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Hyperbolic wavelet-Fisz denoising for a model
arising in ultrasound imaging

Younes Farouj, Jean-Marc Freyermuth, Laurent Navarro, Marianne Clausel, and Philippe Delachartre

Abstract—We present an algorithm and its fully data-driven
extension for noise reduction in ultrasound imaging. The pro-
posed method computes the hyperbolic wavelet transform of
the image, before applying a multiscale variance stabilization
technique, via a Fisz transformation. This adapts the wavelet
coefficients statistics to the wavelet thresholding paradigm. The
use of hyperbolic wavelets makes it possible to recover the image
while respecting the anisotropic nature of structural details. The
data-driven extension obviates the need for any prior knowledge
of the noise model parameters by estimating the noise variance
using an isotonic Nadaraya-Watson estimator. Experiments on
synthetic and real data demonstrate the potential of the proposed
algorithm to recover ultrasound images while preserving tissue
details. Furthermore, comparisons with other noise-reduction
methods show that our technique is competitive with the state-of-
the-art OBNLM filter. Finally, the variance estimation procedure
is applied to real images emphasizing the noise model.

Index terms— Hyperbolic wavelets, Fisz transformation,
Variance stabilization, Gaussianization, Ultrasound imaging,
Data-driven denoising.

I. INTRODUCTION

ULTRASOUND (US) imaging has been a well-established
diagnostic tool in various medical applications for many
years. This technology remains one of the least expensive
and safest among medical imaging modalities. Nevertheless,
the examination and interpretation of ultrasound images is
particularly challenging. This is mainly due to the presence
of a particular type of noise called “speckle”, which can
also be found in similar imaging systems such as synthetic
aperture radar (SAR) and laser imaging. In ultrasound imag-
ing, acquired signals are adjusted inside the scanner, prior to
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M. Clausel is with the Université de Grenoble; Laboratoire Jean Kuntz-
mann; CNRS UMR 5224, Grenoble, France (e-mail: marianne.clausel@imag.
fr).

display, by a nonlinear processing transformation called log-
compression [1]. This process aims at enhancing backscatter-
ers in order to facilitate visual understanding. In this paper,
we develop a novel methodology to recover ultrasonic images
using a relevant signal-dependent noise model [2] that takes
into account the modification of noise characteristics due to
the log-compression. Adaptations of non-local and variational
techniques to this model have already been described in the
literature by Coupé et al. [3] and then Jin and Yang [4].

Although these methods lead to convincing results in terms
of the signal-to-noise ratio, they still produce displeasing
visual quality, mostly characterized by attenuated sharp edges.
In this paper we present a different strategy that belongs to
the wavelet denoising approaches [5]. As in the majority of
denoising approaches, the wavelet denoising paradigm is based
on the constraining assumption that the noise is additive white
Gaussian noise (AWGN). To go beyond this case, we adapt
a multiscale variance stabilization technique introduced by
Fryzlewicz [6] in order to make the distribution of wavelet
coefficients asymptotically Gaussian with the same variance.
We extend this method to hyperbolic wavelets and show how
variance stabilization can be easily performed using the low-
frequency outputs from the wavelet transform at different
scales. The motivation behind the use of hyperbolic wavelets
is their capacity to provide better estimators than the standard
wavelet-tensor construction when images contain anisotropic
features [7][8][9]. Anisotropy has been promoted in many
studies related to ultrasound image denoising (e.g, see [10],
[11] and [12]) as often occurs due to the presence of features
such as skin layers and vessels. Our algorithm consists of
the following steps: (1) compute the wavelet transform of
the image; (2) estimate local means using the approximation
coefficients of the wavelet transform at each scale; (3) evaluate
the variance function for each local mean component; (4)
compute the Fisz-transformation of the wavelet coefficients:
each coefficient is divided by the estimated local variance to
stabilize the coefficients; (5) hard thresholding: keep the coef-
ficients obtained in step (1) whose Fisz-transformed versions
have magnitudes larger than a given threshold.

Finally, we show how our approach can be performed in
a blind mode, that is, without any prior knowledge of the
noise variance. This involves the use of a mean filter for a
pre-estimation of the image. The variance function is then
estimated using a Nadaraya-Watson estimator.

To validate these methods, we present numerical exper-
iments based on synthetic and real data, and a compara-
tive study with the state-of-the-art non-local and variational
algorithms. We demonstrate that our data-driven approach
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performs nearly as well as in situations where the noise
variance is known. Moreover, the variance measured on real
ultrasound images confirms the relevance of the noise model
being considered.

