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Abstract—Photoacoustic imaging is a hybrid modality used to
image biological tissues. Multispectral optical excitation permits
to obtain functional images thanks to the tissue specific optical
absorption that depends on the light wavelength. The aim of
this study is to propose a clustering method for photoacous-
tic multispectral images based on both spatial neighbourhood
and spectral behaviour. The proposed methodology is adapted
from spatio-temporal mean-shift approach: it clusters distant
or neighbouring patterns having similar spectral profiles. The
clustering performance of our modified mean-shift algorithm is
experimentally tested on multispectral photoacoustic tomography
data. Results obtained from phantoms including two blood dilu-
tions and colored absorbers are presented. It is thus shown that
our strategy allows the experimental discrimination of media,
achieving a clustering performance of more than 99%. Moreover,
depending on the applied pre-processing the discrimination of
different concentrations of a same medium is possible.

Index Terms—Multispectral photoacoustic, Spatio-temporal
mean-shift, Clustering

I. INTRODUCTION

Photoacoustic imaging is a hybrid method that combines the
advantages of acoustic and optical imaging [1]. The modality
is based on the detection of acoustic waves produced by
a medium submitted to a pulsed laser illumination which
increase locally its temperature. Thermal expansions of optical
absorbers then create acoustic pressure waves propagating to
the media surface where they are detected.

Each tissue has a specific optical absorption that depends
on the light wavelength (Fig. 1). Thus, acquiring photoacoustic
images at different wavelengths permits to study the spectral
profile for each of the media in the region of interest. In
particular, in the range 600 to 900 nm, oxygenated (HbO2) and
deoxygenated (Hb) bloods have different spectral responses
that permit their differentiation [2]. This is, for example, of
great interest for the diagnosis of malignant/benign tumours
as well as for the follow-up of diseases like carcinoma or for
the evaluation of the death of tissues [3].

Different segmentation or classification methods are typi-
cally used for multispectral photoacoustic image clustering.
Indeed, classic methods such as Principal Component Analysis
or Spectral-Fitting were used to identify media in multispectral
photoacoustic images [4]. Nevertheless, only few methods
have so far considered both spectral and spatial features [5].

The aim of this study is to propose a clustering method
of photoacoustic multispectral images that takes into account
both the spatial neighbourhood and the spectral behaviour of
the pixels. Results obtained from experimental multispectral
photoacoustic data acquired on phantoms with two blood
dilutions and coloured absorbers are presented.

II. MATERIALS AND METHODS

A. Spatial/spectral clustering method

1) Pre-Processing: The first processing step aims at finding
regions of interest in the imaged area. Indeed, a first discrim-
ination between the absorbing media and the background is
required. Thus the background is suppressed with a threshold

Figure 1. Absorption coefficients of different medias as a function of the
wavelength. (a.u.; arbitrary units)
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keeping as region of interest the one with higher acoustic
response. The following step depends on the desired strat-
egy, aiming either at discriminating or at merging different
concentrations of a same medium. Indeed, changes in the
media concentrations imply variations in their spectral profile
amplitudes, but not their spectral shapes. Applying a normal-
ization step to the multispectral images will allow to merge the
different concentrations of one medium into a same cluster. On
the contrary using data without normalization, i.e. the raw data,
will allow to discriminate different concentrations as different
absorbing medium.

2) Adapted spatio-temporal mean-shift filtering: Mean-
shift filtering algorithm is based on the maximization of den-
sity. An adapted mean-shift algorithm called Spatio-Temporal
Mean-Shift (STM-S) was used to cluster longitudinal magnetic
resonance images (MRI) [6]. The aim of our study is to adapt
this algorithm to multispectral photoacoustic data handling
spectral profiles instead of temporal evolution. Multispectral
photoacoustic data are obtained from a sequence of 2D images
of the region of interest. Each 2D image is acquired at a
specific wavelength λl with l = [1 · · ·L] the number of
wavelengths. That allows to define a spectral profile xλ,i for
each pixel xi located at a position xs,i. Therefore, the samples
xi that will be used in the iterative filtering procedure are
expressed as:

