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Abstract A hyperquaternion formulation of Clifford algebras in n dimensions
is presented. The hyperquaternion algebra is defined as a tensor product of
quaternion algebras H (or a subalgebra thereof). An advantage of this for-
mulation is that the hyperquaternion product is defined independently of the
choice of the generators. The paper gives an explicit expression of the genera-
tors and develops a generalized multivector calculus. Due to the isomorphism
H ⊗ H � m(4,R), hyperquaternions yield all real, complex and quaternion
square matrices. A hyperconjugation is introduced which generalizes the con-
cepts of transposition, adjunction and transpose quaternion conjugate. As ap-
plications, simple expressions of the unitary and unitary symplectic groups
are obtained. Finally, the hyperquaternions are compared, in the context of
physical applications, to another algebraic structure based on octonions which
has been proposed recently.
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1 Introduction

Clifford algebras have become a major mathematical tool in physics and have
been widely developed in recent years [1–13]. Clifford algebras allow the defi-
nition of spinors in n dimensions and give a good representation of the pseudo-
orthogonal groups [14]. Well-known examples of Clifford algebras are the Pauli
and Dirac algebras. Though these algebras are generally expressed in terms of
complex matrices, another representation is possible.

This paper presents a hyperquaternion formulation of Clifford algebras.
Defining hyperquaternions as a tensor product of quaternion algebras (or a
subalgebra thereof), it follows that hyperquaternions are Clifford algebras due
to a theorem by Clifford. An advantage of this formulation is that the hyper-
quaternion product is defined independently of the choice of the generators.
Recently, we have applied such algebras to 3D classical and 4D relativistic
physics obtaining, in particular, simple expressions of the rotation groups [10,
11]. Here, we propose to go farther and to apply hyperquaternions to nD

physics. We give an explicit expression of the generators, develop a general-
ized multivector calculus and introduce a hyperconjugation yielding simple
expressions of the unitary and unitary symplectic groups. Finally, we relate
this new tool to physics and to another octonionic approach.

2 Background: quaternions and Clifford algebras

Quaternions [11] denoted H constitute a set of four real numbers

a = a0 + a1i+ a2j + a3k (1)

where i, j, k multiply according to

i2 = j2 = k2 = ijk = −1 (2)

ij = −ji = k (3)

jk = −kj = i (4)

ki = −ik = j. (5)

Two quaternions multiply according to the rule

ab = (a0b0 − a1b1 − a2b2 − a3b3)

+(a0b1 + a1b0 + a2b3 − a3b2)i

+(a0b2 + a2b0 + a3b1 − a1b3)j

+(a0b3 + a3b0 + a1b2 − a2b1)k. (6)

The conjugate of a quaternion is defined by

ac = a0 − a1i− a2j − a3k. (7)

with
aac = a20 + a21 + a22 + a23 (8)
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(ab)c = bcac. (9)

Clifford algebras are defined as follows and satisfy the Clifford theorem.

Definition 1 Clifford’s algebra Cn is defined as an algebra (over R) composed
of n generators e1, e2, ..., en multiplying according to the rule eiej = −ejei (i �=
j) and such that e2i = ±1. The algebra Cn contains 2n elements constituted
by the n generators, the various products eiej , eiejek, ... and the unit element
1.

Definition 2 The even subalgebra C+
n is generated by the products of an

even number of generators: eiej , eiejekem, etc. (i �= j �= k �= m). The rest of
the algebra contains the products of an odd number of terms and is called the
odd part C−n .

Examples of Clifford algebras (over R) are

– Complex numbers C
(
e1 = i, e21 = −1

)
.

– Quaternions H
(
e1 = j, e2 = k, e2i = −1

)
.

– Biquaternions C⊗H � H⊗C
(
e1 = iI, e2 = iJ, e3 = iK, e2i = 1

)
which are

isomorphic to the Pauli algebra.
– Tetraquaternions H⊗H(

e0 = j, e1 = kI, e2 = kJ, e3 = kK, e20 = −1, e21 = e22 = e23 = 1
)
.

