
Unmixing of multispectral photoacoustic images
Aneline DOLET1,2, Rita AMMANOUIL3, François VARRAY1, Yubin LIU4, Zhen YUAN4, Piero TORTOLI2, André FERRARI3,

Cédric RICHARD3, Didier VRAY1,

1Laboratoire CREATIS, INSA Lyon, Université Claude Bernard Lyon 1, France
2Department of Information Engineering, University of Florence, Florence, Italy

3Laboratoire Lagrange, Université de Nice Sophia-Antipolis, Nice, France
4Bioimaging Core, Faculty of Health Sciences, University of Macau, People’s Republic of Macau, China

1aneline.dolet@creatis.insa-lyon.fr

Résumé – L’imagerie photoacoustique est une modalité hybride qui permet d’imager les tissus biologiques. L’illumination d’une zone d’intérêt
par des impulsions laser à différentes longueurs d’onde permet d’obtenir une technique d’imagerie fonctionnelle car l’absorption optique des
tissus est spécifique à la longueur d’onde utilisée. Pour différentes applications médicales, l’analyse d’images photoacoustiques multispectrales
par la quantification du sang oxygéné (HbO2) et désoxygéné (Hb) dans les tissus est intéressante. Celle-ci peut être réalisée en utilisant les cartes
d’abondance issues de méthodes de démélange. Ici, des méthodes de démélange, Group Lasso with Unit sum and Positivity constraints (GLUP)
et Fully Constrained Least-Square (FCLS), utilisées dans le domaine hyperspectrale, sont mises en oeuvre pour quantifier des images photoa-
coustiques multispectrales. Les résultats de cette étude sont présentés sur deux jeux de données synthétiques et un jeu de données expérimentales.
Ceux-ci montrent que ces méthodes permettent de quantifier des images photoacoustiques multispectrales avec de bonnes performances.

Abstract – Photoacoustic imaging is an hybrid modality to image biological tissues. Using multispectral optical excitation, photoacoustic
imaging allows to obtain functional images due to the fact that a tissue has a specific optical absorption depending on the used wavelengths.
Quantification of multispectral photoacoustic images can be of great interest to different applications by quantifying oxygenated (HbO2) and
deoxygenated (Hb) blood in tissue. Quantification can be done by examining the abundance maps resulting from unmixing methods. Two
hyperspectral unmixing methods, namely Group Lasso with Unit sum and Positivity constraints (GLUP) and Fully Constrained Least-Square
(FCLS), are used to quantify multispectral photoacoustic images. Experiments using two synthetic and one experimental dataset show that
unmixing methods provide good quantification performances, which is of great interest for various medical applications.

1 Introduction

Photoacoustic imaging is a medical imaging modality which
couples optical and acoustic imaging [1]. It is based on the de-
tection of acoustic pressure waves produced by a medium sub-
ject to a pulsed laser illumination locally increasing its tem-
perature. The thermal expansions of optical absorbers create
acoustic waves that propagate through the media to the sur-
face where they are detected. Acquiring photoacoustic images
of a region of interest at different wavelength bands provides a
multispectral (3D) image where a pixel is endowed with a spec-
trum. Each tissue has a specific spectrum due to the fact that op-
tical absorption depends on the light’s illumination wavelength.
For example, the spectral responses of oxygenated (HbO2) and
deoxygenated (Hb) blood are mostly different in the range from
600 to 900 nm [2]. The study of the spectral evolution and the
quantification of blood oxygenation in tissues is beneficial in
various medical applications. This quantification is of great in-
terest for various medical applications such as the diagnosis of
malignant/benign tumors, the follow-up of carcinoma, and the
evaluation of tissues death to cite a few [3].

Spectral unmixing, widely used in remote sensing [4], can
be naturally extended to quantify multispectral photoacoustic
data. The mixing framework distinguishes a pure spectra (the
endmembers) associated with pure materials from mixed spec-
tra which are usually a weighted mixture of the pure spec-
tra. Three consecutive tasks are required for unmixing : de-
termining the number of pure spectra, estimating their spec-
tral signatures and evaluating their proportions (abundances)
for each pixel. The pipeline VD [5], followed by N-FINDR
[6] and FCLS [7] is among the most widely used to perform
unmixing. We propose to use a blind and fully constrained ap-
proach known as the Group Lasso with Unit sum and Positivity
constraints (GLUP) [8] for estimating the endmembers, and the
Fully Constrained Least Squares (FCLS) method for estimating
the abundances. We use this pipeline to quantify blood concen-
tration in multispectral photoacoustic images.

The paper is organized as follows. Section 2 introduces the
linear mixing model. Section 3 gives an overview of GLUP and
FCLS. Finally, section 4 presents simulations with synthetic
and real experimental photoacoustic dataset.



