

Tractographie des nerfs crâniens & de la moelle spinale : Développement pour l'Anatomie chirurgicale

Timothée JACQUESSON 1,2,3

9 mai 2022

¹ Laboratoire CREATIS, CNRS UMR5220, Inserm U1206, INSA-Lyon

² Unité de chirurgie des tumeurs de la base du crâne, CHU Lyon

³ Laboratoire d'Anatomie Rockefeller, Université Lyon 1

Question clinique et rationnel

- 1. Tractographie des nerfs crâniens
 - a. Revue et optimisation
 - b. Série clinique
 - c. Full brainstem and CN tractography
- 2. Tractographie de la moelle spinale
 - a. Revue
 - b. Full cervical cord tractography
- 3. Anatomie chirurgicale
 - a. Key points
 - b. Fibres blanches
 - c. Pyramide pétreuse & Variations anatomiques
 - d. Stéréoscopie / photogrammétrie
- 4. Perspectives
 - a. T2 HR
 - b. Signature tumorale
 - c. Automatisation / Apprentissage
 - d. Différenciation des faisceaux spinaux

G <

Défi Clinique

Un environnement **anatomique** complexe Des rapports étroits avec les **nerfs crâniens** et les vaisseaux Une chirurgie à risque de **séquelles neurologiques**

Limites de l'IRM

Personal data – T2 CISS cerebral MRI axial slice

E

L'IRM classique ne permet pas de visualiser les nerfs crâniens en condition tumorale

Limites de l'IRM

Personal data – T2 CISS cerebral MRI axial slice

L'IRM classique ne permet pas de visualiser les nerfs crâniens en condition tumorale

Limites de l'IRM

Personal data – T2 CISS cerebral MRI axial slice

L'IRM classique ne permet pas de visualiser les nerfs crâniens en condition tumorale

Magnetic Resonance in Medicine 44:625-632 (2000)

In Vivo Fiber Tractography Using DT-MRI Data

Peter J. Basser,^{1*} Sinisa Pajevic,² Carlo Pierpaoli,¹ Jeffrey Duda,¹ and Akram Aldroubi³

Catani et al, 2005

- 1. Détection de la diffusion préférentielle des molécules d'H20 le long des fibres
- 2. Reconstruction des fibres par algorithme mathématique

DTI vs ODF

Adapted from Descoteaux & Poupon, 2014

Différents modèles de diffusion :

- 1. Tenseur de diffusion (DTI)
- 2. Fonction de Distribution de l'Orientation (ODF)

Déconvolution sphérique contrainte = Extraction de la probabilité d'orientation de la diffusion

Farquharson et al. 2013

1 ou plusieurs directions de diffusion

Algorithme de reconstruction

(i)Deterministic

Tournier et al., 2011

(ii)Probabilistic

Garyfallidis et al., 2012

Tournier et al., 2011

Modèle & Algorithme

Farquharson et al., 2013

La technique de tractographie implique une **série d'étapes** d'acquisition et de post-traitement

Revue	
-------	--

TABLE 1. Clinical Context: Number of Patients, Pathology, Studied Cranial Nerves, and Visualization Rate					
Date	Authors	Patients Participants	Pathology	CN studied	Visualization rate
2006	Taoka et al ²⁰	8	Vestibular schwannomas	VII/VIII	62.5%
2007	Kabasawa et al ⁴	4*	Healthy subjects	V, VIII	100%
2009	Salmela et al ²⁵	12	Supra sellar tumor	11	100%
2010	Hodaie et al ⁵	4*	Healthy subjects	II, III, V, VI, VII/VIII, X	63.6%
2011	Chen et al ²²	3	Vestibular schwannomas	VII/VIII	100%
2011	Fujiwara et al ²⁶	27	Trigeminal neuralgia	V	100%
2011	Gerganov et al ¹⁷	22	Vestibular schwannomas	VII/VIII	90.9%
2012	Hodaie et al ¹⁵	5	Trigeminal neuralgia	V	100%
2012	Roundy et al ¹⁸	6	Cerebellopontine angle tumors	VII/VIII	100%
2013	Zhang et al ³³	8	Vestibular schwannomas	VII/VIII	87.5%
2014	Choi et al ³¹	11	Vestibular schwannomas	VII/VIII	100%
2015	Vos et al ²⁷	10	Deafness	VIII	100%
2015	Wei et al ²³	23	Vestibular schwannomas	VII/VIII	91.3%
2015	Yoshino et al ¹²	22	Vestibular schwannomas	VII/VIII	81.8%
2016	Borkar et al ³²	20	Vestibular schwannomas	VII/VIII	95%
2016	Song et al ¹⁹	15	Vestibular schwannomas	VII/VIII	100%
2016	Hilly et al ²¹	28	Cerebellopontine angle tumors	VII/VIII	95,20%
2016	Zhang et al ⁵⁰	30	Vestibular schwannomas	VII/VIII	96.7%
2016	Yoshino et al ³⁰	3+4*	« Brain tumors », healthy subjects	All CNs I to XII	100%
2017	Zolal et al ²⁹	5 + 30*	Skull base tumors, healthy subjects	II, III, V VII/VIII	30-70%
2017	Behan et al ²⁴	10	Cerebellopontine angle tumors	V, VII/VIII	100%