– Dirac algebra H⊗H⊗ C

The small i, j, k represent the first quaternionic system (i = i⊗1, etc.) and
the capital I, J,K the second one (I = 1⊗ i, etc.) , both systems commuting
with each other.

Clifford’s theorem relates all Clifford algebras to tensor products of quater-
nion algebras (or a subalgebra thereof).

Theorem 1 If n = 2m (m : integer), the Clifford algebra C2m is the tensor
product of m quaternion algebras. If n = 2m− 1, the Clifford algebra C2m−1

is the tensor product of m−1 quaternion algebras and the algebra (1, ω) where
ω is the product of the 2m generators (ω = e1e2...e2m) of the algebra C2m.

Proof The above examples prove the theorem up to n = 4. For any n, one
proceeds by recurrence [15, p. 378]. Suppose the theorem is true for C2(n−1),

one adds to C2(n−1) the quantities

p = e1e2...e2(n−1)e2n−1, q = e1e2...e2(n−1)e2n (10)

which anticommute among themselves and commute with the elements of
C2(n−1); thus they form a quaternionic system commuting with C2(n−1). The
basis of C2n is obtained by the various products of the elements of C2(n−1)

with p, q which proves the theorem. ��
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3 Hyperquaternion formalism

In this section, we define the hyperquaternions, the hyperquaternion product
and give an explicit expression of the generators in n dimensions. Then, we
present the basic concepts of a generalized multivector calculus.

3.1 Products

We shall define the hyperquaternions as a tensor product of quaternion alge-
bras (or a subalgebra thereof). The term hyperquaternions was used by Moore
to designate Lipschitz’s algebras, isomorphic to Clifford algebras [16]. The hy-
perquaternion product is simply the product in a tensor product of quaternion
algebras.

For example, a general element Q of H ⊗ H i.e. a tetraquaternion, can be
viewed as a quaternion having quaternions as coefficients

Q = q0 + q1i+ q2j + q3k = (q0; q1, q2, q3), qi ∈ H. (11)

The product of two tetraquaternions Q,P is defined by

QP =

(
q0p0 − q1p1 − q2p2 − q3p3; q0p1 + q1p0 + q2p3 − q3p2,

q0p2 + q2p0 + q3p1 − q1p3, q0p3 + q3p0 + q1p2 − q2p1

)
. (12)

Similarly, a general element of H⊗H⊗H is a quaternion having tetraquater-
nions as coefficients

R = r0 + r1i+ r2j + r3k = (r0; r1, r2, r3), ri ∈ H⊗H (13)

leading to an immediately operational product.
The product in the even subalgebras such as H ⊗ C, H ⊗ H ⊗ C is de-

fined similarly. It is to be noticed that the hyperquaternion product is defined
independently of any specific choice of the generators of the Clifford algebra.

3.2 Generators

The 2n generators eα (1 ≤ α ≤ 2n) of C2n = H ⊗ H... ⊗ H (n times) can be
chosen in various ways. We shall adopt the choice

e1 = j ⊗ 1⊗ ...⊗ 1 (n terms) (14)

e2 = k ⊗ i⊗ 1...⊗ 1 (15)

e3 = k ⊗ j ⊗ 1...⊗ 1 (16)

...

e2β = k ⊗ ...⊗ k ⊗ i⊗ 1...⊗ 1 (17)

e2β+1 = k ⊗ ...⊗ k ⊗ j ⊗ 1...⊗ 1 (18)

...

e2n = k ⊗ k...⊗ k (19)



Hyperquaternions: a New Tool for Physics 5

Table 1 Generators and signature of hyperquaternions

Algebra Cp,q Generators
C C0,1 i

H C0,2 j, k

C⊗ H C3,0 iI, iJ, iK

H⊗ H C3,1 j, kI, kJ, kK

C⊗ H⊗ H C2,3 iI, iJ, IKl, iKm, iKn

H⊗ H⊗ H C2,4 j, kI, kJ, kKl, kKm, kKn

C⊗ H⊗ H⊗ H C5,2 (iI, iJ, iKl, iKm, iKnL,

iKnM, iKnN)
H⊗ H⊗ H⊗ H C5,3 (j, kI, kJ, kKl, kKm,

kKnL,kKnM,kKnN)

where i, j stand at the (β + 1)th place from the left with 0 < β < n−1. These
generators anticommute among themselves and square to ±1.

