# Hyperquaternions: An Efficient Mathematical Formalism for Geometry 

Patrick R. Girard ${ }^{1[0000-0001-8556-1816]}$, Patrick Clarysse ${ }^{1[0000-0002-5495-7655]}$, Romaric Pujol ${ }^{2}$, Robert Goutte ${ }^{1}$, and Philippe Delachartre ${ }^{1[0000-0003-0492-1846]}$<br>${ }^{1}$ Univ Lyon, INSA-LYON, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69621 LYON, France<br>patrick.girard@creatis.insa-lyon.fr<br>${ }^{2}$ Pôle de Mathématiques, INSA-Lyon<br>Bât. Léonard de Vinci, 21 avenue Jean Capelle F-69621 Villeurbanne, France


#### Abstract

Hyperquaternions being defined as a tensor product of quaternion algebras (or a subalgebra thereof), they constitute Clifford algebras endowed with an associative exterior product providing an efficient mathematical formalism for differential geometry. The paper presents a hyperquaternion formulation of pseudo-euclidean rotations and the Poincaré groups in $n$ dimensions (via dual hyperquaternions). A canonical decomposition of these groups is developed as an extension of an euclidean formalism and illustrated by a $5 D$ example. Potential applications include in particular, moving reference frames and machine learning.


Keywords: Quaternions • Hyperquaternions • Pseudo-euclidean rotations • Poincaré groups • Canonical decomposition.

## 1 Introduction

Clifford algebras allow an excellent representation of pseudo-euclidean rotations which are important symmetry groups of physics [1-4]. A decomposition of these groups into orthogonal, commuting planar rotations is called a canonical decomposition. Various canonical decompositions have been developed which deal with either specific rotations or dimensions and are often expressed in terms of matrices $[5,6]$. In a recent paper, we have introduced a hyperquaternion formulation of Clifford algebras and applied them to the unitary and unitary symplectic groups [7]. Here, we consider pseudo-euclidean rotations and the Poincaré groups in $n$ dimensions (via dual hyperquaternions). A canonical decomposition of these groups is developed within that framework as an extension of an euclidean formalism introduced by Moore [8, 9]. After a short presentation of hyperquaternions and multivectors, we derive the pseudo-euclidean rotations and the canonical decomposition. Then we go on to the Poincaré groups and a $5 D$ example. Potential applications are moving reference frames and machine learning [10]

Table 1. Biquaternion Multivector Structure

$$
\begin{array}{|l|l|l|l|}
\hline 1 & i=e_{3} e_{2} & j=e_{1} e_{3} & k=e_{2} e_{1} \\
\hline I=e_{1} e_{2} e_{3} & I i=e_{1} & I j=e_{2} & I k=e_{3} \\
\hline
\end{array}
$$

## 2 Background: Quaternions, Hyperquaternions and Multivectors

In this section, we briefly introduce quaternions, hyperquaternions and multivectors $[7,11-15]$. The quaternion algebra $\mathbb{H}$ which contains $\mathbb{R}$ and $\mathbb{C}$ as particular cases is constituted by quaternions

$$
\begin{equation*}
a=a_{1}+a_{2} i+a_{3} j+a_{4} k \quad\left(a_{i} \in \mathbb{R}\right) \tag{1}
\end{equation*}
$$

where $i, j, k$ multiply according to

$$
\begin{equation*}
i^{2}=j^{2}=k^{2}=i j k=-1, i j=-j i=k, e t c . \tag{2}
\end{equation*}
$$

The product of two quaternions $a, b$ is given by

$$
\begin{align*}
a b= & \left(a_{1} b_{1}-a_{2} b_{2}-a_{3} b_{3}-a_{4} b_{4}\right)+\left(a_{1} b_{2}+a_{2} b_{1}+a_{3} b_{4}-a_{4} b_{3}\right) i  \tag{3}\\
& +\left(a_{1} b_{3}+a_{3} b_{1}+a_{4} b_{2}-a_{2} b_{4}\right) j+\left(a_{1} b_{4}+a_{4} b_{1}+a_{2} b_{3}-a_{3} b_{2}\right) k . \tag{4}
\end{align*}
$$

The conjugate of a quaternion is $a_{c}=a_{1}-a_{2} i-a_{3} j-a_{4} k$ with

$$
\begin{equation*}
a a_{c}=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2},(a b)_{c}=b_{c} a_{c} \tag{5}
\end{equation*}
$$