NR = not reported, * = healthy subjects.

21 études de tractographie des nerfs crâniens

1.a

21 études avec variabilité de paramètres d'acquisition, de post-traitement, et de rendu tridimensionnel

1.a

Revue

 TABLE 5. Best Set of Acquisition and Tracking Parameters for

 Routine Practice

Parameters	Value/Comment
MRI acquisition	
Magnetic field (T)	3
Diffusion gradient directions	32 or higher
Diffusion slice thickness (mm)	2 or lower
Diffusion slice gap	0
Diffusion voxel reconstruction	Isotropic
Anatomical reference(s)	High resolution T1 AND T2
Box size	Optic chiasma to foramen
	magnum
Tracking	
Geometric distortion correction	Eddy & topup FSL [®] tools
Software	Easy-to-use, "the one you better know"
3D rendering	CNs AND tumor AND
	anatomical environment
Fractional anisotropy threshold	0.1 or "upper limit"
Curvature threshold	70° or 0.8 rad
Minimal length	5-10 mm
ROI placement	Multiple ROIs, various points of view, according to the CN known anatomical trajectories: brainstem, cistern and foramen

CN: cranial nerve, FSL: FMRIB (Functional Magnetic Resonance Imaging of the Brain) Software library, ROI: region of interest, T: Tesla,

TABLE 6. Practical Guide of ROI Placement for Each Canial Nerve			
Nerve	ROI placement		
Olfactory nerve I	Olfactory groove		
Optic nerve II	Intraorbital optic nerve, chiasma+/- LGB		
Oculomotor nerve III	Mid-cisternal point		
Trochlear nerve IV	Inferior colliculus, cavernous sinus		
Trigeminal nerve V	Mid-cisternal point		
Abducens nerve VI	Dorello's canal entrance		
Facial nerve VII	IAC, facial brainstem nucleus		
Vestibulo-cochlear nerve VIII	IAC+/- cochlea		
Lower nerves IX, X, XI	Jugular foramen, post-olivary sulcus		
Hypoglossal nerve XII	Hypoglossal canal+/-olive		

IAC: internal auditory canal, LGB: lateral geniculate body, ROI: region of interest.

Combinaison optimale des paramètres d'acquisition et de post-traitement

Optimisation

ROI design : influence de la Taille et de la Position

Optimisation

- 1. A partir des images anatomiques T2 (B)
- 2. Superposition de la carte **ODF** (A)
- 3. Dessin dans les 3 dimensions (axiale, sagittale, coronale) (C)
- 4. Meilleur compromis **ODF-T2** -> trajectoire du nerf crânien
- 5. Algorithme probabiliste avec critères optimisés (D)

Série clinique

			Tracking parameters		
Group	Nerve	ROI placement	FA threshold	Number of fibers	Other
1	Optic nerve II	Whole optic chiasma	0.3	1000	Maximal curvature angle = 45°
2	Oculomotor nerve III	Cisternal segment before cavernous sinus	0.3	500	
3	Trigeminal nerve V	Mid-cisternal point	0.3	700	
4	Abducens nerve VI	Dorello canal entrance	0.2	100	
5	Acoutic facial bundle VII-VIII	Whole Internal Acoustic Canal	0.3	300	Minimal length = 10mm
6	Lower nerves IX, X, XI	Cisternal segment at the flocculus level	0.2	200	

- IRB Number 2015-A01113-46, Clinical.gov
- Etude monocentrique 2015-2017 ouverte
- 62 patients, tumeurs complexe de la base du crâne
- 6 groupes de nerfs crâniens : II, III, V, VI, NF (VII-VIII), LN (IX/X/XI)
- Nerf Trochléaire trop fin
- Nerfs olfactif and hypoglosse "hors acquisition IRM"

