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Preface

This habilitation à diriger les recherches (HDR) aims at presenting my scientific contributions
since I have been appointed as a researcher of the Centre National de la Recherche Scientifique
(CNRS) in 2010, within the Centre de Recherche En Acquisition et Traitement de l’Image pour
la Santé (CREATIS), team Tomographic imaging and therapy with radiation, either performing
the investigations myself or, more often, as a supervisor of PhD and postodoctoral fellows. All
the works presented here have already been published and this HDR aims at giving an overview
of these publications. They cover a broad scope of topics, from tomographic reconstruction to
deformable registration, and the brief presentation will necessarily be incomplete, but the reader
can refer to the original publications for more details (three are included as appendices). All the
references I have co-signed can easily be identified with the prefix letter (J for journal articles,
B for book chapters, etc.). After my curriculum vitæ, the manuscript is divided in three parts,
corresponding to the fields I have explored in the past 10 years: motion in cone-beam computed
tomography (CT), spectral CT and proton CT. The conclusion finally outlines future research
topics and my motivation for being habilitated.
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2012 – 2014 Rémi Blanc and Dominik Spinczyk - Respiratory motion management for extra-

corporeal HIFU treatment of liver carcinoma - Siric LYRIC

Conference Organization

2019 Second ion imaging workshop.
http://ionimaging.sciencesconf.org/ - Manchester, United Kingdom

2018 Proton imaging workshop.
http://protonimaging.sciencesconf.org/ - Lyon, France

2017 DROITE workshop on tomography: mathematics and applications.
http://droite.imag.fr/doku.php?id=workshops - Grenoble, France

2016 Sixth International Workshop on Pulmonary Image Analysis
http://www.lungworkshop.org/2016/ - MICCAI, Athens, Greece

2015 ICART: Imaging and Computer Assistance in Radiation Therapy
https://hal.archives-ouvertes.fr/hal-01264358 - MICCAI, Munich, Germany

2014 Workshop on Numerical Modeling and Simulation of Inverse Problems
in Medical Imaging http://tinyurl.com/mnu8ptt - Lyon, France

2013 Fifth International Workshop on Pulmonary Image Analysis
http://www.lungworkshop.org/2013/ - MICCAI, Nagoya, Japan

11

http://ionimaging.sciencesconf.org/
http://protonimaging.sciencesconf.org/
http://droite.imag.fr/doku.php?id=workshops
http://www.lungworkshop.org/2016/
https://hal.archives-ouvertes.fr/hal-01264358
http://tinyurl.com/mnu8ptt
http://www.lungworkshop.org/2013/


2013 Workshop on Numerical Modeling and Simulation of Inverse Problems
in Medical Imaging http://tinyurl.com/njjvsze - Grenoble, France

2012 Image-Guidance and Multimodal Dose Planning in Radiation Therapy
https://hal.archives-ouvertes.fr/hal-00755222v1 - MICCAI, Nice, France

2011 Fourth International Workshop on Pulmonary Image Analysis
http://www.lungworkshop.org/2011/ - MICCAI, Toronto, Canada

Teaching

2019 Summer school ATTIRE http://attire.sciencesconf.org/ - 12h, hands-on ses-
sions - Yenne, France

2016 – 2019 X-ray tomography - 32h (8h per year), 3rd year biomedical engineering - Polytech
Lyon, France

2016 – 2019 Image registration - 24h (6h per year), Master MISS - Polytech Lyon, France
2016 Image registration - 2h, master in medical physics - Univ. Grenoble, France
2015 – 2017 RTK training - 28h (7h per session) - Lyon, France
2015 Reconstruction and registration for IGRT - 2h, EPU IGRT - Marseille, France
2015 Imaging physics, simulation and biomedical applications - Hands on the

simulation of x-ray imaging - 4h, Summer School - Lyon, France
2013 – 2017 Radiotherapy and Imaging - 8h (2h per year), Master IMAVI - INSA Lyon, France
2011 – 2015 Image registration - 30h (6h per year), Master EEAP - INSA Lyon, France
2013 Reconstruction and registration for IGRT - 2h, EPU IGRT - Nantes, France
2011 Image-Guided Radiotherapy - 4h, Master IMA - Univ. Paris VI, France
2005 – 2007 Probabilities and Statistics - 58h, Graduate level - Univ. Lyon 1, France
2006 C-ANSI - 56h, Graduate level - IUT A, Lyon, France
2006 Industrial Vision - 24h, Post-graduate level - INSA Lyon, France
2005 Office software - 36h, Graduate level - Univ. Lyon 2, France

Research projects

Principal investigator of the project

2017 – 2021 Computational methods to optimize proton radiography and tomography
for improved proton therapy - Fondation pour la recherche médicale

2014 – 2017 Dual-Energy X-ray imaging for TargEting Radiotherapy (DEXTER) - ANR
Blanc SIMI3

Principal investigator of the CREATIS partner

2020 – 2021 Small animal respiration-correlated cone-beam CT - French - Bavarian coop-
eration center

2017 – 2022 ROI tomography and dose reduction (ROIdoré) - ANR generic call for proposals
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1
Introduction

The purpose of this chapter is to outline the problem of motion in x-ray CT and to introduce
two classes of solutions. The other chapters of the section will then summarize my scientific
contributions to this field. Most of the investigations in this part have contributed to the devel-
opment of the reconstruction toolkit (RTK) [C29], an open-source software for cone-beam CT
(http://www.openrtk.org) which has greatly contributed to my international visibility.

1.1 Computed tomography

X-ray CT is a two-step imaging technique. First, x-ray projections are acquired around the
scanned object. The measured quantity in each sample of the projection is assumed to be
proportional to the flux of photons such that the measured fluxes with and without object,
respectively noted Φ and Φ0, can be linked to a line integral through the linear attenuation
coefficient of the object according to the Beer-Lambert law

Φ = Φ0 exp

(
−
∫ L

0
µ (s+ lξ) dl

)
(1.1)

with s the three-dimensional (3D) source position, ξ the 3D unit direction vector of the measured
line, L the source-to-sample distance and µ the map of the attenuation coefficient of the object
at a given energy. This relation only holds for monoenergetic x-ray beams, but it is assumed to
be true for a polychromatic clinical source in this chapter, see Part II for a discussion on CT and
polychromatism.

Second, the function µ is computed from its line integrals using a tomographic reconstruction
algorithm. Several books on 3D CT reconstruction are available in the literature and I would
suggest, as entry points, [1] for a beginner’s overview, [2] for the mathematical aspects and [3]
for an implementation guide of basic algorithms.

1.2 Cone-beam CT

The acquisition of tomographic projections can be realized in many manners. The acquisition
geometry is the description of both the geometry of the x-ray source emission (parallel, point,
etc.) and the geometry of the x-ray detector (flat detector, cylindrical detector, etc.). Here, cone-
beam CT will be limited to a circular source trajectory of radius R, which I will parameterize
by the angle θ, i.e. sθ = (−R sin θ,R cos θ, 0), and a flat panel detector. Figure 1.1 illustrates
several systems with such a geometry and with which x-ray projections have been acquired and
used in my co-authored publications. We denote with gθ one two-dimensional (2D) projection
image acquired at source position θ.
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Part I. Motion in cone-beam computed tomography

Figure 1.1: Cone-beam CT scanners with a circular source trajectory and a flat panel detector
which I have used in my research: Elekta XVI used in [T1, 4, S6] (top left), medPhoton Imag-
ingRing used in [S3] (top right), Philips C-arm used in [S5] (bottom left) and Photonic Science
table top system used in [J31] (bottom right).

1.3 Motion in CT

Tomographic reconstruction generally assumes that the scanned object was static during the
acquisition of the x-ray projections. Under this assumption, the reconstruction algorithm will
produce a 3D CT of the static object. Patient motion cannot always be controlled: for examples,
heart beating cannot be stopped and breath can only be held for a short time (a few seconds).
The effect of motion on image quality can be observed in Figure 1.2: breathing motion causes
blur around the moving structure, here mainly around the diaphragm and in the lungs, and along
streaks which follow x-rays tangent to moving structures. Note that blur around the mediastinum
in both images is likely caused by cardiac motion.

When there is motion during the acquisition, the sought image is a four-dimensional (4D)
CT of the dynamic patient, which is sometimes referred to as a dynamic tomography. Let µt be
the map of the attenuation coefficient of the object at time t. We limit ourselves to acquisitions
with one revolution and there is a bijective relation between t and θ. The map µθ will refer to
the map of the attenuation coefficient at the time when the x-ray source position is at angle θ
along its circular trajectory.

The motion of the patient during the tomographic acquisition is generally not known. Re-
constructing the 4D function of the patient attenuation coefficients is then a difficult problem.
In its most general form, µθ is different at each source position θ and one would then have
to reconstruct µθ from only one projection gθ. This is obviously not possible without some a
priori information about µθ, and more specifically about the motion of the patient during the
acquisition. Several solutions have been proposed and I summarize two of them which I had
already explored during my PhD investigations [T1]: a periodic motion prior and full motion
knowledge. The landscape of the available solutions for breathing motion in cone-beam CT has
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Chapter 1. Introduction

Figure 1.2: Cone-beam CT images of the same patient using static cone-beam CT image recon-
struction. Reconstruction from breath-hold acquisition of 95 projection images (left) and from
free-breathing acquisition of 670 projection images (right). Figure re-printed from [B3].

been summarized in [B3].

1.3.1 Reconstruction with a periodic motion prior

An overview of respiratory motion models is available in [5]. The simplest and most intuitive
patient model is one-dimensional (1D): a signal describes the periodic position of the patient in
a cyclic motion. This model has been used for cardiac and respiratory motions. The position
in the cycle is called the phase, generally expressed in percentage although some use an angle
to outline the periodic nature of this quantity. It can be obtained with an external sensor, e.g.,
an electrocardiogram (ECG) or a spirometer. In cone-beam CT, one x-ray projection captures a
large part of the patient body and it has been shown that the breathing signal can be extracted
from the x-ray projections [6, 7, C48].

The signal can then be used to bin the x-ray projections in a discrete set of positions according
to their position in the cyclic motion. Each bin of projections is used to reconstruct one 3D CT
image, and the resulting sequence of 3D CT images is the sought 4D CT. The early works on
gated cone-beam CT are [8] for breathing motion and [9, 10] for cardiac motion. The difficulty
of this technique is the small amount of x-ray projections available to reconstruct each 3D cone-
beam CT image. When possible, the amount of x-ray projections per breathing phase can be
increased by slowing down the scanner rotation as suggested by [8]. Otherwise, several works
have investigated regularization techniques to cope with the lack of x-ray projections. The PhD
and postdoc investigations of Cyril Mory have chosen this approach of cardiac and respiratory
motions and will be presented in chapter 3.

1.3.2 Motion-compensated cone-beam CT

Another option to avoid the oversampling of the acquisition is to estimate the breathing motion
during the acquisition of the x-ray projections. We then further assume that the motion only
deforms the map of attenuation coefficients, without changing its values, i.e.,

µref(x) = µθ(Φθ(x)) (1.2)

with Φθ the 3D mapping describing the spatial deformation of the patient from each time point
θ to a reference position at time ref. Estimating Φθ is a first problem which Jef Vandemeule-
broucke [4] and Vivien Delmon [S6] have investigated using a prior CT image of the same patient.
These works will be described in chapter 2. Another option is to estimate a rigid motion from
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Part I. Motion in cone-beam computed tomography

the x-ray projections using data consistency conditions (DCC), a topic investigated by both Jan
Hoskovec and Jérôme Lesaint and covered by chapter 5.

Reconstructing µref from all projections gθ and the corresponding Φθ is the separate problem
of motion-compensated cone-beam CT. Analytic solutions to this problem only exist for a limited
class of deformations Φθ which includes affine motion [11] and other deformations for which the
measured sinogram can be rebinned to a motion-free sinogram of the patient at time ref [12]. Such
analytical solutions have been further explored in combination with region-of-interest (ROI) CT
by Jan Hoskovec and will be presented in chapter 4. There is no analytical solution for breath-
ing and cardiac motions, and these non-rigid anatomical motions are compensated heuristically
during the backprojection of filtered backprojection (FBP) [13]. The motion-compensated FDK
(MCFDK) algorithm is based on the Felkamp, David, Kress (FDK) algorithm [14], the standard
FBP algorithm for circular cone-beam CT. It has been used for cardiac [9] and breathing [15]
motions. Since this algorithm is used throughout this HDR thesis, we recall the formula

µMCFDK(x) =

∫ 2π

0

1

U2

∫

R

D√
u∗2 + v∗2 +D2

R

D
gθ(u, v

∗)h(u∗ − u) dudθ (1.3)

with U = [R + Φθ(x) · (− sin θ, cos θ, 0)]/D the inverse magnification factor at point Φθ(x), D
the source-to-detector distance, u∗ = Φ(x) · (cos θ, sin θ, 0)/U and v∗ = Φ(x) · (0, 0, 1)/U the
detector coordinates of point Φθ(x) at source position θ, and

h(u) =

∫

R
|ku| exp(2πiuku) dku (1.4)

the kernel of the ramp filter. The FBP algorithm derived from this formula has three steps:
(1) weight the projections gθ, (2) ramp-filter the weighted projections and (3) backproject with a
spatially varying weight each ramp-filtered projection along the x-rays warped from the acquisi-
tion time θ to the reference time ref. Note that when there is no motion, i.e., when Φ(x) = x, the
algorithm becomes the conventional FDK algorithm. I have proposed an adaptation of the FDK
algorithm for cone-beam CT scanners where the source and the detector can rotate independently
such as the ImagingRing shown in Figure 1.1 [J41]. It will not be detailed here because it is
very similar. FDK and MCFDK are approximate, but they have proven efficient in practice. My
experience on real data is that other uncorrected effects, particularly scatter, have more impact
on image quality and mask the approximations of these reconstruction algorithms. Alternatively,
similar adaptations can also be made to 3D iterative algorithms and I have investigated iterative
motion-compensated cone-beam CT during my PhD investigations [T1, J65].