The hyperquaternion algebra (over $\mathbb{R}$ ) is defined as the tensor product of quaternion algebras (or a subalgebra thereof). Examples of hyperquaternion algebras are the quaternions $\mathbb{H}$, tetraquaternions $\mathbb{H} \otimes \mathbb{H}$ and so on $\mathbb{H} \otimes \mathbb{H} \otimes \ldots \otimes \mathbb{H} ;$ subalgebras are the complex numbers $\mathbb{C}$, biquaternions $\mathbb{H} \otimes \mathbb{C}$, Dirac algebra $\mathbb{H} \otimes \mathbb{H} \otimes \mathbb{C}$, etc..

Calling $(i, j, k)$ the first quaternionic system, $(I, J, K)$ the second one and $(l, m, n)$ the third one, all systems commuting with each other, one has

$$
\begin{equation*}
i \otimes i \otimes i=i I l, \quad i \otimes j \otimes k=i J n, \text { etc. } \tag{6}
\end{equation*}
$$

which uniquely defines the multiplication.
Hyperquaternions having $n$ generators $e_{i}$ such that $e_{i} e_{j}+e_{j} e_{i}=0(i \neq j)$, $e_{i}^{2}= \pm 1$ constitute Clifford algebras $C_{n}$. The choice of the generators entails a multivector structure as shown, in the case of biquaternions, in Table 1. The $2^{n}$ elements of the algebra are composed of scalars, vectors $e_{i}$, bivectors $e_{i} e_{j}$, trivectors $e_{i} e_{j} e_{k}$ etc. yielding respectively the multivector spaces $V_{0}, V_{1}, V_{2}, V_{3}, \ldots V_{n}$. $C^{+}$is the subalgebra constituted by products of an even number of $e_{i}, C^{-}$is the rest of the algebra. The multivector structure allows to define basic operations like conjugation, duality and the interior and exterior products.

Considering a general element $A$ of the algebra, the conjugate $A_{c}$ is obtained by replacing the $e_{i}$ by their opposite $-e_{i}$ and reversing the order of the elements

$$
\begin{equation*}
\left(A_{c}\right)_{c}=A,(A B)_{c}=\left(B_{c}\right)\left(A_{c}\right) \tag{7}
\end{equation*}
$$

The dual of $A$ is $A^{*}=i_{d} A$ where $i_{d}=e_{1} \wedge e_{2} \ldots \wedge e_{n}$ (to be defined below) and the commutator of two hyperquaternions is

$$
\begin{equation*}
[A, B]=\frac{1}{2}(A B-B A) \tag{8}
\end{equation*}
$$

The interior and exterior products of two vectors $a, b$ are obtained as follows. From the identity

$$
\begin{equation*}
2 a b=\lambda \lambda^{-1}[(a b+b a)+(a b-b a)] \tag{9}
\end{equation*}
$$

where $\lambda= \pm 1$ is a given coefficient (allowing to eventually change the sign of the metric), one defines

$$
\begin{equation*}
2 a . b=\lambda^{-1}(a b+b a), 2 a \wedge b=\lambda^{-1}(a b-b a) \tag{10}
\end{equation*}
$$

which are respectively a scalar and a bivector. A multivector $A_{p}=a_{1} \wedge a_{2} \wedge \ldots \wedge a_{p}$ ( $2 \leq p<n$ ) where $a_{p}$ are vectors, is then defined by recurrence

$$
\begin{align*}
2 a \cdot A_{p} & =\lambda^{-p}\left[a A_{p}-(-1)^{p} A_{p} a\right] \in V_{p-1}  \tag{11}\\
2 a \wedge A_{p} & =\lambda^{-p}\left[a A_{2}+(-1)^{p} A_{2} a\right] \in V_{p+1} \tag{12}
\end{align*}
$$

By definition, we take

$$
\begin{equation*}
A_{p} \cdot a \equiv(-1)^{p-1} a \cdot A_{p}, A_{p} \wedge a \equiv(-1)^{p} a \wedge A_{p} \tag{13}
\end{equation*}
$$