1.b

1.b

Série Clinique

Ajustement de la **stratégie chirurgicale** dans **44** (71%) cas : décision chirurgie, choix voie d'abord, résection

1.b

23 échecs de tractographie9 discordances tractographie-chirurgie

Difficultés de la technique liées à :

1. Tumeur : kystique, volume, remplissage du MAI, signal de diffusion tumeur = nerf (schwannomes)

 Nerf crânien : écartèlement en "papier bonbon" englobement intra-tumoral, fusion avec capsule, déplacement +++, placement des ROIs

3. Environnement anatomique :

confusion artères / veines, remaniements tumoraux +++, recrutement des fibres du tronc cérébral (fiber crossing), artefacts et distorsions à la base du crâne, fausses continuations

CREATIS

Filtrage

Entropie = mesure du désordre

1.b

À partir de l'IRM de diffusion Création d'une carte d'entropie

- Elimination des fibres à entropie élevée

 Filtrage
- Sélection d'un point de vue optimal comparaison de 60 PdV PdV meilleur/pire/chirurgical

N=28

PdV meilleur > chir > pire automatisation PdV > si taille tumeur \uparrow

1.c Full brainstem tractography

Jacquesson et al., JNS, 2019

1 région d'exclusion et reconstruction du volume complet 50 000 fibres, default FA, angle <60 $^\circ\,$, longueur min 10mm

1.c Full brainstem tractography

LARGE RIGHT-SIDED VESTIBULAR SCHWANNOMA (KOOS-4)

2.a Spinal cord tractography

Parameters	Value/comment
MRI acquisition	
Magnetic field (T)	1.5 or 3
Diffusion gradient directions	20 or higher
<i>b</i> value	Between 700 and 1000 s mm^{-2}
Diffusion slice thickness (mm)	2 or lower
Diffusion slice gap	0
Diffusion voxel reconstruction	Isotropic
Field of view	Reduced
TR/TE	Synchronized with the heartbeat for the thoracic cord/ lower as possible
Acquisition plane	Axial
Phase-encoding direction	Right-left: cervical spinal cord
	Antero-posterior: thoracic spinal cord
Anatomical reference	T2-weighted imaging
Tracking	
Software	With determinist approach
Fractional anisotropy threshold	Between 0.15 and 0.2
Curvature threshold	40°
ROI placement	Avoiding CSF and GM

41 études de tractographie de la moelle spinale

Combinaison optimale

des paramètres d'acquisition et de post-traitement

2.b Full cervical cord tractography

2.b Full cervical cord tractography

SURGICAL ANATOMY AND TECHNIQUE

Emile Simon, MD, MSc* Pierre-Aurélien Beuriat, MD, PhD* Violaine Delabar, MD[‡] Emmanuel Jouanneau, MD, PhD[‡]

Juan Fernandez-Miranda, MD[§]

Timothée Jacquesson, MD, PhD*^{‡||}

A

inpophyse schildire outerne) m.d. beritmitele lengur de 7 natificiteur, de J. en R², vartitule de 3 orminetres: de la thregant en R. 5 centerotres R. R², lagre relabilique.

Fin. (5 (Equato F. Roves). — Topographic of ribrate d'un stager de l'Altripo reiertal trégion (applicate).

CREATIS

TABLE 1. Summary of All 16 Cranial and Cerebral Key Points and Their Location						
	Cranial key point	Abbreviation	Location	Cerebral correlation		
1	Anterior coronal point	ACoP	10 mm anterior to the coronal suture and 30 mm lateral	Kocher's point		
2	Anterior squamous point	ASqP	Squamous-sphenoparietal suture meeting point	Limen insulae//ASyP		
3	Asterion	As	Lambdoid-parietomastoid suture meeting point	Transverse-sigmoid junction of lateral sinus		
4	Bregma	Br	Coronal-sagittal suture meeting point//120-140 mm posterior to the nasion	Interventricular foramen		
5	Euryon	Eu	Parietal bossa	Superior aspect of supramarginal gyrus		
6	Inion	In	External occipital protuberance	Torcula//lateral sinus meeting point		
7	Intraparietal point	IPP	50 mm anterior to the Lambda lateral to the sagittal suture	IPS-PostCS meeting point		
8	Lambda	La	Lambdoid-sagittal suture meeting point//120-140 mm posterior to the bregma	Parieto-occipital fissure//junction between cuneus and precuneus		
9	Nasion	Na	Frontonasal suture	Anterior skull base		
10	Opisthocranion	Ор	Occipital bossa//20-40 mm above the inion	Calcarine sulcus		
11	Posterior coronal point	PCoP	10 mm posterior to the coronal suture and 30 mm lateral	SFS-PreCS meeting point		
12	Preauricular point	PreAP	Bone depression anterior to the EAM	Half of the petrous pyramid//middle cranial base level		
13	Stephanion	St	Coronal suture-linea temporalis meeting point	IFS-PreCS meeting point		
14	Superior sagittal point	SSaP	50 mm posterior to the Bregma	PreCS//SRP		
15	Superior squamous point	SSqP	Superior aspect of squamous suture//25 mm posterior to the \ensuremath{ASqP}	PreCS//IRP		
16	Temporoparietal point	TTP	30 mm superior to the parietomastoid suture	Posterior end of STG//atrium of the lateral ventricle		

