal variations caused by rapid inflammatory processes in MS
patients. The fully automated method described in this paper is divided in three major
steps: i) preprocessing of longitudinal diffusion acquisitions, ii) WM fiber-bundles extrac-
tion, iii) application of NMF and LOF cluster algorithm to detect and delineate longitudi-
nal variations appearing in the cross-section of the given WM fiber-bundle. Moreover, in
order to test the capability of our method to detect and delineate longitudinal changes, a
new simulation paradigm is introduced. The new simulation method LVS allows to repli-
cate real longitudinal variations occurring in diffusion data in MS patients. The method
uses the longitudinal data of a control subject to simulate longitudinal variations in shape
and signal by following a GGPDF distribution.

Results on simulated data show the capability of our method to detect and delineate the
presence of longitudinal changes in cross-sections of WM fiber-bundles. The experiment
section was also enriched by the analysis of the features set and the input parameters of
our method. This process allowed us to see how the performance of our method changes
according to the parameters, and which range of parameters gives the best results in terms
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5. DISCUSSION

of detection and delineation. As a result of this validation step, we obtained that good
improvements were reached using two levels (l = 2) compared to the one level analysis
l = 1. Moreover this validation process gave us the possibility to explore how certain
parameters like LOF and MinPts influence performances like Recall and F −Measure.

Those parameters can also be adjusted in order to adapt the proposed method to
different situations. For instance, for the analysis of thin fiber-bundles, where the number
of the voxels in the cross-section is small, the number of levels in the tree can be set to
one (l = 1).

The features used to perform the analysis play also an important role on the final
results. It is possible to see how the introduction of KLA and AA allows to obtain excellent
results in terms of F −Measure compared to the “standard” DTI derived metrics for
l = 1 and l = 2. Globally the optimal results are reached using λ2, λ3 as feature set. The
introduction of other diffusion parameters does not drastically improves the performance.
Moreover, from the results obtained on the simulated data, we can observe two principal
characteristics. First, ALS is the best algorithm to detect if longitudinal changes are
present in the follow-up. Second, MUL is the best to detect the time-points affected by
the changes and segment the affected voxels.

One limitation present in this work is related to the low value of DSC reached by
our method. In future work, we plan to overcome this limitation by using structural
information derived from classical MRI sequences like T1, T2 FLAIR, etc..

As final experimental step, the proposed method was applied in real MS patients
showing its capability to detect and delineate the temporal and spatial changes observed
by the neuroradiologist.

Another interesting added value of our method is its capability to easily include new
time-points acquired later in time. Indeed, due to the robustness of the registration pipeline
used in this work [Keihaninejad et al. (2013)] the effects of certain longitudinal biases
[Reuter et al. (2012)], like atrophy, are minimized.

Compared to the other methods already presented in the literature [Stamile et al.
(2016)a, Stamile et al. (2015)b, Grigis et al. (2013)], the proposed method allows to
overcome multiple limitations. First, it allows to analyze multiple DTI maps taking into
account more than 2 time-points. Second, it not only allows to delineate the regions af-
fected by the longitudinal changes, but also to show which time-points are affected by
those changes. Third, the method is unsupervised. Hence there is no need to formulate
particular hypotheses about the distribution and/or evolution of the diffusion parameters.
Finally it could be easily extended to include other modalities without modifying the algo-
rithm and without formulating new hypotheses about the modalities’ signal distribution
and/or evolution.
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6 Conclusion

In this work a new pipeline for longitudinal analysis of changes along WM fiber-bundles
was presented. We showed how NMF, in combination with LOF, is a powerful tool to
discover the presence of longitudinal variations. The method was tested on simulated
data, generated with a new simulation paradigm, and on real data.

Results suggested that the proposed method is a promising tool to longitudinal analysis
of fiber-bundles in neurodegenerative diseases like MS.

Encouraged by those preliminary results, as for future work, we plan to extend the
application of our method to perform multimodal analysis. The idea is to apply the
algorithm on different MRI modalities (MRS, T2, T1, etc..) and other diffusion metrics to
quantify anisotropy [Prados et al. (2010)] like Aitchison Anisotropy, shape anisotropy and
others in order to discover the optimal set of features to perform longitudinal analysis.
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Global Analysis of Fiber-Bundle Signal
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1. INTRODUCTION

Published papers in this chapter

• C. Stamile, F. Cotton, F. Maes, D. Sappey-Marinier, S. Van Huffel, “White Mat-
ter Fiber-Bundle Analysis Using Non-Negative Tensor Factorization,” in:
Image Analysis and Recognition (ICIAR), LNCS vol. 9730, pp. 650-657, 2016.

• C. Stamile, F. Cotton, F. Maes, D. Sappey-Marinier, S. Van Huffel, “Constrained
Tensor Decomposition for Longitudinal Analysis of Diffusion Imaging
Data,” IEEE Journal of Biomedical and Health Informatics, to submit, 2017.

1 Introduction

Magnetic resonance imaging (MRI) is becoming the reference technique to assess brain
related pathology. The evolution of fast magnetic acquisition techniques, allowed to use
MRI to perform short term longitudinal follow-up of single patients in order to assess the
pathological course.

Among all the available MRI biomarkers, diffusion tensor imaging (DTI) or, in gen-
eral, diffusion imaging (DI), is one of the most interesting techniques to analyze structural
changes in the brain. More in detail, in the last decade, different papers showed how image
biomarker derived from DI are sensible for the characterization of brain pathologies like
brain tumors and multiple sclerosis (MS) [Gerstner and Sorensen (2011), Kocevar et al.
(2016), Hannoun et al. (2012)b]. Moreover, DI was successfully applied in longitudinal
follow-up of brain related pathology showing a good capability to enhance the presence of
small longitudinal variations occurring in white matter (WM). These results are encour-
aging in exploiting DI in follow-up of relapsing remitting (RR) MS patients where small
longitudinal changes occur in WM during the evolution of the pathology.

Main challenge in DI analysis is derived from the large number of information that
is possible to derive. Indeed DI provides both structural and quantitative information.
The former can be derived from the application of tractography algorithm that allows to
reconstruct the architecture of WM fibers [Mori et al. (1999)]. The latter is obtained
by using specific model to analyze diffusion like DTI. Those information allows to obtain
quantitative measures helpful to asses the properties of the tissue. If in this setting lon-
gitudinal information are added, is quite easy to see how the problem of a proper data
analysis starts to become quite complex.

Recently, different efforts were made in order to perform such complex analysis. In
[Grigis et al. (2013)], the authors showed a method to analyze longitudinal changes in WM.
Main limitation of this method is related to its capability to perform a longitudinal analysis
restricted to two time-points. Moreover, it can not take into account multiparametric
data at the same time. In our previous works, we overcome the limitation of this method
[Stamile et al. (2016)a, Stamile et al. (2017), Stamile et al. (2016)b]. In particular, in
[Stamile et al. (2016)b] we developed a method based on non-negative matrix factorization
to perform longitudinal analysis in MS patients in cross-sections of WM fiber-bundle. Since
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the major constraint in using a matrix factorization is given by the fixed number of the
dimensions, this method was applied only to one specific cross-section of the bundle at
time. As result, only local information contained in a specific cross-section are taken into
account during the analysis, ignoring the information available along different fibers within
the bundle.

In the last years, tensor factorization techniques [Sorber et al. (2015)] emerged as a
convincing tool to perform data fusion. More in detail, their capability to analyze data,
that can be represented using more than two dimensions, made them a perfect tool easy
to use in scenarios where more than two dimensions are needed to represent the data.

In this paper, we propose a new tensor-based framework based to analyze longitudinal
changes in MS patients occurring along WM fiber-bundles. Our main goal is to detect
which subset of fibers within a WM fiber-bundle and which sections of those fibers con-
tain “pathological” longitudinal changes and which are the time-points affected by those
changes. We developed a complete fully automated pipeline to register and extract WM
fiber-bundles from MRI data and analyze them using tensor factorization. Moreover, in
order to optimize the computational time needed to perform the tensor factorization, we
developed a parallel pipeline to perform such analysis.

This paper is structured as follows. In Section 2, we provide a detailed description
of the processing pipeline used in this work to extract WM fiber-bundles and register
longitudinal data. In Section 3, we describe how our problem to analyze longitudinal
changes in WM fiber-bundle can be formalized using tensors. In Section 4 we show how
to speed-up the proposed framework using parallel programming. In Section 5, we present
our experimental campaign. In Section 6 we show our results. In Section 7 we discuss the
performances, benefits and limitations of our method. Finally, in Section 8, we draw our
conclusions.