The rest of the paper is organized as follows. A brief
overview of different US noise models and dedicated denoising
techniques is presented in section II. In section III, we describe
our novel wavelet-based methodology. Finally, extensive ex-
perimental results and comparisons are provided in section IV.

II. IMAGE FORMATION AND RELATED WORK

Medical US imaging consists in transmitting a collection
of ultrasonic waves, from a probe (an array of transducers),
into the body. While propagating, these waves interact with
different tissues and are reflected back by the scatterers to
the transducers. The echoes are converted back into electrical
impulses giving the so-called radio-frequency (RF) signals.
These signals are then analyzed to retrieve the depth and the
strength of the echoes, thus forming the US image from the
amplitudes and the locations of the scatterers. Before display,
the RF signals are post-processed. The high-frequency carrier
is suppressed via a demodulation step (envelope detection).
The dynamic range of the obtained signals is, however, too
large for human visual perception. To overcome this, a process
called logarithmic compression [1] is used to enhance the
backscatterers.

US speckle noise results from the coherent accumulation
of individual scattered beams from tissue inhomogeneities.
It can be shown that the sum of the contributions of these
scatterers within a resolution cell is normally distributed [13].
Novel techniques emerging in the general image processing
community have been continuously adapted to remove US
speckle noise. Hereafter, an overview of the main models and
techniques is proposed.

A. Multiplicative Noise

An important challenge in developing novel methods for de-
noising ultrasound images is to find an adequate noise model.
One can derive a natural noise model from the statistics of the
echo signals. It can be shown that after the demodulation step,
the distribution of the magnitude image is no longer Gaussian
but rather Rayleigh [14]. This understanding gave rise to mul-
tiplicative noise models similar to those used in SAR imaging.
Many filters have been proposed for such models, including
the seminal works by Lee [15], Frost et al. [16] and Kuan [17].
Anisotropic diffusion filters [18] have also been successful in
US imaging. These include adaptations to account for speckle
noise statistics as in the speckle-reducing-anisotropic-diffusion
(SRAD) [10], its oriented version (OSRAD) [11], and more
recently, memory-driven filters [12].

B. Additive Noise

Multiplicative noise models do not take into consideration
the logarithmic compression leading to the final US images
visualized on the scanners. A simple solution is to assume
that the signal and the noise are totally distinct. Thus, the

logarithmic compression step transforms the multiplicative
noise model into an additive signal-independent noise model:

v = u+ ε, (1)

where v is the observation, u is the unknown image and ε
is a random noise component. Wavelet-based methods have
been considered to deal with this type of model depending
on the nature of ε. For example, Zong et al. [19] assumed
that ε is a zero-mean Gaussian white noise, which leads
to AWGN models that are perfectly suited for the classical
wavelet thresholding approaches [5]. Achim et al. [20] showed
that under model (1) and logarithmic transformations, the
wavelet coefficients of the noise component ε have non-
Gaussian statistics that can be described by some alpha-stable
distributions [21] and customized the wavelet thresholding for
such a situation.

C. Hybrid Noise

The main drawback of model (1) is that it does not take
into account the assumption that the noise level is proportional
to the underlying image intensity. This assumption is widely
used and accepted in echography. For example, it is the
key idea behind motion estimation via speckle tracking [22].
The logarithmic compression can make the statistics of ul-
trasound images deviate from the Rayleigh distribution [23].
For instance, a Fisher-Tippett distribution was used in [24] to
distinguish between tissues in segmentation tasks. A relevant
model for ultrasound noise removal was presented in [2] and
assumes that the variance of the noise component is no longer
constant but respects the following equation:

v = u+ uγε, (2)

where ε is a zero-mean Gaussian white noise ε ∼ N (0, σ2),
with σ ∈ (0,∞), and γ > 0. Model (2) seems to be
more appropriate as it preserves the signal dependency and
has shown been to be effective for speckle modeling [2],
as well as motion estimation in US image sequences [25].
This model has the advantage of being general and flexible.
In fact, the parameter γ can be adapted to catch the image
statistics depending on the post-processing inside the scanner.
In this paper, we develop an appropriate wavelet thresholding
method assuming that model (2) holds true. Adaptations of two
other classical paradigms in denoising, in addition to wavelet
methods, have been studied for model (2) [3][4]. We recall
these paradigms:

