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Abstract. Hyperquaternions being defined as a tensor product of quater-
nion algebras (or a subalgebra thereof), they constitute Clifford algebras
endowed with an associative exterior product providing an efficient math-
ematical formalism for differential geometry. The paper presents a hyper-
quaternion formulation of pseudo-euclidean rotations and the Poincaré
groups in n dimensions (via dual hyperquaternions). A canonical decom-
position of these groups is developed as an extension of an euclidean
formalism and illustrated by a 5D example. Potential applications in-
clude in particular, moving reference frames and machine learning.
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1 Introduction

Clifford algebras allow an excellent representation of pseudo-euclidean rotations
which are important symmetry groups of physics [1-4]. A decomposition of these
groups into orthogonal, commuting planar rotations is called a canonical decom-
position. Various canonical decompositions have been developed which deal with
either specific rotations or dimensions and are often expressed in terms of matri-
ces [5, 6]. In a recent paper, we have introduced a hyperquaternion formulation of
Clifford algebras and applied them to the unitary and unitary symplectic groups
[7]. Here, we consider pseudo-euclidean rotations and the Poincaré groups in
n dimensions (via dual hyperquaternions). A canonical decomposition of these
groups is developed within that framework as an extension of an euclidean for-
malism introduced by Moore [8,9]. After a short presentation of hyperquater-
nions and multivectors, we derive the pseudo-euclidean rotations and the canon-
ical decomposition. Then we go on to the Poincaré groups and a 5D example.
Potential applications are moving reference frames and machine learning [10]



2 P. Girard et al.

Table 1. Biquaternion Multivector Structure

1 i:€362 j = €1€3 k:e2€1
I =eiezes|li=¢e1 [Ij=e2 |Ik=e3

2 Background: Quaternions, Hyperquaternions and
Multivectors

In this section, we briefly introduce quaternions, hyperquaternions and multivec-
tors [7,11-15]. The quaternion algebra H which contains R and C as particular
cases is constituted by quaternions

a = a1+ azl + azj + ask (a; € R) (1)
where i, 7, k multiply according to
i? =42 =k? =ijk = —1,ij = —ji = k, etc.. (2)
The product of two quaternions a, b is given by

ab = (a1b1 — agby — asbs — a4b4) + (a1b2 + asby + agby — U,4b3)i (3)
+ (a1b3 + asby + agby — a2b4)j + (a1b4 + aqby 4+ asbs — a3b2) k. (4)

The conjugate of a quaternion is a. = a1 — agi — azj — ask with
aa. = ai + a3 + a3 + a3, (ab), = b.a. (5)

The hyperquaternion algebra (over R) is defined as the tensor product of quater-
nion algebras (or a subalgebra thereof). Examples of hyperquaternion algebras
are the quaternions H, tetraquaternions H ® H and so on H ® H®...QH; subalge-
bras are the complex numbers C, biquaternions H ® C, Dirac algebra HRH & C,
etce..

Calling (4,7, k) the first quaternionic system, (I, J, K) the second one and
(I,m,n) the third one, all systems commuting with each other, one has

i®i®i=ill, i®j®k=1iln, etc. (6)

which uniquely defines the multiplication.

Hyperquaternions having n generators e; such that e;e; + eje; = 0 (2 # j),
e? = +1 constitute Clifford algebras C,,. The choice of the generators entails a
multivector structure as shown, in the case of biquaternions, in Table 1. The 2"
elements of the algebra are composed of scalars, vectors e;, bivectors e;e;, trivec-
tors e;ejep ete. yielding respectively the multivector spaces Vg, Vi, Vo, Vs, ...V,
C™ is the subalgebra constituted by products of an even number of e;, C~ is the
rest of the algebra. The multivector structure allows to define basic operations
like conjugation, duality and the interior and exterior products.
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Considering a general element A of the algebra, the conjugate A, is obtained
by replacing the e; by their opposite —e; and reversing the order of the elements

(Ac). = A,(AB), = (Bc) (Ac) - (7)
The dual of A is A* = igA where ig = e1 A ea... A ey, (to be defined below) and

the commutator of two hyperquaternions is

[A,B] = = (AB — BA). (8)