2 Data processing pipeline

Before describing or data processing pipeline, we need to state some assumptions made
in this paper. More in detail, we assume that each patient has longitudinal MRI acquisi-
tion. In general, we denote with s the number of acquisitions for a single patient. Moreover,
for each patient we assume that diffusion data are available at each time-point.

2.1 Data registration

As first step, each of the s time-points (T1 . . . Ts) of DTI longitudinal acquisitions,
are processed. Eddy current correction [Jenkinson et al. (2012)] was first applied on
the diffusion volumes using the b0 volume (b = 0s.mm−2) as reference. The corrected
volumes were then used in order to compute the tensor model using the FDT module
of FSL [Jenkinson et al. (2012)]. Longitudinal data co-registration is performed using
the method described in [Keihaninejad et al. (2013)] based on DTI ToolKit (DTI-TK)
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including the following procedures: i) generation of a patient-specific template obtained
from longitudinal diffusion tensor images, ii) co-registration of the resulting template to
the Illinois Institute of Technology (IIT) atlas [Varentsova et al. (2014)], and iii) co-
registration of each time-point data into the IIT atlas space by applying the previously
obtained transformations to the initial longitudinal data. The resulting tensor image is
then used to compute 6 diffusion metric maps: fractional anisotropy (FA), mean diffusivity
(MD), radial diffusivity (λr) and the three eigenvalues of the diffusion tensor (λ1, λ2,
λ3). Moreover, two diffusion anisotropy measurements were computed: Compositional
Kullback-Leibler Anisotropy (KLA) and Angular Anisotropy (AA) [Prados et al. (2010)].

2.2 Fiber-bundle extraction

Probabilistic streamline tractography was performed using MRTrix [Tournier et al.
(2012)] based on the fiber orientation density (FOD) information of the IIT Atlas. Twenty
fiber-bundles were extracted using a semi-automatic algorithm [Stamile et al. (2015)a]
coupled with the prior knowledge extracted from the 20 regions of interest (ROI) of the
JHU fiber-bundle atlas [Hua et al. (2008)]. In order to analyze fiber-bundles an additional
step is needed. Indeed, the output of the tractography could not be directly used for
the analysis of the fiber-bundle since the number of points used to reconstruct the fibers
varies. Moreover, start and end point of each fiber are not consistent within the same
fiber-bundle. Fibers could start randomly from the two extremities of the bundle. In
order to overcome those problems part of the pipeline described in [Stamile et al. (2016)a]
was applied to process the fiber-bundle. As first step we define common start/end points
of each fiber within the bundle. A classical K-Means algorithm [MacQueen et al. (1967)]
is performed to generate two different clusters, R1 for the starting points and R2 for the
ending points. Fiber points are then reordered from R1 to R2 and fibers that did not
link the two clusters (broken fibers) are automatically removed. As final post-processing
step each fiber is resampled with the same number q = 100 of points (also called nodes or
cross-sections).

2.3 Fiber-bundle formalization

After the post-processing we can formalize the extracted fiber-bundle as set F =
{f1, f2, . . . , fv} composed of v fibers fj = {p1p1p1, . . . , pqpqpq} where pipipi = (xi, yi, zi) | 1 ≤ i ≤ q.
The coordinate pipipi is used to extract the voxel’s value of one of the six diffusion maps
(FA(pipipi) in case of FA) in the corresponding location of fj . With this formalization it is
possible to analyze the signal along each fiber within the bundle. For instance, the FA
signal profile along a fiber fj ∈ F can be regrouped in the set Ej = {FA(p1p1p1), . . . , FA(pqpqpq)}.
This subdivision is graphically described in Figure 3.1. A common way to represent the
signal profile along the whole fiber-bundle is to average all the signal profile along each
fiber fj ∈ F . Global profile is then expressed using mean and the standard deviation of
the signal along the fiber bundle as presented in Figure 3.2.
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Figure 3.1: A) Original fiber-bundle F . B) A single fiber fj ∈ F . C) FA signal extract
along the fiber fj .

Figure 3.2: A) Original fiber-bundle F . B) FA signal along each fiber fj ∈ F . C) Mean
FA signal (black line) with standard deviation (coloured band) representing the global
signal profile along F .

Similarly, taking all the cross-sections ppp with the index i in each fiber f ∈ F it is
possible to analyze the global diffusion values in a particular cross-section of F . More in
detail we can collect all the FA values belonging to a given cross-section of F defining the
following set: Si = {FA(pipipi) | pipipi ∈ f ∀ f ∈ F} where i is the fixed index representing the
cross-section to analyze.

3 Fiber-Bundle as tensor

Before the introduction of our tensor-based formalism we need to define the notation
used in this paper. More in detail, if not clearly stated, we will use the notation described
in [Kolda and Bader (2009)]. We denote with lower case letters e.g. a scalar values, with
bold lower case letters e.g. aaa 1-dimensional vectors, with boldface uppercase letter e.g. AAA
matrices and with boldface Euler script letters AAA tensors.

In this work we describe a new method to analyze longitudinal changes visible along
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Figure 3.3: Tensorization of longitudinal diffusion features along a fiber-bundle (cortico-
spinal tract in this case).

...

...
...

M11
M21
. . .

Mz1

M1s
M2s
. . .

Mzs

T1

Ts

Figure 3.4: Representation of the 3rd mode of the tensor TTT

WM fiber-bundles using a tensor-based model. In Figure 3.3 we show the model of our
tensor to describe the signal along a given fiber-bundle. The third-order tensor TTT ∈
Rv×q×m is generated by concatenating all the longitudinal features extrapolated along all
the fibers within a bundle.

More in detail, let z be the number of features we want to extrapolate along the fiber-
bundle and let s be the number of acquired time-points. Since we have multiple features
and multiple time-points, we define with Mij 1 ≤ i ≤ z, 1 ≤ j ≤ s the i − th feature
extrapolated at the j − th time-point. Using this information the tensor TTT ∈ Rv×q×m,
with m = s ∗ z, is built. In Figure 3.4 we show a graphical representation describing how
the z features of each time-point are stacked in the 3rd mode of the tensor TTT .

This tensor-based representation gives us the possibility to analyze, in this one struc-
ture, local and global aspects of a fiber-bundle.

3.1 Tensor factorization using canonical polyadic decomposition

The canonical polyadic decomposition (CPD) decomposition factorizes a tensor into a
sum of rank-one tensors. For example, given a third-order tensor XXX ∈ Rv×q×m we wish to
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TTT ≈

c1c1c1

b1b1b1

a1a1a1

+ . . . +

cRcRcR

bRbRbR

aRaRaR

Figure 3.5: Canonical polyadic decomposition

decompose it as:

XXX =
R∑
r=1

ararar ◦ brbrbr ◦ crcrcr + EEE (3.1)

where R is a positive integer, ararar ∈ Rv, brbrbr ∈ Rq, crcrcr ∈ Rm ∀ 1 ≤ r ≤ R are the mode-1,
mode-2 and mode-3 vectors respectively and EEE ∈ Rv×q×m is the residual tensor. The
symbol “◦” represents the outer product.

The rank of a tensor XXX , denoted rank(XXX ), is defined as the smallest number of rank-
one tensors that generate XXX as their sum. In other words, this is the smallest number of
components in an exact CP decomposition, where “exact” means that there is equality
in equation 3.1 with residual tensor EEE set to zero. An exact CP decomposition with
R = rank(XXX ) components is called the canonical polyadic decomposition (CPD).

The CPD problem can be formalized as follows:

min
X̂XX
‖XXX − X̂XX‖F with X̂XX =

R∑
r=1

ararar ◦ brbrbr ◦ crcrcr = JAAA;BBB;CCCK (3.2)

In our specific case, since non-negative values are present in the analysis, we imposed
a non-negativity constraint to the factorization. More in detail, in order to factorize our
tensor, the following optimization problem is solved.

min
A,B,C≥0A,B,C≥0A,B,C≥0

‖TTT −AAA ◦BBB ◦CCC‖ (3.3)

The formulation of the tensor factorization using CPD is graphically described in Figure
3.5.