Non-local methods. The non-local point of view was ini-
tially developed in [26] leading to the famous N-L means filter.
It can be considered as a type of smart average filtering that
uses the fact that similar pixels are not necessarily neighbors.
Given two pixels, the similarity measure is the Euclidean
distance between patches within their respective neighbor-
hoods. Note that the Euclidean distance is more appropriate
in white noise cases [26]. For the noise model (2), Coupé et
al. [3] presented the OBNLM algorithm in which the Pearson
distance was used along with an optimized version of the N-L
means filter.
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Variational methods. The variational approach is based on
the minimization of a functional involving a data-fidelity
term and a regularity assumption. A common assumption is
that images belong to bounded variation spaces, and so total
variation (TV) is often used for the regularization term [27].
For AWGN models, the fidelity term is simply given as
the Euclidean distance between the unknown image and the
corrupted image. Adaptations to model (2) consist in dividing
the fidelity term by the unknown image to the power γ, which
is also the standard deviation of the noise. The reader is
referred to papers by Rudin, Lions and Osher [28] for the
case γ = 1 and by Jin and Yang [4] for γ = 0.5. However,
the functional cannot be minimized via simple primal dual
algorithms [29] as in the AWGN case: a gradient descent is
required.

Variance stabilization methods in the image processing
literature focus mainly on Poisson or Poisson-Gaussian noise
models arising in fluorescence microscopy. The Anscombe
transform is often used for such a task (see, for example,
Makitalo and Foi [30][31] and Boulanger et al. [32]). Zhang
et al. [33] used a multiscale procedure that is also relying on
a local normalization of wavelet coefficients. To the best of
our knowledge, variance stabilization for the noise model (2)
has never been considered beyond the one-dimensional case.
In the following section we propose a technique to adapt the
wavelet-based methods to this model. Moreover, we present
a data-driven algorithm that solves the problem without prior
knowledge of the parameters σ and γ of model (2).

III. METHOD

Hyperbolic wavelet bases are unconditional bases for func-
tions in L2([0, 1]2). They produce sparse representations so
that the simple hard thresholding procedure provides es-
timators with very good theoretical and practical perfor-
mances [7][8].

A. Notations

We begin with the hyperbolic wavelet transform (HWT).
The starting point is a one-dimensional function ψ, called the
mother wavelet, to which one can associate dilated and trans-
lated versions ψj,k(.) = 2j/2ψ(2j .−k) with j ≥ 0 and k ≥ 0.
In the same manner, a scaling function ϕ is defined, along with
its dilated and translated versions ϕj,k(.) = 2j/2ϕ(2j . − k).
Then the 2D hyperbolic wavelet basis of L2([0, 1]2) is given
by

ψj1,j2,k1,k2(x1, x2) = ψj1,k1(x1)ψj2,k2(x2),

ψ0,j2,k1,k2(x1, x2) = ϕ0,k1(x1)ψj2,k2(x2),

ψj1,0,k1,k2(x1, x2) = ψj1,k1(x1)ϕ0,k2(x2),

ψ0,0,k1,k2(x1, x2) = ϕ0,k1(x1)ϕ0,k2(x2),

(3)

for all (j1, j2) ∈ N× N and (k1, k2) ∈ Z2. This construction
differs from that of the classical two-dimensional discrete
wavelet transform (DWT), in the sense that different dilation
factors are used in each dimension. In the case of the standard
2D DWT, only the cases j1 = j2 are allowed; therefore the
resulting atoms are isotropic.

Let us note I = {j = (j1, j2) ∈ N2 and k = (k1, k2) ∈
Z2}. The projection of a function f of L2([0, 1]2) onto the
HWT basis gives a set of hyperbolic wavelet coefficients
{dj,k}(j,k)∈I where:

dj,k(f) = 〈ψj,k, f〉. (4)

The set {d0,k}, where 0 = (0, 0), represents the
approximation coefficients. In finite discrete settings, a
maximum scale is fixed at J = log2(N) for an N ×N image.
Given that the HWT can be seen as a tensor product of one-
dimensional wavelet transforms, its numerical implementation
can be achieved by applying two successive 1D DWT to each
of the two dimensions. Figure 1 highlights the difference of
the scale-space tilling in the standard and hyperbolic settings.

B. Wavelet denoising

When the noisy observation v verifies model (1), the very
simple, but powerful, procedure of wavelet thresholding men-
tioned earlier can be used. In the wavelet domain, the additive
model (1) reads:

dj,k(v) = dj,k(u) + dj,k(ε), (5)

with (j, k) ∈ I . The hard thresholding estimator ûσ is given
by:

ûσ =
∑

(j,k)∈Iσ

dj,k(v)ψj,k, (6)

where Iσ = {(j, k) ∈ I, such that |dj,k(v)| > t(σ)} and t(σ)
is the threshold parameter. Moreover, one of the distinctive
features of this procedure is the existence of a universal
threshold given by:

t(σ) =
{

log(Card(I))Var(dj,k(ε))
}1/2

,

= σ
{

2 log(N2)
}1/2

.