Motion-compensated CT reconstruction produces one 3D image. I differentiate these tech-
niques from the use of an estimate of the motion Φθ to better regularize 4D cone-beam CT re-
construction in the temporal direction such as the one described in chapter 3. These differences
will be emphasized in chapter 3 after chapter 2 on motion estimation for motion-compensated
cone-beam CT.
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2
Breathing motion estimation for motion-compensated

cone-beam CT reconstruction

Non-rigid registration was a “hot topic” in the field of medical image processing when I started
my PhD fellowship and it has been increasingly investigated since with radiotherapy being one of
the applications motivating this boom [B2, J27]. The research group I joined at the Centre Léon
Bérard (CLB) comprised Vlad Boldea, a PhD student (co-supervised by David Sarrut and Serge
Miguet, like me), who was investigating non-rigid estimation for breathing motion from multiple
breathholds and 4D CT images [16]. I have used the result of their investigations to estimate
a prior model of the breathing motion on 4D CT correlated with the x-ray projections using a
breathing signal [T1, J65]. During my postdoc at the Nederlands Kanker Instituut (NKI), I used
another software for the same purpose [C43, J66] developed by Jochem Wolthaus [17] based on
[18]. Therefore, my first experience of non-rigid registration is from a user perspective.

When I joined the Centre de Recherche En Acquisition et Traitement de l’Image pour la Santé
(CREATIS), Jef Vandemeulebroucke was finishing his PhD fellowship under the co-supervision
of Patrick Clarysse and David Sarrut. We have collaborated on two topics: spatio-temporal
regularization [J64] and automated detection of the interface where sliding motion occurs [J59].
This latter topic was taken over by Vivien Delmon, a PhD student co-supervised by David
Sarrut and me, to account for the sliding interface in a B-spline registration algorithm [J58].
Both Jef Vandemeulebroucke and Vivien Delmon used their motion models for breathing motion
estimation from cone-beam CT projections. This chapter summarizes all these contributions.

2.1 Spatiotemporal motion estimation

Non-rigid registration is an inverse problem which requires regularization [19, B2]. For example,
regularization is crucial in the estimation of breathing motion on 4D CT images which suffer
from severe artefacts due to irregular breathing [20, C28].

Registration of 4D CT images can be realized by registering pairs of 3D frames [16, 21,
22]. However, only spatial smoothness can be enforced then, either by penalizing non-smooth
solutions in the cost function which is minimized iteratively and/or by limiting the search space
to smooth deformations only, e.g., using free-form deformations based on B-splines [23]. There
are then no constraints on the smoothness of the deformation in time.

Adding a temporal regularization seems natural and we have investigated the extension of
3D free-form deformations based on B-splines to 4D [J64]. We first analyzed traces of the cranio-
caudal position of one of the two diaphragm domes on cone-beam CT projections which were
extracted in one of my postdoc studies [J61]. We observed in these traces a discontinuity in the
first derivative of motion (the velocity) and deduced that the temporal model should account
for this discontinuity. Two B-spline models were therefore investigated and compared with the
model Ts with spatial regularization only: one fully cyclic B-spline model Tst, with the same
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Part I. Motion in cone-beam computed tomography

trajectory smoothness at any point along the cycle, and one cyclic B-spline model T ∗st with
a speed discontinuity at end-inhale, where we had observed a sudden change of direction of
breathing. This is illustrated on projected 3D trajectories in Figure 2.1.

IV.B. Spatiotemporal registration of 4D CT

We retained the temporal representations with four and
five internal control points for the spatiotemporal models,
which corresponds to s=2.5 and 2 frames, respectively. Table
II summarizes the temporal characteristics of the registration
methods.

Trajectories obtained for landmarks with large displace-
ments are plotted in Fig. 3. The landmark positions identified
manually throughout the 4D CT are also shown and were
linearly interpolated for clarity. The estimates obtained using
Ts were interpolated using cubic splines. The trajectories of
the spatiotemporal methods were directly obtained from the
continuous 4D transforms. All trajectories were projected on
the sagittal plane, where motion predominantly occurs. Over-
all, the obtained trajectories appear very similar. The spa-
tiotemporal trajectories tend to be smoother than Ts. The
main difference between Tst and Tst

� is visible at end-inhale
�bottom of the plot�. At this point, Tst

� tends to be pointier and
in some cases visibly closer to the corresponding landmark.
Note that deviations between the estimated trajectories and
the measured landmark trajectories are partially due to the
landmark identification process, which was performed in

voxel index space, while the trajectories evolve in the con-
tinuous space. This effect will also contribute to the registra-
tion errors evaluated using the landmarks.

For patients 1–3, landmarks were available for all frames
of the 4D CT. The global registration accuracy is summa-
rized in Table III in terms of the mean TRE based on 900
landmarks each. For spacing s=2 frames, the group mean
TRE of both spatiotemporal methods was within 0.1 mm of
Ts. When increasing the temporal control point spacing from
2 to 2.5, the mean TRE increased gradually �1.27�1.17 mm
for Tst

� and 1.18�1.03 mm for Tst
� �, but remained compa-

rable to Ts. For clarity, only results using a spacing of 2
frames will be shown in the following.

For patients 1–3, the registration errors were also ana-
lyzed for each frame separately. Figure 4�a� corresponds to
the group mean TRE of the entire 4D CT and Fig. 4�b� shows
the group mean TRE per frame. The mean TRE over the
entire 4D CT was comparable for all methods, although Tst

performed slightly worse. The analysis per phase revealed
that most discrepancies in TRE are located near end-inhale
�0%, 10%, and 90%�. Tst

� generally obtained an accuracy
closer to Ts for these phases.
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combined registration errors for the entire 4D registration. Each box is drawn based on 2700 landmarks. �b� TRE per phase bin. For each frame, the
registration error is estimated from 300 landmarks. The 50% phase bin corresponds to the reference frame.
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Figure 2.1: Examples of 3D trajectories projected on the sagittal plane without temporal reg-
ularization (Ts) and with the two models of temporal regularization, fully smooth (Tst) or with
a discontinuity of the speed (T ∗st). The black dots pk are the spatial landmarks identified by an
expert on each frame of the 4D CT. Figure re-printed from [J64].

There was no doubt in our opinion that constraining the registration based on a more realistic
modeling of breathing motion was desirable, but it turned out to be difficult to evaluate, as is
often the case with non-rigid registration. The accepted reference on real data are manually
identified landmarks on each registered image, as shown in Figure 2.1. However, this reference
for evaluation is, like deformable registration, limited by image artifacts. In [J64], the evaluation
of the above-described temporal constraints based on landmarks registration show poorer results,
with a slightly larger target registration error (TRE) evaluated on 300 landmarks placed on end-
inhale and end-exhale CT images of 6 patients: on average 1.38 mm, 1.57 mm and 1.46 mm for Ts,
Tst and T ∗st, respectively. However, if one evaluates the ability of the spatiotemporal registration
to overcome image artifacts in one of the frames of the 4D CT, the temporal regularization can
help to overcome the image artifacts, as visually illustrated in Figure 2.2 on simulated (top)
and real (bottom) CT images. We therefore argue that spatio-temporal registration is preferable
because it provides a more realistic estimate of the breathing motion, but we acknowledge that
we did not have the means to validate its accuracy on real data.

2.2 Pleural sliding

The group at the CLB has also investigated the modeling of another characteristic of breathing
motion which goes against conventional spatial regularization: sliding of the lungs along the rib
cage realized by the pleural cavity (Figure 2.3). The effect of this sliding on the sought motion
is visible in Figure 2.2: the ribs on the left are nearly static whereas the adjacent lungs and
diaphragm dome have large motion.

The investigations on this topic started during a collaboration between the Massachussets
General Hospital (MGH) (Boston) and the CLB. The motion mask was identified as the interface
between the moving region (lungs, mediastinum, upper-abomen) and the less moving region (the
rest, e.g., the rib cage). In this first work [24], the motion mask was manually identified and
accounted for in the registration by performing two independent registrations, one estimating
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Chapter 2. Breathing motion estimation for motion-compensated cone-beam CT reconstruction

degrees of freedom at equal control point spacing. We there-
fore also performed a comparison between both models at
equal degrees of freedom. The global performance of Tt was
still significantly worse �p�4�10−2� compared to the cor-
responding Tt

� models �see Table I for Tt
� with two control

points less than Tt�. In addition, despite the global increase in
degrees of freedom, the high fitting residual at end-inhale
remained for Tt.

This confirms that a local increase in control points �as is
the case for the piecewise smooth model Tt

�� is more efficient
in terms of number of parameters, to obtain an accurate rep-
resentation throughout the respiratory cycle. It should not be
excluded that other piecewise models can be found, requiring
less degrees of freedom, while obtaining a similar accuracy.
These could consist in making sensible assumptions about
the trajectory near end-inhale that can be translated into con-

straints, eliminating one or both of the additional degrees of
freedom.

The end-exhale phase, although also characterized with
inversion of the motion, did not require further investigation
of the constraints. It has been reported that respiratory mo-
tion tends to be asymmetrical,45,47 spending more time near
end-exhale than end-inhale. Phase bins near end-exhale will
represent relatively small deformation with respect to each
other. Uniformly spaced control points with respect to these
bins will lead to a spatially higher control point density near
end-exhale, allowing a more accurate representation, even in
the presence of smoothness constraints. This is confirmed by
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FIG. 5. Box and whisker plots of TRE for patients 2 for which landmarks were available in all frames, using m=3 and s=2 frames. �a� The combined
registration errors for the entire 4D registration. Each box is drawn based on 900 landmarks. �b� TRE per phase bin. For each frame, the registration error is
estimated from 100 landmarks. The 50% phase bin corresponds to the reference frame.
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FIG. 6. Motion fields in the presence of simulated artifacts: the top row
corresponds to the original 4D CT acquisition of patient 2, the bottom row
corresponds to the modified sequence fa in which an artifact was inserted at
position ia. �a� Coronal view of the motion field obtained for Ts and �b�
corresponding view of the motion field obtained for Tst

� using m=3 and
s=2 frames.

(a) (b)

FIG. 7. Three examples of motion fields in the presence of real artifacts. �a�
Motion fields obtained for Ts and �b� Tst

� using m=3 and s=2 frames.
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degrees of freedom at equal control point spacing. We there-
fore also performed a comparison between both models at
equal degrees of freedom. The global performance of Tt was
still significantly worse �p�4�10−2� compared to the cor-
responding Tt

� models �see Table I for Tt
� with two control

points less than Tt�. In addition, despite the global increase in
degrees of freedom, the high fitting residual at end-inhale
remained for Tt.

This confirms that a local increase in control points �as is
the case for the piecewise smooth model Tt

�� is more efficient
in terms of number of parameters, to obtain an accurate rep-
resentation throughout the respiratory cycle. It should not be
excluded that other piecewise models can be found, requiring
less degrees of freedom, while obtaining a similar accuracy.
These could consist in making sensible assumptions about
the trajectory near end-inhale that can be translated into con-

straints, eliminating one or both of the additional degrees of
freedom.

The end-exhale phase, although also characterized with
inversion of the motion, did not require further investigation
of the constraints. It has been reported that respiratory mo-
tion tends to be asymmetrical,45,47 spending more time near
end-exhale than end-inhale. Phase bins near end-exhale will
represent relatively small deformation with respect to each
other. Uniformly spaced control points with respect to these
bins will lead to a spatially higher control point density near
end-exhale, allowing a more accurate representation, even in
the presence of smoothness constraints. This is confirmed by
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FIG. 6. Motion fields in the presence of simulated artifacts: the top row
corresponds to the original 4D CT acquisition of patient 2, the bottom row
corresponds to the modified sequence fa in which an artifact was inserted at
position ia. �a� Coronal view of the motion field obtained for Ts and �b�
corresponding view of the motion field obtained for Tst

� using m=3 and
s=2 frames.
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FIG. 7. Three examples of motion fields in the presence of real artifacts. �a�
Motion fields obtained for Ts and �b� Tst

� using m=3 and s=2 frames.
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Figure 2.2: Motion vector fields (blue) estimated with spatial only (left) and spatiotemporal
(right) regularizations on simulated (top) and real (bottom) CT images with artifacts due to
irregular breathing. The range ia indicates the height where artifacts were simulated. Figures
adapted from [J64].

motion in the moving region by setting the voxel values of the less moving region to a constant
and conversely for estimating motion in the less moving region.

Jef Vandemeulebroucke improved the usability of this solution by automating the segmenta-
tion of this motion mask [J59]. The segmentation is based on the segmentation of anatomical
features: the bones, the lungs and the patient envelope. These features are clearly visible on
CT images and, therefore, relatively easy to segment automatically. From these, the motion
mask is obtained using a monitored level set which maximizes the coverage of the lungs without
overlapping bones and until it reaches a point in front of the patient abdomen. The extracted
motion masks were validated like in [24], by evaluating the registration accuracy with the same
two-step registration procedure, which was significantly better than without mask, from 4.8 mm
to 2.6 mm for all points within 10 mm of the chest wall (757 landmarks manually annotated
in 8 patients). This work also shows that allowing a discontinuity for sliding motion along the
motion mask enables to increase the regularity elsewhere with little impact on the TRE, which
is not the case without motion mask (see, e.g., Figure 6 of [J59]).

breathing, where the costal and diaphragmatic part of the pa-

rietal pleura meet.18

During respiration, the breathing muscles—mainly the di-

aphragm and intercostal muscles—contract, which causes

the thoracic cage and subsequently the lungs to expand. As

the lungs inflate inside the thorax, sliding can occur between

the membranes. At the lung-to-mediastinum interface, slid-

ing is limited due to the entry of the vessels, bronchi, and

nerves. These, along with the heart and other structures in

the mediastinum, tend to move with the lung, though usually

with reduced amplitude. At the interface of the lungs with

the chest wall, the pleurae are free to slide with respect to

each other. The inferior, posterior part of the lungs near the

diaphragm tends to exhibit the largest sliding. At the anterior

side of the lung-to-chest interface, sliding motion is small as

the diaphragm is attached to the sternum, limiting the extent

of motion (see Gray,19 chapter IV.6.c). Below the dia-

phragm, the presence of the parietal pleura allows sliding of

the liver and upper abdomen against the chest wall. Figure 4

shows sagittal views of the exhale and inhale images in color

overlay, allowing to identify the regions where strong sliding

motion occurs.