As to the generators of the algebra C2n−1 which is the even subalgebra of
C2n , they can be defined as

f1 = e1e2, f2 = e1e3, ...f2n−1 = e1e2n. (20)

Adopting the notation Cp,q (p+ q = n) where p is the number of genera-
tors squaring to +1 and q the number of those squaring to −1, the generators
and signature of a few hyperquaternions are given in Table 1. The small i, j, k
stand for the first quaternionic system, the capital I, J,K for the second one,
l,m, n for the third one (l = 1 ⊗ 1 ⊗ i ⊗ 1, etc.) and the capital L,M,N

for the fourth one (L = 1⊗ 1⊗ 1⊗ i, etc.) ; all distinct quaternionic systems
commuting with each other. Though hyperquaternions have a definite signa-
ture, another signature might be obtained by complexifying the generators.
Hence, hyperquaternions yield all Clifford algebras. The explicit expression of
the generators in the general case constitutes a direct second proof of Clifford’s
theorem.

3.3 Generalized multivector calculus

Once the generators have been chosen, the hyperquaternion algebra Cn is
uniquely structured into multivectors. The 2n elements of the algebra are
constituted by scalars (s ∈ V0), vectors (ei ∈ V1), bivectors (eiej ∈ V2, i �= j),
trivectors (eiejek ∈ V3, i �= j �= k), etc. and a pseudo-scalar (e1e2...en ∈ Vn)
where Vi are the multivector spaces. As an example, the algebra C4 � H⊗H

has the multivector structure indicated in Table 2.
The conjugate Ac of a general element A is defined as an antiinvolution

obtained by replacing the ei by their opposite −ei and reversing the order of
the elements eiejek → ekejei, etc.. Hence,

(Ac)c = A, (AB)c = (Bc) (Ac) . (21)
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Table 2 Multivector structure of H⊗ H

1 I = e3e2 J = e1e3 K = e2e1
i = e0e1e2e3 iI = e0e1 iJ = e0e2 iK = e0e3
j = e0 jI = e0e3e2 jJ = e0e1e3 jK = e0e2e1
k = e1e2e3 kI = e1 kJ = e2 kK = e3

The dual of A (denoted A∗) is

A∗ = iA (22)

with i = e1 ∧ e2 ∧ ... ∧ en (the exterior product being defined below) and the
commutator of two hyperquaternions is

[A,B] =
1

2
(AB −BA) . (23)

The generalized interior and exterior products of two vectors a (= Σn
i=1aiei),

b, respectively denoted by a.b and a ∧ b can be defined, up to a sign, by the
identity [15, p. 362]

ab =
λ

2λ
(ab + ba) +

μ

2μ
(ab − ba) (24)

= λa.b+ μa ∧ b (25)

where λ, μ are constant coefficients equal to ±1. Adopting the choice λ = μ =
±1 and postulating the relations a.b = b.a, a ∧ b = −b ∧ a, one finds

a.b =
1

2λ
(ab + ba) ∈ V0, a ∧ b =

1

2λ
(ab− ba) ∈ V2. (26)

The introduction of the coefficient λ allows to eventually change the sign of
the metric. A multivector Ap = v1 ∧ v2 ∧ ... ∧ vp (2 ≤ p ≤ n) where vi are
vectors, is then defined by recurrence [17]

a.Ap =
1

2λp
[aAp − (−1)pApa] ∈ Vp−1 (27)

a ∧ Ap =
1

2λp
[aAp + (−1)pApa] ∈ Vp+1. (28)

By definition, one adopts

Ap.a = (−1)
p−1

a.Ap (29)

Ap ∧ a = (−1)p a ∧Ap. (30)

A major property of the exterior product is its associativity.
The products between multivectors Ap and Bq (p ≤ q) are then defined by

Ap · Bq ≡ (v1 ∧ v2 ∧ · · · ∧ vp−1) · (vp · Bq) (31)

Ap ∧Bq ≡ v1 ∧ (v2 ∧ · · · ∧ vp ∧Bq) (32)

with
Ap · Bq = (−1)p(q+1)Bq ·Ap. (33)



Hyperquaternions: a New Tool for Physics 7

4 Hyperquaternions, matrices and hyperconjugation

In this section we relate hyperquaternions to real, complex and quaternion
matrices. The concept of hyperconjugation is introduced which generalizes
the concepts of transposition, adjunction and transpose quaternion conjugate.