(7)

In image restoration, we often model the unknown image
as an element of an anisotropic function space, i.e., the
regularity parameters are allowed to be different along the
different dimensions. This notion of anisotropy is at the heart
of multivariate function estimation [7]. Hyperbolic wavelets
are well suited to such situations [34]. It has recently been
shown [9] that mixing scales when constructing wavelets, as
in (3), makes thresholding techniques comparable to state-of-
the-art denoising algorithms. The choice of the threshold (7) is
crucial and is based on the fact that the wavelet coefficients are
Gaussian and independent. In the next section we show how,
in the case of the ultrasound noise model (2), this obstacle
can be overcome via a wavelet-based variance stabilization
technique.
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Peppers Isotropic Hyperbolic

Figure 1: Wavelet decomposition in isotropic and hyperbolic settings.

C. The wavelet-Fisz approach

In (2), the noise component takes the form:

η = uγε. (8)

Therefore, its variance depends on the unknown image. To
obtain an adaptive image-dependent threshold, we extend the
results from [6] to our specific two-dimensional problem.

Lemma 3.1: Let {ψj,k}(j,k)∈I be a normalized wavelet
basis, such that ‖ψ‖22 = 1. Let uj,k denote the restriction
of u to the support of the function ψj,k. Assume that, we are
given for each (j, k) ∈ I , a constant function ūj,k converging
to uj,k as j1, j2 →∞. Then we have:{

dj,k(η)

ūγj,k

}
j,k

d−→ N (0, σ), as j1, j2 →∞ . (9)

Since the noise is assumed to be a centered Gaussian
random variable, the vector {dj,k(η)/ūγj,k}j,k is normal with
zero mean. In Appendix A, we derive the asymptotic variance
when given in (9). Convergence results follow from the one-
dimensional case [6]. The idea of applying this Gaussianizing
routine to wavelets coefficients was first introduced for Poisson
intensity estimation by Fryzlewicz and Nason [35], following
a general framework introduced by Fisz [36]1. It was later
extended to Poisson intensity estimation in images [37]. An
approximation ūj,k of the unknown image u needs to be
computed in the support of the function ψj,k. A key point
here is the use of the low-frequency outputs of the wavelet
transform at each scale as local means pre-estimations. These
outputs are given by scaling coefficients:

cj,k(f) = 〈ϕj,k, f〉, (10)

where

ϕj1,j2,k1,k2(x1, x2) = ϕj1,k1(x1)ϕj2,k2(x2). (11)

The support of the function ϕj,k decreases as the value
|j| = j1 + j2 increases. As a consequence of the law of large
numbers, the local means approximation (10) becomes less
accurate. This has limited consequences since, following [6],
we consider only the coarsest scales up to a certain level

1Hence the name wavelet-Fisz.

|j| ≤ Jmax. Not much information is lost since the finest
scales consist of high-frequency components, which are es-
sentially noise. Using lemma 3.1, we can now define a new
set for the construction of the nonlinear estimator (6) given
by:

Ĩσ = {(j, k) ∈ I, s.t |j| ≤ Jmax;
|dj,k(v)|
σ cj,k(v)γ

> t(1)}. (12)

Implementation: The wavelet-Fisz (WF) technique can
be performed using the non-decimated wavelet transform
(NDWT) introduced in [38]. The wavelet coefficients mag-
nitudes (4) and the approximation coefficients (10) for the
NDWT are presented in Figure 2. It has been shown that the
denoising methods based on NDWT outperforms those based
on traditional (decimated) wavelets in terms of the mean-
squared error (MSE) and the signal-to-noise ratio (SNR) [39].
This is mainly due to its translation invariance. However, the
non-decimated wavelet coefficients are, in general, correlated
even if the noise is uncorrelated. The choice of relevant
wavelet coefficients becomes a correlated multiple hypothesis-
testing problem. Thus, the choice of the threshold (7) can
lead to non-optimal results. In practice, one can consider
the non-decimated wavelet coefficients as separate packets of
uncorrelated coefficients [40]. The universal threshold can then
be applied to each packet. The pseudo-code for the routine is
given in Algorithm 1.