An important property of the exterior product is its associativity.
Interior and exterior products between multivectors are defined by

$$
\begin{align*}
A_{p} \wedge B_{q} & =a_{1} \wedge\left(a_{2} \wedge \ldots \wedge a_{p} \wedge B_{q}\right)  \tag{14}\\
A_{p} \cdot B_{q} & =\left(a_{1} \wedge \ldots \wedge a_{p-1}\right) \cdot\left(a_{p} \cdot B_{q}\right), \quad(p \leq q) \tag{15}
\end{align*}
$$

with $A_{p} \cdot B_{q}=(-1)^{p(q+1)} B_{q} \cdot A_{p}$ [16]. In particular, we have the following useful formulas where $B i$ are bivectors and $V_{p}[A]$ the multivector part $V_{p}$ of $A$

$$
\begin{align*}
B_{1} B_{2} & =B_{1} \cdot B_{2}+B_{1} \wedge B_{2}+\left[B_{1}, B_{2}\right]  \tag{16}\\
B_{1} \wedge B_{2} & =V_{4}\left[B_{1} B_{2}\right]  \tag{17}\\
B_{1} \wedge B_{2} \wedge B_{3} & =V_{6}\left[B_{1}\left(B_{2} \wedge B_{3}\right)\right]  \tag{18}\\
B_{1} \cdot\left(B_{2} \wedge B_{3}\right) & =V_{2}\left[B_{1}\left(B_{2} \wedge B_{3}\right)\right]  \tag{19}\\
\left(B_{1} \wedge B_{2}\right) \cdot\left(B_{3} \wedge B_{4} \wedge B_{5}\right) & =V_{2}\left[\left(B_{1} \wedge B_{2}\right)\left(B_{3} \wedge B_{4} \wedge B_{5}\right)\right] \tag{20}
\end{align*}
$$

Hyperquaternions yield all real, complex and quaternionic square matrices as well as the transposition, adjunction and transpose quaternion conjugate via a hyperconjugation defined as $\mathbb{H}_{c} \otimes \mathbb{H}_{c} \otimes \ldots \otimes \mathbb{H}_{c}$ as indicated in Table 2.

Table 2. Hyperquaternions and matrices

$$
\begin{array}{l|l}
\mathbb{H} \otimes \mathbb{H} \simeq m(4, \mathbb{R}) & \mathbb{H}_{c} \otimes \mathbb{H}_{c} \simeq[m(4, \mathbb{R})]^{t}  \tag{21}\\
\hline \mathbb{H} \otimes \mathbb{H} \otimes \mathbb{C} \simeq m(4, \mathbb{C}) & \mathbb{H}_{c} \otimes \mathbb{H}_{c} \otimes \mathbb{C}_{c} \simeq[m(4, \mathbb{C})]^{\dagger} \\
\mathbb{H} \otimes \mathbb{H} \otimes \mathbb{H} \simeq m(4, \mathbb{H}) & \mathbb{H}_{c} \otimes \mathbb{H}_{c} \otimes \mathbb{H}_{c} \simeq[m(4, \mathbb{H})]_{c}^{t}
\end{array}
$$

## 3 Pseudo-Orthogonal Rotations

Here, we derive a hyperquaternion formulation of pseudo-euclidean rotations and develop a canonical decomposition. Historically, the formula of $n$ dimensional euclidean rotations $x^{\prime}=\operatorname{axa}^{-1}\left(a \in C_{n}^{+}\right)$was given by Lipschitz [17] and Moore developed a canonical decomposition thereof $[8,9]$. We introduce, as an extension of Moore's method, within the hyperquaternion Clifford algebra framework, a canonical decomposition of pseudo-euclidean rotations and the Poincaré groups. After a brief review of the basic definitions and the Cartan theorem, we develop the canonical decomposition.

### 3.1 Definitions and Theorem

Let $C_{p, q}$ be a hyperquaternion algebra having $n=p+q$ generators $e_{i}$ and the quadratic form

$$
\begin{align*}
x . y & =x_{1} y_{1}+\ldots+x_{p} y_{p}-\left(x_{p+1} y_{p+1} \ldots-x_{p+q} y_{p+q}\right)  \tag{22}\\
& =\lambda^{-1}(x y+y x) / 2 \tag{23}
\end{align*}
$$

where $x, y$ are vectors $\left(x=x_{i} e_{i}\right)$. A vector $x$ is timelike if $x . x>0$, spacelike if $x . x<0$ and isotropic if $x . x=0$.