To establish the connection of hyperquaternions with matrices, consider
the linearly independent matrices

mi⊗1 =

⎡
⎢⎢⎣
0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎤
⎥⎥⎦ ,mj⊗1 =

⎡
⎢⎢⎣
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ ,mk⊗1 =

⎡
⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎤
⎥⎥⎦

m1⊗i =

⎡
⎢⎢⎣
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦ ,m1⊗j =

⎡
⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎤
⎥⎥⎦ ,m1⊗k =

⎡
⎢⎢⎣
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎤
⎥⎥⎦ .

These matrices square to −1, anticommute on the same line and commute
with the matrices of the other line, hence, they constitute distinct quaternionic
systems. The products of these matrices generate m(4,R), and thus we get the
isomorphisms

H ⊗H � m(4,R) (34)

[H⊗H]⊗ C � m(4,C) (35)

[H⊗H]⊗H � m(4,H) (36)

indicating that hyperquaternions yield all real matrices as well as the complex
and quaternionic ones (see Appendix A).

Furthermore, one can notice that a transposition of the above antisymmet-
ric matrices corresponds to a quaternionic conjugation. This allows to define
a hyperconjugation as

AH = Hc ⊗Hc ⊗Hc ⊗ ...⊗Hc (37)

whereAH denotes the hyperconjugate of a general element A of the algebraH⊗
H⊗H⊗ ...⊗H and c indicates a quaternion conjugation. The hyperconjugation
yields respectively the matrix transposition

Hc ⊗Hc � [m(4,R)]
t
, (38)

the adjunction
Hc ⊗Hc ⊗ Cc � [m(4,C)]

†
, (39)

and the transpose quaternion conjugate

Hc ⊗Hc ⊗Hc � [m(4,H)]
t

c . (40)

These properties will allow us to obtain simple hyperquaternion expressions
of the unitary and unitary symplectic groups as we shall see below.
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5 Unitary and unitary symplectic groups

As application of the hyperconjugation concept, we consider the unitary and
unitary symplectic groups. The importance of the unitary groups is well known.
The unitary symplectic group is related to the symplectic groups which are
relevant in Quantum Mechanics [6].

5.1 Unitary and special unitary groups SU(n)

To define the unitary group U(n), consider the algebra A

A = H⊗H⊗ ...H {2p terms} ⊗ C � m(4p,C) (41)

where p is an integer. Since, as we have seen above, the hyperconjugation
corresponds to the adjunction (transpose, complex conjugate), the unitary
group U(n) with n = 4p, can be defined as the elements U of A such that

UH = U−1. (42)

The special unitary group SU(n) corresponds to elements U such that detU =
1 and has n2 − 1 generators gi with

U = egiθ. (43)

As a specific example, take SU(4) with p = 1 and the algebra [H⊗H]⊗ C �
m(4,C). The 15 generators gi of SU(4) can be read off directly from the basis
of H⊗H of Table 2, with

gi ∈

{
i, j, k, I, J,K, i′iI, i′iJ, i′iK,

i′jI, i′jJ, i′jK, i′kI, i′kJ, i′kK

}
(44)

where i′ (= l) is the ordinary complex imaginary and

eIθ = cos θ + I sin θ (45)

ei
′iIθ = cos θ + i′iI sin θ (46)(

eIθ
)H

= e−Iθ =
(
eIθ

)−1
etc.. (47)

If the elements gi are represented by matrices ĝi, one notices that the latter
are traceless hence,

det Û = det eĝiθ = e(traceĝi)θ = 1. (48)