Algorithm 1 WF algorithm

Input: f, σ, γ, Jmax
Output: Estimate ũ

1: [dj,k, cj,k]←− NDWT(f)
2: for each couple (j, k) do
3: if |j| > Jmax then dj,k = 0
4: else
5: pj,k = σ × (cj,k)γ

6: sj,k = |dj,k|/pj,k
7: if sj,k < t(1) then dj,k = 0
8: end if
9: end if

10: end for
11: ũ = INDWT(dj,k)



2333-9403 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2016.2625740, IEEE
Transactions on Computational Imaging

FAROUJ et al.: HYPERBOLIC WAVELET-FISZ DENOISING FOR A MODEL ARISING IN ULTRASOUND IMAGING 5

(a) (b)

Figure 2: Outputs of the hyperbolic NDWT of the Peppers image: (a) the set of wavelet coefficients {dj,k}j,k and (b) the set
of approximation coefficients {cj,k}j,k.

The key step in this algorithm is the stabilization technique
leading to the set {sj,k}(j,k)∈I . Figure 3 shows how the
wavelet coefficients are stabilized after the WF procedure
(with σ = 2 and γ = 0.5). We rescaled the wavelet coefficients
magnitudes between 0 and 1 and fit a normal distribution.
The Liver image represents a section of a human liver along
with the portal vein. The diagonal details of the wavelet
transform at the first thresholding scale are examined. At fine
scales, the wavelet transformation mainly retrieves the noise
component. We can clearly see that the distribution of the
wavelet coefficients deviates from the Gaussian distribution.
This phenomenon can be explained by model (2) given that
the noise is perturbed by the image statistics. In fact, it was
observed that the statistics of the wavelet coefficients of an
image are more likely to follow distributions with heavier tails
than a Gaussian distribution, such as Exponential and Lapla-
cian distributions [41][42]. Note that the non-Gaussianity of
the wavelet coefficients distribution in US images was first
observed by Achim et al. [20]. In this work, the authors
assumed that the noise had an alpha-stable distribution.

D. Fully data-driven extension

Beyond the fact that there is no conventional noise model
in ultrasound imaging, different authors may use different
parametrizations for a given noise model. In particular, for
our model of interest, different values for the parameters σ
and γ are given in [3],[4] and [28]. A point of debate is
whether a large value should be used for γ and a small one
for σ or vice-versa. We sidestep the problem by estimating
the standard deviation of the noise directly from the data.
Here, we follow the work of Fryzlewicz and Delouille [43]
who developed extensions of the wavelet-Fisz algorithm that
adapt to models with unknown variance. This was applied,
for instance, to the variance stabilization and normalization of
one-color microarray data [44]2.

2An R software package (DDHFm) for this routine is available on the web:
https://cran.r-project.org/web/packages/DDHFm/index.html

1) Standard deviation estimation: To address this problem,
any filter with low computational cost can be used on the noisy
image to obtain a pre-estimation ū. We applied a simple mean
filter of size M to our images. An estimation of the noise
component η is then given by the residual:

η̂(ū) = v − ū (13)

To estimate the variance, a kernel-smoothing technique is
applied to the highly oscillating squared residuals η̂2. For
any vector w with values belonging to [min(ū),max(ū)], the
variance estimator of w is given as:

h(w) = ̂Var(η(w)) =
〈Ŵb(w), η̂2〉
Ŵb(w)

, (14)

where W is defined as:

Ŵb(w) =
1

N2b
K
( ū− w

b

)
, (15)

with b the bandwidth of the kernel K. This regression tech-
nique is called the Nadaraya-Watson estimation. Under the
assumption that the variance of the noise is a positive power
of the image intensity, as suggested by model (2), it is natural
to constrain the estimator of the variance to be non-decreasing.
This can be done using the so-called isotonic regression [45],
which consists in finding the closest non-decreasing function,
in terms of the least mean square error, using a “pool-adjacent-
violators” algorithm [46]. We present an example of this type
of routine on a corrupted 512×512 Peppers image. Our choice
of the Peppers image is motivated by the fact that it has many
variations in grey values, resulting in an interval of intensities
well covered by the vector w. The global regularity of the
image is the main criterion for the choice of the the size
M of the average filter. In fact, a compromise is required;
M should be chosen as large as possible with respect to the
homogeneity of the image. Small values are required for M if
the image has many discontinuities. We investigated various
choices for the size M of the average filter. We found that a

https://cran.r-project.org/web/packages/DDHFm/index.html
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Figure 3: Wavelet decomposition of US images: Statistics of the diagonal details at the finest scale.