2 Linear mixing model
In multispectral imaging, a region of interest is imaged at dif-

ferent wavelength bands. Each pixel in the image is characteri-
zed by a spectrum which is the collection of acquired intensity
values at each wavelength band. A pixel’s spectrum is either
pure and referred to as an endmember, or mixed i.e. composed
of a mixture of the endmembers. Assume that the multispectral
image is estimated at L wavelength bands, and contains in to-
tal N pixels indexed by n = 1, . . . , N . According to the linear
mixing model (LMM) [4], a mixed pixel is a convex combina-
tion of the endmembers. More formally, we have :

sn =
∑M
i=1 ainri + en, ∀n = 1, . . . N, (1)

where sn ∈ RL is the L-dimensional spectrum for the n-th
pixel, M denotes the number of endmembers, ain is the abun-
dance of the i-th endmember in the n-th pixel, ri is the L-
dimensional spectrum of the i-th endmember, en is a vector of
Gaussian white noise accounting for sensor noise and error of
the model. All vectors are column vectors. Being contributions,
the abundances must be positive and sum to one :{

ain ≥ 0,∑M
i=1 ain = 1.

(2)

The LMM is a simple yet very representative model which was
extensively studied in remote sensing, see for example the sur-
vey in [4]. For medical applications, the LMM can be a power-
ful tool for quantifying media like the oxygenation of blood in
tissues. More precisely, the aim of this work is to use unmixing
in order to quantify the concentration of blood in different in-
clusions. In this context, a spectrum is assumed to be either
fully concentrated or diluted. The LMM can be naturally ex-
tended to this scenario, where the spectra of fully concentrated
blood are regarded as pure spectra and their concentrations in
diluted spectra are regarded as abundances. However, the sum-
to-one constraint should be relaxed given that a mixed spectrum
can be a diluted version of the endmember, for example it can
be equal to 50% of the endmember. This can be done by simply
adding a zero endmember in the LMM also known as a shadow
endmember.

3 Unmixing pipeline
In the experiments, GLUP [8] and FCLS [7] were used to

estimate the endmembers and the abundances respectively. In
what follows, we briefly introduce the concepts of these two
methods. GLUP assumes that the endmembers are unknown
but present in the image, among the observations. Given this
assumption, and without loss of generality, the linear mixing
model (1) can be reformulated as follows :

sn =
∑N
i=1 xinsi + en, ∀n = 1, . . . N. (3)

Similarly as above, xin is the abundance of si in sn. On the
one hand, if si is an endmember, the row xλi

of the matrix X

whose elements are defined as Xin = xin for i, n = 1, . . . , N
has non-zero entries and represents the corresponding abun-
dance map. On the other hand, if si is a mixed pixel, xλi

has
all its elements equal to zero. As a consequence, X admits
N −M rows of zeros, the other rows being equal to rows of
A. The premise in GLUP is that X allows the identification of
the endmembers in S through its non-zero rows. This property
is exploited in GLUP in order to find the endmembers among
the observations. The unmixing problem under investigation,
requires that X only has a few rows different from zero, in ad-
dition to the non-negativity and sum-to-one constraints which
leads to the following convex optimization problem :

minX
1
2

∑N
i=1 ‖S − SX‖2F + µ

∑N
k=1 ‖xλk

‖2
subject to xij ≥ 0 ∀ i, j∑N

i=1 xij = 1 ∀ j,
(4)

with µ ≥ 0 a regularization parameter, and S = [s1, . . . , sN ]
is the observations matrix. The first term in (4) is the data fide-
lity term ensuring that the observations match model (3), and
the second term is the Group Lasso regularization which in-
duces sparsity by possibly driving several rows of X to zero
[9]. The constraints ensure that the abundances obey the positi-
vity and the sum-to-one constraints. The resulting optimization
is solved using a primal dual method, the readers are referred
to [8] for more details. In conclusion, GLUP allows to identify
the endmembers in S by identifying the non-zero rows in X .
Note that GLUP also provides the abundances estimated which
correspond to the non-zero rows in the estimated matrix X .
However, similarly to [8], given the endmembers estimated by
GLUP, FCLS is then used to estimate the abundances. FCLS
solves a problem similar to problem (4) with µ = 0 and using
the estimated endmembers matrix rather than the observations
matrix. FCLS allows to have a better estimation of the abun-
dances, given that the endmembers are known at this stage and
that the resulting optimization problem is better conditioned
compared to problem (4).

4 Experimental results

4.1 Datasets description

We tested the proposed unmixing pipeline with two syn-
thetic and one experimental dataset. The first synthetic data-
set can be assimilated into three blood inclusions on a back-
ground. Two inclusions were simulated using one pure end-
member (media) each (e.g. Hb and HbO2), and a third inclusion
using an equal mixture (50% of each endmember). The end-
members are shown in Figure 1. The abundances at the boun-
daries of each inclusion are attenuated in order to have a light
diffusion effect. In the second synthetic data set, we also simu-
late three inclusions. Two inclusions are constituted of one pure
media each (e.g. ink and blood), and the third inclusion is syn-
thetized using one of the endmember with half its intensity (i.e.
with a concentration of 50%). The three spectra used to create



FIGURE 1 – Simulated spectrums used to create the three in-
clusions in the first synthetic dataset : the red and green spec-
tra correspond to the endmembers, and the blue spectra corres-
ponds to 50% of each endmember.