1
2
The interior and exterior products of two vectors a,b are obtained as follows.
From the identity

2ab = A" [(ab + ba) + (ab — ba)] 9)

where A = £1 is a given coefficient (allowing to eventually change the sign of
the metric), one defines

2a.b = \7" (ab +ba),2a Ab= A" (ab — ba) (10)

which are respectively a scalar and a bivector. A multivector A, = a; AazA...Aayp
(2 < p < n) where a, are vectors, is then defined by recurrence

2a.4, = A7 [ad, — (—1) Aya] € V,_, (11)
2a A\ Ap =\"P [aAQ + (_1)1) Aga] € Vot (12)

By definition, we take
Apa=(—1)""aA, Ay Aa=(=1)Pan A, (13)

An important property of the exterior product is its associativity.
Interior and exterior products between multivectors are defined by

Ap ABg=a1 A(az A... Nap A\ By) (14)
Ap.By= (a1 N...Nap_1).(ap.Byg), (p<gq) (15)

with A,.B, = (—1)yPlath) B,.A, [16]. In particular, we have the following useful
formulas where Bi are bivectors and V,[A] the multivector part V,, of A

BBy = By.By + By A By + [By, By (16)

Bi A By =V, [B1By) (17)

By A By A By = Vi [B1 (B2 A Bs)] (18)

Bi.(B2 A B3) = V3 [By (B2 A\ B3)] (19)

(B1 A By).(Bs A By A Bs) = V3 [(By A By) (Bs A By A Bs)]. (20)

Hyperquaternions yield all real, complex and quaternionic square matrices
as well as the transposition, adjunction and transpose quaternion conjugate via
a hyperconjugation defined as H.QH,.®...®H, as indicated in Table 2.
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Table 2. Hyperquaternions and matrices

H®H ~ m(4,R) |H.®H.~ [m(4,R)])"
H®H® C ~ m(4,C) |[H.QH,QC.~ [m(4,C)]" (21)
HeoH®H~ m(4, ) H.eH.QH.~ [m(4,H)].

3 Pseudo-Orthogonal Rotations

Here, we derive a hyperquaternion formulation of pseudo-euclidean rotations and
develop a canonical decomposition. Historically, the formula of n dimensional
euclidean rotations ' = axa™' (a € C,7) was given by Lipschitz [17] and Moore
developed a canonical decomposition thereof [8,9]. We introduce, as an extension
of Moore’s method, within the hyperquaternion Clifford algebra framework, a
canonical decomposition of pseudo-euclidean rotations and the Poincaré groups.
After a brief review of the basic definitions and the Cartan theorem, we develop
the canonical decomposition.

3.1 Definitions and Theorem

Let Cp 4 be a hyperquaternion algebra having n = p + ¢ generators e; and the
quadratic form

TY =T1Y1 + oo + TpYp — (:ﬂp+1yp+1~-~ - $p+qyp+q) (22)
= A" (zy + yx) /2 (23)

where x,y are vectors (x = x;¢;). A vector x is timelike if z.z > 0, spacelike if
z.x < 0 and isotropic if z.z = 0.

An orthogonal symmetry with respect to a plane going through the origin
and perpendicular to a unit vector a (a2 = :I:l) is given by [12,13]

' = taza (24)
with 2’2’ = (+axa) (faza) = zx.

Definition 1. The pseudo-orthogonal group O(p,q) is the group of linear oper-
ators which leave invariant the form x - y.

Theorem 1. Every rotation of O(p, q) is the product of an even number 2m < n
of symmetries.

Definition 2. The special orthogonal group SO (p,q) is constituted by rota-
tions which preserve the orientation of the space of positive norm vectors and
the space of megative norm vectors.
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A rotation of SO (p,q) can thus be expressed as
¥’ =azxa. (aa.=1) (25)

with @ = a1as...a2m, € CT, where a; are unit vectors (with an even number of
timelike and spacelike vectors). Developing the product (with A = 1)

a;a; = a;.a; +a; \a; (26)

one sees that it contains a simple plane B = a; A a; such that B> = B.B+
B A B is a scalar since B A B = 0. Hence, a rotation involves at most m < n/2
simple planes. A canonical decomposition of rotations is obtained by choosing
these simple planes to be orthogonal.