An orthogonal symmetry with respect to a plane going through the origin and perpendicular to a unit vector $a\left(a^{2}= \pm 1\right)$ is given by $[12,13]$

$$
\begin{equation*}
x^{\prime}= \pm a x a \tag{24}
\end{equation*}
$$

with $x^{\prime} x^{\prime}=( \pm a x a)( \pm a x a)=x x$.
Definition 1. The pseudo-orthogonal group $O(p, q)$ is the group of linear operators which leave invariant the form $x \cdot y$.

Theorem 1. Every rotation of $O(p, q)$ is the product of an even number $2 m \leq n$ of symmetries.

Definition 2. The special orthogonal group $S O^{+}(p, q)$ is constituted by rotations which preserve the orientation of the space of positive norm vectors and the space of negative norm vectors.

A rotation of $S O^{+}(p, q)$ can thus be expressed as

$$
\begin{equation*}
x^{\prime}=a x a_{c} \quad\left(a a_{c}=1\right) \tag{25}
\end{equation*}
$$

with $a=a_{1} a_{2} \ldots a_{2 m}, \in C^{+}$, where $a_{i}$ are unit vectors (with an even number of timelike and spacelike vectors). Developing the product (with $\lambda=1$ )

$$
\begin{equation*}
a_{i} a_{j}=a_{i} \cdot a_{j}+a_{i} \wedge a_{j} \tag{26}
\end{equation*}
$$

one sees that it contains a simple plane $B=a_{i} \wedge a_{j}$ such that $B^{2}=B . B+$ $B \wedge B$ is a scalar since $B \wedge B=0$. Hence, a rotation involves at most $m \leq n / 2$ simple planes. A canonical decomposition of rotations is obtained by choosing these simple planes to be orthogonal.

### 3.2 Canonical Decomposition

A rotation of $S O^{+}(p, q)$ can be decomposed as

$$
\begin{equation*}
a=e^{\frac{\Phi_{1}}{2} B_{1}} e^{\frac{\Phi_{2}}{2} B_{2}} \ldots e^{\frac{\Phi_{m}}{2} B_{m}} \quad\left(a a_{c}=1\right) \tag{27}
\end{equation*}
$$

where $B_{i}$ are $m$ simple orthogonal commuting planes such that $B_{i}^{2}= \pm 1$ together for $i \neq j$

$$
\begin{equation*}
B_{i} . B_{j}=0, B_{i} B_{j}=B_{j} B_{i}, B_{i} B_{j}=B_{i} \wedge B_{j} \tag{28}
\end{equation*}
$$

$\Phi_{i}$ are the angles of rotation within the planes $B_{i}$. According to whether $B_{i}^{2}=-1$ or $B_{i}^{2}=1$, one has respectively

$$
\begin{equation*}
e^{\frac{\Phi_{i}}{2} B_{i}}=\cos \frac{\Phi_{i}}{2}+\sin \frac{\Phi_{i}}{2} B_{i}, e^{\frac{\Phi_{i}}{2} B_{i}}=\cosh \frac{\Phi_{i}}{2}+\sinh \frac{\Phi_{i}}{2} B_{i} . \tag{29}
\end{equation*}
$$

The rotation can be developed as

$$
\begin{equation*}
a=S\left(1+b_{1} B_{1}\right)\left(1+b_{2} B_{2}\right) \ldots\left(1+b_{m} B_{m}\right) \tag{30}
\end{equation*}
$$

with $b_{i}=\tan \frac{\Phi_{i}}{2}\left(\right.$ or $\left.\tanh \frac{\Phi_{i}}{2}\right)$. Since $a a_{c}=1$ one has

$$
\begin{gather*}
S^{2}\left(1+b_{1}^{2}\right)\left(1-b_{2}^{2}\right)\left(1-b_{3}^{2}\right)=1  \tag{31}\\
S=\frac{1}{\sqrt{\left(1 \pm b_{1}^{2}\right) \ldots\left(1 \pm b_{m}^{2}\right)}} \tag{32}
\end{gather*}
$$

which shows that $S$ is determined by the $b_{i}$. Writing

$$
\begin{equation*}
B=b_{1} B_{1}+b_{2} B_{2}+b_{3} B_{3} \tag{33}
\end{equation*}
$$