xi = [xs,i ; xλ,i] ∈ X (1)

xs,i ∈ RS : spatial position
with xλ,i ∈ RL: spectral profile

i = 1, . . . , N : sample index

The idea is, for a given pixel xi, to consider its neigh-
bors xj in the spatial dimension within a radial distance
Rs (Fig. 2-left). These pixels xj satisfy the constraint
gs(xs,i; xs,j) = 1 where gs(xs,i; xs,j) is a shorthand notation
of gs

(
1
Rs2

(xs,i − xs,j) (xs,i − xs,j)
T
)

with:

gs(a) =

{
1 if a ≤ 1

0 otherwise
(2)

Rλ is defined as the maximum distance between the spectral
profiles of two samples of one media. Thus pixels belonging
to the spatial area defined above that are also spectrally close
(controlled by Rλ) to the reference spectrum (Fig. 2-right) are
used to update, by computing the average, the position and
the spectral profile of the reference pixel. Consequently, these
pixels also satisfy gλ(xλ,i; xλ,j) = 1 where gλ(xλ,i; xλ,j) is a
shorthand notation of gλ

(
1
Rλ
‖ (xλ,i − xλ,j) ‖∞

)
with gλ(·)

being the same function as gs(·). The spectral iterative mean-
shift algorithm is then expressed as:

x[k+1]
i =

N∑
j=1

gs(x
[k]
s,i; x[k]s,j) · gλ(x

[k]
λ,i; x[k]λ,j) · x

[k]
j

N∑
j=1

gs(x
[k]
s,i; x[k]s,j) · gλ(x

[k]
λ,i; x[k]λ,j)

(3)

Figure 2. Pixel spatial features at the first iteration with Rs parameter (left)
and spectral profiles of three pixels with Rλ parameter (right). The red pixel
is the reference one. Even if the green and blue pixels are in the spatial area
of the reference pixel, only the green one is used to update the features of the
reference. Indeed, the spectral profile of the blue pixel is not close enough to
the spectral profile of the reference sample (for at least one wavelength, the
blue and the red profiles are separated by a distance superior to Rλ). (a.u.;
arbitrary units)

These steps are iteratively applied to all pixels xi of the imaged
region X until no change is obtained in both dimensions
between two iterations.

The result of the adapted spatio-temporal mean-shift algo-
rithm can easily be clustered in order to segment the imaged
region. All the pixels with close spectral profiles are labelled
together (Fig. 3-left). Because of the mean-shift regularization
in the spatial domain, two areas of the imaged region can
be merged in the same segmentation class even if there are
spatially far. Indeed, a same medium might be present at
different location in the imaged region.

3) Post-Processing: Due to light diffusion, different areas
of the medium having the same absorption coefficient yield
photoacoustic signals with proportional values. In the result
of the clustering method a media is represented by more than
one label because their spectral profiles have strong amplitude
differences, even if their shapes are similar (Fig. 3-left). The
aim is here to keep only the biggest labelled areas, e.g. those
that contain more than 5% of the photoacoustic image pixels
and leaving the others, the bad clustered ones, unlabelled (Fig.
3-right). These labelled areas correspond to the different media
to discriminate. Post-processing is done to reduce the number
of labels using only the spatial feature in a nearest neighbor

Figure 3. Output of the adapted mean-shift algorithm, e.g. a 2D map showing
a segmentation of the imaged region (left). 2D map keeping only the biggest
labelled areas, the unlabelled pixels are in dark blue, i.e. label equals to zero
(right).