In this case, the factor matrix AAA ∈ Rv×R contains information describing the con-
tribution of each fiber during the factorization. Similarly, the factor matrix BBB ∈ Rq×R

represents the contribution of each fiber-bundle, and finally the factor matrix CCC ∈ Rm×R

contains the contribution of each feature extracted in a specific time-point.
In this work we used the information contained in the AAA and BBB factor matrices in order

to discriminate fibers and cross-section affected by longitudinal changes. The factor matrix
CCC is used to identify which are, among the R sources, the ones containing “pathological”
longitudinal changes. The idea behind the automatic selection of the sources containing
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information about the longitudinal “pathological” changes is described in Section 3.3.

3.2 Rank estimation for factorization

An important issue in tensor factorization is the estimation of the rank for the CPD
factorization of a tensor TTT . The literature on estimation of decomposition rank from
the tensor is limited. Tensorlab package [Vervliet et al. (2016)] has a method rankest,
which estimates the rank based on the L-curve of the number of rank-one terms in a
CPD [Castellanos et al. (2002)]. In a real case scenario, this method can overestimate
the real rank of the data. Indeed, the estimated rank tends to be larger the the real of
components present in the image, due to noise or biological variations. In this work, since
the proposed method is capable to automatically identify which are the sources of interest,
(as we will describe in Section 3.3), we use rankest function to estimate the rank of the
factorization. We prefer to overestimate the real rank by using the rankest function, in
order to avoid loss of information after the factorization.

3.3 Detection of longitudinal changes from tensor factorization

In order to detect the sources containing the changes generated by longitudinal vari-
ations, we generalize the method we previously proposed in Chapter 2. In our previous
work, we introduced a model to detect longitudinal changes in sources obtained by fac-
torizing data using a non-negative matrix factorization (NMF). Here we generalize the
previous model to the tensor case where each component to analyze is represented by a
one dimensional vector.

After the factorization of the tensor TTT in R components, we obtained the vectors
ararar ∈ Rv, brbrbr ∈ Rq, crcrcr ∈ Rm ∀ 1 ≤ r ≤ R. In order to detect if a component i 1 ≤ i ≤ R

captures abnormal changes contained in certain features in specific time-points its vector
cicici is used. We recall that the vector cicici contains the information of all the m features
extracted in the s time-points as follows:

cicici = [ci1, · · · , cim︸ ︷︷ ︸
T1

, · · · , cis∗m−m, · · · , cis∗m︸ ︷︷ ︸
Ts

]

In this vector, each block of m consecutive elements represents the contribution of each
diffusion feature, extracted in a specific time-point, in the i−th component. Starting from
the vector cicici the goal is to detect if the i− th components contains longitudinal variations.
More in detail, we say that a longitudinal variation appears in the i − th component if
longitudinal variations are present in all the diffusion metrics belonging to certain time
points of Ti. We define these “changed time points” as outliers. In order to clarify this
concept, we reported in Figure 3.6 a graphical example of outliers contained in component
vector cicici. In the rest of this section we will show how we can: i) detect the outliers in the
component vector cicici, ii) exploit the information derived from the outliers analysis in order
to extract fibers and cross-sections affected by longitudinal pathological changes.
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Figure 3.6: Graphical example showing a plot of a component vector cicici with s = 5 and
m = 4. The vector contains outliers values from ci5 to ci12 corresponding to time-point 2
and time-point 3. Detection of those outliers time-points allows to understand if the i− th
component “captures” longitudinal alterations. Moreover outliers detection in cicici allows to
detect time-points containing longitudinal pathological changes.

Since the tensor factorization generates R components, this check is performed for all
cicici 1 ≤ i ≤ R. Detection of outliers was performed using density-based local outliers (LOF)
algorithm [Breunig et al. (2000)].
The LOF algorithm allows to detect outliers by computing the LOF value for each element.
The LOF value of each object represents the degree of the object to be an outlier compared
to the other elements in the cluster. This value strongly depends on a single parameter
MinPts, which represents the number of nearest neighbors used in defining the local
neighbourhood of the object [Breunig et al. (2000)]. The main problem related to the
LOF is the difficulty to interpret resulting LOF scores since there are no clear rules that
define when a point is an outlier. In order to properly detect the outliers, this value should
be carefully selected for the specific dataset. A value is defined as “outliers” if and only if
the LOF value is greater than a fixed threshold value ω.

In order to use the LOF algorithm to detect if cicici contains outliers time-points, we
reshape (using the name of the MATLAB function) the vector in order to create the
following matrix:

ĈîCîCi =




ci1 . . . cim T1
... . . . ...

...
cis∗m−m . . . cis∗m Ts

the matrix ĈîCîCi ∈ Rs×m is a simple reshaped version of the original vector cicici where each
of the s rows represents a time-point defined by its diffusion features.

The matrix ĈîCîCi can now be used by the LOF algorithm in order to detect if outliers
time-points are present in the corresponding i− th component.

As result of the application of LOF algorithm on the matrix ĈîCîCi a vector lilili ∈ Rs is
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generated. This vector contains real values lij 1 ≤ j ≤ s representing the LOF value
corresponding to the j− th row of the matrix ĈîCîCi. The LOF value of each row in ĈîCîCi allows
us to understand if a specific time-point in the i − th component is an outlier. Or, in
other words, this value allows to detect if the i− th component of the tensor factorization
captured “longitudinal pathological variations” appearing in the follow-up. We say that
the i− th component of the factorization contains pathological longitudinal changes if the
following condition holds:

∃ lij ∈ lilili | lij > ω, 1 ≤ j ≤ s (3.4)

where ω is the LOF threshold that allows to define if an element is an outlier or not.
By applying this procedure to each component it is possible to obtain two information:
i) the components who “capture” the longitudinal pathological changes and ii) the time-
points where the pathological longitudinal changes appear. This procedure is summarized
in Algorithm 5. In detail, the algorithm take the component vectors c1c1c1, . . . , cscscs generated
from the tensor factorization and the LOF threshold ω. The algorithm applies the LOF
algorithm to each reshaped component vector in order to detect which components and
which time-points contain longitudinal changes. The algorithm stores all the time-points
and the components containing the longitudinal changes in the sets U and Y respectively.

The information derived from the proposed algorithm can be used in order to detect
which fibers (represented by the component matrix AAA) and which cross-sections (repre-
sented by the component BBB) are affected by longitudinal pathological changes.

More in detail, in order to verify if a fiber fi presents longitudinal changes the following
condition is checked. Let ay[i] be the i− th element of the component vector ayayay obtained
from the tensor factorization and let Y be the set containing the components detected as
“outliers” by the LOF algorithm. We say that fi is affected by longitudinal pathological
changes if the following condition holds:

∃y ∈ Y | ay[i] > ak[i]∀1 ≤ k ≤ R, k 6= y (3.5)

Roughly speaking, this condition checks if the fiber fi has its maximal contribution in
one of the components detected as “outliers” by the LOF algorithm.

Similarly, in order to check if a specific cross-section j (1 ≤ j ≤ q) of the fiber-bundle
is affected by longitudinal changes, the following condition is also checked. Let by[j] be the
j − th element of the component vector bybyby obtained from the tensor factorization and let
Y be the set containing the components detected as “outliers” by the LOF algorithm. We
say that the cross-section j is affected by longitudinal changes if the following condition
holds:

∃y ∈ Y | by[j] > bk[j]∀1 ≤ k ≤ R, k 6= y (3.6)

Like for the fibers, this condition checks if the cross-section j has its maximal contri-
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CmpTpDet (c1c1c1, . . . , cRcRcR, ω);
Input : the component vectors c1c1c1, . . . , cRcRcR obtained from the tensor factorization

a positive real value ω > 0 representing the LOF threshold
Output: a set Y with the components detected as containing longitudinal changes

a set U containing the time-points affected by the longitudinal changes
begin

Y ← ∅;
U ← ∅;
foreach i ∈ {1, . . . , R} do

ĈîCîCi = reshape(cicici);
lilili = LOF(ĈîCîCi);
foreach j ∈ 1, . . . , s do

if > ω then
U ← U ∪ j;

end
end
Y ← Y ∪ i;

end
return Y , U

end

Algorithm 5: Algorithm for detection of components and time-points
affected by longitudinal changes

FibDet (a1a1a1, . . . , aRaRaR, Y, v);
Input : the component vectors a1a1a1, . . . , aRaRaR obtained from the tensor factorization

the set Y with the components detected as containing longitudinal changes by Algorithm 5
number of fibers v

Output: A set P with the fibers containing longitudinal pathological changes
begin

H ← ∅;
foreach i ∈ {1, . . . , q} do

if ∃y ∈ Y | ay[i] > ak[i]∀1 ≤ k ≤ R, k 6= y then
P ← P ∪ i

end
end
return P

end

Algorithm 6: Algorithm for detection of fibers affected by longitudi-
nal changes

bution in one of the components detected as “outliers” by the LOF algorithm.
The procedures used for the detection of all the fibers and cross-sections affected by

the longitudinal changes are described in Algorithm 6 and Algorithm 7 respectively. Both
the algorithms check, for each fiber and cross-section, if the conditions defined in equation
3.5 and 3.6 are satisfied. The algorithms store all the fibers and the cross-section detected
as containing the pathological longitudinal changes in the sets P and H respectively.