one can express $a$ as

$$
\begin{equation*}
a=S\left(1+B+\frac{B \wedge B}{2!S^{2}}+\ldots \frac{B \wedge B \wedge B \wedge \ldots(m \text { terms })}{m!S^{m}}\right) \tag{34}
\end{equation*}
$$

which shows that the bivector $B$ determines completely the rotation.
If the scalar is nil, for example if $\left(\Phi_{1}= \pm \pi, B_{1}^{2}=-1\right)$, then $a$ is proportional to $B_{1}$

$$
\begin{equation*}
a=B_{1} e^{\frac{\Phi_{2}}{2} B_{2}} e^{\frac{\Phi_{3}}{2} B_{3}} ; \tag{35}
\end{equation*}
$$

one then computes $B_{1}^{-1} a$ and comes back to the general expression to evaluate the remaining $b_{i}$ and $B_{i}$.

To determine the $b_{i}$ and $B_{i}$, one makes a change of variable $X_{i}=b_{i} B_{i}, x_{i}=$ $X_{i}^{2}= \pm b_{i}^{2}$ and considers the linear system of equations in $X_{i}[9]$

$$
\begin{align*}
P_{1}= & B=\sum_{i=1}^{m} X_{i}  \tag{36}\\
P_{2}= & (B \wedge B) \cdot B=2 \sum_{i, j=1}^{m} X_{i} x_{j}(i \neq j)  \tag{37}\\
P_{3}= & (B \wedge B \wedge B) \cdot(B \wedge B)=3!2!\sum_{i, j, k=1}^{m} X_{i} x_{j} x_{k}(i \neq j, j<k)  \tag{38}\\
& \ldots \ldots  \tag{39}\\
P_{m}= & (B \wedge B \wedge \ldots m \text { factors }) \cdot(B \wedge B \ldots(m-1) \text { factors })  \tag{40}\\
= & m!(m-1)!\sum_{i=1}^{m} x_{1} x_{2} \ldots x_{i-1} x_{i+1} \ldots x_{m} X_{i} . \tag{41}
\end{align*}
$$

The determinant $\Delta$ is the product

$$
\begin{equation*}
\Delta=\left\{m![(m-1)!]^{2}[(m-2)!]^{2} \ldots 1\right\} \prod_{i, j=1}^{m}\left(x_{i}-x_{j}\right) \quad(i \neq j, i<j) \tag{42}
\end{equation*}
$$

If $\Delta \neq 0$, one obtains the bivectors $X_{i}$ as a function of $P_{m}$ and $x_{i}$. To determine the $x_{i}$, one writes the equations

$$
\begin{align*}
S_{1}= & P_{1} \cdot P_{1}=\sum_{i=1}^{m} x_{i}  \tag{43}\\
S_{2}= & P_{2} \cdot P_{1}=2!\sum_{i, j=1}^{m} x_{i} x_{j}(i \neq j)  \tag{44}\\
S_{3}= & P_{3} \cdot P_{1}=(3!)^{2} \sum_{i, j, k=1}^{m} x_{i} x_{j} x_{k} \quad(i \neq j, j<k)  \tag{45}\\
& \quad \ldots .  \tag{46}\\
S_{m}= & P_{m} \cdot P_{1}=(m!)^{2}\left(x_{1} x_{2} \ldots x_{m}\right)
\end{align*}
$$

The solutions yield $x_{i}= \pm b_{i}^{2}$, thus one obtains $b_{i}$ and $B_{i}$

$$
\begin{equation*}
b_{i}=\sqrt{\left|x_{i}\right|}, B_{i}=\frac{X_{i}}{b_{i}} \tag{48}
\end{equation*}
$$

If $\Delta=0$, the equations (36-41) are not independent, the $B$ bivector can nevertheless be decomposed in $m$ mutually orthogonal simple planes but this decomposition is not unique.

## 4 Poincaré Group in $n$ Dimensions (via Dual Hyperquaternions)

Much of physics being covariant with respect to the $4 D$ Poincaré group, we provide here a hyperquaternion representation of the $n D$ Poincaré groups in terms of dual hyperquaternions. Thereby one comes back to a $(n+1) D$ rotation which one can be decomposed canonically. The procedure is illustrated by a $5 D$ case (for example a color image with 2 spatial and 3 color dimensions) which might be of interest in machine learning [10].