We define the sought motion mask as follows (Fig. 1). To

preserve sliding motion, the segmentation should provide a

separation between the lungs and the chest wall. At the

medial lung interface, there is a continuous and smooth tran-

sition of motion, making it more convenient to consider the

mediastinum together with the lungs. Below the diaphragm,

the segmentation should continue downwards. Though the

extent of the costodiaphragmatic recess is usually not visible

on CT images, it should at least reach below the diaphragm

position of the inhale frame, thereby including the liver and

upper abdomen. The strong correlation of the motion of this

region with the diaphragm and lower lungs justifies this

choice. Further below the diaphragm, the motion mask is not

defined and should therefore not be used for registering the

entire abdomen.

II.B. Motion mask extraction

The core of the method is based on the level set frame-

work,20 from which we exploit the intrinsic smoothing prop-

erty, which allows to include geometric priors in the

definition of the motion mask. The conventional level set

segmentation problem is simplified by applying it to binary

images. The available image information is strongly reduced

prior to processing, only retaining clear anatomical struc-

tures with respect to which we define the location of the

segmentation.

We can thus divide the method for obtaining the motion

mask into two parts (Fig. 2). First, a preprocessing step is per-

formed during which the CT images are reduced to binary

label images containing only the relevant anatomical features.

FIG. 1. Overview of the relevant anatomy of the thorax. The dashed line

defines the contour of the motion mask.

FIG. 2. Overview of the proposed method for extracting the motion mask. The figure shows sagittal views through the right lung of the results obtained for patient

1. The top row shows the input CT image, and a 3D surface rendering of the corresponding motion mask obtained using the method. The second row shows the

label images, obtained by extracting anatomical features from the CT image. This yields the bony anatomy, the patient body and the lungs. The label images are

then combined (þ) and used to constrain (�) the evolving interface during consecutive level set processing steps, the results of which are shown in the bottom

row. The current mask (white) is shown in overlay with the edges of the extracted features (black). From left to right are shown: the centered ellipsoid used to ini-

tialize the level set, the contour after reaching the detection point just in front of the anterior patient-to-air interface (the detection point—located in the center sag-

ittal plane—projected onto this plane, would be located in the lower right corner of the image), the contour after having covered 95% of the lungs, and the final

motion mask.
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Figure 3. Example of a pair of CT images used for the evaluation of the proposed method. The
end-inhale image, in green, is superimposed on the end-exhale image, in purple.

Figure 4. The CT image of a thorax with the motion mask (green) that encompasses the organs
with the largest displacement during breathing.

Respiration-correlated reconstruction into ten 3D CT images was obtained by simultaneous
recording of a respiratory trace using the Pneumo Chest bellows (Lafayette Instrument,
Lafayette, IN). The resolution was approximately 1 × 1 × 2 mm3 and 512 × 512 × 150
voxels (Vandemeulebroucke et al 2011).

The next ten patients were obtained from the DIR-labs (DL) database www.dir-lab.com
Castillo et al (2009, 2010). Their spatial resolution was between 0.97 × 0.97 × 2.5 and
1.16 × 1.16 × 2.5 mm3.

3.2. Motion mask segmentation

For each patient the motion mask was extracted on the end-exhale image (figures 3 and 4). The
motion mask was first described by Wu et al and divides the thorax in two sliding regions (Wu
et al 2008). The motion mask � encompasses the organs with the largest displacements during

Figure 2.3: Schematic representation of the anatomy of the thorax focused on the pleural cavity
(left) and an example of motion mask (green) overlaid on a coronal slice of a patient CT image.
Figures adapted from [J59] (left) and [J58] (right).

Use of the motion mask in non-rigid registration was further investigated by Vivien Delmon
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in [J58]. The goal of this work was to replace the above-described two-step registration of pairs
of images by a single registration while accounting for the motion mask. To this end, the motion
was decomposed in a fully smooth motion orthogonal to the sliding interface, represented by B-
splines, and the rest, which is smooth everywhere except along the motion mask, represented by
two sets of B-splines for each side of the interface (Figure 2.4). Without going into the details of
the implementation, the number of parameters (i.e., of B-spline coefficients) actually used to build
the spatial transformation is the same as usual except for control points adjacent to the motion
mask (the nearest ones for order zero B-splines, the two nearest ones for order one B-splines,
etc.) for which they are doubled for the non-orthogonal directions. The resulting algorithm has
several advantages, the main ones being that : (1) enforcing a smooth deformation in the direction
orthogonal is a better representation of sliding and (2) when registering a pair of images, only the
mask of the fixed image is required, therefore removing the risk of inconsistent masks. Similarly
to the constraints imposed by a smooth spatiotemporal registration (section 2.1), the sliding
constraint did not improve the TRE: on 16 pairs of end-exhale and end-inhale CT images of two
open datasets [25] the TRE increased from 1.43 mm with the two-step registration to 1.49 mm
with the new method. But the plausibility of the registration was improved with a better
consistency of the motion mask warped with the inner and the outer spatial transformations
(37% less gaps and overlaps with the new method).

1306 V Delmon et al

Figure 2. Local bases {N(l(i)),U(l(i)),V (l(i))} superimposed on the corresponding sagittal CT
slice of a thorax. N, U and V are in green, red and blue, respectively.

because the rest of the transform is separated into two independent B-spline transforms, B�

and B�.

2.3. Parameterization

The B-spline transforms BN , B� and B� are defined on the same set of control points with
their respective B-spline coefficients cN

i , c�
i , c�

i ∈ R3, e.g., for B�,

B�(x) =
∑
i∈J

c�
i βi(x), (2)

with x ∈ � ∪ �, i ∈ J ⊂ Z3 the spatial indices of the B-spline control points and βi the tensor
product of one-dimensional cubic B-spline kernels, βi = ∏3

j β
j
i .

Each B-spline transform must be constrained to represent motion in selected directions
only. This is achieved by constraining their coefficients ci to lie in a local orthonormal base, the
first direction of which is the normal direction, formally denoted N : � ∪ � → R3 (figure 2).
The computation of this local base is detailed in the following section. The coefficients ci

represent the 3D displacement of the control point i at position l(i) with l : J �→ � ∪ �

the function returning the initial location of each control point. We assumed that if control
points move in the normal direction, the resulting deformation is in the normal direction, i.e.
cN

i ×N(l(i)) = 0 ⇒ BN (x)×N(x) = 0,∀i ∈ J,∀x ∈ �∪�. This assumption is only valid for
planar sliding interfaces. This is not the case here but the sliding interface is sufficiently smooth
to minimize the effect of the resulting approximation. In order to have cN

i × N(l(i)) = 0, a
single parameter pN

i ∈ R is sufficient to determine the 3D vector cN
i with

cN
i = pN

i N(l(i)) (3)

Similarly, the control points of B� and B� are constrained to vary in a plane orthogonal to
N, which is supported by the rest of the local orthonormal base defined in each control point
(figure 2). For these B-spline transforms two parameters are necessary for each control points.
The first one is multiplied by the second vector of the local orthonormal base, U, and the
second by the third vector of the local orthonormal base, V , giving{

c�
i = p�,U

i U(l(i)) + p�,V
i V (l(i))

c�
i = p�,U

i U(l(i)) + p�,V
i V (l(i)).

(4)

Solving the registration problem with the proposed mapping function to represent sliding
motion comes down to estimating the optimal parameters pN

i , p�,U
i , p�,V

i , p�,U
i , and

Figure 2.4: Illustration of local bases used by [J58] for registering pairs of images in one step
while accounting for sliding. Motion is the linear combination of a smooth motion in the direction
of the green arrows and discontinuous motion along the motion mask (but smooth elsewhere)
along the blue and the red arrows. Figure adapted from [J58].

2.3 Motion estimation from cone-beam projections

Interestingly, the main goal of Jef Vandemeulebroucke and Vivien Delmon during their PhD
fellowships was to estimate non-rigid breathing motion from 2D cone-beam projections using a
prior 3D CT (a breathhold CT image or a frame of a 4D CT image). Instead, both have mainly
contributed to improving the modeling of breathing motion first and have finalized their work
with some preliminary results on 2D/3D registration which were never published in international
journals. Their contribution has only been published in a conference paper [C27] and in their
PhD theses [4, S6]. The forward problem they address is a classical registration problem which
can be easily described by Jamie McClelland’s framework [26]

p̂ = arg min
p

∑

θ

C(µprior, gθ,Φθ) (2.1)
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Chapter 2. Breathing motion estimation for motion-compensated cone-beam CT reconstruction

where p are the parameters of the motion model which allow to compute the 3D patient motion
Φθ between the prior 3D CT image µprior to time θ in combination with a breathing signal
(extracted from the projections using [7], see subsection 1.3.1), C is the correlation coefficient
used as a similarity metric to compare the measured cone-beam projections gθ and the digitally
reconstructed radiography (DRR) of µprior (Equation 1.1) and the other notations are described
in subsection 1.3.2. Jef Vandemeulebroucke has derived the gradient of this cost function with
respect to the sought parameters p. His preliminary results have been further validated on
simulated and real data by Vivien Delmon. On real data, the validation is even more challenging
than with regular 3D/3D non-rigid registration because it is difficult to annotate landmarks
on cone-beam projections. In our opinion, a convincing proof of accurate motion estimation
is to integrate the estimated motion in motion-compensated reconstruction Equation 1.3. We
have seen in patients which had changed their breathing motion cycles during the cone-beam
acquisition an improvement in image quality (e.g., sharpness of moving structures) when re-
estimating the motion instead of using the same cyclic motion as the one obtained from the prior
(subsection 1.3.2), as illustrated in Figure 2.5.

Figure 1. Cone-beam motion compensated reconstructions with the FDK algorithm, assuming
no motion (left), with an a priori motion (middle) and with the in-room motion (right)

Motion compensated reconstruction To assess the quality of the deformation fields estimated
with the proposed method on real data, we registered the end-exhale phase of a 4D planning CT
with the 10 phases of a real CB acquisition. The average time per iteration of our unoptimized
implementation was 35 min and we used 50 iterations per phase. The amplitude of the found
breathing motion was 32 mm around the diaphragm. Figure 1 shows the motion compensated
reconstructions of this CBCT without motion compensation, an a priori motion extracted
from the 4D planning CT [12], and the motion of the day found with the proposed method.
On this selected example, the reconstruction compensated with an a priori model is visually
better than the reconstruction assuming no motion but we can still see blurred structures. The
proposed method corrects most of these blurred structures and reveal some bronchi that where
not distinguishable with the previous method.

5. Discussion
These results show the potential benefits of using the motion information contained in the CB
acquisition. In this study, it was applied to motion compensated CB reconstruction, but it can
also serve to adapt treatment, to derive population-based treatment margins, etc. By computing
an independent deformation for each phase, the proposed method does not enforce the temporal
smoothness on the sought deformation field. It would be interesting to evaluate the improvement
that can be brought by a temporal regularization. The signal extraction is also a concern, the
quality of the motion compensated reconstructions that have been made using the proposed
method were highly correlated to the quality of this signal.

6. Conclusion
We have proposed a 2D/3D registration method that extracts motion information from limited
projection views. The method was quantitatively evaluated on simulated data and qualitatively
evaluated on real cone-beam acquisitions. Motion compensated reconstruction using the motion
estimated from cone-beam projections showed an improved image quality over non-compensated
reconstruction and motion compensated reconstruciton using an a priori motion model.
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Figure 2.5: Cone-beam CT images of the patient with different FDK reconstructions: without
motion compensation (left), with a prior motion model of the breathing cycle (middle) and with
an estimate of the breathing cycle estimated by registering 2D cone-beam projections on a prior
3D CT image. Figure re-printed from [C27].

The developments on this 2D/3D registration have been further developed by Pauline Mouches
[M2] under the co-supervision of Cyril Mory of CREATIS, Jamie McClelland of University college
London (UCL) and me. She has used a more elaborate model [27] which uses the phase and the
derivative of the breathing signals to account for breathing irregularities during the acquisition.
Our first results were encouraging and the investigations are still on-going in collaboration with
this group [A7].

2.4 Conclusions

My early investigations of motion-compensated cone-beam CT have led to investigations at
CREATIS on breathing motion modeling and estimation. I have reviewed our developments on
motion modeling and outlined the challenges in validating non-rigid registration. The problem
of 2D/3D registration bridges non-rigid registration with a tomographic problem. Including
the estimated motion in MCFDK is a good motivation for image quality improvement and
Jamie McClelland et al have recently published a “framework unifying image registration and
respiratory motion models and incorporating image reconstruction” [26]. I am hopeful that these
developments will move forward, e.g., in collaboration with this group.
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3
Regularized iterative 4D cone-beam CT

The solution explored in the previous chapter, MCFDK (Equation 1.3), is not truly a 4D cone-
beam CT reconstruction method. It corrects for motion artifacts from an estimate of this motion.
Under the strong assumption that motion only deforms the spatial distribution (Equation 1.2),
one can reconstruct the 3D cone-beam CT image of the patient at the reference position, not a
4D cone-beam CT image. To obtain the 4D cone-beam CT image of the patient after reconstruc-
tion, one can simply warp the images using the motion estimate. Therefore, it cannot capture
changes in the linear attenuation coefficients of the patient tissues during the acquisition. In
some situations, this solution is not applicable.

An alternative is to handle the problem without prior image or motion, using the respiratory
signal only and assuming periodicity. If one simply sorts the acquired projections in a few bins
according to the breathing phase, the difficulty is the reconstruction of each 3D frame of a
4D cone-beam CT image from each bin of projections. This few-view reconstruction problem
is probably as old as CT, but it has seen a renewed interest in the past decade inspired by
compressive sensing [28], e.g., for 4D cone-beam CT [29]. The key challenge here is to obtain
4D cone-beam CT images from acquisitions designed for 3D cone-beam CT, i.e., with a number
of projections insufficient for reconstructing with a conventional FBP algorithm such as FDK
[14]. This chapter reviews the contributions of Cyril Mory on this topic during his PhD, co-
supervised by Françoise Peyrin, Philippe Douek, Loïc Boussel, Vincent Auvray and me, and
postdoc fellowships, under my supervision.