FIGURE 2 – Simulated spectrums used to create the three in-
clusions in the second synthetic dataset : the red and green
spectra correspond to the endmembers, and the blue spectra
corresponds to 50% of the green endmember.

this data set are shown in Figure 2. The decreasing coefficients
are also applied on this dataset.

The proposed approach was also tested on a real experimen-
tal dataset acquired at the University of Macau with the mul-
tispectral photoacoustic tomography (PAT) acquisition scheme
[10] in Figure 3. Figure 4 shows the phantom used which consists
of a cylindrical PVA phantom with three spherical inclusions.
Two inclusions are filled with two different concentrations of
blood and the third one is filled with diluted black China ink
(the right-up inclusion). The images are acquired at 8 different
wavelengths from 700 to 910 nm with 30 nm steps.

FIGURE 3 – Experimental setup for the photoacoustic tomo-
graphy acquisitions.

FIGURE 4 – Phantom used for the acquisitions, the inclusion in
grey is the China ink inclusion, and the two dark red inclusions
are the blood inclusions.

4.2 Unmixing pipeline
Before applying GLUP and FCLS, a pre-processing step is

applied in order to discriminate the background from the region
of interest. Given that the background has a low photoacoustic
response, a threshold is applied in order to keep the pixels with
higher photoacoustic signal as the region of interest. The retai-
ned pixels spectra are used with GLUP in order to identify the
endmembers among these observations. Note that GLUP does
not require the knowledge of the number of endmembers to be
extracted a-priori. Given that in our experiments, the number
of endmembers is known to be equal to 2, we kept the first two
endmembers returned by GLUP. The endmembers estimated
by GLUP in addition to the shadow endmember are then used
with FCLS in order to estimate the abundances.

4.3 Results
Figures 5 and 6 show the endmembers obtained using GLUP

and the abundance maps obtained using FCLS for the three da-
tasets respectively. The first, second and third row in Figure 6
represent the abundance maps obtained with the first synthetic
dataset, the second synthetic dataset and the real experimen-
tal dataset respectively. In each row, the first two columns cor-
respond to the abundance maps of the non-zero endmembers
whereas the third column corresponds to the shadow endmem-
ber abundance map. The unmixing results obtained with the
first synthetic dataset (first row in Figure 6) show that the left-
up inclusion and the bottom inclusion consist of two different
endmembers (abundances at the inclusion center are equal to
1) whereas the right-up inclusion consists of an equal mixture
of these two endmembers (abundances at the inclusion center
are equal to 0.5). The unmixing results obtained with the se-
cond synthetic data set (second row in Figure 6) show that the
right-up and the bottom inclusions consist of the same medium
at different concentrations, approximately 0.5 and 1 respecti-
vely, whereas the left-up inclusion consists of another medium.
Finally, the third row in Figure 6 shows the abundance maps
obtained with the experimental data set. It can be seen that the
left-up inclusion consists of one endmember, and that the other
two inclusions (the right-up and the bottom one) consist of a se-
cond endmember. In all the previous cases, the third abundance



FIGURE 5 – Endmembers obtained by GLUP and the shadow
(zero) endmember. From left to right : first synthetic data set,
second synthetic dataset, and experimental dataset.

FIGURE 6 – Each row shows the abundance maps given by
FCLS obtained with from top to bottom : first synthetic data
set, second synthetic dataset, and experimental dataset.

map corresponds to the zero endmember where the abundances
are mostly close to one at the boundaries accounting for the
light diffusion effect.

Given that in all cases we had two endmembers representing
media and the shadow one. We used then the first two abun-
dance maps as the red and green components of an RGB image
(Fig. 7) giving an intuitive and fast interpretation of the result.
The first image in Figure 7 shows a red and a green inclusion
corresponding to two different media, and a third greenish in-
clusion which is a mixture of these two media. The second
image shows a green and two red inclusions at different inten-
sities corresponding to the same media at different concentra-
tions. Finally, the last image shows one red inclusion and two
green ones at different intensities. In the latter case, the green
inclusions are surrounded by a red boundary. This is due to the
fact that the spectrum corresponding to the red endmember is
very close to zero (see Figure 5).

FIGURE 7 – Quantification maps obtained by using the abun-
dance maps as the RGB images. From left to right : first synthe-
tic data set, second synthetic dataset, and experimental dataset.

5 Conclusion and perspectives
In this work, we extended the use of GLUP and FCLS, origi-

nally used in remote sensing, to the medical domain. In particu-
lar, this unmixing pipeline was used to quantify multispectral
photoacoustic images. In order to allow interpreting the abun-
dances as concentrations we added a shadow endmember to the
endmembers estimated by GLUP and estimated the abundances
using FCLS. Experiments with synthetic and experimental da-
tasets showed that the proposed pipeline was able to success-
fully quantify media’s concentrations. As future work, it could
be interesting to test the proposed approach on multispectral
photoacoustic acquisitions of biological tissue such as meat and
study the temporal evolution of the quantification as the tissue
become stale.
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