ASyP, anterior sylvian point; EAM, external acoustic meatus; IFS-PreCS, inferior frontal sulcus-precentral sulcus; IRP, inferior rolandic point; SFS-PreCS, superior frontal sulcus-precentral sulcus; SRP, superior rolandic point; STG, superior temporal gyrus.

3.a

Key points

Key points

Key points

Key points

White Matter 3D

Num	Abbr.	Name	Endpoints	Function	Damage	Operative Test	
	Projection						
1	FPT	Fronto pontine tract	Supplementary Motor Areas – Pons	Complex motor command	Movements disorders	Complex motor task	
2	CST	Cortico-spinal tract	Precentral gyrus – Spinal cord	Motor signal brain to body + limbs	Motor deficit	Motor task ("dystonic" or "positive" motor mapping)	
3	ТРОРТ	Temporo- Parieto-occipito- pontine tract	Temporal pole, + superior parietal gyrus + occipital pole – Pons	Sensitivity integration	Unknown	N/A	
4	тст	Thalamo-cortical tract	Thalamus - Primary somatosensory cortex	Somatosensor y inputs	Dysesthesia	Patient's subjective complaints	
5	FST	Fronto-striatal tract	Supplementary motor area – Caudate nucleus	Movement initiation, movement coordination	Motor arrest	Movements tasks / bimanual tasks (negative motor mapping)	
Connection / Commisural							
6	СС	Corpus callosum	Occipital, frontal and parietal lobes – Contralateral hemisphere	Bilateral coordination	Motor coordination loss	N/A	
7	AC	Anterior commissure	Temporal and occipital regions on both sides	Visual process, memory, behavior	memory and behavioral disorders	N/A	

White Matter 3D

					U					
		Association								
8	SLF I	Superior longitudinal fasciculus I	Medial part of Superior frontal gyrus – Medial part of Superior parietal gyrus	Initiation of movements, Complex movements, Attention	Spatial neglect (eye movements disorders)	N/A				
9	SLF II	Superior longitudinal fasciculus II	Middle frontal gyrus – inferior parietal gyrus	Attention, focusing, visuospatial awareness	Spatial Neglect Attention disorders	Line bisection task Dual-tasking				
s	SLF III /AF horizontal	Superior longitudinal fasciculus III - horizontal	Inferior frontal gyrus (VPMC) – inferior parietal gyrus	Articulatory aspect of the language (left)	Dysarthria Attention disorders	Naming tasks (DO80)				
S	SLF III /AF vertical	Superior longitudinal fasciculus III - vertical	Inferior parietal gyrus – middle temporal gyrus	Visuospatial cognition and attention (right)		Dual-tasking				
10 S	SLF III /AF inner "AF"	Arcuate fasciculus	Inferior frontal (Broca's area), middle frontal (DLPFC), and precentral gyrus - Superior temporal (Wernicke's area), middle and Inferior temporal gyrus (basal temporal areas and visual word form area VWFA)	Phonological aspects of the language	Phonemic paraphasia, prosodic troubles, jargonaphasia	Naming tasks (DO80) Reading aloud tasks (regular, irregular and pseudo-words, ECLA16+)				
11	FAT	Frontal aslant tract	Pars opercularis & triangularis – Superior frontal gyrus	Speech initiation	Stuttering	Fluency tasks, Counting, Naming tasks (DO80)				