4 Parallel implementation of the proposed method

In order to reduce the computation time needed to perform the factorization of the
fiber-bundle, we parallelized the algorithm according to the “divide et impera” program-
ming paradigm. Instead of computing the CPD and LOF on the whole fiber-bundle, we
split the fiber-bundle in small subsets of fibers. In order to split the whole fiber-bundle in
K different sub fiber-bundles, For each pair of fiber fa, fb ∈ F we compute the Minimum
Average Direct Flip (MDF) metric [Garyfallidis et al. (2012)]. The MDF metric computes
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CsDet (b1b1b1, . . . , bRbRbR, Y, q);
Input : the component vectors b1b1b1, . . . , bRbRbR obtained from the tensor factorization

the set Y with the components detected as containing longitudinal changes by Algorithm 5
number of cross-sections q

Output: A set H with the cross-sections containing longitudinal pathological changes
begin

H ← ∅;
foreach i ∈ {1, . . . , q} do

if ∃y ∈ Y | by[i] > bk[i]∀1 ≤ k ≤ R, k 6= y then
H ← H ∪ i

end
end
return H

end

Algorithm 7: Algorithm for detection cross-section affected by longi-
tudinal changes

the distance between two fibers composed by q points according to the following equations:

ddirect(fa, fb) = d(fa, fb) = 1
q

q∑
i=1
‖paip
a
ip
a
i − pbip

b
ip
b
i‖ (3.7)

dflipped(fa, fb) = d(fa, f#
b ) = d(f#

a , fb) (3.8)

MDF (fa, fb) = min(ddirect(fa, fb), dflipped(fa, fb)) (3.9)

where ‖paipaipai − pbipbipbi‖ represents the Euclidean distance between the i− th point of fa and
fb. In equation 3.8, f#

a denotes the flipped version of fa, e.g. fa = {p1p1p1, p2p2p2, . . . , pqpqpq},
f#
a = {pqpqpq, pq−1pq−1pq−1, . . . , p1p1p1}. The MDF distance is a metric on the space of fibers, it respects
the triangle inequality and it is fast to compute [Garyfallidis et al. (2012)].

Let v the total number of fibers, we can compute the MDF distance for each pair
of fibers building the positive symmetric matrix MMM ∈ Rv×v where mij ∈ MMM repre-
sents the MDF distance computed between the fibers fi and fj . The matrix MMM is then
used as distance matrix for the K-medoids clustering algorithm in order to generate a
set Cl = {F1, F2, . . . , FK} of K clusters (Algorithm 8). In our prospective, a cluster
Fi ∈ Cl represents a sub fiber-bundle generated from the original fiber-bundle F such that⋃K
i=1 Fi = F .
After their computation, each sub fiber-bundle is assigned to a different processor in

order to perform the sub fiber-bundle analysis. In this analysis, each processor, indepen-
dently, computes the CPD for the assigned sub-bundle. The results of this factorization
are then used to detect the time points, the fibers and the cross-sections affected by the
longitudinal pathological changes using Algorithm 5, Algorithm 6 and Algorithm 7 respec-
tively. The results obtained by each processor are finally merged into different synchronized
shared variables (Algorithm 9). At the end of this process the algorithm will generate three
sets U , P and H representing the time points, the fibers and the cross-sections affected
by pathological longitudinal changes respectively.

The parallel execution of the algorithm could be graphically represented as a diagram
(Figure 3.7). Each branch represents the computation flow independently executed by
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WmCl (F,K);
Input : a set F = {f1, f2, . . . , fv} of fibers

a positive integer K > 1 representing the number of clusters to generate
Output: a set Cl = {F1, F2, . . . , FK} of clusters
begin

M ← zeros(v, v);
foreach pair (fi, fj) s.t. fi ∈ F, fj ∈ F do

M [i, j] = MDF (fi, fj);
end
Cl = KMedoids(F,M,K);
return Cl

end

Algorithm 8: Algorithm for Cluster Generation

each of the K processor. At the end of the parallel execution, each processor adds its local
solution to the complete solution set.

WmTf (F, ω,K, v, q);
Input : F set containing all the fibers of a bundle, ω LOF threshold parameter, K number of parallel

processors, v total number of fibers, q total number of cross-sections
Output: U set containing the time-points affected by the longitudinal changes

P set of fibers containing longitudinal changes
H set of cross-section containing longitudinal changes.

U ← ∅;
P ← ∅;
H ← ∅;
F1, . . . , FK ←WmCl(F,K);
foreach F

′ ∈ {F1, . . . , FK} do
StartNewProcess;
TTT ← GenTensor(F ′ );
R← rankest(TTT );
a1a1a1, . . . ,aRaRaR, b1b1b1, . . . , bRbRbR, c1c1c1, . . . , cRcRcR ← min

ar,br,crar,br,crar,br,cr≥0,
1≤r≤R

‖TTT −
∑R

r=1 ararar ◦ brbrbr ◦ crcrcr‖;

Y, U
′ ← CmpTpDet(c1c1c1, . . . , cRcRcR, ω);

synchronized;
U ← U ∪ U ′ ;
P ← P ∪ FibDet(a1a1a1, . . . , aRaRaR, Y, v);
H ← H ∪ CsDet(b1b1b1, . . . , bRbRbR, Y, q);
EndOfProcess;

end

Algorithm 9: Parallel Algorithm for WM Analysis using Tensor Fac-
torization

5 Experiments

5.1 Subjects

Four relapsing-remitting (RR) MS patients (3 women and 1 man, mean (± SD) age:
36.8± 9.5 years; median disease duration: 4.24y; max 16.5 y) (median Expanded Disability
Status Scale (EDSS)=2.5, range=[0; 4]) and one healthy control (HC) subject (age: 24
years) were included in this study. Inclusion criteria specified that studied patients were
diagnosed as RR MS if they present at least one new Gadolinium-enhancing lesion during
the six months preceding study enrolment. All patients had stopped their treatment for
at least one year and have not started any during the study period. In order to limit the
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1 K

min
A,B,C≥0A,B,C≥0A,B,C≥0

‖TTT −AAA ◦BBB ◦CCC‖ . . . . . . . . . min
A,B,C≥0A,B,C≥0A,B,C≥0

‖TTT −AAA ◦BBB ◦CCC‖

LOF LOF

(U1, P 1, H1) (UK , PK , HK)

(U,P,H)

Figure 3.7: Graphical representation of parallel execution of the proposed algorithm

nephrogenic damage risks associated to Gadolinium injection, creatinine clearance was
checked every 2 weeks after inclusion. A clearance higher than 60ml/min was an exclusion
criterion. This study was approved by the local ethics committee (CPP Sud-Est IV) and
the French national agency for medicine and health products safety (ANSM). Written
informed consent was obtained from all patients and the control subject prior to study
initiation.

5.2 MRI protocol

All subjects underwent a weekly examination for a period of two months (8 time-points
from T1 to T8). MRI protocol included a DTI and a FLAIR acquisition, that were per-
formed on a 3T Philips Achieva system (Philips Healthcare, Best, The Netherlands) with
a 16-channels head-coil. The DTI image set consisted of the acquisition of 60 contiguous
2mm-thick slices parallel to the bi-commissural plane (AC-PC), and were acquired using
a 2D Echo-Planar Imaging (EPI) sequence (TE/TR = 60/8210 ms, FOV = 224x224x120
mm) with 32 gradient directions (b = 1000s.mm−2). The nominal voxel size at acquisi-
tion (2x2x2 mm) was interpolated to 0.875x0.875x2 mm after reconstruction. The FLAIR
Vista 3D sequence (TE/TR/TI = 356/8000/2400 ms, FOV=180x250x250 mm) consisted
of the acquisition of 576 slices of 0.43 mm thickness.