Thus the elements U = egiθ constitute a concise hyperquaternionic expression
of the group SU(4). As subgroups, one has SU(2) and SU(3) (see Appendix
B).
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5.2 Unitary symplectic groups USp(n)

To define the unitary symplectic group USp(n), one proceeds similarly with
the algebra A

A = H⊗H⊗ ...H {2p terms} ⊗H � m(4p,H) (49)

where p is an integer. The hyperconjugation corresponding to the transpose,
quaternion conjugate, the unitary symplectic group USp(n) with n = 4p, can
be defined as the elements U of A such that

UH = U−1. (50)

The group USp(n) has n(2n+ 1) generators gi with

U = egiθ (51)

and satisfies the property

USp(n) = U(2n) ∩ Sp(2n,C) (52)

where Sp(2n,C) is the symplectic group [18, p. 444].
As a concrete example, consider USp(4) with the algebra A = [H⊗H] ⊗

H � m(4,H). The 36 generators gi can be read off directly from the basis of
H⊗H of Table 2

gi ∈

{
i′, j′, k′, i, j, k, I, J,K, (i′, j′, k′)iI, () iJ, () iK,

() jI, () jJ, () jK, () kI, () kJ, () kK

}
(53)

where the parentheses stand for (i′, j′, k′) with i′(= l), j′(= m), k′(= n) and

ej
′iIθ = cos θ + j′iI sin θ (54)(

ej
′iIθ

)H

= e−j′iIθ =
(
ej

′iIθ
)−1

, etc.. (55)

As subgroups, one has USp(1), USp(2) and USp(3) (see Appendix C).

6 Relations of hyperquaternions and physics

The relations of hyperquaternions and physics are summarized in Table 3
which shows the relevance of Clifford algebras in physics. Complex numbers,
quaternions and biquaternions give an excellent description of respectively 1D,

2D and 3D classical physics [10]. The algebra H⊗H yields the special theory of
relativity, classical electromagnetism and the general theory of relativity [11].
Dirac’s algebra, isomorphic to the algebra H ⊗ H ⊗ C, entails the relativistic
quantum mechanics. Since the above algebras already yield much of physics,
further theoretical progress seems likely to be obtained only by raising the
dimension of the Clifford algebra. Hence, one might reasonably expect new
theoretical results to come out of the algebra H ⊗ H ⊗ H and the associated
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Table 3 Hyperquaternion physics (STR: special theory of relativity, GTR: general theory
of relativity, QM: quantum mechanics)

Algebra Cp,q Symmetry Physics
group

C 1D physics
H C0,2 SO(2) 2D physics
H⊗ C � m(2,C) C3,0 SO(3) 3D physics
H⊗H � m(4,R) C3,1 SO(1, 3) STR, GTR
[H⊗ H]⊗ C � m(4,C) C2,3 SU(4) relativistic QM
[H⊗ H]⊗H � m(4,H) C2,4 USp(4) quaternionic QM

� U(8) ∩ Sp(8,C) embedding of GTR
[H⊗ H]⊗ [H⊗ C] C5,2 SU(8)
� m(8,C) ⇒ SU(5) standard model

group USp(4). If one goes over to the algebra H ⊗ H ⊗ H ⊗ C, one obtains
the group SU(8) and SU(5) as a subgroup which accounts for the standard
model.

Other algebraic structures have been proposed recently. One of them uses
a tensor product of division algebras R ⊗ C ⊗ H ⊗ O where O represents the
octonion algebra [8]. Though this algebra is neither a Clifford algebra nor
associative, it seems to give good results concerning the standard model. Fur-
thermore, it shares with the hyperquaternion approach the idea that physical
reality might be an image of an algebraic structure. Do we live in an octonionic
or hyperquaternionic world? The answer can only come out of the convergence
of theory with experiment.