value of M = 12 gives a reliable pre-estimation of the image.
In general we recommend the use of this value for images
with a moderate number of discontinuities such as the Peppers
image. Naturally, M also depends on the resolution of the
image; this dependence is expected to be linear. The bandwidth
b has less influence on the estimator than M because of the
regression step, which corrects remaining oscillations. This
was also pointed out by Fryzlewicz [6]. A value of b = 3 was
found to be stable. In the paper we fix this value and tune
only M . The results of two experiments with different values
of γ and σ are given in Figure 4. As the image pixel values
range from 0 to 255, we simply choose w to be a uniform
discretization of [0, 255]. The results confirm the reliability
of the standard deviation estimator h1/2 in comparison to the
ground truth.
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Figure 4: Standard deviation estimation from experiments on
the Peppers image for different values of σ and γ.

2) Blind denoising: We describe the adaptation of the WF
algorithm to the fully data-driven methodology. For our noise
model, the standard deviation estimator presented in III-D1
gives the following approximation:

h1/2(w) ≈ σwγ . (16)

Hence, we have a similar result to that given in lemma 3.1{
dj,k(η)

h1/2(cj,k)

}
j,k

d−→ N (0, 1), (17)

when j1, j2 → ∞. In Algorithm 1, the parameters σ and γ
appear in auxiliary step 5 for the computation of the variance
in the wavelet supports. To obtain a data-driven version of
this algorithm, the knowledge of σ and γ should not be

required in the inputs. Equation (17) suggests replacing step
5 in Algorithm 1 with:

pj,k = h1/2(cj,k), (18)

IV. EXPERIMENTS AND DISCUSSION

In this section, some experiments evaluating the perfor-
mance of the WF method are presented. To distinguish the
different contributions of this work, we divide this section
into two parts. First, the performance of the WF method for
both isotropic (IWF) and hyperbolic (HWF) constructions are
compared, and then the potentials of the data-driven extension
are shown.

A. The WF method

Herein, the results of the WF method are compared to those
obtained using two other approaches that consider the noise
model given by equation (2). The OBNLM filter has proven
to be very effective in speckle noise reduction [3]. On the
other hand, the variational approach [4] is an adaptation of
the well-established TV denoising to model (2). The criteria
used for the comparisons were the classical peak signal-to-
noise-ratio (PSNR) and the structural similarity index measure
(SSIM) [47], which assessed the tissue structure preservation.
Since ultrasound imaging is not usually used for functional
studies, the preservation of morphological information while
performing denoising is more important than preserving the
true measured pixel intensity. We also show the difference be-
tween the true image and the denoised result of every method.
This is known in the literature as the method noise [26]. One
expects to retrieve more noise in areas of high pixel intensities
according to model (2). The OBNLM filter is available on the
web3. The parameters α and M controlling the number of
blocks and the size of the search window were fixed at 3 and
6, as in the original paper, and the filtering parameter h was
optimized for different levels of noise. The variational algo-
rithm was implemented with the gradient descent step fixed at
0.2, as suggested by the authors. We used Haar wavelets for
the WF method. The scaling function associated with these
wavelets behaves like a simple mean filter, which results in
a reliable set of approximation coefficients {cj,k}j,k. These

3https://sites.google.com/site/pierrickcoupe

https://sites.google.com/site/pierrickcoupe/softwares/denoising-for-medical-imaging/speckle-reduction/obnlm-package
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wavelets are also efficient at preserving discontinuities. We are
aware, however, that these wavelets do not provide optimal
results in terms of PSNR and it is possible to improve the
results using wavelets from other families such as Daubechies
or Coiflets. In all experiments, the coefficients corresponding
to the first finest scale are truncated.

1) Experiments on synthetic data: Two experiments were
conducted by adding synthetic noise to clean images. We set
γ = 0.5, as in [3] and [4]. The Blocks image aims only at
demonstrating the ability of hyperbolic wavelets to deal with
highly anisotropic images. In fact, this image is an additive
model where the regularities in the two space dimensions
are distinct. This is a highly anisotropic case, which favors
the hyperbolic construction [8]. The Kidney image is a CT
image taken from the FIELD II website4. This example is
challenging to denoise because of the presence of many gray
level variations.