manner. Considering Y = {yi}i=[1;C] and U = {uj}j=[1;N−C]

the sets of C labelled pixels and N − C unlabelled pixels,
respectively:

yi = [xs,i; ci] uj = [xs,j ; cj = 0] (4)

where xs,i is the spatial position of the pixel xi and ci ∈ R its
associated label. Then for every unlabelled pixel uj ∈ U , the
closest spatial pixel yi∗ in Y is found and its corresponding
index ci∗ is affected to cj

i∗|j = argmin
i=[1;C]

‖ xs,j − xs,i ‖

then cj ← ci∗
(5)

B. Experimental data

The experimental data used in this study have been acquired
at the University of Macau using a multispectral photoacoustic
tomography (PAT) acquisition scheme presented in Fig. 4(a)

Figure 4. (a) Experimental setup for the photoacoustic tomography acqui-
sitions. (b) Phantom used for the acquisitions, the inclusion in grey is the
one of China ink; the two black inclusions contain blood at two different
concentrations. (c) Three sample experimental images after thresholding.

[7]. The phantom used is a cylindrical PVA phantom with
three spherical inclusions (Fig. 4(b)). There are two inclusions
of blood at different concentrations and one of black China
ink. The photoacoustic images were acquired at 8 different
wavelengths from 700 to 910 nm (Fig. 4(c)) with 30 nm steps.

III. RESULTS

Two different types of results obtained from the same set
of acquired data are presented. The first results are related
to clustering without discrimination of concentrations. The
second results were obtained by clustering with concentration
discrimination, avoiding any normalization step during the pre-
processing step.

Multispectral photoacoustic data were processed with the
modified mean-shift algorithm presented above. All processing
steps are exactly the same except the normalization of the data.

A. No discrimination of cencentrations

As mentioned before, a normalization step is performed
to merge the different concentrations of one medium in the
segmentation process. The resulting segmentation map is pre-
sented in Fig. 5(c). With such strategy, 100% of the pixels
are well segmented. Indeed, the two inclusions of blood at
different concentrations are segmented in the same cluster by
the adapted mean-shift algorithm. Note that the background is
completely suppressed by the pre-processing thresholding.

B. Concentration discrimination

To discriminate the different concentrations of blood of our
phantom, no data normalization was performed. The corre-
sponding segmentation map is shown on Fig. 5(d). Here, few

Figure 5. (a) Imaged region of the experimental phantom. (b) PAT of
experimental phantom at 730 nm. (c) Result with no discrimination of
concentrations. (d) Result with concentrations discrimination. The left up
inclusion is clustered with the bottom one if there is no discrimination of
concentration or alone if there is a concentration discrimination.



pixels of the inclusions are segmented with the background
by the adapted mean-shift algorithm. It happens because
these samples, which are at inclusion borders, exhibit very
low photoacoustic amplitude (less than Rλ). Nevertheless,
the segmentation with concentration discrimination achieves
a clustering performance of 99.9%.

IV. CONCLUSION AND DISCUSSION

A new method for segmentation or classification of media
based on multispectral photoacoustic imaging processing has
been presented. In particular, it was shown that using the
spatial feature to segment multispectral photoacoustic images
can increase the clustering performance.

The method used in this study permits to segment multi-
spectral photoacoustic data achieving a clustering performance
of more than 99%. Choosing to apply the pre-processing
normalization step permits to merge or to discriminate con-
centration differences of a same medium. Nevertheless, the
adapted spatio-temporal mean-shift algorithm needs two pa-
rameters to be set up. Choosing these parameters is not
an easy task and requires time to find the ones that could
give the desired clustering performance. Furthermore, these
parameters are probably different for each dataset so that
finding the right ones in each case could be time consuming.
For the concentration evaluation, by conducting both clustering
strategies, the identification of similar media can be obtained
and further post-processing could be proposed to estimate the
concentration.

The proposed strategy suffers from some limitations, of
course. Indeed, with this approach the implicit assumption is
that a single optical absorber is present at each pixel. This
may not be the case in the discrimination of mixed inks or
blood oxygenation quantification, that could be a limitation of
our strategy for in vivo applications.
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