3.1 Cardiac C-arm CT

The PhD thesis of Cyril Mory [S5], funded by Philips, dealt with cardiac motion during cone-
beam CT acquisitions with a C-arm scanner (Figure 1.1). This device is used by surgeons in
emergency situations (e.g., an infarctus) in a planar mode. Tomographic acquisitions are not
the standard of care, but it is foreseen that a cone-beam CT image acquired during or after the
intervention could be useful, e.g., to segment the infarcted region of the myocardium using late
enhancement [30]. However, cardiac motion is detrimental to image quality. In the mentioned
emergency situations, there is generally no prior image on which motion could be estimated,
preventing the use of motion-compensated cone-beam CT.

The work of Cyril Mory was initially inspired by the PhD thesis of Fabien Momey [31] who
reformulated the problem as a 4D iterative reconstruction problem with a smooth approximation
of a 4D total variation (TV) constraint. Briefly, TV is the L1 norm of the gradient’s magnitude
[32] and adding a TV constraint during minimization of nD signals (with n > 1) promotes
solutions which are piecewise constant, i.e., solutions which have mainly null spatial gradient. TV
(or smooth approximations of TV) has become the most widely used regularization in iterative
CT reconstruction.
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Part I. Motion in cone-beam computed tomography

Cyril Mory’s investigations led to the development of a new algorithm that he named RecOn-
structiOn using Spatial and TEmporal Regularization (ROOSTER), which alternates between
the minimization of a data attachment term (using a least squares conjugate gradient minimiza-
tion) and four regularization steps: positivity, averaging time in pre-identified static parts of
the anatomy, 3D TV denoising in space and 1D TV denoising in time. One can express the
problem with a single cost function [33], but alternating between steps proved to be more prac-
tical with faster convergence and easier tuning of the regularization parameters. Convergence
is not proven, but the article demonstrates that “if the algorithm has at least one fixed point,
it converges to one of its fixed points”. The resulting algorithm gave better image quality than
state-of-the-art algorithms, e.g., prior image constrained compressed sensing (PICCS) [34], as
illustrated in Figure 3.1.

021903-8 Mory et al.: Cardiac C-arm computed tomography using the 4DROOSTER method 021903-8

TABLE III. Parameters used for the reconstructions of the clinical case with ECG-gated SART, PICCS, and 4D
ROOSTER.

Parameter SART PICCS 4D ROOSTER

Size (in voxels) 284 × 216 × 284 284 × 216 × 284 284 × 216 × 284
Voxel spacing (in mm) 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1
Main loop iterations 100 30 30

SART-specific parameters
SART relaxation parameter 0.5
Gating window width (% of cardiac cycle) 20

PICCS-specific parameters
Alpha 0.5
Lambda 500
SART relaxation parameter 0.5
Nested gradient descent iterations 20
Gradient descent step 0.002
Gating window width (% of cardiac cycle) 20

4D ROOSTER-specific parameters
lambda_space 10000
lambda_time 1000
Nested iterations for spatial TV 10
Nested iterations for temporal TV 10
Gradient descent step for spatial TV 0.0002
Gradient descent step for temporal TV 0.0002

units: attenuations are expressed in mm−1. The parameters
used for the reconstructions of this section are listed in
Table III.

Figure 8 shows reconstructions of the end systolic and end
diastolic phases of the first patient’s heart, on a long axis cut
of the left ventricle.

Figure 9 shows the reconstructions of the end systolic and
end diastolic phases of the first patient’s heart, on a short
axis cut. In both Figs. 8 and 9, the 4D ROOSTER results are
sharper than the PICCS ones, and far less noisy than the ECG-
gated SART results. The border between the endocardium and
the interior of the left ventricle, pointed out by an arrow, is
easy to identify on the 4D ROOSTER results while it is hard
to determine with precision on the PICCS or SART results.

In the PICCS reconstructions, some streak artifacts remain
and cause variations of the attenuation in regions that should
be static. They can be observed in Fig. 8, in the top left cor-
ner of the PICCS reconstructions, which differ a lot while
they should not. However, our main objective is to obtain a
good reconstruction inside the heart region. From this stand-
point, Figure 10 is more relevant. It shows the difference be-
tween two consecutive cardiac phases for both PICCS and 4D
ROOSTER, and highlights the temporal consistency of 4D
ROOSTER reconstructions both outside and inside the heart.

Figures 11 and 12 show the reconstructions of the second
patient, in long axis cut for Fig. 11 and in short axis cut for
Fig. 12. Because patient 2 has a lower heart rhythm than pa-
tient 1, the undersampling problem is more acute, and the re-
constructed images are less sharp. The arrow in Fig. 11 points
a portion of the border between blood and myocardium where
sharpness differs a lot between SART, PICCS, and ROOSTER
results.

A quantitative evaluation of sharpness using the methods
described in Sec. 2.F is presented in Table IV. SART re-
constructions are noisier and blurrier than PICCS images,
which in turn are noisier and blurrier than 4D ROOSTER
reconstructions.

FIG. 8. Long axis cuts of the left ventricle in ECG-gated SART, PICCS, and
4D ROOSTER reconstructions of patient 1. The display window is [0.018;
0.042].

Medical Physics, Vol. 41, No. 2, February 2014

Figure 3.1: Long axis cut of the left ventricle of the end systole (left) and end diastole (right)
frames of 4D cone-beam CT images reconstructed with PICCS [34] (top) and ROOSTER (bot-
tom) from projections acquired on a C-arm cone-beam CT scanner. Figure adapted from [J51].

3.2 Cone-beam CT for image-guided radiotherapy

A natural application of the ROOSTER algorithm is image-guided radiotherapy for which
respiration-correlated 4D cone-beam CT was initially developped [8]. Cyril Mory investigated
this application in a postdoctoral fellowship funded by a public-private partnership between
the IBA company and the Université Catholique de Louvain-La-Neuve. Compared to MCFDK,
ROOSTER has the advantage of avoiding the need for a prior motion model and to provide the
variations of the linear attenuation coefficients in time. However, the temporal regularization
rapidly proved to be more detrimental to image quality than in cardiac imaging, probably be-
cause the contrast between anatomical structures is larger in the lungs than in the heart. This
problem lead to the development of a new reconstruction algorithm, motion-aware ROOSTER
(MA-ROOSTER) [J37].

MA-ROOSTER also makes use of a prior motion model to modify the temporal TV regu-
larization of ROOSTER: the 4D cone-beam CT image is warped before temporal regularization
and warped back after regularization. If the prior model perfectly compensates for the motion
of 4D cone-beam CT, each voxel of the motion-compensated image contains the same tissue and
displays only the temporal variations of its linear attenuation coefficient. This is equivalent to
regularizing in time along the trajectories of the tissues instead of regularizing in time along the
same spatial positions, which we know do not contain the same tissues due to breathing motion.
MA-ROOSTER is therefore an intermediate algorithm between ROOSTER and MCFDK. MA-
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Chapter 3. Regularized iterative 4D cone-beam CT

ROOSTER clearly improved the image quality of ROOSTER and other unregularized iterative
4D cone-beam CT reconstruction algorithms (Figure 3.2).

6870

along time. In MC-FDK, when the DVF points outside the field of view, the projection data 
is assumed to be null. Fewer back-projected rays reach the inside of the FOV, which results in 
an attenuation that is lower than expected. Patient 1 also has metal artifacts, visible mostly in 
the coronal view, caused by a tracheotomy device. Note that cone-beam artifacts can also be 
observed at the top of the reconstruction of both patients, although these do not interfere with 
motion compensation.

3.2.2.  Patient 2.  Figure 11 shows sagittal and coronal slices of the reconstructions obtained 
using 4D FDK, 4D CG, ROOSTER and MA-ROOSTER on patient 2, in end-inhale (rows 1 
and 3) and end-exhale (rows 2 and 4) phases. MC-FDK shows the end-exhale.

The comparison with ROOSTER yields the same results as for patient 1. On this patient, 
however, MA-ROOSTER achieves a slightly higher contrast than MC-FDK on small struc-
tures, especially below the tumor in the sagittal view, but has a slightly lower contrast 
on the tumor itself. Even with the red cross as a reference spot, it is difficult to notice a 
change in motion amplitude between the various methods. However, this time, the motion 
estimation results are clearly in favor of MA-ROOSTER, as shown in figure 12, which is 
similar to figure 10 but for patient 2. The reference motion amplitude, measured on both 

Figure 9.  Slices through reconstructions of patient 1. Left panels (from left to right): 
4D-FDK, 4D CG, ROOSTER and MA-ROOSTER. Right panels: MC-FDK of the end-
exhale phase. The red cross marks a fixed spot, approximately at the center of the tumor 
in the end-inhale position, to ease visual evaluation of the motion’s amplitude.

C Mory and S Rit﻿Phys. Med. Biol. 61 (2016) 6856

Figure 3.2: Sagittal and coronal slices of 4D cone-beam CT images reconstructed with sev-
eral methods (FDK, CG, ROOSTER and MA-ROOSTER) and 3D MCFDK. Figure re-printed
from [J37].

The image quality of one frame is similar to MCFDK, but we proved that MA-ROOSTER can
show changes that MCFDK cannot capture. First, we showed that MA-ROOSTER reconstructs
a 4D image which displays a motion different from the prior and closer to the actual motion of the
patient. Second, we showed that MA-ROOSTER can recover variations of the tissue densities
along the breathing cycle by looking at the average lung density, which is known to be larger at
end-exhale than at end-inhale. The pattern of variation was similar to that of the 4D CT used
for treatment planning.

3.3 Conclusions

The PhD thesis of Cyril Mory lead to a large effort on 4D iterative reconstruction with appli-
cations in cardiology, which was continued during a postdoctoral fellowship with applications in
radiotherapy. His efforts lead to state-of-the-art and original algorithms which enriched the RTK
[C29]. These algorithms have been evaluated in the recent sparse view reconstruction (SPARE)
challenge comparing several such techniques, including MCFDK and MA-ROOSTER, and the
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Part I. Motion in cone-beam computed tomography

latter was one of the best performing algorithms [J14]. Since MA-ROOSTER is the outcome of
many years of work of Cyril Mory on breathing motion compensation, a copy of the corresponding
article is provided in chapter A.

We are currently investigating the applications of those techniques to single photon emission
computed tomography (SPECT) with Antoine Robert, PhD student co-supervised by David
Sarrut and funded by the Kitware company (https://www.kitware.com/). This project opens
a completely new field for me, emission tomography, and will allow me to apply the techniques
developed for x-ray CT to another modality, SPECT. The collaboration with Kitware is the
latest result of my involvement in RTK as Kitware develops its back bone, the insight toolkit
(ITK).
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4
Region-of-interest reconstruction in the presence of motion

.
The backbone of my research has been tomographic reconstruction for CT since the begin-

ning of my career. However, my PhD supervisors, David Sarrut and Serge Miguet, were not
specialists of this field and I have developed external collaborations with a regional group of
applied mathematicians, specialists of this topic, mainly led by Rolf Clackdoyle (at the Labora-
toire Hubert Curien (LHC) in Saint-Étienne at the time, now at the Techniques de l’Ingénierie
Médicale et de la Complexité (TIMC) laboratory in Grenoble) and Laurent Desbat (at TIMC
in Grenoble). The collaboration was initially centered on my PhD subject and led to the main
resulting publication [J65], but it was clear that there were other synergies in our works.

Rolf Clackdoyle has been a major actor of new developments in analytical ROI tomography
[35]. In ROI tomography, one seeks to reconstruct CT images from laterally truncated projec-
tions, i.e., missing data in the direction orthogonal to the axis of rotation. He has co-authored
several new algorithms that can analytically handle lateral truncation, which seemed impossible
in the previous century. A natural question that arose given our respective investigations was
the effect of motion on ROI tomography and how can one correct for it in analytical algorithms.
We have co-supervised Jan Hoskovec on this topic from 2013 to 2016, a PhD student funded
by the région Rhône-Alpes. I present here the main results that we obtained. All results were
obtained in 2D on simulated data with a fan-beam geometry.

4.1 Differentiated backprojection

The reconstruction algorithm which has been used is summarized in a few words, without equa-
tions. It is based on the two-step Hilbert transform method [36] for reconstruction from 2D
parallel projections. The key idea is to split the ramp filter (Equation 1.4) in a derivative and a
Hilbert filter. Initially, Noo et al took the spatial derivative of each 1D projection, backprojected
the resulting sinogram and inverted the resulting Hilbert transform in the image space. Taking
the derivative is a local operation so truncation is not a problem for this operation. After back-
projection of the derivative, also known as the differentiated backprojection (DBP), all points
that are seen by the detector at any projection angle on a π arc contain the Hilbert transform
of the sought function. Using the (required) knowledge of the envelope of the scanned object,
the sought function can be reconstructed along all segments for which the Hilbert transform is
known at any point with end points outside the object envelope using the finite inverse Hilbert
transform. In other words, all segments with end points outside the object envelope and which
are seen by the detector at any projection angle can be reconstructed with this technique.

The work of Jan Hoskovec is based on a subsequent development of Zeng [37] who modified
the order of the derivative and the backprojection. Mathematically, this change requires two
weighted backprojections, one by the sinus of the projection angle and the other by its cosinus.
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The assumption behind the use of this algorithm was that starting with the backprojection would
allow to account for motion in the first step while keeping the other steps, the derivative and the
finite inverse Hilbert, unchanged.

4.2 ROI reconstruction with motion in the fan-beam

The first approach followed by Jan Hoskovec was limited to object motion which would move
the fan-beam at each projection, i.e., the sheaf of x-ray lines intersecting at the source position,
to another sheaf of lines intersecting at the same source position, as previously proposed by [12].
Such motion leads to non-rigid motion, potentially impressive as shown in Figure 4.1, but for
which a simple resampling of each projection allows to recover the sinogram of a the scanned
object at a chosen position.

Figure 4. The deformed phantom visualized at different moments during the measurement. Due to different angular conventions here and in [11], the motion
was parameterized by (β − π/2) mod 2π instead of just β. From left to right: β = 90◦ (reference time), β = 210◦, β = 10◦, β = 89◦.