Table I reports the performance of the different methods
with their optimal parameters. In the case of the Blocks image,
the contribution of the hyperbolic setting is clearly visible
in terms of PSNR, SSIM and visual quality (e.g., Figure 5).
The hyperbolic wavelet-Fisz thresholding gave the best results
for all noise levels. The variational approach also gave good
results because the image is piece-wise constant. Yet, it suffers
from blurring effects around the edges. Artifacts caused by
the patching process are clearly visible in the OBNLM filter
results. In the case of the Kidney image, our approach did
not outperform the OBNLM filter and the variational method
in terms of PSNR, but remains competitive. This can be
explained by the different philosophy of wavelet thresholding
methods, which are more oriented toward the complete elim-
ination of noise rather than the minimizing the MSE [5]. The
OBNLM approach performed well when in the presence of
low noise levels. Conversely, the variational method performed
better for high noise levels. As can be observed in Figure 6, the
wavelet approaches efficiently preserved the structure. Unfor-
tunately, we note the presence of artifacts associated with the
supports of the wavelet basis. This is a common disadvantage
of wavelet thresholding methods. The method noise presented
in Figure 7 shows the structure of the removed noise for each
method. It can be observed that, for all methods, the removed
noise component has higher values in high-intensity areas in
coherence with the noise model (2). Moreover, the proposed
method produce a good compromise between efficient noise
removal and preservation of structures, in the sense that the
different regions are easily distinguishable. Another advantage
of wavelet thresholding is its adaptability; the threshold comes
directly from the knowledge of σ and γ. Tuning the OBNLM
filter is less straightforward, as the algorithm parameters are
not explicitly expressed in terms of the model parameters.

2) Experiments on real data: We evaluated our algorithm
on samples from real US imaging. The blind extension of the
SSIM presented in [48] was not suitable here because the noise
is signal-dependent. Therefore, comparisons and parameter
tuning were entirely based on the visual quality of the resulting

4http://field-ii.dk

image. We applied the different set of parameters in Table I
and chose those giving the best results. The first test concerns
the Carotid-Thyroid image. The speckle stemming from blood
flow can be seen on the left, while the thyroid gland is visible
on the right. Denoising such images may be a pre-processing
step in segmentation of the thyroid gland. An enhanced image
also eases the tracking of the carotid artery wall in dynamic
imaging. The second test examines Cranial US images. This
technique is mostly used for babies, before the cranial bones
have closed, as the US waves cannot pass through the skull.
For instance, it is used to obtain information on complications
related to premature birth.

The results of the different algorithms applied to the
Carotid-Thyroid image are shown in Figure 8. The image
obtained using the variational method is clearly blurred; this
is due to the piecewise constancy constraint of total variation.
The OBNLM filter achieved a better result, although there
was some visible partitioning in the final image. The proposed
method gave an image with well-defined structures because of
the local treatment of the wavelet paradigm. Moreover, in the
hyperbolic case, one can see that the horizontal structures are
satisfactorily recovered. The main artifact with the proposed
method is the occurrence of wavelet basis atoms in the
final image. Figure 9 illustrates how these artifacts can be
drastically reduced when the hyperbolic wavelet is used. In
the image obtained using the IWF procedure, small regions
representing the supports of the Haar basis can be seen. These
are similar to the artifacts related to patching that occurred
using the non-local methods. An improved result is obtained
using the hyperbolic settings, even though some lines are still
visible.

B. The data-driven WF method

In this section, the experiments reveal the potential of the
data-driven extension of our algorithm. Table II presents a
comparison of the results obtained using HWF and data-driven
HWF (dHWF) for the Peppers image studied in Figure 4. As
expected, there is a loss, proportional to the noise level, in the
PSNR and the SSIM up to 0.5 dB and 4%, respectively. We
believe this loss is acceptable, especially when the noise level
is not very high. We applied this data-driven technique to the
256 × 256 Liver image studied in Figure 3. This image has
a few discontinuities, allowing the use of a large window for
the mean filter. Here, we used a window of size M = 8. The
experiments were conducted using a PC DELL Latitude E6430
with an Intel Core i7-3740QM CPU, 2.7 GHZ processor and
8 GB of RAM under Fedora 20, using MATLAB v.8.2.0.701,
64-bit. The recorded run-time for HWT was 40.72 s while
it was 54.51 s for dHWT. The difference in timings is due
to the different routines of the variance estimation step. The
results are given in Figure 10. The first interesting result is the
“non-constant slope” of the estimated standard deviation. This
demonstrates that model (1) cannot be used. We suspect that
this function is proportional to the power of the image, thereby
giving image processing-based evidence of the relevance of
the noise model (2) directly from the data. It was also noted
that the set of wavelet coefficients was properly stabilized. We

http://field-ii.dk
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Blocks Noisy (σ = 4) OBNLM [3] Variational [4] IWF HWF

Figure 5: Results of various methods applied to the Blocks image. The quantitative evaluation is given in Table I.