7 Conclusion

The paper has presented a hyperquaternion calculus which yields all Clifford
algebras as well as the real, complex and quaternion matrices. A hypercon-
jugation has been introduced which generalizes the concepts of transposition,
adjunction and transpose quaternion conjugate. As applications, simple ex-
pressions of the unitary and unitary symplectic groups have been obtained.
Finally, the paper has related hyperquaternions to physics and shown that hy-
perquaternions constitute a new, efficient, unifying tool for many applications
of physics.
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within the program“Investissements d’Avenir”(ANR-11-IDEX-0007) operated by the French
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A Isomorphism H⊗ H � m(4,R)

The well-known isomorphism of H ⊗ H � m(4,R) can be demonstrated in various ways
leading to different representations [7]. To justify the representation here adopted, we provide
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a complete proof. Start from the Pauli matrices (with i′ the usual complex imaginary)

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i′
i′ 0

]
, σ3 =

[
1 0
0 −1

]
, 1 =

[
1 0
0 1

]
.

Since the Pauli algebra is isomorphic to the biquaternions, one can introduce the matrices
hi

σ1 = i′h1, σ2 = i′h2, σ3 = i′h3

h1 =

[
0 −i′
−i′ 0

]
, h2 =

[
0 −1
1 0

]
, h3 =

[
−i′ 0
0 i′

]
.

The matrices hi satisfy the relations

h2

1 = h2

2 = h2

3 = h1h2h3 = −1

and thus constitute a quaternionic system isomorphic to H. One then considers the real
matrices

m1⊗1 = 1⊗ 1,mi⊗1 = i′h1 ⊗ h2,mj⊗1 = h2 ⊗ 1, mk⊗1 = i′h3 ⊗ ih2

m1⊗1 = 1⊗ 1,m1⊗i = h2 ⊗ i′h1,m1⊗j = 1⊗ h2, m1⊗k = h2 ⊗ i′h3

(in [7, p. 55], one takes mj⊗1 = −h2 ⊗ 1, m1⊗j = −1⊗ h2).
The products of these matrices generate 16 real matrices constituting a basis of m(4,R)

which is thus isomorphic to H⊗ H. Explicitly, one has

mi⊗1 =

⎡⎢⎢⎣
0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎤⎥⎥⎦ , mj⊗1 =

⎡⎢⎢⎣
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎤⎥⎥⎦ ,mk⊗1 =

⎡⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎤⎥⎥⎦

m1⊗i =

⎡⎢⎢⎣
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎦ , m1⊗j =

⎡⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎤⎥⎥⎦ ,m1⊗k =

⎡⎢⎢⎣
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎤⎥⎥⎦

mi⊗i =

⎡⎢⎢⎣
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤⎥⎥⎦ , mi⊗j =

⎡⎢⎢⎣
0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

⎤⎥⎥⎦ , mi⊗k =

⎡⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎤⎥⎥⎦

mj⊗i =

⎡⎢⎢⎣
0 −1 0 0
−1 0 0 0
0 0 0 −1
0 0 −1 0

⎤⎥⎥⎦ , mj⊗j =

⎡⎢⎢⎣
0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⎤⎥⎥⎦ , mj⊗k =

⎡⎢⎢⎣
−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎤⎥⎥⎦

mk⊗i =

⎡⎢⎢⎣
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎤⎥⎥⎦ ,mk⊗j =

⎡⎢⎢⎣
−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , mk⊗k =

⎡⎢⎢⎣
0 0 0 −1
0 0 −1 0
0 −1 0 0
−1 0 0 0

⎤⎥⎥⎦
together with the unit matrix

m1⊗1 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ .

As a consequence

[H⊗H]⊗ [H⊗H] � m(4,R)⊗m(4,R) � m(16,R), etc..

Hence, any real square matrix can be expressed in terms of hyperquaternions.
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B Special unitary groups: SU(2), SU(3) and SU(4)

The isomorphism [H⊗ H] ⊗ C � m(4,C) entails that any complex matrix m(4,C) can be
expressed in terms of complex hyperquaternions [H⊗ H] ⊗ C. One just needs to solve 32

linear equations. Applying this procedure, we express the matrices ĝi = i′λ̂i , where λ̂i are
the standard Gell-Mann matrices [19, pp. 388-389], in terms of complex hyperquaternions
gi. We thus obtain the hyperquaternion generators egiθ of the unitary subgroups.