White Matter 3D

ĭ

Num	Abbr.	Name	Endpoints	Function	Damage	Operative Test	
Ventral stream							
12	IFOF	Inferior Fronto Occipital fasciculus	Occipital lobe – Frontal lobe (Orbitofrontal cortex and DLPFC)	Verbal and non- verbal semantic processing (left),. Face-based mentalizing (right)	Semantic paraphasia (left) and disorders at semantic image association tasks (left and right); Face-based mentalizing disorders (mostly right), self-confidence disorders	Semantic association tasks (Palm and Pyramid Tree test, PPTT) Read the mind in the Eyes task (RME) Self-confidence Index (SCI)	
13	ILF	Inferior longitudinal fasciculus	Dorsolateral Occipital lobe – Temporal pole	Lexical retrieval (anterior part) Reading, object identification, , , visual memory (posterior part)	Anomia, Pure alexia, lexical-semantic alexia, Visual agnosia	Naming tasks (DO80) (anterior part) Reading aloud tasks (regular, irregular and pseudo-words, ECLA16+, posterior part)	
14	MdLF	Middle longitudinal fasciculus	Temporal pole – Angular gyrus + Upper occipital lobe	Sound location, sound memory (right), spatial perception (left)	Sound memory and space orientation loss, vertigo and confusion	N/A	
Medial / Limbic stream							
15	UF	Uncincate fasciculus	Orbitofrontal areas – Temporal pole	Behavior, emotion, and working memory proper name retrieval	Behavioral disorders, memory & emotional disorders, proper name aphasia	Naming task (DO80), Eckman's faces	
16	Cing	Cingulum	Orbitofrontal cortex – Parahippocampal gyrus	High-level integrated cognitive functions	Disruption of consciousness and awareness of external environment. "Dream-like" sensation, Attentional/executive functions deficit	Self-confidence Index (SCI), Dual-tasks	
17	Fx	Fornix	Mammillary bodies – Hippocampus + Amygdala)	Memory process	Impairment of recall memory	Memory test	

White Matter 3D

Inferior Fronto-Occipital Fasciculus IFOF

3.c *Petrous Bone segmentation*

Understanding Anatomy of the Petrous Pyramid–A New Compartmental Approach

- Two lines

- Four spaces - X shape

Mamdouh Tawfik-Helika¹, Patrick Mertens², Guilherme Ribas³, Michael D. Cusimano⁴, Martin Catala⁵, Ramez Kirollos⁶, Timothée Jacquesson^{2,7}

- Five segments

- Turning around Mucosal Compartment

- V shape

CREATIS

Vertebral artery loop

Surgical and Radiologic Anatomy https://doi.org/10.1007/s00276-022-02885-z

ANATOMIC VARIATIONS

Cervicobrachial neuralgia due to vertebral artery loop

3.c

Marine Rigal¹ · Sylvain Portet² · Emmanuel Jouanneau^{1,2} · Roberto Riva³ · Omer Eker³ · Timothée Jacquesson^{1,4}

Received: 6 September 2021 / Accepted: 8 January 2022 © The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2022

3.d

Photographie 360

0

CrossMark

DOI 10.1007/s00276-016-1702-1 TEACHING ANATOMY

Surg Radiol Anat

The 360 photography: a new anatomical insight of the sphenoid bone. Interest for anatomy teaching and skull base surgery

Timothée Jacquesson^{1,2,3} \cdot Patrick Mertens^2 \cdot Moncef Berhouma^1 \cdot Emmanuel Jouanneau^1 \cdot Emile Simon^2

Author's personal copy

:

• • •

52

Lyon 1

CREATIS

Photographie 360

3.d

Photogrammetrie

CrossMark

DOI 10.1007/s00276-016-1702-1

Surg Radiol Anat

TEACHING ANATOMY

The 360 photography: a new anatomical insight of the sphenoid bone. Interest for anatomy teaching and skull base surgery

Timothée Jacquesson $^{1,2,3}\cdot$ Patrick Mertens $^2\cdot$ Moncef Berhouma $^1\cdot$ Emmanuel Jouanneau $^1\cdot$ Emile Simon 2

Département Universitaire d'Anatomie Rockefeller - LYON - FRANCE Dr. Timothée JACQUESSON - Dr. Emile SIMON - Pr. Patrick MERTENS Crédit photos : Nadine BEYSSERIAT - Service ICAP - Université Claude Bernard Lyon 1

CREATIS

Stéréoscopie

Author's personal copy

3.d

Surgical and Radiologic Anatomy (2020) 42:719–727 https://doi.org/10.1007/s00276-020-02442-6

TEACHING ANATOMY

U

Check for

Stereoscopic three-dimensional visualization: interest for neuroanatomy teaching in medical school