5.3 Experiments on simulated longitudinal variations

100 different longitudinal variations were simulated on the control subject’s diffusion
maps. All the variations were generated along 10 different fiber-bundles, namely, left and
right cortico-spinal tract, inferior-fronto occipital fasciculi, cingulum, and forceps major
and minor of corpus callosum. In order to simulate the longitudinal variations on diffuse
data, the method we described in 2.6 of Chapter 2 was used. More in detail, we ran-
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domly selected several cross-sections and fibers within a specific bundle. For each voxel
belonging to these regions, a generalized Gaussian probability density function (GGPDF)
with parameters µr, αr, βr, µρ, αρ, βρ (see 2.6 of Chapter 2 for a complete explanation of
those parameters) randomly chosen were used to simulate the longitudinal changes. Three
different tests were performed: i) detection of fibers containing longitudinal changes, ii)
detection of cross-sections affected by longitudinal alterations and iii) identification of
abnormal time-points.

Performance measurements used in this work are based on the analysis of true positives
(TP), true negatives (TN), false positives (FP), and false negatives (FN) instances classified
during the testing phase. Performances of longitudinal variations were evaluated using
accuracy (Ac), precision (Pr) and sensitivity (Se) respectively defined as: Ac = TP+TN

P+N ,
Pr = TP

TP+FP and Se = TP
TP+FN . Since multiple tests were performed, mean and standard

deviation of accuracy, precision and sensitivity (Ac ± σAc, Pr ± σPr, Se ± σSe) were
computed.

In order to find the best values of the MinPts and the LOF different tests were per-
formed using a range of values. MinPts values range from 1 to 8 (the total number of
time-points) and the ω interval was given by {2, 4, 6, 8, 10, 12}.

To generalize the capability of the proposed method to detect longitudinal changes, two
steps are performed. In the first step, a nested search of the parameters of the algorithm is
performed, on simulated variations, for each combination of features. In the second step,
the method was applied on a new set of simulated variations using the best parameters
discovered in the first step.

Moreover, in order to show the improvement obtained using tensor fatorization, we
compared the proposed method with our previous NMF-based method (Section 2.6 of
Chapter 2). Since the NMF algorithm allows just a local cross-sectional analysis of the
fiber-bundle, we compared the capability of the two methods to identify only cross-sections
and time-points affected by longitudinal pathological changes.

5.4 Experiments on real MS follow-up data

Four RR MS patients (see section 5.1) were selected due to the presence of visible lon-
gitudinal alterations assessed by our neuroradiologist (FC). DTI data of each patient were
processed using our proposed pipeline described in section 2 and 3. Among the 20 fiber-
bundles (contained in the JHU atlas), the Cortico-Spinal Tract (CST), fronto-occipital
fasciculus (IFOF) and superior longitudinal fasciculus (SLF) were selected because of the
presence of longitudinal MS alterations.
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6 Results

6.1 Detection of affected fibers, cross-sections and time-points on sim-
ulated data

Performances obtained for the detection, in simulated data, of affected fibers within a
bundle are reported in table 3.1. The table reports the value of accuracy, precision and
sensitivity obtained in the task of the extraction of fibers affected by longitudinal changes.
The tests were performed using different diffusion features. Best results were obtained with
using as diffusion features 〈λ2, λ3〉 with an accuracy, precision and sensitivity respectively
of 0.97, 0.79 and 0.40. Satisfying results were also obtained using 〈λ2, λ3, FA,MD〉 and
〈λ2, λ3, FA〉 having respectively an accuracy of 0.77 and 0.79, a precision of 0.73 and 0.76
and a sensitivity of 0.20 and 0.23. Worst results were obtained using 〈KLA,AA〉 and
〈KLA,FA,AA〉 having respectively an accuracy of 0.71 and 0.77, a precision of 0.69 and
0.69 and a sensitivity of 0.16 and 0.15.

Performances obtained in the detection of affected cross-sections within a bundle are
reported in table 3.2. Like the previous case, globally, the best results were achieved
using 〈λ2, λ3〉 as feature set with an accuracy, precision and sensitivity respectively of
0.63, 0.98 and 0.95. The features set composed by 〈λ2, λ3, FA〉 show low values in terms
of accuracy (0.40) and sensitivity (0.56) but the highest level of precision (1.00). Like
for the tests performed for the detection of fibers affected by longitudinal changes, worst
results were achieved by the features set 〈KLA,AA〉 and 〈KLA,FA,AA〉. Moreover, in
table 3.2, we show the performances obtained with the tensor-based and NMF methods
to detect cross-sections, of a fiber-bundle, affected by pathological longitudinal changes.
From the table it is possible to see how the NMF method method always outperforms
tensor factorization in accuracy. More in detail, NMF reaches the best accuracy (0.74)
with 〈λ2, λ3, FA〉 and 〈λ2, λ3, FA,MD〉. Similar results are visible in sensitivity, indeed
NMF always outperforms tensor factorization except for the the feature set 〈λ2, λ3〉 where
tensor factorization reaches the best performance. Contrarily, for the accuracy, the tensor
factorization outperforms, in all the different diffusion features used, the NMF method.

Performances obtained in the detection of time-points affected by longitudinal changes
are reported in table 3.3. Best results were achieved using 〈λ2, λ3〉 as features with an accu-
racy, precision and sensitivity respectively of 0.84, 0.93 and 0.96. Contrary to the previous
case, the second best features set is 〈λ2, λ3, FA,MD〉 having accuracy, precision and sen-
sitivity respectively of 0.73, 0.87 and 0.81. In this case 〈λ2, λ3, FA〉 globally shows results
comparable to 〈KLA,AA〉 and 〈KLA,FA,AA〉. The largest difference is in the accu-
racy who reaches 0.60 for 〈λ2, λ3, FA〉 and 0.50 for both 〈KLA,AA〉 and 〈KLA,FA,AA〉.
Moreover, as additional experiment, in table 3.3 we compared the performances in detec-
tion of time-points affected by longitudinal changes obtained using the proposed tensor
factorization algorithm with the NMF method. From the table it is possible to see how the
proposed tensor factorization algorithm always outperforms the NMF method in all the
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performance measurements and in all the combination of features used in the experiment.

Regarding the parameters used to perform the analysis used by the tensor factorization
algorithm, the best results were achieved with MinPts = 3 and ω = 8.

Table 3.1: Results of mean and standard deviation (in parenthesis) of accuracy, precision
and sensitivity for detection of longitudinal affected fibers using different combination of
diffusion parameters.

Accuracy Precision Sensitivity
λ2,λ3 0.97 (0.06) 0.79 (0.08) 0.40 (0.11)

λ2,λ3, FA 0.77 (0.29) 0.73 (0.11) 0.20 (0.02)
λ2,λ3, FA, MD 0.79 (0.32) 0.76 (0.15) 0.23 (0.05)

KLA,AA 0.71 (0.23) 0.69 (0.13) 0.16 (0.01)
KLA,FA,AA 0.77 (0.20) 0.66 (0.15) 0.15 (0.04)

Table 3.2: Results obtained using tensor and non-negative matrix factorization. Results
are reported with mean and standard deviation (in parenthesis) of accuracy, precision and
sensitivity for detection of longitudinal affected cross-sections using different combination
of diffusion parameters.

Tensor Factorization Non-Negative Matrix Factorization
Accuracy Precision Sensitivity Accuracy Precision Sensitivity

λ2,λ3 0.63 (0.10) 0.98 (0.02) 0.95 (0.15) 0.65 (0.12) 0.60 (0.08) 0.92 (0.10)
λ2,λ3, FA 0.40 (0.12) 1.00 (0.01) 0.56 (0.12) 0.74 (0.11)0.74 (0.11)0.74 (0.11) 0.68 (0.04) 0.90 (0.09)

λ2,λ3, FA, MD 0.47 (0.13) 0.97 (0.03) 0.74 (0.23) 0.74 (0.08)0.74 (0.08)0.74 (0.08) 0.68 (0.12) 0.89 (0.11)
KLA,AA 0.30 (0.10) 0.96 (0.03) 0.64 (0.30) 0.59 (0.07) 0.55 (0.12) 0.91 (0.10)

KLA,FA,AA 0.32 (0.12) 0.96 (0.03) 0.63 (0.28) 0.56 (0.11) 0.53 (0.09) 0.85 (0.05)

Table 3.3: Results obtained using tensor and non-negative matrix factorization. Results
are reported with mean and standard deviation (in parenthesis) of accuracy, precision and
sensitivity for detection of longitudinal affected time-points using different combination of
diffusion parameters.