Figure 5. Top row: Reconstructions obtained from non-truncated data. Ratio of the phantom half-axes to FOV radius 4:3:5. Bottom row: Reconstructions
from truncated data. Ratio of the phantom half-axes to FOV radius 12:9:10. Columns from left to right: 1. Reconstructions from static projections. Gray level
range: [1.0,1.06]. 2. Reconstructions obtained from applying the static algorithm to dynamic projections. Gray level range: [0.8,1.2]. 3. Motion compensated
reconstructions from dynamic projections. Gray level range: [1.0,1.06]. 4. Difference between static and motion-compensated reconstruction (column 1 -
column 3). Gray level range: [-0.01,0.01].

Figure 4.1: Shepp Logan phantom deformed by motion in the fan-beam, as described in sec-
tion 4.2. Figure re-printed from [C23].

In this work, Jan Hoskovec modified the algorithm of Zeng [37] to compensate for motion
during the backprojection of each cone-beam projection. The other steps were kept unchanged
and the algorithm can therefore accurately reconstruct any segment with end points outside the
object envelope and which is visible in all projections, despite the object motion.

4.3 ROI reconstruction with piecewise linear translations

In a second step [J40], Jan Hoskovec investigated the reconstruction of an object from projections
acquired during piecewise translations of the object, as illustrated in the left part of Figure 4.2.
This motion might seem simpler since it is rigid, but it modifies the source trajectory and
analytical compensation is actually more challenging. The problem can then be reformulated
as a static reconstruction with a source trajectory modified by the motion, as illustrated in the
right part of Figure 4.2.

The contribution of Jan Hoskovec’s work was to analyze both motion and truncation to
calculate where all lines are measured, a necessary condition for reconstruction of a region, and
to calculate the Hilbert transform in these points. The calculation handles trajectories modified
by the motion which are discontinuous due to truncation, unlike previous solutions based on
chord techniques [38]. The Hilbert transform can then be inverted with existing techniques and
the enlargement of the region where the Hilbert transform is known can significantly increase
the size of the reconstructible region.

4.4 Conclusions

ROI reconstruction of a moving object has been addressed in two dimensions during the PhD
investigations of Jan Hoskovec. The extension to three dimensions has not been addressed
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Fig. 3. Left: FOV and a schematic illustration of Motion 1 (displacement vectors �Δk and angles βk). Middle: Virtual trajectory and different zones of the FOV
obtained with the first motion. The static circular FOV is also superimposed for comparison with the dynamic FOV. The crosses at the virtual trajectory mark
angles βk , where translations begin and end. The different colors in the background image mean the following. Black: No truncation occurred for points within
this region. Dark gray: Points covered for a continuous segment of length π or more. Only these two first categories of points could be reconstructed using a
chord-based method. Light gray: Projection data redundancy allowed the reconstruction from multiple shorter segments of coverage. White: not a Hilbert point
(truncation too large). Right: Examples of local virtual trajectories for particular points belonging to the four possible truncation scenarios. From top left: Black
point, dark gray point, light gray point, white point.

TABLE II
PARAMETERS OF THE FIRST MOTION USED IN THE SIMULATIONS

TABLE III
PARAMETERS OF THE SECOND MOTION USED IN THE SIMULATIONS

added to the projection data. Second, we simulated the case
of badly estimated displacements. The reconstruction algo-
rithm was still given the parameters listed in Table III, but
the actual displacements occurring during the simulation of
the sinogram were slightly different. To the start-stop angles
β1 through β6, a random Gaussian error with standard devia-
tion of 1◦ was added. To the nonzero vectors among �Δk, small
vectors were added, with randomly chosen directions and with
magnitudes selected from a gaussian distribution with standard
deviation 0.001R which was roughly 1% to 2% of the individ-
ual displacements. The values of these “true” simulated motion
parameters are listed Table III, whereas the “misestimated”
values in Table IV were used for the reconstruction algorithm.

Fig. 4. Top: Representation of Motion 2. Bottom: Virtual trajectory, static FOV
and different zones of the FOV obtained with the second motion. The color
code used is the same as with the first motion on Fig. 3.

The Hilbert filtering direction was chosen along the hori-
zontal axis, which corresponds to the angle φ = 0. The recon-
structible area is a horizontal band defined by the map of
Hilbert points (see Section III-A) and the object support, and
is represented in the next section by horizontal dotted lines.

Figure 4.2: Left: source trajectory and motions vectors of an object. Right: corresponding
source trajectory in the object frame with a colored partition of space. The points in the black
region are always visible in the projections and the Hilbert transform can be computed with
conventional DBP from all source positions. The points in the dark gray region are covered by
a continuous segment of at least π and their Hilbert transform can be computed with a chord
technique [38]. In the light gray region, the Hilbert transform can be computed with the method
in [J40]. The points in white cannot be reconstructed due to insufficient data. Figure re-printed
from [J40].

and is still an open challenge given the complexity of 3D ROI which can be understood by
looking at the reconstruction from static helical CT alone, a problem that was also investigated
during the postdoctoral fellowship of Fabien Momey with the same collaborators [J34]. Current
investigations of Aurélien Coussat, a PhD student who is co-supervised by Jean Michel Létang
and me in the context of the same collaboration, address whether equivalent image quality can be
obtained with ROI reconstruction of a static object and, if yes, whether dose reduction is possible.
Another PhD student, Mathurin Charles, should start in fall 2020 a project co-supervised by
Rolf Clackdoyle on ROI reconstruction of a static object using a different approach known as
the virtual fan-beam reconstruction.
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5
Motion estimation and geometric calibration using DCC

According to [39], DCC, “also known as range conditions, refer to mathematical relationships
between projections”. They have been used to correct many artifacts which prevent accurate
CT reconstruction due to, e.g., beam-hardening and scatter. Rolf Clackdoyle has been actively
developping new DCC in the past decade [40, 41, 42, J35, 39]. This chapter describes two
contributions using DCC. The first one is the detection of motion, which was investigated in the
context of Jan Hoskovec’s PhD thesis. The second one is the calibration of the geometry of a
micro CT scanner, which was investigated by Jérôme Lesaint, co-supervised by Rolf Clackdoyle
and Laurent Desbat, with whom I developed most of his experiments on simulated and real data.

5.1 Motion detection

An interesting set of DCC is the necessary and sufficient DCC for fan-beam projections along a
line [40]. These DCC state that “integrals of the fan-beam projections multiplied by a certain
function will be a polynomial in the trajectory variable”. This source trajectory corresponds to
some tomosynthesis systems, but it does not correspond to clinical x-ray CT scanners which use a
circular or a helical source trajectory. However, any pair of source positions along any trajectory
defines a line and the application of the first order of the DCC, the polynomial of order zero,
defines one condition. In [C26], we have studied the use of this DCC for motion detection when
the source moves along a line or a circle. This proof-of-concept study has demonstrated both
the potential and some limitations of this mathematical tool for this application.

5.2 Geometric calibration

Not long after this initial work, Jérôme Lesaint joined the TIMC laboratory to investigate the use
of DCC for auto-calibration [43], i.e., geometric calibration from the measured x-ray projections.
Geometric calibration corresponds to the measurement of the source and detector position and
orientation for every measured projection. If the source and the detector move similarly from
projection to projection, this is equivalent to detecting the rigid motion of the patient. But in
most cases, there is no patient motion that corresponds to the sought calibration parameters.

The work of Jérôme Lesaint has lead to the development of DCC for cone-beam CT. One set
of DCC [C16, J35] was new but impractical due to its sensitivity to noise. We therefore chose
another set for the calibration of a micro CT scanner, previously proposed in [44]. These DCC
are calculated from resampled cone-beam projections on a plane parallel to the line defined by
a pair of source positions. Each line of this virtual detector measures two fan-beam projections
from sources on a parallel line and, as in the previous section, the first order DCC of [40] can be
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Part I. Motion in cone-beam computed tomography

used. This is illustrated in Figure 5.1. Note that Jérôme Lesaint later derived the DCC in the
real detector coordinates [43].
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Fig. 4. View of one plane Pi,j,k . Order-0 fan-beam DCCs state that the
integral of the cosine-weighted projections are equal.

Fig. 5. Two sources on a circular trajectory. Both projections are backpro-
jected in a virtual detector, parallel to the line connecting �sλi and �sλj .

Let ci,j,k denote the square difference of the left-hand side
of (3). The sum Ci,j = ∑

k ci,j,k is a measure of the pair-wise
consistency between two cone-beam projections g(λi, ·) and
g(λj, ·).

B. Resampling in Virtual Detector

These DCCs only apply if the detector is parallel to the
virtual linear trajectory Li,j connecting two source positions.
In the circular trajectory we are considering in this paper, this
detector condition is obviously not fulfilled. To remedy this
problem, each pair of projections is resampled onto a virtual
detector Vi,j by means of a backprojection. The virtual detector
is placed at the origin of the world system of coordinates
and oriented in such a way that the rows and columns of Vi,j

are parallel to Li,j and the axis of rotation, respectively. The
situation is illustrated in Fig. 5.

The orientation of the virtual detector allows a simple eval-
uation of the integral Gi,j,k in (2) by changing the φ-variable
to the u-pixel coordinate of the virtual detector with

u =
√

v2
k + D2

virt tan φ

Algorithm 1 Pseudo-Code for the Cost Function
1: procedure COST(p)
2: Initalize C = 0
3: for Each pair of sources (i, j) ∈ �: do
4: Backproject projections onto Vi,j.
5: Pre-weight the virtual projections acc. to Eq. 4.
6: for Each row k: do
7: Compute the line integrals Gi,j,k and Gj,i,k.
8: Compute the squared difference ci,j,k.
9: Add to C.

10: end for
11: end for
12: end procedure

where vk is the intercept of the plane Pi,j,k with the vir-
tual detector’s v-axis and Dvirt denotes the distance from the
source to the virtual detector. Applying this change of variables
leads to

Gi,j,k = 1√
v2

k + D2
virt

∫
R

g(λi, u)

√
v2

k + D2
virt√

u2 + v2
k + D2

du. (4)

Note that the weight inside the integral is exactly cos φ.
The change of variables has moved this cosine term from the
denominator to the numerator.

When applying these DCCs to the calibration problem, we
note that the backprojection onto the virtual detector will use
the projection geometry as input. Hence, the dependency of the
cost function (described in the next section) on the calibration
parameters via this backprojection.

C. Consistency Metric

Estimation of the geometric calibration parameters is
achieved by minimizing a cost function based on the pair-
wise consistency conditions described above. Let p =
(φ, θ, η, u0, v0, R, D) denote the 7-uple of sought parameters.
We define the cost function C(p) as follows:

C(p) =
∑

(i,j)∈�

Ci,j =
∑

(i,j)∈�

∑
k

ci,j,k (5)

where Ci,j was defined above with the dependence on p buried
in the backprojection onto the virtual detector, � is the chosen
subset of pairs of projections to which the DCCs are applied.

The size of the virtual detector Vi,j is computed to account
for the distortion resulting from the backprojection step (see
details is Section V-C1). For each pair of projections, the cost
function is evaluated over all rows k of Vi,j.

The computation of the cost function can be summarized in
Algorithm 1.

IV. NUMERICAL EXPERIMENTS ON SIMULATED DATA

We first studied the properties of our cost function on sim-
ulated projections of a Shepp–Logan phantom and estimated
the accuracy that can be expected from our method. All sim-
ulated projection data were generated with the reconstruction

Figure 5.1: Schematic illustration of the resampling onto a virtual detector parallel to the line
Li,j defined by two source positions ~sλi and ~sλj for the calculation of DCC. Each plane Pi,j,k
defines one condition. Figure re-printed from [J31].

The DCC can then be used to define a cost function which evaluates to which extent they are
verified given a set of geometric calibration parameters. This cost function can then be optimized
by finding the set of parameters which best verifies the DCC. In other words, only the dataset
in which we are interested is used to geometrically calibrate the system and reconstruct images
with good image quality. This strategy has been validated on the system pictured at the bottom
right of Figure 1.1. We obtained similar image quality to that obtained with a conventional
calibration based on ball bearings. Reconstructed CT images of a sponge sample, before and
after auto-calibration, are shown in Figure 5.2.
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Fig. 11. Axial truncation management: only those rows between the two
dashed lines are retained in the virtual projection.

reconstructions were registered manually in the y direction for
comparison. Note first that subdegree angular misalignments
and submillimeter detector shifts lead to severe artifacts in
the reconstruction, especially at the edges of the object (see
top-row of Fig. 10). Second, the image quality was signifi-
cantly improved when reconstruction was computed with the
DCC-calibrated geometry. The edges are sharp as illustrated
by the profiles in Fig. 10. Of course, the calibration procedure
does not correct for other CT artifacts which degrade both un-
calibrated and calibrated reconstructed images (e.g., cupping,
probably due to beam hardening, and ring artifacts).

C. Reconstruction With Axially Truncated Data

This section explains how our calibration procedure can deal
with axially truncated data with application to the truncated
data acquired on the same μ-CT system (Fig. 9 middle and
right).

1) Handling Axial Truncation: Our cost function is the sum
of square differences between integral over rows of the virtual
detector. For that reason, truncation in the v-direction does
not cause any difficulty as long as there is no truncation in
the u-direction. This feature is specific to the nature of the
DCCs used in the cost function. In our implementation, care
must be taken at the backprojection level because the square
physical detector is backprojected to a trapezoidal shape on
the virtual detector, with horizontal pixel rows backprojected
to oblique pixel rows of varying angle (except for the central
line, which remains horizontal). The situation is depicted in
Fig. 11. The virtual projection can therefore be limited to those
horizontal rows of the virtual detector that are not truncated
(rows between the two dashed lines on Fig. 11 right).

2) Results: The calibration procedure was applied to the
concrete and the sponge datasets. The nominal geometry
served as initial guess. For the concrete sample, the scanning
distances R and D were set to 114 and 137 mm, respec-
tively. The resulting cone-angle was approximately 14◦. For
the sponge sample, R = 195 mm and D = 259 mm.
Axial and transverse slices of the reconstructed volumes are
shown in Figs. 12 and 13. In the uncalibrated reconstructions,
small structures of the object are barely distinguishable. In
the calibrated reconstruction of the concrete sample, though
cone-beam and beam-hardening artifacts are still present,

Fig. 12. Concrete sample. Coronal (left) and transverse (right) slices of the
reconstructed volume without calibration (top row) and with our DCC-based
calibration (bottom row).

