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An open real-time photoacoustic imaging scanner 
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Abstract— Photoacoustic imaging is a functional technique 

based on the detection of acoustic waves originated from 

tissues excited by an optical source (laser pulses). When 

different laser wavelengths are used, this modality allows the 

discrimination of different media, which is promising for 

various medical applications. The acquisition system must 

show two main capabilities: 1) the real-time imaging of the 

region of interest and 2) the access to raw data to test 

reconstruction and processing methods under development. 

However, today’s systems provide only one of these two 

requirements. Therefore, this study presents the development 

of a 2D hybrid ultrasound/photoacoustic real-time mode, based 

on the ultrasound open scanner ULA-OP256, which allows the 

access to raw data. The system validation was done on a 4% 

agar phantom containing two graphite mines illuminated by a 

pulsed laser at 1064 nm. The test highlights the correct 

synchronization of the optical illumination with the 

photoacoustic acquisition, as well as the accurate display of 

photoacoustic and ultrasound images. 

Keywords—real-time imaging, photoacoustic imaging, 

passive mode 

I. INTRODUCTION 

Multispectral photoacoustic imaging is an emerging 

medical technique to assess functional imaging of biological 

tissues by exploiting their wavelength-dependent optical 

absorption [1]. Pulsed laser excitations warm-up the optical 

absorbers. The temperature increase of optical absorbers 

leads to their thermal expansion that generates ultrasound 

waves. Ultrasound can finally back-propagate to the tissue 

surface where it is detected by the probe. The photoacoustic 

signal is then linked to the optical absorption of the imaged 

media [2]. In particular, the use of wavelengths in the range 

600-900 nm allows distinguishing between oxygenated and 

deoxygenated blood, which is of interest for applications 

like the follow-up of diseases involving atheroma 

plaques [3] or carcinoma [4].  

Nowadays, some of the commercial systems produce 

photoacoustic images in real-time but, unfortunately, 

provide limited access to raw data (e.g. Vevo LAZR, 

Visualsonics, Fujifilm) [5], or vice-versa (e.g. ULA-OP256, 

MSD Lab, Florence, Italy) [6]. However, both requirements 

are important for photoacoustic technology development: 

(1) the real-time operation allows following tissue or blood 

dynamics and (2) the raw data accessibility permit the 

development and/or the improvement innovative 

reconstruction and processing methods.  

Therefore, this study reports on the development and 

validation of a continuous real-time photoacoustic imaging 

system based on the ULA-OP256 research scanner [7], 

which also allows full raw data accessibility. First, the 

materials and methods used in this study are presented 

(sec. II). 2D real-time imaging mode validation results are 

then shown (sec. III). Finally, the study conclusions and 

some perspectives on this new real-time photoacoustic 

imaging mode are given (sec. IV).     

II. MATERIALS AND METHOD 

A. Optical excitation  

The multispectral optical excitation used in this study is a 
Nd:YAG pulsed laser (Quanta-Ray INDI Series, Spectra-
Physics, USA), with pulse duration of 6 ns and a 10 Hz 
repetition rate. The laser is coupled with an optical 
parametric oscillator (OPO - versaScan, 
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Fig. 1. Scheme of the ULA-OP256 triggereg by the lasser pulse. The red pulses with yellow arrows represent the trigger for photoacoustic 

acquisitions while the other red pulses are for plane wave B-Mode acquisitions.  

Spectra-Physics, USA) to allow the multispectral 
acquisitions. With this system, it is possible to acquire 
images with a wide excitation wavelength range, from 
410 nm to 1250 nm. In this study, the used wavelength was 
1064 nm permitting a maximal optical energy of 200 mJ for 
each pulse. 

B. Ultrasound detection 

The ULA-OP256 scanner has been used in association 
with the linear array probe (model LA523E, Esaote S.p.A., 
Florence, Italy). The probe includes192 elements; its center 
frequency is 7.8 MHz with a bandwidth of 92% at -6 dB.  

Active ultrasound images have been obtained with 
32 plane wave transmissions (3 cycles, 8 MHz frequency) 
using all the 192 elements of the probe. In active imaging 
mode, the echo signals received by all elements are used with 
a 8 MHz demodulation frequency. In passive imaging mode, 
the photoacoustic images are reconstructed using only 
128 elements and a 5 MHz demodulation frequency.    