Tensor Factorization Non-Negative Matrix Factorization
Accuracy Precision Sensitivity Accuracy Precision Sensitivity

λ2,λ3 0.84 (0.12) 0.93 (0.09) 0.96 (0.13) 0.72 (0.30) 0.86 (0.18) 0.78 (0.31)
λ2,λ3, FA 0.60 (0.20) 0.76 (0.10) 0.54 (0.16) 0.57 (0.36) 0.75 (0.17) 0.53 (0.35)

λ2,λ3, FA, MD 0.73 (0.30) 0.87 (0.18) 0.81 (0.32) 0.67 (0.36) 0.84 (0.18) 0.78 (0.33)
KLA,AA 0.50 (0.30) 0.71 (0.21) 0.82 (0.30) 0.50 (0.36) 0.67 (0.19) 0.56 (0.37)

KLA,FA,AA 0.50 (0.32) 0.74 (0.19) 0.75 (0.20) 0.50 (0.36) 0.66 (0.19) 0.57 (0.34)
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6.2 Evaluation of parallel implementation

In order to underline the difference between serial and parallel implementation, we
show the computational time obtained by using the two implementations. More in detail,
the implementations were run 10 times on the same task and the computational time (in
terms of mean and standard deviation) were measured. For the parallel implementation
the same tasks were executed with different parallel processors (2 ≤ K ≤ 7). Results
in terms of execution time are reported in Figure 3.8. Since the serial execution time
does not depend on the number of parallel process it is always stable. An important
decrease in computational time is already clearly visible starting with K = 2 where the
serial implementation takes 899.8± 14.0 seconds while the parallel one takes 550.3± 10.3
seconds. We define with speed-up factor the ratio between the mean computational time
of the serial implementation and the parallel implementation. Already with K = 2, the
speed-up factor, is 1.63. Moreover, it is possible to see how by increasing the number
of processors the computational time decreases. The minimum and maximum speed-up
factors are 1.63 and 2.6 reached for K = 2 and K = 4 respectively. Results show how the
improvement in computational performance is clear using the parallel implementation.

Figure 3.8: Mean and standard deviation, computed from the 10 different runs, of the
computation time for Serial (4 ± ) and Parallel (∗ ± ) implementations.

6.3 Detection of affected fibers, cross-sections and time-points on real
data

The proposed method was also tested on real data. A feature vector composed by
〈λ2, λ3〉 (M = 2) was used. Based on the results obtained in the previous sections,
MinPts = 3, ω = 8 and K = 4 were selected as parameters.

Results of application on MS real data are illustrated in Figures 3.9-3.12. In all the
figures, the mean FA signal profile along the fibers, within the bundle, detected by our
method as affected by longitudinal variations are reported. Time-points detected as con-
taining longitudinal changes are reported with the symbol “*” in the name. Cross-sections
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detected as affected by those changes are underlined with black lines.

In Figure 3.9 and Figure 3.10 we reported the FA signal profile of two different MS
subjects. The signal profile refers to the CST in the subset of fibers detected as containing
longitudinal pathological changes. It is possible to see how in those subsets of fibers, in
the time-points and in the cross-sections detected as longitudinal changed, the FA signal
goes down due to the presence of small longitudinal MS alterations.

Same behaviour is also visible in other two MS subjects reported in Figure 3.11 and
Figure 3.12 respectively. The former represents the inferior fronto-occipital fasciculus. In
the cross-sections and in the time-points identified by our method, longitudinal changes in
FA are visible. More in detail, FA signal goes down in the detected cross-sections due to the
presence of MS lesions. In Figure 3.12, we reported the superior longitudinal fasciculus.
Like for the other fiber-bundle, in the subset of fibers and cross-sections identified as
affected by longitudinal changes, alterations in FA signal profile are visible.

Figure 3.9: Mean FA signal profile (of cortico-spinal tract) along the subset of fibers
identified by our method as affected by longitudinal changes. Time-points detected as
containing longitudinal changes, detected by our method, contain the symbol “*” in the
name. Cross-sections detected as affected by longitudinal pathological changes are under-
lined with black lines.
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Figure 3.10: Mean FA signal profile (of cortico-spinal tract) along the subset of fibers
identified by our method as affected by longitudinal changes. Time-points detected as
containing longitudinal changes, detected by our method, contain the symbol “*” in the
name. Cross-sections detected as affected by longitudinal pathological changes are under-
lined with black lines.

Figure 3.11: Mean FA signal profile (of inferior fronto-occipital fasciculus) along the subset
of fibers identified by our method as affected by longitudinal changes. Time-points detected
as containing longitudinal changes, detected by our method, contain the symbol “*” in
the name. Cross-sections detected as affected by longitudinal pathological changes are
underlined with black lines.
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Figure 3.12: Mean FA signal profile (of superior longitudinal fasciculus) along the subset of
fibers identified by our method as affected by longitudinal changes. Time-points detected
as containing longitudinal changes, detected by our method, contain the symbol “*” in
the name. Cross-sections detected as affected by longitudinal pathological changes are
underlined with black lines.

7 Discussion

In this work we described a new tensor-based method to automatically analyze lon-
gitudinal changes in WM fiber-bundles of MS patients. More in detail, we provided a
complete pipeline capable to automatically extract fiber-bundle and register longitudinal
data to a common template. As major message, we formalized the problem using a tensor-
based formalism to detect local scale longitudinal variations caused by rapid inflammatory
processes in MS patients.

Moreover, we improved the computational speed of our method by providing a parallel
implementation of the algorithm. We used the “divide-et-impera” paradigm to subdivide
the main problem in sub-problems. We then merged the sub-solutions of each sub-problem
into an unique final solution. In order to perform a better parallelization, we split the
fiber-bundle in small sub-bundles using a modified version of K-medoids. As first step,
a global distance matrix, based on MDF metric, was computed between each pair of
fibers within a bundle. The obtained matrix was then used as distance matrix for the
K-medoids algorithm. The tensor decomposition pipeline was then applied independently
to the data extracted in each sub-bundle. The results obtained by the factorization in each
sub-problem were then merged in an unique solution. The decrease in computation time,
between serial and parallel implementation, is well described in the test we made (Section
6.2). In particular using 4 parallel processors (K = 4) we got a speed-up factor of 2.6
(from 899.8 seconds to 342.2 seconds). It should be noted that the number K of parallel
processors mainly depends on two factors: i) the number of parallel processor available on
the machine used to run the algorithm, ii) the number of fibers within the bundle. Indeed,
if K is large (thus the value V v

KW is small) the number of fibers in each process could not
be enough to compute an accurate tensor decomposition.
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Results on simulated data, generated using GGPDF, show the capability of our method
to detect and delineate the presence of longitudinal changes in both fibers and cross-
sections of WM fiber-bundles. The experiment section (Section 5) was also enriched by
the analysis of the features used to compute the factorization of the longitudinal data.
The diffusion features used to perform the analysis play also an important role on the final
results. Best results were obtained using 〈λ2, λ3〉 as features. The introduction of other
diffusion parameters does not drastically improve the performances.

As final experimental step, the proposed method was applied to real MS patients show-
ing its capability to detect and delineate time-points, fibers and cross-sections identified,
by the neuroradiologist, as affected by longitudinal changes. With these experiments, we
showed that also on real data it is possible to identify regions containing longitudinal
pathological changes. This gave us the possibility to extract two types of information: i)
segmentation of the regions (fibers and cross-sections) affected by the longitudinal vari-
ations and ii) the delineation of the time-points affected by the longitudinal variations.
Detection of longitudinal changes were validated by our neuroradiologist (FC).

Another crucial point of investigation is related to the rank selection. Indeed, in this
work we used a “brute force” way to compute the rank using the rankest function provided
in Tensorlab [Vervliet et al. (2016)]. This process usually tends to overestimate the real
number of components and, as results, noise or data variability can be modelled by the
factorization. The main consequence related to this overestimation is a decrease in per-
formances obtained in detection of “pathological” components. This problem suggest how
it is important to find a specific “problem dependent” algorithm for the rank estimation.