Fig. 13. Sponge sample. Coronal (left) and transverse (right) slices of the
reconstructed volume without calibration (top row) and with our DCC-based
calibration (bottom row).

the detailed structures (air bubbles in the concrete foam) are
much more sharply reconstructed.

VI. CONCLUSION

We proposed an on-line calibration method to estimate five
geometric parameters of a μ-CT system. The method is based
only on consistency of the “production” scan. It requires no
prior (off-line) calibration scan. The quality of the recon-
structed images in the experiments compares with the robust

Figure 5.2: Cross-sectional (left) and axial (right) CT slices of a sponge in a tube reconstructed
without (top) and with (bottom) auto-calibration based on DCC. The used micro CT scanner is
pictured in Figure 1.1. Figure re-printed from [J31].
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5.3 Conclusions

The field of DCC has seen many developments in the past few years, from the development of
new sets of DCC to their applications to many image corrections. We have demonstrated their
potential for motion detection and auto-calibration. Since fall 2019, I am co-supervising with
Jean Michel Létang a new PhD student, Mélanie Mouchet, on the use of DCC for respiratory
motion correction in conventional (helical) CT after preliminary results during her master [M1].
This new project in collaboration with Siemens nicely connects the different chapters of this first
part paving the way to new investigations.
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6
Image formation in spectral CT

Spectral CT is the collective term for all the technologies which measure and process x-ray
projections acquired with more than one x-ray efficient spectrum, which is the energy-dependent
function obtained by multiplying the source spectrum and the detector response function (both
energy-dependent). This may be obtained by using at least two separate sources, by modifying
the voltage of one source or by using an energy-resolved detector, as illustrated in Figure 6.1 for
dual-energy CT (two efficient spectra). A detailed overview of the main concepts behind image
formation in spectral CT is given in chapter B which is partly reused in this chapter to present
some of the contributions I co-authored.

Two independent projects have triggered my implication in the development of decomposi-
tion and reconstruction algorithms in spectral CT: Dual-Energy X-ray imaging for TargEting
Radiotherapy (DEXTER), which funded the PhD thesis of Gloria Vilches Freixas, co-supervised
by Jean Michel Létang and me, and Spectral Photon Counting CT (SPCCT), which funded
the postdoc fellowships of Cyril Mory and Pierre-Antoine Rodesch. I have also collaborated
with the laboratoire d’électronique des technologies de l’information (LETI) of the commissariat
à l’énergie atomique et aux énergies alternatives (CEA), a major actor in the development of
photon counting x-ray detectors and who co-funded the PhD of Odran Pivot [S2] with the
labex project Physics, Radiobiology, Imaging and Simulation (PRIMES), co-supervised with
Jean Michel Létang, Clarisse Fournier and Joachim Tabary, after his master project supervised
by Nicolas Ducros, Jean Michel Létang and me [M5].

6.1 Forward problem

Most of the literature is based on the model of Alvarez and Macovski [46] decomposing the
attenuation coefficient µ of the object as a linear combination of a few energy-independent and
space-independent functions

µ(x, ε) ≈
M∑

m=1

am(x)fm(ε) (6.1)

with x the 3D position in the object, ε the photon energy, M the number of basis functions, am
the 3D space-dependent (but energy-independent) functions and fm the energy-dependent (but
space-independent) functions. Combining Equation 6.1 with Equation 1.1 and accounting for
the effective spectra defines the nonlinear forward problem used in this chapter

ŷib =

∫

R+

sb(ε) exp

(
−
∫

Li

M∑

m=1

am(x)fm(ε) d`

)
dε (6.2)

with ŷib the expectation of the measures for the i-th detector pixel and the b-th effective spectrum
sb.
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Figure 2.13 Schematic spectral CT configurations: (a) dual-kVp CT, (b) dual-
source CT, (c) tube-switching CT, (d) dual-layer CT, and (e) counting CT.
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Figure 6.1: Different solutions to acquire dual-energy CT data: (a) two acquisitions with different
voltages, (b) two sources, (c) fast kV switching, (d) dual-layer detector and (e) photon counting
detector. Figure re-printed from [45].

6.2 Projection-based two-step reconstruction

The first category of solutions assumes that several measurements are available for each pixel
of the projections to split the problem in two inverse problems. First, line integrals Aim =∫
Li am(x) d` are decomposed from the measurements using the forward problem

ŷib =

∫

R+

sb(ε) exp

(
−

M∑

m=1

Aimfm(ε)

)
dε. (6.3)

Then, conventional CT reconstruction can be used to reconstruct the M am maps from the M
sets of projections Am = (A1m, ..., AIm)T with I ∈ N the number of pixels of the projections.

The first inverse problem, decomposing all values Aim from the measures yib, can be solved
separately in each pixel i and is then a small non-linear problem (since M and B are both
small). When the spectral model (source spectrum and energy response of each bin) is known,
the problem can be solved iteratively by accounting for the Poisson statistics of the photon
counting [47, 48]. When the spectral model is not known, one can instead calibrate a polynomial
fit of the M unknowns given the B input values from measurements with known thicknesses of
materials. Both Odran Pivot [M5] and Gloria Vilches-Freixas [J32] have used this approach for
dual-energy (B = 2 and M = 2) as illustrated in Figure 6.2. Gloria Vilches-Freixas provides a
comparison of the two approaches in chapter 5 of her PhD thesis [S3].

The solution is more complex when also decomposing a K-edge material (M = 3), e.g.,
Gadolinium, from more than two energies (B > 2), mainly because the problem is more severely
ill-conditionned. In [J29], Nicolas Ducros investigated the addition of a spatial regularization in
the projection domain and demonstrated a large improvement over the above-mentioned solu-
tions. Figure 6.3 illustrates the improvement over a reference method [48].

46



Chapter 6. Image formation in spectral CT

5. DECT optimization for proton therapy 144
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Figure 5.10: Percentage different images when comparing the reconstructed µ-images
at two different dual-energy spectra obtained through the optimized polynomial (equa-
tion 5.22) with the reference values at 100 keV. Colorbar indicates the percentage relative
error.
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Figure 5.11: Nominal areal density values Ai (i = 1, 2) in g/cm2 (red dots) and recon-
structed areal density values (black crosses) through the optimized polynomial (equa-
tion 5.22) using two different dual-energy spectra.

accuracy was found to be material dependent, however, when computing the range on
an anthropomorphic phantom, there was no significant difference in range accuracy.
Therefore, for proton treatment planning, the choice of the spectra should be guided by
the precision, i.e. the energy gap. In addition, the presence of noise in the SPR images
seems to have a rather low impact on the range estimation as noise is averaged along
the voxels of the beam path. Regarding the dose balance between the low-energy and

Figure 6.2: Difference between calibration (red points) and a 12-term 4-th order polynomial fit
(blue crosses) for deriving basis material thicknesses A1 and A2. A different pair of source spectra
is shown on each side. Figure re-printed from [S3].

was above one in almost all iterations and the decrease in the

cost function was close to one in all except for the last itera-

tions. Number of iterations for convergence was between 10

and 15 for all scenarios considered in this work.

5.C. Influence of the regularization parameter

The influence of the regularization parameter a is illus-

trated in Fig. 7. Figure 7(a) shows the solution error for the

different materials as a function of a. The lowest error for

all materials was attained for similar values of a in the

range [0.1, 1]. Figures 7(b) and 7(c) shows underregularized

and overregularized images, respectively. When regulariza-

tion is not sufficient, images are noisy and the method fails

to decompose materials. On the contrary, excessive regular-

ization leads to oversmoothened images, failing to properly

decompose soft and bone tissue. Overall, the gadolinium

image presented the best image quality and was more robust

to the selection of the regularization parameter, and separa-

tion of bone and soft tissue were more sensitive to the

selection of a.

The optimal regularization parameter for all scenarios is

shown in Table II. For a sufficiently large number of photons

(N0 ≥ 105), the optimal value log(a*) was found to be almost

independent of the number of photons and concentration of

the marker (log(a*) = 0 or �0.5, see Table II). For a low

number of photons (N0 ≤ 105), the method converged to

unsatisfying solutions. In addition, it was found that values of

a in the range 0.1 and 1 led to similar results in terms of

image decomposition and recovery of the concentration of

the marker.

For the rest of the analysis in this work, the regularization

parameter a has been set to 10�0.5.

5.D. Influence of noise

The influence of noise has been assessed by varying the

number of incident photons from N0 = 107 to N0 = 104 for

a concentration of the marker of cgd = 1 g�cm�3. For

N0 = 107, materials were well separated and quantification

of the marker concentration was correct (see Fig. 5). Low-

ering photons from N0 = 106 to N0 = 105 decreased image

quality for bone and soft tissue while the gadolinium image

was less affected (see top and middle rows in Fig. 8). For

a number of photons N0 = 104, material decomposition

was not feasible.

These results are confirmed by the Euclidean distance

error (first column in Table III) and contrast-to-noise ratio of

the marker (first column in Table IV). Lowering the number

of photons from N0 = 107 to N0 = 105 increased the error

between two and three times but has limited influence on the

contrast-to-noise ratio of the marker.

(a)

(b) (c)

(d) (e)

FIG. 5. Typical material decompositions. The projected mass densities (g�cm�2) are obtained considering the 3-material phantom shown in Fig. 4(b) and 4(e).

The gadolinium concentration cgd was set to 1 g�cm�3 and the number of incident photons N0 to 107 photons. (a) Ground truth images. (b) Images recovered by

our GN-RWLS method for a⋆ = 10�0.5 (best regularization parameter). (c) Images recovered by the maximum likelihood Nelder–Mead (ML-NM) method

described in Ref. 11. (d) GN-RWLS error. (e) ML-NM error.

Medical Physics, 44 (9), September 2017

e182 Ducros et al.: Regularization of spectral x-ray projections e182

Figure 6.3: Basis material decomposition of (a) a reference radiography made of three materials
(soft tissue, bone and gadolinium) with (b) spatial regularization [J29] and (c) no regulariza-
tion [48]. Figures (d) and (e) are the differences of (a) with (b) and (c), respectively. Figure
re-printed from [J29].
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6.3 One-step reconstruction

One of the limitations of two-step decomposition is that when M < B, some information is
necessarily lost after decomposing the projections. Since the problem is ill-conditionned, it seems
more adequate to use all the available information to reconstruct the am CT images. Cyril Mory
has therefore investigated one-step solutions, which directly reconstruct the am CT images from
the measurements yib. His work, in the context of a postdoc funded by project SPCCT, aimed at
reconstructing M = 3 materials from B = 5 bins, which corresponds to the characteritics of the
prototype photon counting system developed by Philips and installed in Lyon. Cyril Mory has
adapted five algorithms [49, 50, 51, 52, 53] to solve this problem and compared them in terms of
some image quality metrics and convergence speed [J20]. On a simple numerical test phantom,
he found large differences in terms of convergence speed between algorithms (Figure 6.4) with no
obvious difference in image quality, even if they did not minimize the exact same cost function.

10
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section 2.2.1). Barber2016 has a parameter λ = 10−4, and a parameter θ = 0.5 (see section 2.2.5). Long2014 
splits the projections into 20 subsets, and Mechlem2018 into four subsets, in order to speed up convergence. 
Mechlem2018 also uses Nesterov’s momentum technique, which speeds up convergence even more, but makes 
it a bit unstable: when splitting the projections into too many subsets (typically more than six), Mechlem2018 
sometimes diverges: the iterates accumulate strong streak artefacts, then they reach a point where the Hessian of 
the SQS is not invertible, which stops the algorithm.

3.2.  Quantitative criteria
We show in figure 5 the evolution of the concentrations of iodine and gadolinium over the course of iterations, 
for all five methods, with a logarithmic scale only on the x-axis. The concentrations are measured in the square 
where iodine or gadolinium is expected, eroded by 2 pixels in order to avoid partial volume effects. In all methods, 
the pixels at the border of the region of interest (ROI) have significantly lower concentrations. The full line is the 
ground truth concentration value in the ROI. Since tracking the mean concentration in a ROI can only capture 
information on how well the low frequencies are reconstructed, figure 6 shows, for each method, the normalized 
�2 difference with the last iterate, computed as follows:

Normalized �2(xk) =

Nm∑

m

∑Nv

v=1 (xk,v,m − xNiterations,v,m)
2

Nm
∑Nv

v=1 GroundTruth2
v,m

� (10)

where k, v and m are respectively the indices for iteration, voxel and material, Nv is the number of voxels of one 
reconstructed material map and Nm the number of materials.

Table 3 contains the mean and standard deviation of iodine, gadolinium and water concentrations in the ROI 
where they are expected eroded by 2 pixels, on the final iterate. Standard deviations of each material are roughly 
the same between all algorithms, yet there are some outliers: the stds of Cai2013 in gadolinium and of Barber2016 
in iodine. This is a consequence of the fact that those two methods are the slowest ones, and consequently we were 
not able to sample the parameter space for them with a fine enough grid. While it is unfortunate, it highlights the 
fact that slowly converging methods are hard to tune, and that additional parameters (λ in Barber2016) imply a 
longer tuning time.

Table 4 shows the total number of iterations performed, the time per iteration, and the number of iterations it 
took for all materials to reach target concentration in their respective ROIs, within 20% or 10% tolerance. On our 
test case, Mechlem2018 converges 1–3 orders of magnitude faster than its competitors.

3.3.  Memory footprint of each method
We provide here a simple analysis of the memory footprint of each method, by listing the variables that have to 
be stored and recalling their size. The results are summarized in table 5, and the detailed calculations for each 
method are presented in this section. The measured photon counts, which constitute the main input of these 
reconstruction algorithms, are assumed to be available on disk, so they never have to be fully loaded in memory 
and are not mentioned in this section. Obviously, re-reading them from disk at each iteration is highly inefficient, 
and one should load them in memory if possible. We used the notations of the pseudo codes in the appendix 
for the names of the variables, and the following notations for various quantities: Nv is the number of voxels 
of one reconstructed material map, Nm the number of materials, Np the number of pixels of all projections for 
one bin, Nb the number of energy bins in photon counts measurements and Ne the number of energies used in 
internal calculations. Despite the fact that we performed 2D simulations, we assume for these calculations that 
the reconstructed volumes are 3D (which matters for the computation of the spatial gradient). Note that the 
code we provide keeps many intermediate variables in memory, for convenience and speed considerations, and 
therefore uses much more memory than the minimum required.