### 4.1 General Formalism

The Poincaré group of the pseudo-euclidean space associated with the Clifford algebra $C_{p, q}(n=p+q)$ is constituted by the isometries of the metric

$$
\begin{equation*}
d s^{2}=\left(d x_{1}^{2}+\ldots+d x_{p}^{2}\right)-\left(d x_{p+1}^{2}+\ldots+d x_{p+q}^{2}\right) . \tag{49}
\end{equation*}
$$

It includes the rotations $S O^{+}(p, q)$, translations and reflections (time or spacelike). The reflections having already been dealt with above, we shall focus on the rotations and translations.

Consider a hyperquaternion algebra $\mathbb{H} \otimes \mathbb{H} \ldots \otimes \mathbb{H}$ (or a subalgebra thereof) with $n+1$ generators $e_{1}, e_{2}, \ldots e_{n}, e_{n+1}$ and let $X$ be a dual vector such that

$$
\begin{equation*}
X=e_{n+1}+\varepsilon x \tag{50}
\end{equation*}
$$

where $x$ belongs to the vector space $V_{1}$ with $x=\sum_{i=1}^{n} e_{i} x_{i}\left(x_{i} \in \mathbb{R}\right)$ and $\varepsilon^{2}=0$ ( $\varepsilon$ commuting with $e_{i}$ ). An $n D$ hyperbolic rotation in $V_{1}$ leaves the last variable unchanged. Hence,

$$
\begin{equation*}
X^{\prime}=a X a_{c}=e_{n+1}+\varepsilon x^{\prime} \tag{51}
\end{equation*}
$$

with $x^{\prime}=a x a_{c}, x^{\prime} x_{c}^{\prime}=x x_{c}, a a_{c}=1$. A translation in $V_{1}$ can be expressed as

$$
\begin{equation*}
X^{\prime}=b X b_{c} \tag{52}
\end{equation*}
$$

with

$$
\begin{equation*}
b=e^{\varepsilon e_{n+1} \frac{t}{2}}=1+\varepsilon e_{n+1} \frac{t}{2},\left(t=\sum_{i=1}^{n} e_{i} t_{i}, t_{i} \in \mathbb{R}\right) \tag{53}
\end{equation*}
$$

and $b b_{c}=1$. Developing Eq. (52), one obtains, assuming $e_{n+1}^{2}=-1$

$$
\begin{align*}
X^{\prime} & =\left(1+\varepsilon e_{n+1} \frac{t}{2}\right)\left(e_{n+1}+\varepsilon x\right)\left(1-\varepsilon e_{n+1} \frac{t}{2}\right)  \tag{54}\\
& =e_{n+1}+\varepsilon x-\varepsilon e_{n+1} e_{n+1} \frac{t}{2}-\varepsilon e_{n+1} e_{n+1} \frac{t}{2}  \tag{55}\\
& =e_{n+1}+\varepsilon(x+t) \tag{56}
\end{align*}
$$

which is a translation on the variables $1 \ldots n$ (if $e_{n+1}^{2}=1$, one simply takes $\left.b=e^{\varepsilon \frac{t}{2} e_{n+1}}\right)$. A combination of an $n D$ rotation and translation gives with $f=a b$ (or $b a$ )

$$
\begin{equation*}
X^{\prime}=f X f_{c} \quad\left(f f_{c}=1, f \in C^{+}\right) \tag{57}
\end{equation*}
$$

which can be viewed as a a particular $(n+1) D$ rotation. One thus obtains a hyperquaternion representation of the Poincaré groups, distinct from the matrix one. A canonical decomposition leads to simple dual planes as will be illustrated in the following example.

### 4.2 Example: 5D Poincaré Group

As application consider a $5 D$-space (for example a $2 D$ color image) imbedded in the $6 D$ hyperquaternion algebra $\mathbb{H} \otimes \mathbb{H} \otimes \mathbb{H}$ having six generators (see Appendix)

$$
\begin{equation*}
e_{1}=k I, e_{2}=k J, e_{3}=k K l, e_{4}=k K m, e_{5}=k K n, e_{6}=j \tag{58}
\end{equation*}
$$

with the generic vector $X=e_{6}+\varepsilon x \quad\left(x=\sum_{i=1}^{5} e_{i} x_{i}\right)$. The transformation $X^{\prime}=f X f_{c}$ with