An important limitation is derived by the low performances, in terms of sensitivity,
obtained in the extraction of the fibers affected by longitudinal changes. The low perfor-
mances could be explained by the CPD model we applied to perform the factorization.
Indeed, CPD uses only rank-1 terms to factorize the tensor. With this restriction, rep-
resentation of biological variations typical of MRI data could not be perfectly estimated.
It is important to observe that, in our reference context, Precision should be privileged
over Sensitivity because the number of fibers generated by tractography algorithms usually
does not reflect the number of real fibers of a human brain.

An interesting added value of our method is its capability to easily include new time-
points acquired later in time. Indeed, due to the robustness of the registration pipeline used
in this work [Keihaninejad et al. (2013)] the effects of certain longitudinal biases [Reuter
et al. (2012)], like atrophy, are minimized. Moreover, since the values acquired in a new
time-point are simply stacked in the 3rd mode of the tensor, no modification is needed
in the algorithm. Furthermore, this framework is easy to extend, features derived from
other modalities (like T1, T2, etc...) can be concatenated in the 3rd mode of the tensor
(as described in Figure 3.4) without requiring additional work.

The proposed method can be seen as a general framework capable to extend our pre-
vious method based on the NMF [Stamile et al. (2016)b]. Indeed, due to the capability
of the tensor to represent high dimensional data, fiber-bundles can be analyzed globally
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without generate local view (like in cross-sectional analysis). In the comparison we per-
formed with the NMF method, we saw that the better performances, in cross-section
analysis, were obtained by the NMF method compared to the tensor factorization. These
results are due to the local analysis performed by NMF. Indeed, this method analyze each
cross-section independently performing a specific local analysis focused on cross-section.
In the comparison of the performances obtained in time-point detection, the proposed
tensor factorization algorithm outperformed the NMF algorithm. This show how analysis
of multiple information at the same time, really helps to improve the detection of small
longitudinal changes in WM fiber-bundles.

Moreover, compared to [Stamile et al. (2016)a, Stamile et al. (2017), Grigis et al.
(2013)], the proposed method allows to i) analyze multiple DTI features taking into ac-
count more than 2 time-points ii) delineate regions, fibers and detect time-points affected
by longitudinal changes. Furthermore, it is important to underline that the method is
unsupervised. Hence there is no need to formulate particular hypotheses about the distri-
bution and/or evolution of the diffusion parameters.

8 Conclusion

In this work, we proposed a new tensor-based framework for the analysis of longitu-
dinal changes occurring along WM fiber-bundles. We described how constrained tensor
factorization is a potential tool to analyze multi-dimensional data that can not be fully
described using a simple matrix representation.

In order to reach our goal, two main challenges related to tensor factorization were
analyzed and solved, namely rank selection and computational time for the factorization.
The former was solved by estimating L-curve error of the CPD with increasing number of
rank-one terms. The latter was improved by splitting the problem in sub-task using the
“divide et impera” paradigm.

The method was tested and validated on simulated data and real data. We generated
simulated data using our previously proposed simulation paradigm . For the real data, we
used a dataset containing MS subjects affected by small longitudinal changes visible in a
short (weekly) interval. Results suggested that the proposed method is a promising tool
to longitudinal analysis of fiber-bundles in neurodegenerative diseases like MS.

As for future work, we plan to extend the application of our method to perform multi-
modal analysis. The idea is to apply the algorithm on different MRI modalities (MRS, T2,
T1, etc.) combined. We also plan to improve the detection of cross-sections affected by
longitudinal changes by introducing regularization for the component matrix representing
cross-sections. Moreover, as we reported in the Section 7, CPD could be too restrictive for
some applications as it does not model all variability in the data [Hunyadi et al. (2014)].
We plan to increase the performances, especially for the cross-section component, using
block term decomposition (BTD) instead of CPD. Indeed, using a BTD model, it is possi-
ble to model the variability on the data performing a so called rank (Lr, Lr, 1) BTD [Sorber
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et al. (2013)].
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Chapter 1

Conclusions

1 Main Contributions

Processing of longitudinal MRI data is a crucial challenge to better understand patho-
logical mechanisms of complex brain diseases such as MS where WM fiber-bundles are
variably altered by inflammatory events. In this work, we developed a set of supervised
and unsupervised methods to extract and analyze longitudinal changes appearing along
WM fiber-bundles.

2 Developed Methods

In this work, the following scientific contributions were made:

• Fiber-Bundle Clustering: An automated approach for WM fiber-bundles cluster-
ing through shape-based model characterization. The key novelties of our approach
are: a new string-based formalism, allowing an alternative representation of WM
fibers, a new string dissimilarity metric, a WM fiber clustering technique, and a
new model-based characterization algorithm. Thanks to these novelties, the com-
plex problem of WM fiber-bundle extraction and characterization reduces to a much
simpler and well-known string extraction and analysis problem.

• Histogram-Based Approach: The algorithm allows to analyze longitudinal DTI
data along WM fiber-bundle. It detects small longitudinal changes along the fiber-
tracts. Based on a Gaussian mixture model, this method provides a fine cross-
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sectional fiber-bundle analysis allowing the differentiation of “changed” and “un-
changed” fibers of the bundle.

• Multi-Features NMF Algorithm: The method improves the algorithm previ-
ous described using a combination of non-negative matrix factorization and LOF
algorithms. The method allows to detect and delineate longitudinal variations ap-
pearing in multiple time-points and in multiple features along cross-sections of the
WM fiber-bundle.

• Constrained Tensor Decomposition Framework: It is a new tensor-based
framework capable to detect longitudinal changes appearing along fiber-bundles in
dMRI data in MS patients. The algorithm allows to identify at the same time which
subset of fibers (within a bundle) and which cross-sections of these fibers contain
“pathological” longitudinal changes. Moreover, it allows to delineate the time-points
in which the longitudinal pathological changes appear.

3 Discussion

In this thesis we developed two principal axes, namely fiber-bundle clustering and
unsupervised methods for longitudinal fiber-bundle analysis. For each of those points we
developed specific algorithms and performed different experiments to validate the methods.

Fiber-Bundle Clustering

We presented a new string-based algorithm to automatically extract WM fiber-bundles
from the whole tractogram. The proposed approach exploits a new string-based formalism
useful to obtain an alternative representation of WM fibers. We also enriched this new
representation proposing a new string similarity metric, namely SBED, used as distance
measure to perform unsupervised WM fiber clustering. In order to validate the proposed
algorithm, we collocated our approach in the context of related literature and we performed
an experimental campaign to test it. As major result, the proposed string-based algorithm
overcomes different limitations of the related ones proposed in the past. For instance, it
allows a better integration of a-priori information provided by a neuroanatomist (which
is not possible in QuickBundles). Indeed, the usage of a string-based model, representing
the shape of a particular fiber-bundle, allows to easily extract just the subset of fiber
having the same shape as the provided model. Moreover, we improved the proposed
method by coupling the proposed string-based formalism with the spatial information of
the tractogram.
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Unsupervised Methods for Longitudinal Fiber-Bundle Analysis

Histogram-Based Approach

We introduced a new simple fully automated tool for analyzing longitudinal changes in
WM fiber-bundles of MS patients. Compared to previous methods, already described in
literature, for the characterization of fiber-tract profiles, our approach provides a fine de-
tection of local scale longitudinal variations along the fiber-bundle. Those small local scale
changes are indeed expected to occur during inflammatory or neurodegenerative processes
in MS patients. This new approach allows, for the first time, the discrimination between
healthy and affected fibers within a bundle. The method was tested on simulated and real
clinical data. High levels of F-Measure were obtained on simulated data. Experiments on
cortico-spinal tract and inferior fronto-occipital fasciculi on patients with MS included in
a weekly follow-up protocol highlighted the greater sensitivity of this fiber scale approach
to detect small longitudinal alterations.

From the results we obtained we saw how this method holds the potential for more
detailed and topographically specific description of disease-induced disruption of connec-
tivity in the brain, with implications for specific functional losses associated with disease
progression.