Figure 5.  Concentration of iodine (left), gadolinium (middle) and water (right) over the course of the iterations for the five 
methods, in the ROI where it is expected eroded by 2 pixels.

Phys. Med. Biol. 63 (2018) 235001 (19pp)

Figure 6.4: Convergence speed of the five one step algorithms compared in [J20] to a common
objective, i.e., the reference concentration (horizontal lines) of Iodine (left), Gadolinium (center)
and water (right) in selected regions-of-interest. Figure re-printed from [J20].

6.4 Scatter correction in spectral CT

The cone-beam CT scanners presented in Figure 1.1 have large detectors which will capture
a large part of scattered radiation. They can all perform two acquisitions with two voltages
(Figure 6.1a) and the medPhoton ImagingRing can do fast switching (Figure 6.1c, only in a
non-clinical mode). The attenuation of the beam modeled in Equation 1.1 assumes that only
the primary radiation is measured. This is a known issue of cone-beam CT and many hardware
and software solutions have been proposed to block or correct for scatter. We have actively
investigated this issue for mono-energetic acquisitions in collaboration with the public-private
partnership ImagX between the université catholique de Louvain (https://uclouvain.be) and
the IBA company (https://iba-worldwide.com/). This collaboration led to the development
of fast Monte Carlo simulations of scatter using fixed forced detection used, e.g. in [J28] to
validate a scatter correction algorithm [J36].

Odran Pivot investigated the correction of scatter for a photon counting system (Figure 6.1e)
based on new detectors developed at LETI (Grenoble) during his PhD thesis [S2]. The main idea,
based on previous works in single-energy CT [54, 55], is to place a beam modulator with an x-ray
attenuation pattern containing high frequencies. Using spectral images of the beam modulator
with known objects, e.g., slabs of known materials, one can calibrate a correction matrix such
that the effect of the beam modulator is compensated for if there is no scatter. The presence of
scatter will leave a trace of the beam modulator in the projections images after application of
the correction matrix. One can therefore design an algorithm estimating the scatter map which
removes the trace of the beam modulator from the scatter-corrected projections. The mask is
designed with a high frequency pattern to measure its presence using the norm of the spatial
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gradient. The scatter is constrained to be smooth.
Odran Pivot’s key innovations are the design of matrices which use the spectral information

to compensate for the beam modulator, the use of B-splines, to enforce smoothness and reduce
the number of unknowns, and the definition of an appropriate cost function. His algorithm has
been validated on both simulated and experimental spectral projections with 8 energy bins. Fig-
ure 6.5 shows a result on simulated projections of the International Commission on Radiological
Protection (ICRP) adult reference computational phantom. This work has been patented [PA1]
before publication [J9].
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Figure 5.8 – Two projections of total (left), primary (center) and estimated primary
(right) attenuation at low energy (LE, bin 2) and high energy (HE, bin 6)
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Figure 5.9 – Profiles of two projections at energy bins 2 (center) and 6 (right).
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Figure 6.5: Illustration of spectral scatter correction using a beam modulator. Projection profiles
of bin 2 (middle) and bin 6 (right) are shown. All profiles are normalized by the profile without
object in the beam. The total t (green) is the sum of the primary p (red) and the scatter s
(brown). The presence of the modulator modifies the total to t̂ (blue) and compensating for
the modulator with C still leaves a trace of the modulator due to scatter (orange). The scatter
estimation gives the estimate s̃ (pink) and the scatter-corrected projection p̃ (purple). Figure
re-printed from [S2].

6.5 Conclusions

Spectral CT has been a very active field of the past decade and the current developments of
commercial photon counting CT scanners by the main CT manufacturers is the promise of
a bright future. Clinical applications for this technology are under active investigation, e.g.,
quantification of materials with a K-edge in the diagnostic range as an alternative to SPECT
[J15]. Dual-energy CT is already used for proton therapy planning in a few centers and this
application is presented in the next chapter.

49





7
Spectral CT for ion therapy

Ions lose energy while traversing matter until they stop, unlike primary (non-attenuated) photons
which keep their initial energy but whose fluence decreases exponentially according to the Beer-
Lambert law (Equation 1.1). If one integrates laterally the energy deposited by a beam at a
given depth in water, one obtains the depth-dose curves in Figure 7.1 which show that the
maximum is deposited at the so-called Bragg peak where most ions stop. This behavior gives
a significant advantage to ion therapy over conventional photon therapy as one can adjust the
ions energy to deliver the Bragg peak in the targeted tumor. Despite the higher cost compared
to conventional photon therapy, many proton therapy centers have been built worldwide to
exploit this advantage, e.g., in Orsay, Nice and Caen in France. In Lyon, a large (abandoned)
project to build a carbon ion center, Espace de Traitement Oncologique par Ions Légers Européen
(ETOILE), had motivated many investigations in this field, e.g., on Monte Carlo simulations by
my colleagues David Sarrut, Jean Michel Létang and Nicolas Freud at the CLB. Their expertise
led to our investigations on ion imaging which are presented in Part III and those presented in
this chapter.

1.2 Uncertainties in the treatment planning 3
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Figure 1.1: Normalized depth-dose curves from GEANT4 simulations of photons
and ions traversing a 20 cm water box.

1.2 Uncertainties in the treatment planning

The uncertainties inherent in the conventional radiotherapy, which include geo-
metrical variations, patient positioning and organ motion, are also present in proton
radiotherapy. However, there exists an important source of uncertainty specific to
proton therapy, i.e. an estimate of the proton range. In proton therapy treatment
planning, the two important quantities to be determined are: (1) the incident en-
ergy so that the protons will stop where the tumor volume is located, i.e the proton
range and (2) the dose that will be deposited. Both quantities can be estimated by
integrating the different stopping power (discussed further in subsection 3.1.1) of
the materials along the beam-line. Multiple tradeoffs are necessary and by under-
standing these sources of error, an optimized treatment plan could be achieved.

Range uncertainty

In most proton therapy centers, range verification and dose calculations are car-
ried out using the images acquired from x-ray computed tomography (xCT). Protons
and photons propagate differently in the patient, thus, the Hounsfield unit (HU)
derived from xCT images are converted to proton stopping power by means of a
calibration curve derived from stoichiometric measurements of different tissue-like
materials (Schneider et al., 1996; Yang et al., 2012; Ainsley and Yeager, 2014). The
calibration technique can be summarized as follows: First, the constant parameters
for the photoelectric effect coherent scattering and Klein-Nishina cross-sections of
photon interactions are calculated. Second, the elemental proton stopping powers
are then derived from these parameters. Third, the proton stopping power and HU
for real tissue materials are then calculated including basic conversions for the HU
obtained from xCT images to proton stopping power for all types of material en-
countered. Lastly, three separate linear curves for organ-like tissue, fat-like tissue,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI094/these.pdf 
© [C.T. Quiñones], [2016], INSA Lyon, tous droits réservés

Figure 7.1: Depth dose profile of photons (green), protons (red) and carbon ion (black) in water.
Figure re-printed from [S4].

A key challenge in ion therapy is the prediction and the monitoring of the location of the
Bragg peak in the patient, also known as the range of the beam. This prediction requires the
spatial map of the relative stopping power (RSP) of the patient tissues. The RSP is the ratio of
the stopping power of the tissues over that of water, and it can be considered energy-independent,
unlike stopping powers [J47]. Currently, ion treatments are planned on x-ray CT images which
are converted to RSP using a 1D calibration curve. The uncertainty arising from this conversion
is accounted for by adding margins around the target [56]. But several alternative strategies
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have been investigated and are still being investigated.
One of the alternatives is spectral CT, based on the intuition that having more information

on the patient materials can only improve the prediction of the RSP. Dual-energy CT was first
suggested in 2009 [57, 58] and the benefits were theoretically proven not long after [59]. At that
time, I was approached by Philipp Steininger and Heinz Deutschmann of the radART institute
who were designing a new cone-beam CT scanner, the ImagingRing (Figure 1.1, bottom right),
for the Austrian ion treatment center, MedAustron. The ImagingRing is equipped with a source
which can switch voltage from projection-to-projection synchronized with a rotating wheel with
different filters for each voltage to realize dual-energy CT (Figure 6.1c). This idea led to the
DEXTER project which funded the PhD thesis of Gloria Vilches-Freixas on dual-energy cone-
beam CT for proton therapy [S3]. This chapter summarizes her developments.

7.1 Dual-energy CT parameters for proton therapy

The DEXTER project started when the ImagingRing (Figure 1.1, top right) was still being
developped. Since the project was in partnership with the designers of the ImagingRing, Gloria
Vilches-Freixas investigated which voltages and filtrations were the best for the ion therapy
application [C15, J32].

In a first step, Gloria Vilches-Freixas designed a method to calibrate a few parameters of
the models of the x-ray source spectrum and the energy response of the detector [J38]. The
parameters were the anode angle, thicknesses of aluminium and copper in front of the source and
the thickness of scintillator in the detector. Several measurements were obtained by measuring
the dose with an independent dosimeter (Figure 7.2) and the detector signal with various source
voltages and filter thicknesses. The procedure was applied to three scanners, among which the
ImagingRing.

5202 Vilches-Freixas et al.: Procedure for the calibration and validation of kilo-voltage cone-beam CT models 5202

T III. For all systems (see Table I), results of the source and the detector model verification expressed in
terms of the relative difference (in %) averaged over all voltages. The total relative difference, averaged over all
filtration, and the relative to each filtration are shown in separate columns.

Source Detector

System Total f1 f3 Total f1 f2 f3

#1 1.4 ± 5.1 2.9 ± 1.7 −12 ± 5.4 1.8 ± 6.5 −2.1 ± 2.4 4.0 ± 1.3 3.6 ± 10
#2 −0.48 ± 3.5 −1.2 ± 1.6 0.78 ± 5.1 −3.7 ± 9.9 −2.3 ± 4.0 −2.8 ± 5.8 −6.9 ± 19
#3 0.45 ± 2.8 0.97 ± 2.1 −6.3 ± 1.1 −2.4 ± 5.7 −0.86 ± 1.3 0.63 ± 4.2 −7.5 ± 7.3

v10.1, physics list: emlivermore) as a stack of layers of user-
defined materials according to the manufacturer’s description
(stoichiometry and thickness). The response of the detector
was obtained by measuring the energy deposited in the scin-
tillator layer with monoenergetic pencil beams of energies
ranging from 1 to 140 keV,14 perpendicular to the detector. In
the 20–140 keV energy range, the statistical uncertainty of the
simulated detector response was below 0.5% for all detectors
(1010 photons). To provide an absolute value of the deposited
energy on the detector, no calibration nor corrections, i.e., bad
pixels and gain, was applied to the acquired projections, only
offset correction. Then, a parameter was used in the model to
relate the detector signal to the predicted value, i.e., a multi-
plicative factor δp for each pixel p of the detector determined
in the least square sense

δp =



j,k

Ptheo
j,k (p)



j,k

Pexp
j,k
(p)
. (4)

Ptheo
j,k

(p) is the predicted pixel value for setup jth and kth
voltage with p the pixel index and Pexp

j,k
(p) the measured pixel

value for setup jth and kth voltage. To manage bad pixels,
Pexp
j,k
(p) was determined by taking the spatial median of the

signal in a 3×3 pixels area perpendicular to the beam central
axis. Moreover, as the exact thickness of the CsI scintillator
layer was not perfectly known, the detector response was
computed for scintillator lengths ranging from 200 to 900 µm
at steps of 50 µm. The experimental data were used to deter-
mine the optimal CsI length that minimized the following cost
function:

Fdetector=


j,k

*,
δpPexp

j,k
−Ptheo

j,k

δpPexp
j,k

+-
2

, (5)

where the index j and k refers to the setup jth and kth voltage,
respectively.

2.B.4. Sensitivity analysis

The term “sensitivity analysis” refers here to the study of
the variations of the model accuracy (cost function) around its
optimum. In particular, once the optimal tuple of source model
values (mm Al, mm Cu, anode angle) was determined for each
system, small variations (i.e., up to±0.3 mm Al,±0.01 mm Cu,
±3◦) around the optimal values at a time were introduced for

each parameter. For the detector response model, the scintil-
lator length was varied from 200 to 900 µm.

3. RESULTS

The source model was calibrated using dose measurements
in air with increasing thicknesses of aluminum, with the beam
filtrations f1 (no filter) and f3 (0.3 mm Cu + 0.5 mm Ag).
For each imaging system, the parameters of the source model
were determined by minimizing the cost function described in
Eq. (3) and are summarized in Table II. In Fig. 1, a plot of
two representative x-ray spectra and the detector response in
energy, obtained after calibration, for system #3 is shown.

The results of the point-by-point dose comparison between
experimental and theoretical values are summarized in Ta-
ble III. This is illustrated visually in Fig. 2 for the system #3.
The figures for the other systems are provided as supplemen-
tary material.15 Averaging over all setups, all imaging systems
showed an agreement between theoretical absorbed dose in the
dosimeter and measurements within 1.5%.

For the detector response verification, three irradiation
setups were evaluated: f1 (no filter), f2 (8 mm Al), and
f3 (0.3 mm Cu + 0.5 mm Ag). For each imaging system,
the scintillator length, which was an unknown parameter of
the detector model, was determined by minimizing the cost
function described in Eq. (5). The resulting CsI lengths are
shown in Table II. The results of the detector response model
verification are summarized in Table III and it is illustrated in
Fig. 3 for the system #3. In general, good agreement between

F. 2. Results of the source model verification for the imaging system
#3 (see Table I). Semi-logarithmic plot of the absolute dose per pulse as
a function of the aluminum thickness interposed in the beam for several
tube voltages. Left: Original beam spectra (i.e., filtration f1); right: spectra
with filtration f3. Markers represent the experimental dose readouts and the
continuous lines the theoretical dose values.