Timothée Jacquesson¹² - Emile Simon¹⁴ - Corentin Dauleac¹ - Loic Margueron¹ - Philip Robinson³ -Patrick Mertens¹⁴

Received: 30 January 2020 / Accepted: 10 February 2020 / Published online: 29 February 2020 © Springer-Verlag France SAS, part of Springer Nature 2020

Stéréoscopie

CREATIS

Author's personal copy

Surgical and Radiologic Anatomy (2020) 42:719–727 https://doi.org/10.1007/s00276-020-02442-6

TEACHING ANATOMY

Check for

Stereoscopic three-dimensional visualization: interest for neuroanatomy teaching in medical school

 $\label{eq:constraint} Timothée Jacquesson^{1,2} \textcircled{0} \cdot Emile Simon^{1,4} \cdot Corentin Dauleac^1 \cdot Loïc Margueron^1 \cdot Philip Robinson^3 \cdot Patrick Mertens^{1,4}$

Received: 30 January 2020 / Accepted: 10 February 2020 / Published online: 29 February 2020 © Springer-Verlag France SAS, part of Springer Nature 2020

Stéréoscopie

Author's personal copy

3.d

Surgical and Radiologic Anatomy (2020) 42:719–727 https://doi.org/10.1007/s00276-020-02442-6

TEACHING ANATOMY

Check for

Stereoscopic three-dimensional visualization: interest for neuroanatomy teaching in medical school

Timothée Jacquesson^{1,2} • Emile Simon^{1,4} · Corentin Dauleac¹ · Loïc Margueron¹ · Philip Robinson³ · Patrick Mertens^{1,4}

Received: 30 January 2020 / Accepted: 10 February 2020 / Published online: 29 February 2020 © Springer-Verlag France SAS, part of Springer Nature 2020

4.a

IRM T2 HR

R

Personal data – T2 CISS cerebral MRI axial slice

Clivabilité ? R

4.a

Personal data – T2 CISS cerebral MRI axial slice

4.a

Personal data – T2 CISS cerebral MRI axial slice

ODF based analysis ?

4.a

Personal data – ODF on T2 CISS cerebral MRI axial slice

Signature tumorale

Méningiome Signal ODF centripète Schwannome Signal ODF rotatif Kyste épidermoide Signal ODF **anarchique**

Signature tumorale

CREATIS

La diffusion des molécules d'eau peut être la **signature du tissu tumoral** et de la manière dont il s'organise lors du développement de la tumeur.

 - > Confirmer l'hypothèse et construire des descripteurs experts capables de distinguer cette différence de signature.

4.b

Personal data – FOD map

Personal data – TDI map

- Intérêt de la Probabilistic Global tractography ?
 - -> compétition cerveau / nerfs crâniens
 - -> grande amplitude FOD pour les fibres du cerveau
 - -> reconstruction au détriment des nerfs crâniens

4.c

Automatisation

image T1gd pré-traité :

Task001_BrainTumour = modèle le plus pertinent si on a les 4 modalités d'image Task082_BraTS2020 = meilleur avec 2 modalités A confirmer sur plus de patients avec données T1, T1G, T2 et T2 FLAIR homogènes

4.e Spinal cord White Matter

Personal data – in progress

- Optimisation des données acquisition & post-traitement
- Amélioration résolution spatiale
- Lien avec connectivité cérébrale
- Création d'un atlas des faisceaux de la moelle spinale
- Superposition des données patient dans un espace
 normalisé

McLachlin et al., 2021

4.a

Réalité augmentée

www.microsoft.com

Transfert clinique de la tractographie & Intégration au bloc opératoire de l'imagerie

- En Réalité augmentée et/ou virtuelle
- Superposition des informations pertinentes en temps réel
- Simulation chirurgicale mental/manuel/hybride

Upsurgeon[®] devices

Anatomie chirurgicale

Recherche en pédagogie : Parcours Mooc validant en Neuroanatomie

Morgane DES LIGNERIS 2021-2022 Segmentation automatique / Signature histologique

Tiffany NOSREE 2021-2022 **T2 versus** Tractographie

Justine BOSC 2016-2017 Optimisation / Validation

Méghane DECROOCQ 2017-2018 Point de vue / Filtrage

Corentin DAULEAC 2018-2019 Tractographie Moelle spinale

Remerciements

Arnaud ATTYE

Claire BOUTET

Marc BRAUN

Remerciements

François COTTON

- Fr

Patrick MERTENS

Carole FRINDEL

Emmanuel JOUANNEAU

Merci