Multi-Features NMF Algorithm

In order to overcome several limitations present in the previous methods, like two time-
points analysis, we developed a new unsupervised algorithm based on NMF in combination
with LOF. Like the previous method, we tested our algorithm on simulated and on real
data. In order to validate our algorithm, we introduced a new model to simulate real
longitudinal changes based on a generalized Gaussian probability density function. High
level of performances were obtained for the detection of small longitudinal changes along
the WM fiber-bundles in MS patients.

Constrained Tensor Decomposition Framework

Finally, we built a general framework based on constrained tensor factorization. This
new formalism is capable to analyze all the information contained in the WM fiber-bundle
without create local view of the data. Indeed, using tensor-based formalism, it is pos-
sible to exploit the “higher dimensionality” of the model in order to describe complex
high dimensional data. Moreover, since the tensor factorization could be computation-
ally intensive, we optimized the computational time by using parallel programming. The
original problem of the longitudinal fiber-bundle analysis was subdivided in small sub-
problems solved in parallel. The sub-solutions of each sub-problem were then merged in
a unique solution. With this new implementation we obtained a speed-up factor of 2.6
(from 899.8 seconds to 342.2 seconds). As the for the previous methods we tested the
performances of this algorithm on simulated and real data. Moreover, in order to show
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the power of tensor-based methods, we compared its performances with the ones obtained
with the NMF-based algorithm. The comparison shows that tensor factorization, thanks
to its capability to maintain the high dimensional structure of the data, outperforms the
NMF-based algorithm.
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Chapter 2

Perspectives

All the algorithms proposed in this work can be seen as a starting point for a more
general and robust pipeline to analyze longitudinal signal changes along WM fiber-bundles.
Indeed, several efforts are still needed in order to improve the algorithms developed in this
work.

Fiber-Bundle Clustering

For the fiber-bundles extraction algorithm, we plan to investigate a possible improve-
ment of QB in such a way as to make it capable of correcting the assignment of a fiber
to a cluster when this action, in a second time, appears incorrect. Moreover, instead us-
ing a fully unsupervised algorithm, we plan to use the shape information obtained from
string models to train supervised machine learning algorithms on both real and simulated
data.,Finally, in order to find the best configuration for SBED, we plan to optimize the
usage its constraints in such a way as to favor the extraction of specific WM fiber-bundles.

Histogram-Based Approach

For the histogram method used for longitudinal analysis, encouraged by the obtained
results, we plan to extend the application of our method to perform multimodal analysis
and not only on the FA metrics. Indeed, in order to improve the analysis, the idea is to
apply the algorithm on different MRI modalities (MRS, T2, T1, etc..) and other diffusion
metrics like FOD derived metrics.

153



CHAPTER 2. PERSPECTIVES

Multi-Features NMF Algorithm

For this algorithm an interesting area of investigation is the study of the effects of
different regularization operators like l1− or l2− norms on the final solution. Indeed, since
MS lesions show nice properties like regular closed shape or intensity gradient between the
center and the border, the application of specific regularization operators can be useful to
incorporate such information in the desired solution.

Constrained Tensor Decomposition Framework

The last proposed algorithm based on constrained tensor decomposition is really a
novelty in brain studies and its perspectives, at this time, are quite large. For instance,
one interesting point of investigation is the application of different tensorization techniques
to build the tensor from the data. For instance, well known tensorization techniques like
Hankelization, Löwnerization, decimation or segmentation are currently used to generate
tensors starting from raw data. Those techniques allow to generate low rank structures
that can preserve interesting properties that can be used during and after the factoriza-
tion. Moreover, another interesting points, is the analysis of other factorization techniques
like BTD, or Tucker decomposition. Indeed, they can be exploited to better describe the
typical variations occurring in complex data like MRI.

To conclude, all these new techniques, to analyze small longitudinal changes in WM
fiber-bundles, can be used to perform better studies about the pathological mechanisms
of several neurodegenerative pathologies. For instance, these new algorithms will provide
a better characterization of brain alterations and particularly in the entire afferent vi-
sual pathway from the retina to the visual cortex of CIS patients. This information will
constitute a great benefit in the clinical setting for evidence-based decision making for
personalized treatment of CIS patients to reduce disease severity at an early time-point.
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Modèles Non-Supervisés pour l’Analyse des Fibres de Substance Blanche dans la
Sclérose en Plaques

L’exploitation de données longitudinales d’IRM de tenseur de diffusion (DTI) est un défi crucial pour mieux com-
prendre les mécanismes pathologiques de maladies neurologiques complexes comme la sclérose en plaques (SEP),
dans laquelle les faisceaux de substance blanche (SB) sont différemment atteints par les processus inflammatoires.
Dans ce travail, nous proposons une nouvelle famille d’algorithmes non-supervisés pour modéliser les altérations
longitudinales des métriques de diffusion le long des faisceaux de SB. Dans la première partie de ce travail, nous
dressons l’état de l’art des études déjà présentes dans la littérature. Cet état de l’art se focalisera sur les études
montrant les effets de la SEP sur les faisceaux de SB grâce à l’emploi de la DTI. Dans la seconde partie de ce tra-
vail, nous introduisons deux nouvelles méthodes, “string-based”, l’une semi-supervisée et l’autre non-supervisée,
pour extraire les faisceaux de SB. Nous montrons comment ces algorithmes permettent d’améliorer l’extraction
de faisceaux spécifiques comparés aux approches déjà présentes dans la littérature. De plus, dans un second
chapitre, nous présentons une extension de la méthode proposée par le couplage du formalisme “string-based”
aux informations spatiales des faisceaux de SB. Dans la troisième et dernière partie de ce travail, nous décrivons
trois algorithmes automatiques permettant l’analyse des changements longitudinaux le long des faisceaux de SB
chez des patients SEP. Ces méthodes sont basées respectivement sur un modèle de mélange Gaussien, la factori-
sation de matrices non-négatives et la factorisation de tenseurs non-négatifs. De plus, pour valider nos méthodes,
nous introduisons un nouveau modèle pour simuler des changements longitudinaux réels, basé sur une fonction
de probabilité Gaussienne généralisée. Des hautes performances ont été obtenues avec ces algorithmes dans la
détection de changements longitudinaux fins le long des faisceaux de SB chez des patients atteints de SEP. En
conclusion, nous avons proposé dans ce travail des nouveaux algorithmes non-supervisés pour une analyse précise
des faisceaux de SB, permettant une meilleure caractérisation des altérations de SB survenant dans la SEP.
Mots clés : Analyse longitudinale; Imagerie par tenseur de diffusion; Imagerie par résonance magnétique; Sclérose
en plaques; Extraction des faisceaux de SB; Factorisation de matrices non-négatives; Factorisation tensorielle.

Unsupervised Models for White Matter Fiber-Bundles Analysis in Multiple Sclero-
sis

Processing of longitudinal diffusion tensor imaging (DTI) data is a crucial challenge to better understand patholog-
ical mechanisms of complex brain diseases such as multiple sclerosis (MS) where white-matter (WM) fiber-bundles
are variably altered by inflammatory and demyelinating/or events. In this work, we propose a new family of un-
supervised algorithms to model longitudinal alterations in diffusivity metrics along WM fiber-bundles. In the first
part, we give an overview of the studies already present in literature. We focus our analysis on studies showing
the effects of MS in WM using DTI. In the second part, we introduce two new string-based methods, one semi-
supervised and one unsupervised, to extract specific WM fiber-bundles. We show how these algorithms allow to
improve the extraction of specific fiber-bundles compared to previous approaches already present in literature.
Moreover, in the second chapter, we show an extension of the proposed method by coupling the string-based
formalism with the spatial information of the fiber-tracks. In the third, and last part, we describe, in order of
complexity, three different unsupervised algorithms to perform analysis of longitudinal changes visible along WM
fiber-bundles in MS patients. These methods are based on Gaussian mixture model, non-negative matrix and
non-negative tensor factorization respectively. Moreover, in order to validate our methods, we introduce a new
model to simulate real longitudinal changes based on a generalized Gaussian probability density function. For
those algorithms high level of performances were obtained in the detection of small longitudinal changes along the
WM fiber-bundles of MS patients. In conclusion, we propose, in this work, a new set of unsupervised algorithms to
perform a more sensitivity analysis of WM fiber-bundle useful for the characterization of pathological alterations
occurring in MS patients.
Keywords: Longitudinal analysis; Diffusion tensor imaging; Magnetic resonance imaging; Multiple sclerosis;
Fiber-bundle clustering; Non-negative matrix factorization; Tensor factorization.
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