Kidney Noisy (σ = 4) OBNLM [3] Variational [4] IWF HWF

Figure 6: Results of various methods applied to the Kidney image. The quantitative evaluation is given in Table I.

Blocks Kidney
PSNR (dB) SSIM Parameters PSNR (dB) SSIM Parameters

Noisy(σ = 2) 22.83 0.135 – 24.83 0.430 –
OBNLM [3] 35.13 0.917 h=1.5 30.05 0.845 h=1
Variational [4] 37.98 0.972 niter=180 28.72 0.814 niter=160
IWF 35.78 0.958 – 29.04 0.837 –
HWF 49.65 0.993 – 30.24 0.866 –

Noisy(σ = 3) 20.95 0.071 – 22.30 0.272 –
OBNLM [3] 32.86 0.836 h=2 28.71 0.752 h=1
Variational [4] 35.57 0.955 niter=260 27.91 0.799 niter=180
IWF 33.75 0.929 – 27.39 0.791 –
HWF 46.65 0.987 – 28.20 0.822 –

Noisy(σ = 4) 19.31 0.044 – 20.83 0.187 –
OBNLM [3] 31.38 0.739 h=2.5 27.81 0.765 h=2
Variational [4] 34.41 0.946 niter=350 28.03 0.782 niter=210
IWF 32.40 0.909 – 26.63 0.764 –
HWF 43.04 0.973 – 27.31 0.791 –

Table I: Quantitative comparison (PSNR & SSIM) and optimal parameters for different methods applied to the Blocks and
Kidney images with different noise levels.

Original OBNLM [3] Variational [4] IWF HWF

Figure 7: The method noise [26] of the various approaches applied to the Kidney image (σ = 3).

compared the image obtained in the data-driven mode to the
one obtained using an exhaustive search for the parameter σ
with γ = {0.5; 1}. The results demonstrated that the data-
driven result is satisfying and less blurred.

V. CONCLUSION

In this paper, we described a novel approach for denoising
ultrasound images based on wavelet thresholding, variance
stabilization and the use of the hyperbolic wavelet basis.
The quantitative and visual results show the potential of the
proposed method and the utility of the hyperbolic construction.
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Image OBNLM [3] Variational [4] IWF HWF

Figure 8: Visual evaluation of various methods applied to the Carotid-Thyroid image.

PSNR (dB) SSIM
σ 2 3 4 2 3 4
Noisy 20.21 16.65 14.16 0.35 0.23 0.16
HWF 29.25 27.65 26.44 0.78 0.75 0.73
dHWF 29.09 27.40 26.17 0.76 0.72 0.69

Table II: Denoising of the Peppers image: Quantitative com-
parison (PSNR & SSIM) of the HWF and its fully data-driven
version for different noise levels.

Image IWF HWF

Figure 9: Visual comparison between IWF and HWF for
the brain image.
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Figure 10: Experiments on the Liver image: (a) estimated
standard deviation, (b) blind stabilized Coefficients.

A data-driven extension of the method is also presented. When
applied to real data, this extension provides evidence that
the noise model is relevant. We also believe that a method

free of tuning requirements is highly desirable, especially
for physicians. The extension to three-dimensional wavelets
can be used for two purposes: 3D denoising or (2D+t)
dynamic US denoising. While the 3D case is straightforward,
the dynamic US case must be handled carefully because the
noise variance depends only on the spatial dimension. Thus,
the variance stabilization and the local means approximation
should be performed only on the spatial variables. We are
currently addressing this issue.

APPENDIX A
VARIANCE DERIVATION

We recall that η = uγε, and we note t = (t1, t2)

Var

{
dj,k(η)

ūγj,k

}
=

1

ū2γ
j,k

Var
{∑

t

ψj,k(t)uγ(t)ε(t)
}
,

=
σ2

ū2γ
j,k

∑
t

ψ2
j,k(t)u2γ(t),

=
σ2

ū2γ
j,k

∑
t

ψ2
j,k(t)u2γ

j,k(t).

= σ2
∑
t

u2γ
j,k(t)

ū2γ
j,k

ψ2
j,k(t).

Finally, since when j1, j2 → ∞, ūj,k converges to uj,k,
then for each t in the support of ψj,k, we have:

lim
ūj,k→uj,k

u2γ
j,k(t)

ū2γ
j,k

= 1.

Thus:

Var

{
dj,k(η)

ūγj,k

}
= σ2

∑
t

ψ2
j,k(t) = σ2||ψj,k||22 = σ2.
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