3.2 Canonical Decomposition

A rotation of SOT(p,q) can be decomposed as
a=eTBieF B T4 B (aa. =1) (27)

where B; are m simple orthogonal commuting planes such that B? = +1 together

for i #£ j
BZBJ = 0, BiBJ = BjBi,BiBj = 31 A Bj; (28)

@, are the angles of rotation within the planes B;. According to whether B = —1
or B? = 1, one has respectively

i e D 2. ¢ P
eFBi = cos —& + sin —Bi,eqz Bi — cosh — + sinh — B;. (29)
2 2 2 2
The rotation can be developed as
with b; = tan £t (or tanh 2¢). Since aa. =1 one has
S (148) (L= 1) (1-13) =1 G1)

S= ! (32)

VA £ . (1£02)
which shows that S is determined by the b;. Writing

B = b By + byBs + b3 Bs (33)

one can express a as

BAB BABABA...(m terms)
a:S(1+B+ 9152 + .. g )
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which shows that the bivector B determines completely the rotation.
If the scalar is nil, for example if (¢, = 47, BZ = —1), then a is proportional
to B1

22 23
a = Bye? B2e= Bs, (35)

one then computes B 1a and comes back to the general expression to evaluate
the remaining b; and B;.

To determine the b; and B;, one makes a change of variable X; = b; B;, x; =
X? = £b? and considers the linear system of equations in X; [9]

:B:zm:Xi (36)

P, = (BAB). —22)(% i # ) (37)

i,j=1

Py =(BABAB).(BAB)=32! i Xz ap (i #£4,j<k)  (38)

i,j.k=1

...... (39)
P,, = (B A B A ..m factors) . (B A B...(m — 1) factors) (40)

m
=m! (m — 1)' Z $1$2...xi_1$i+1...$mXi. (41)

i=1

The determinant A is the product
m
2 2 S
A= {m! [(m — D17 [(m —2)!] 1} H (x; —xj) (P#7,1<7). (42)
ij=1

If A £ 0, one obtains the bivectors X; as a function of P,, and z;. To determine
the z;, one writes the equations

= P.P = le (43)

Sy = Py.P, = 2! Z ziz; (i # j) (44)
i,j=1
Sy =P3.Pr=(3)" > wwjm (i #5,j<k) (45)
i,j,k=1
...... (46)
S = P PL = (m!)” (2129...2,,) - (47)

The solutions yield ; = +b?, thus one obtains b; and B;

X,
bi=v|33i|,Bi=bfl- (48)
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If A =0, the equations (36-41) are not independent, the B bivector can never-
theless be decomposed in m mutually orthogonal simple planes but this decom-
position is not unique.

4 Poincaré Group in n Dimensions (via Dual
Hyperquaternions)

Much of physics being covariant with respect to the 4D Poincaré group, we
provide here a hyperquaternion representation of the nD Poincaré groups in
terms of dual hyperquaternions. Thereby one comes back to a (n+1)D rotation
which one can be decomposed canonically. The procedure is illustrated by a 5D
case (for example a color image with 2 spatial and 3 color dimensions) which
might be of interest in machine learning [10].

4.1 General Formalism

The Poincaré group of the pseudo-euclidean space associated with the Clifford
algebra Cp 4 (n = p+ ¢) is constituted by the isometries of the metric
ds* = (daf + ...+ dxf)) - (dwiH +.t+dal,,). (49)

p+q

It includes the rotations SO¥ (p, q), translations and reflections (time or space-
like). The reflections having already been dealt with above, we shall focus on
the rotations and translations.