C. Optical excitation/ultrasound detection synchronization   

A photoacoustic image has to be reconstructed for each 
laser pulse, e.g. at 10 Hz frame rate, during the optical pulse 
illumination (6 ns, in blue in Fig. 1). The ULA-OP256 must 
be triggered by the laser to synchronise the photoacoustic 
acquisition with the optical excitation. However, since the 
scanner needs 14 μs after the trigger signal arrival to 
effectively start the photoacoustic image, the laser pulse 
cannot be used to acquire a passive image during its own 
duration. Indeed, in this case, the photoacoustic image would 
be acquired 14 μs after the optical pulse beginning, which 
means after the 6 ns optical excitation. At this instant, no 
photoacoustic signal is anymore generated; no passive signal 
can then be acquired. Hence, a custom electronic circuit was 
developed to synchronize the laser and the ULA-OP256. In 
particular, the N-th laser pulse was used to trigger the 
next (N+1) photoacoustic acquisition. Therefore, the trigger 
signal needs to be delayed exactly by 99.986 ms from the 
previous pulse laser (trigger signal in red on Fig. 1, the 
yellow arrows highlight the trigger pulses for photoacoustic 
acquisitions). The delay needs to be accurately set to allow a 
well photoacoustic image reconstruction.    

The available time between two consecutive laser pulses 
is exploited to acquire ultrasound B-Mode images. The 
trigger signal needs also to make these acquisitions possible. 
The red pulses without yellow arrows on Fig. 1 are used to 
this end. 

D. Real-time photacoustic mode 

The ULA-OP256 system has been programmed to 
produce interleaved plane wave (ultrasound) and passive 
(photoacoustic) B-Mode images. The multi-line parallel 
beamformer [8] of the scanner reconstructs one passive 
image consisting of 128 lines in 0.4 ms and one active image 
of 192 lines in 1 ms.  The two B-Mode images are 
superimposed on the screen to display a hybrid 
ultrasound/photoacoustic image in real-time.    

III. RESULTS 

The validation of the developed hybrid 
ultrasound/photoacoustic real-time mode has been done on 
the phantom shown in Fig. 2(a). It is a 4% agar phantom 
including two graphite mines. The yellow rectangle on 
Fig. 2(a) highlights the ultrasound region of interest while 
the orange ellipse highlights the laser beam size which 
corresponds to the area generating photoacoustic signals. The 
phantom is excited by the laser beam at 1064 nm (Fig. 2(b), 
the visible green light is due to a residual laser component at 
532 nm). The phantom was translated from left to right by 
maintaining the plan of the graphite mines aligned with the 
imaged region. The photoacoustic signal is in blue while the 
active B-mode image is in grayscale (Fig. 2(c)). 

Some artefacts are visible in Fig. 2(c) particularly at the 
second phantom position (t1), highlighted by white arrows. 
They are probably due to the photoacoustic signal multiple 
echoes. Indeed, both mines refract a part of the ultrasound 
waves which are finally received by the ultrasound probe 
after some echoes. Also, since the ultrasound waves do not 
pass well through the graphite mines, the photoacoustic 
signal of the bottom graphite mine is lower than that of the 
upper one (Fig. 2(c)-t1). 

Fig. 2(c) however shows the accurate synchronization of 
the optical excitation with the photoacoustic acquisition. 
Indeed, the photoacoustic signal is well reconstructed at a 
good location. It can also be seen that the passive and active 



 

Fig. 2. (a)  Cross-sectional phantom image: the yellow rectangle highlights the region imaged with the active mode; the orange ellipse, the laser beam size 

and the black arrows, both graphite mines. (b) Photoacoustic set-up. The visible green light is due to a residual laser component at 532 nm. (c) Screenshots of 

the real-time display for different phantom positions. The photoacoustic signal is in blue. The white arrows highlight some multiple echoes artefacts.  

images are correctly displayed with fair superimposition of 
both signals in real-time. Finally, it may be reminded that the 
ULA-OP256 scanner system allows the accessibility to both 
active and passive raw data which is interesting for off line 
post-processing and to test reconstruction or processing 
methods under development.   

IV. CONCLUSION AND DISCUSSIONS 

The synchronization of an external laser source with 

ULA-OP256 allowed exploiting the parallel beamforming 

capability of such system to continuously produce 

photoacoustic images at 10 Hz. The sample frames in 

Fig. 2(c), extracted from the real-time screen capture, 

highlight the correct synchronization of the optical 

illumination and passive ultrasound acquisition, as well as 

the accurate display of passive and active images. In 

addition to the continuous real-time display modality, 

ULA-OP256 makes also all the raw data available for 

possible off line processing including quantification method 

improvements, which are currently under development. 
A similar mode has also been developed for 3D imaging 

using a matrix array probe of 8x24 elements (Vermon, 
France); its center frequency is 3.84MHz with a bandwidth of 
65.1% at -6dB. Diverging waves are used for the ultrasound 
transmission of active images. Further studies are now done 
to finalize the validation of this 3D development with 
accurate synchronization and real-time display. 
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