$$
\begin{align*}
f & =e^{\frac{\Phi_{2}}{2} J l} e^{\varepsilon i(2 I+K n)} e^{\frac{\Phi_{1}}{2} I(m+n)}  \tag{59}\\
& =(2+\sqrt{3} J l)[1+\varepsilon i(2 I+K n)]\left[\sqrt{3}+\sqrt{2} I\left(\frac{m}{\sqrt{2}}+\frac{n}{\sqrt{2}}\right)\right] \tag{60}
\end{align*}
$$

and $\tanh \frac{\Phi_{1}}{2}=\sqrt{\frac{2}{3}}\left(=b_{1}\right), \tanh \frac{\Phi_{2}}{2}=\frac{\sqrt{3}}{2}\left(=b_{2}\right)$ is a $5 D$-Poincaré transform. Applying the canonical decomposition presented above, one obtains

$$
\begin{equation*}
f=e^{\frac{\Phi_{2}}{2} B_{2}} e^{X_{3}} e^{\frac{\Phi_{1}}{2} B_{1}} \tag{61}
\end{equation*}
$$

with the same values of $\Phi_{1}, \Phi_{2}$ as above and the following simple commuting orthogonal dual planes $B_{1}, B_{2}, X_{3}$

$$
\begin{align*}
& B_{1}=\frac{1}{\sqrt{2}} I(m+n)+\varepsilon \frac{1}{\sqrt{2}}\left[\frac{\sqrt{3}}{2} K(m+n)-i J\right]  \tag{62}\\
& B_{2}=J l+2 \varepsilon i\left(\frac{2}{\sqrt{3}} I-K l\right)  \tag{63}\\
& X_{3}=\frac{\varepsilon}{2} i K(-m+n) . \tag{64}
\end{align*}
$$

with $\left(B_{1}\right)^{2}=\left(B_{2}\right)^{2}=1,\left(X_{3}\right)^{2}=0$.

## 5 Conclusion

The paper has given a hyperquaternion representation of pseudo-euclidean rotations and the Poincaré groups in $n$ dimensions, distinct from the matrix one. A canonical decomposition of these groups was introduced, as an extension of an euclidean formalism, within a hyperquaternion Clifford algebra framework and illustrated by a $5 D$ example. Potential geometric applications include in particular, moving reference frames and machine learning.

## Acknowledgements

This work was supported by the LABEX PRIMES (ANR-11-LABX-0063) and was performed within the framework of the LABEX CELYA (ANR-10-LABX0060) of Université de Lyon, within the program"Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

## A Multivector structure of $\mathbb{H} \otimes \mathbb{H} \otimes \mathbb{H}$

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & l=e_{4} e_{5} & m=e_{5} e_{3} & n=e_{3} e_{4} \\
I=e_{2} e_{3} e_{4} e_{5} & I l=e_{3} e_{2} & I m=e_{4} e_{2} & I n=e_{5} e_{2} \\
J=e_{3} e_{1} e_{4} e_{5} & J l=e_{1} e_{3} & J m=e_{1} e_{4} & J n=e_{1} e_{5} \\
K=e_{2} e_{1} & K l=e_{2} e_{1} e_{4} e_{5} & K m=e_{1} e_{2} e_{3} e_{5} & K n=e_{2} e_{1} e_{3} e_{4}
\end{array}\right]} \\
& +i\left[\begin{array}{llll}
1=e_{1} e_{2} e_{3} e_{4} e_{5} e_{6} & l=e_{2} e_{1} e_{3} e_{6} & m=e_{2} e_{1} e_{4} e_{6} & n=e_{2} e_{1} e_{5} e_{6} \\
I=e_{6} e_{1} & I l=e_{4} e_{1} e_{5} e_{6} & I m=e_{5} e_{1} e_{3} e_{6} & I n=e_{3} e_{1} e_{4} e_{6} \\
J=e_{6} e_{2} & J l=e_{4} e_{2} e_{5} e_{6} & J m=e_{5} e_{2} e_{3} e_{6} & J n=e_{3} e_{2} e_{4} e_{6} \\
K=e_{3} e_{4} e_{5} e_{6} & K l=e_{6} e_{3} & K m=e_{6} e_{4} & K n=e_{6} e_{5}
\end{array}\right] \\
& +j\left[\begin{array}{llll}
1=e_{6} & l=e_{4} e_{5} e_{6} & m=e_{6} e_{5} e_{3} & n=e_{3} e_{4} e_{6} \\
I=e_{2} e_{3} e_{4} e_{5} e_{6} & I l=e_{3} e_{2} e_{6} & I m=e_{6} e_{4} e_{2} & I n=e_{6} e_{5} e_{2} \\
J=e_{4} e_{3} e_{5} e_{6} e_{1} J l=e_{1} e_{3} e_{6} & J m=e_{1} e_{4} e_{6} & J n=e_{1} e_{5} e_{6} \\
K=e_{2} e_{1} e_{6} & K l=e_{2} e_{1} e_{4} e_{5} e_{6} K m=e_{1} e_{2} e_{3} e_{5} e_{6} & K n=e_{2} e_{1} e_{3} e_{4} e_{6}
\end{array}\right] \\
& +k\left[\begin{array}{llll}
1=e_{2} e_{1} e_{3} e_{4} e_{5} l=e_{1} e_{2} e_{3} & m=e_{1} e_{2} e_{4} & n=e_{1} e_{2} \\
I=e_{1} & I l=e_{1} e_{4} e_{5} & I m=e_{3} e_{1} e_{5} & I n=e_{1} e_{3} e_{4} \\
J=e_{2} & J l=e_{2} e_{4} e_{5} & J m=e_{3} e_{2} e_{5} & J n=e_{2} e_{3} e_{4} \\
K=e_{4} e_{3} e_{5} & K l=e_{3} & K m=e_{4} & K n=e_{5}
\end{array}\right]
\end{aligned}
$$