Consider a hyperquaternion algebra H ® H...QH (or a subalgebra thereof)
with n 4+ 1 generators ey, ea, ...en,en+1 and let X be a dual vector such that

X =eny1tex (50)

where x belongs to the vector space Vi with x = 2?21 e;z; (r; € R) and €2 =0
(¢ commuting with e;). An nD hyperbolic rotation in V; leaves the last variable
unchanged. Hence,

X' =aXa.= e +ex’ (51)
with 2’ = axa., 2’2, = xx., a0, = 1. A translation in V] can be expressed as
X' = bXb, (52)
with
; t =
— p€€En 5 — — — . .
b=¢ +12—1—|—6en+12,(t—;eztl,tleR) (53)
and bb. = 1. Developing Eq. (52), one obtains, assuming 2, ; = —1
, t t
X' =1+ €€n+1§ (€n+1 + E.T) 1-— E€n+1§ (54)
t
=ént1 tET — €6n+16n+1§ - 5€n+16n+1§ (55)

=ept1 +e(x+1) (56)
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which is a translation on the variables 1..n (if €2, ; = 1, one simply takes
b= 6556"“). A combination of an nD rotation and translation gives with f = ab
(or ba)

X'=fXfe (ffe=1, feC) (57)
which can be viewed as a a particular (n + 1) D rotation. One thus obtains a
hyperquaternion representation of the Poincaré groups, distinct from the matrix
one. A canonical decomposition leads to simple dual planes as will be illustrated
in the following example.

4.2 Example: 5D Poincaré Group

As application consider a 5D-space (for example a 2D color image) imbedded in
the 6D hyperquaternion algebra H®H®H having six generators (see Appendix)

er =kl,eo =kJ es=kKl,e, = kKm,e5 =kKn,eq = j (58)
with the generic vector X = eg +ex (z = Ele e;x;). The transformation
X' = fX [, with

f= G%Jzeei(zlJrKn)e%I(ern) (59)

= (2 + x/§Jl) [1+4¢i (2] + Kn)] [\/§+ V2r ( (60)

m N n )]
V2 V2
and tanhZr = \/g(: b), tanh%2 = ? (= by) is a 5D-Poincaré transform.
Applying the canonical decomposition presented above, one obtains

P D
f=erBeNsez B (61)

with the same values of @1,®5 as above and the following simple commuting
orthogonal dual planes Bi, Bs, X3

1 1 |V3 :
By = ﬁl(m—%n)—&-eﬁ [QK(m+n) —zJ] (62)
By = JI + 2¢i <5§I - Kl) (63)
X3 = %iK (—m+n). (64)

with (B;)? = (By)® =1, (X3)* = 0.

5 Conclusion

The paper has given a hyperquaternion representation of pseudo-euclidean ro-
tations and the Poincaré groups in n dimensions, distinct from the matrix one.
A canonical decomposition of these groups was introduced, as an extension of
an euclidean formalism, within a hyperquaternion Clifford algebra framework
and illustrated by a 5D example. Potential geometric applications include in
particular, moving reference frames and machine learning.
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A Multivector structure of HQ® H ® H

1 [ = eyes m = eses n = ezey
I = egezeqes 11 =ezeq I m=eyes I n=ese
J = ezejeqes J Il =ejes J m=eiey J n=eie;
K = eseq Kl = esereqes Km = ejeqezes Kn = eseqeseq
1= €1€2€3€4€5€¢4 = €2€1€3€¢4 m = eg€e1€4€4 n = eg€e1€e5€4
i I = egey Il =-eqe1e5e I m = eseje3eq I N = ezereqeq
J = eges J I = eqeqeseqg J m = eseqeseg J 1= eseseqeq
K = e3eqeseq Kl = eges Km = egey Kn = eges
[1=¢g | = eqeseq m = egeses n = e3€4€q
.| I = eseszeqeseq I 1 = ezeqeg I m = egeqen I n=egeses
+J J = eqeseseger J | = ereseq J m = ejeqeq J n=-eleseq
| K = ezeieq Kl = egeregeseg Km = ejegeseseg Kn = egejeseqes
_1 — €92€1€3€4€5 = €1€2€3 m = ejegey n = ejeqe;s
I=e Il=-ejeqes I m =ezere5 I n=ejesey
+k
J=ey J I = egseqes J m = egeqes J n = egesey
| K = eqezes Kl =e3 Km=¢ey Kn =ej
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