B.1 SU(2)

g1 =
i′

2
(iK − jI) , g2 =

−1

2
(J + k) , g3 =

−i′

2
(iI + jK)

ĝ1 =

⎡
⎢⎢⎣
0 i′ 0 0
i′ 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , ĝ2 =

⎡
⎢⎢⎣

0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , ĝ3 =

⎡
⎢⎢⎣
i′ 0 0 0
0 −i′ 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

B.2 SU(3)

To the generators of SU(2) one adds

g4 =
i′

2
(−iJ + kI) , g5 =

−1
2

(K + j) , g6 =
−i′
2

(jJ + kK)

g7 =
−1
2

(I − i) , g8 =
i′

2
√
3
(−iI + jK − 2kJ)

ĝ4 =

⎡⎢⎢⎣
0 0 i′ 0
0 0 0 0
i′ 0 0 0
0 0 0 0

⎤⎥⎥⎦ , ĝ5 =

⎡⎢⎢⎣
0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⎤⎥⎥⎦ , ĝ6 =

⎡⎢⎢⎣
0 0 0 0
0 0 i′ 0
0 i′ 0 0
0 0 0 0

⎤⎥⎥⎦

ĝ7 =

⎡⎢⎢⎣
0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎤⎥⎥⎦ , ĝ8 =
1√
3

⎡⎢⎢⎣
i′ 0 0 0
0 i′ 0 0
0 0 −2i 0
0 0 0 0

⎤⎥⎥⎦ .

B.3 SU(4)

To the generators of SU(3) one adds

g9 =
i′

2
(jJ − kK) , g10 =

−1
2

(i+ I) , g11 =
−i′
2

(iJ + kI)

g12 =
−1
2

(j −K) , g13 =
−i′
2

(iK + jI) , g14 =
1

2
(k − J)

g15 =
i′√
6
(iI − jK − kJ)
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ĝ9 =

⎡⎢⎢⎣
0 0 0 i′

0 0 0 0
0 0 0 0
i′ 0 0 0

⎤⎥⎥⎦ , ĝ10 =

⎡⎢⎢⎣
0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0

⎤⎥⎥⎦ , ĝ11 =

⎡⎢⎢⎣
0 0 0 0
0 0 0 i′

0 0 0 0
0 i′ 0 0

⎤⎥⎥⎦

ĝ12 =

⎡⎢⎢⎣
0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

⎤⎥⎥⎦ , ĝ13 =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 i′

0 0 i′ 0

⎤⎥⎥⎦ , ĝ14 =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎤⎥⎥⎦

ĝ15 =
1√
6

⎡⎢⎢⎣
i′ 0 0 0
0 i′ 0 0
0 0 i′ 0
0 0 0 −3i′

⎤⎥⎥⎦ .

C Unitary symplectic groups: USp(1), USp(2) and USp(3)

We use the same procedure as above using the isomorphism [H⊗ H] ⊗ H � m(4,H). The
n (2n+ 1) generators of USp(n) are egiθ with the following hyperquaternionic gi.

C.1 USp(1)

The 3 elements are

gi ∈
{
i′(= l), j′(= m), k′(= n)

}
.

C.2 USp(2)

The 10 elements are besides those of USp(1) and with () = (i′, j′, k′)

gi ∈
{
1

2
(i′, j′, k′) (iK − jI) ,

−1
2

(J + k) ,
−1
2

() (iI + jK)

}
.

C.3 USp(3)

The 21 elements are besides those of USp(2)

gi ∈
{

1

2
(i′, j′, k′) (−iJ + kI) , −1

2
(j +K) , −1

2
() (jJ + kK) ,

−1

2
(I − i) , −1

2
√

3
() (−iI + jK − 2kJ)

}
.

C.4 USp(4)

The 36 elements are besides those of USp(3)

gi ∈

⎧⎪⎨⎪⎩
1

2
(i′, j′, k′) (jJ − kK) , −1

2
(i+ I) , −1

2
() (iJ + kI) ,

−1

2
(j −K) , −1

2
() (iK + jI) , 1

2
(k − J) ,

1√
6
() (iI − jK − kJ)

⎫⎪⎬⎪⎭ .
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