## References

1. Ungar, A.: Beyond Pseudo-Rotations in Pseudo-Euclidean Spaces. Academic Press, London (2018)
2. Ferreira, M., Sommen, F.: Complex Boosts: A Hermitian Clifford Algebra Approach. Advances in Applied Clifford Algebras, 23: 339-362 (2013)
3. Lounesto, P.: Clifford Algebras and Spinors. Cambridge University Press, Cambridge (2001)
4. Crumeyrolle, A.: Orthogonal and Symplectic Clifford Algebras: Spinor Structures. Kluwer Academic Publishers, Dordrecht (1990)
5. Perez-Gracia, A., Thomas, F.: On Cayley's Factorization of $4 D$ Rotations and Applications. Advances in Applied Clifford Algebras, 27:523-538 (2017)
6. Richard, A., Fuchs, L., Andres, E., Largeteau-Skapin, G.: Decomposition of nD-rotations: Classification, properties and algorithm. Graphical Models, Elsevier, 73 (6), pp. 346-353 (2011).
7. Girard, P.R., Clarysse, P., Pujol, R., A.,Goutte, R, Delachartre, P.: Hyperquaternions: A New Tool for Physics. Advances in Applied Clifford Algebras, 28:68 (2018)
8. Moore, C.L.E.: Hyperquaternions. Journal of Mathematics and Physics, vol. 1, pp. 63-77 (1922)
9. Moore, C.L.E.: Rotations in Hyperspace. Proceedings of the American Academy of Arts and Sciences, vol. 53, No. 8, pp. 651-694 (1918)
10. Xuanyu Zhu, Yi Xu, Hongteng Xu, Changjian Chen: Quaternion Convolutional Neural Networks. ECCV (2018)
11. Girard, P.R., Clarysse, P., Pujol, R., A., Wang, L, Delachartre, P.: Differential Geometry Revisited by Biquaternion Clifford Algebra. In J.-D. Boissonnat et al (Eds.): Curves and Surfaces. Springer (2015)
12. Girard, P.R.: Quaternions, Clifford Algebras and Relativistic Physics. Birkhäuser, Basel (2007)
13. Girard, P.R.: Algèbre de Clifford et Physique relativiste . PPUR, Lausanne (2004)
14. Girard, P.R.: Einstein's equations and Clifford algebra. Advances in Applied Clifford Algebras, vol. 9, 2, pp. 225-230 (1999)
15. Girard, P.R.: The quaternion group and modern physics. Eur. J. Phys., vol. 5, pp. 25-32 (1984)
16. Casanova, G.: L'algèbre vectorielle. PUF, Paris (1976)
17. Lipschitz, R.: Principes d'un calcul algébrique qui contient comme espèces particulières le calcul des quantités imaginaires et des quaternions. C.R. Acad. Sci. Paris, vol. 91, pp. 619-621, 660-664 (1880)