Medical Physics, Vol. 43, No. 9, September 2016

Figure 7.2: Illustration of the procedure for the calibration of the ImagingRing source model.
Each point is measured by a dosimeter for a given source voltage and aluminium filtration and
the lines depict the fitted source model. Figure re-printed from [J38].

This model was then used to simulate cone-beam projections with various combinations
of voltages for the two energies and the thickness of the filter in front of the source for the
highest voltage. The study used projection-based two-step decomposition and reconstruction
(section 6.2). After reconstruction, the accuracy and the precision of the reconstructed RSP was
measured in several materials. The results were found to be mainly dependent on the energy
separation between the spectra, which is defined as the difference between the average energies
of the two spectra. The accuracy of the RSP was found to be quite insensitive after reaching a
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fitted with a Gaussian distribution (l � r). In addition, the

RMS error and the maximum error were also computed.

3. RESULTS

3.A. Dual-energy spectra optimization

In this spectra optimization study, a total of 16926 tuples

were considered by combining 21 LE voltages, 31 HE volt-

ages, and 26 Sn-thicknesses. For the realistic scenario

(images with a 20 mGy central dose and equal dose weight

per energy channel), the overall SPR accuracy and precision

were plotted against the incident energy gap (Fig. 4). The

overall accuracy [Eq. (6)] was not strongly dependent on the

spectra separation, with a minimum in the 25–35 keV range

of energy gaps where the maximum separation is about

80 keV. In addition, dual-energy spectra combinations with

an energy gap above 30 keV resulted in an overall accuracy

within �0.6%. The overall precision [Eq. (7)] asymptotically

approached a 4.7% level with increasing energy gap. This

level of precision was achieved for energy gaps larger than

60 keV.

A zero precision was expected for the simulations without

noise. However, images reconstructed from noiseless discrete

projections always display residual noise caused by discrete

filtering and image interpolation during backprojection. A

constant value of 2.6% was observed for all SPR images

without noise. In other words, the horizontal line in Fig. 4(b)

would be shifted to 2.6% in the case of noiseless simulations.

This residual noise level is also present in the noisy simula-

tions of Fig. 4 but combined with the photon noise.

To understand why the energy gap is not a good metric to

determine the dual-energy spectra that minimizes the overall

SPR accuracy, one representative insert per tissue group was

selected: LN-300(8) for the low (RED < 0.5), Solid Water(7)

for the medium (0.5 < RED < 1.2), and CB2-50(1) for the

high (RED > 1.2) density. One optimal dual-energy spectra

per tissue group was determined looking at the accuracy

inside the corresponding ROI for all spectra combinations.

Around this (LE, HE, Sn) tuple, orthogonal slices were plot-

ted to study the dependence of the insert accuracy with the

low voltage, the high voltage, and the additional filtration.

The plots relative to the ideal situation are shown in Fig. 5.

Different optimal points were found for different tissue types,

which suggests tissue variability with respect to the optimal

energy spectra.

FIG. 4. Overall SPR accuracy and precision as a function of the incident energy gap for the realistic acquisition scenario (20 mGy central dose) and the same

dose weight per voltage. Each of the 16926 data points corresponds to a (LE, HE, mm Sn) combination. Horizontal dashed red lines indicate the �0.6% accuracy

level (left) and the 4.7% precision level (right). [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 3. HU to SPR calibration curve for SECT scanner simulations of the

Gammex phantom at 120 kVp/Sn. A piece-wise linear interpolation between

HU and SPR values was used, divided in four segments: lung tissue, adipose

tissue, soft tissue, and bone tissue. [Color figure can be viewed at wileyonli-

nelibrary.com]
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Figure 7.3: Accuracy (left) and precision (right) of the RSP estimated from dual-energy with
different energy gaps between spectra obtained by varying the source voltage and the source
filtration of the high energy spectrum. Figure re-printed from [J32].

minimum energy separation (Figure 7.3, left) and the optimal combination was actually material-
dependent. The precision, on the other hand, improved significantly with increasing energy gap
(Figure 7.3, right).

7.2 Comparison between projection-based and image-based spec-
tral decomposition

In parallel to Gloria Vilches-Freixas’ PhD, Vicki Trier Taasti was also investigating dual-energy
CT for proton therapy in Aarhus (Danemark), but using image-based two-step reconstruction
and decomposition, which is explained in chapter B. Therefore, the two PhD students compared
the two approaches on simulated data [J30]. The projection-based approach was the Alvarez,
Macovski and Kanematsu approach (AMK) developed by Gloria Vilches-Freixas [46, 60] and
the three image-based approaches were the Stopping Power Parametrization (SPP) method [61]
developed by Vicki Trier Taasti, the Saito and Kanematsu (SK) method [62, 60] and Han’s
method [63]. The differences between the different approaches were small and not statistically
significant, but they indicated a potential advantage for projection-based approaches, with an
overall root mean square error of 0.54%, 0.68%, 0.61% and 0.70% for the projection-based, SPP,
SK and Han methods, respectively. Figure 7.4 illustrates a similar impact on range errors, i.e.,
the ability of the reconstructed RSP map to predict the depth of the Bragg peak (Figure 7.1).

7.3 Dual-layer CT for RSP estimation

Another approach was used to estimate the RSP on a commercial scanner, the Philips’ IQON
installed in Lyon (France), in collaboration with Guillaume Landry of the Ludwig Maximilians
university (LMU) in Munich (Germany) [J19]. This scanner is equipped with a dual-layer detec-
tor which records two projection images for every x-ray pulse and uses a two-step projection-based
approach (section 6.2). In this commercial product, the spectral decomposition is handled by
the scanner which only provides mono-energetic CT images. We therefore chose to decompose
the images using two mono-energetic CT images based on a combination of their decomposed
images (Equation 6.1). An original approach for validation in this article was the comparison
with synchrotron CT images acquired on the ID17 beamline of the European Synchrotron Radi-
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maps, to take into account that the beam paths in different direc-
tions and slices were not of equal length.

3. Results

The RMSE over the mean relative error for each of the thirteen
ROIs was 0.54% for the AMK method, 0.68% for the SPP method,
0.61% for the SK method, and 0.70% for Han’s method (Fig. 2).
The bias (given by the mean error) for the head, sternum and
breast slices was smallest for the SPP method, however, for the pel-
vis slice (ROIs 4a-d) this method gave the largest errors (Table 1).
Considering all slices, the SK method had the largest bias. For all
methods, the relative errors for ROIs in the pelvis slice (ROIs 4a-
d) were larger than for the other slices.

The AMK method gave the lowest RMSEs for the relative range
errors. For the AMK and SPP methods, the positive and negative
range errors were nearly averaged out over the slice, giving mean
relative range errors close to 0%; only for the head slice estimated

by the SPP method the 0% range error was not within the
interquartile range (IQ) (Fig. 3). In contrast, for the image-based
SK method, the range error distribution had a negative bias for
all slices, and Han’s method gave a slight positive bias for some
slices. Even though the mean relative range errors for the SPP
method were fairly low, this method produced the widest error
distributions (Fig. 3 and Table 2).

4. Discussion

In this study, we have compared one projection-based and three
image-based SPR methods. We found that the projection-based
method produced slightly better results than the three image-
based methods used in this study. The differences were not found
to be statistically significant. The image-based SPP method gave
mean errors comparable to the results for the projection-based
method, but larger standard deviations. In contrast, the image-
based SK method resulted in slightly biased results. It has been

Table 1
Comparison of relative SPR deviations over the defined ROIs. The upper part of the table gives the results averaged over the individual slices, while the lower part gives the results
averaged over all four slices together. (PB: Projection-based, IB: Image-based).

Per slice Head Sternum Breast Pelvis

PB (AMK) Mean 0.28% 0.32% 0.29% �0.45%
Uns. mean 0.28% 0.32% 0.64% 0.66%

IB (SPP) Mean �0.06% 0.03% 0.17% �0.99%
Uns. mean 0.46% 0.30% 0.29% 0.99%

IB (SK) Mean �0.17% �0.06% �0.09% �0.85%
Uns. mean 0.20% 0.20% 0.40% 0.85%

IB (Han) Mean 0.01% 0.26% 0.79% �0.60%
Uns. mean 0.34% 0.26% 0.79% 0.86%

All slices RMSE Mean Uns. mean r

PB (AMK) 0.54% 0.07% 0.49% 0.56%
IB (SPP) 0.68% �0.27% 0.55% 0.65%
IB (SK) 0.61% �0.33% 0.44% 0.53%
IB (Han) 0.70% 0.06% 0.59% 0.73%

Fig. 3. Box-plot of relative range error distribution, as calculated by the Radon transform for each anatomical slice using each of the four SPR estimation methods (PB:
Projection-based, IB: Image-based). The boxes show the interquartile (IQ) range, i.e. from the 25%-percentile (Q1) to the 75%-percentile (Q3), and the black dots represent the
median. The whiskers go from Q1� 2:5� IQ up to Q3þ 2:5� IQ. The outliers are not shown in the figure, but the percentages (excluding the sinogram entries corresponding
to a WEPL of zero) are given in the right side of the figure.

G. Vilches-Freixas et al. / Physics and Imaging in Radiation Oncology 3 (2017) 28–36 31

Figure 7.4: Distribution of the range errors assessed on the RSP map estimated from simulated
images of the ICRP phantom. Four different axial locations were used (head, sternum, breast
and pelvis). The range was assessed by integrating the RSP map through lines in all positions
and directions using the Radon transform. Figure re-printed from [J30].

ation Facility (ESRF) with a truly mono-energetic beam (Figure 7.5). Our results demonstrate
a root mean squared error of the RSP below 1% despite larger 1.9% for the linear attenuation
coefficient, which further validates the dual-energy CT approach for RSP estimation.

7.4 Conclusion

Dual-energy CT for proton therapy has been an active field of research of the past ten years and
this chapter presented several contributions of Gloria Vilches-Freixas under the supervision of
Jean Michel Létang and me. Another solution to the same problem is proton CT which is pre-
sented in the following chapter along with another paper of Gloria Vilches-Freixas combining the
two modalities [J24]. Dual-energy CT is now used clinically in a few proton therapy centers and
it will probably become the standard for treatment planning. Improvements in image formation,
e.g., one-step reconstruction (section 6.3), could play a role in its clinical adoption by improving
image quality.
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CS and PE maps, at 10 keV increments from 40 to 200 keV,

with a slice thickness of 1.5 mm, in-slice pixel dimensions of

0.3 mm 9 0.3 mm and 512 9 512 pixels. We employed the

Philips’ iDose reconstruction software with level 5 and the

standard B filter.

2.E. Conversion of DL-DECT data to RSP

Our RSP estimation procedure followed the previously

published combination of methods of Yang et al.4, Saito,32

and Landry et al.33 (YSL, see e.g., Hudobivnik et al.8) which

have been previously applied to dual-source or dual-spiral

datasets.34

The mono-E images reconstructed by the DL-DECT

scanner software are linear combinations of two bases

approximating CS and PE contributions to the linear atten-

uation coefficient, as explained in Hua et al.23 Hua et al.23

used a linear combination of CS and PE to obtain RED;

however, CS and PE were not directly accessible from the

DL-DECT software. To circumvent this, we relied on a

linear combination of an optimal pair of mono-E images

using the formalism of Saito32 for RED estimation. The

fit parameters of Saito32 were obtained from a procedure

based on the calibration of the scanner using the insert

data of the Gammex inserts. Since the mono-E images are

themselves linear combinations of the CS and PE bases,

their linear combination should allow similar results as

Hua et al.23 The chosen energy pair, 50 and 200 keV

from the 140 kV and 150 mm diameter phantom, maxi-

mized the coefficient of determination of the Saito32 fit

and was the same as in Mei et al.25

We used the same pair of mono-E images to calculate the

ratio of relative linear attenuation coefficients
ðl=lwaterÞ50 keV

ðl=lwaterÞ200 keV
as

in Joshi et al.35 and Hua et al.23 and fitted to the EAN of our

Gammex inserts with a fourth-order polynomial. This is

equivalent to the procedure described in Landry et al.33

which is typically employed in the YSL method.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 1. Phantom configurations for (a, b) synchrotron computed tomography (CT) and (c) DL-DECT scans. (d, e, g, h) Synchrotron CT images reconstructed at

(d, e) 50 keV and (g, h) 100 keV. (f, i) DL-DECT mono-E images acquired with D = 100 mm and V = 140 kV at (f) 50 keV and (i) 100 keV. Window/level set

to (d)–(f) 1 cm�1/0.5 cm�1 and (g)–(i) 0.4 cm�1/0.2 cm�1. Volumetric regions of interest used for data analysis are shown in red. (c) The POM background

steps of D = 0 (bare inserts), 100, and 150 mm are visible. [Color figure can be viewed at wileyonlinelibrary.com]

Medical Physics, 46 (4), April 2019

1823 Landry et al.: DL-DECT estimation of stopping power 1823

Figure 7.5: . Synchrotron CT images (d,e) and dual-layer CT images (f) at 50 keV of the same
inserts with different configurations shown in (a-c). Figure re-printed from [J19].
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8
Energy-loss proton CT

As described in the introduction of chapter 7, my colleagues were interested in proton therapy
when I joined the CLB CREATIS group in 2010. In this context, I was quickly introduced to the
problem of proton CT reconstruction. Proton CT was originally proposed by Cormack at the
same time as x-ray CT [64]. The idea is to use protons with sufficient energy to go through the
scanned object or patient. Several experimental works in the 1970s (see [65, 66, 67] for historical
reviews) demonstrated the limitations of proton imaging, mainly the poor spatial resolution due
to multiple Coulomb scattering (MCS), i.e., the quasi continuous random deflections of protons
in matter which cause them to follow slightly curved paths (chapter 7).

The development of proton therapy in the 1990s raised a new interest in proton CT for
directly reconstructing the RSP map and improving proton therapy planning. In most of these
recent developments, each proton position and direction is measured before and after the patient
to estimate the most likely path (MLP) of the proton (Figure 8.1). Nils Krah recently showed
[J23] that other integrating approaches, which integrate the information of many protons, like
in x-ray CT, will inherently produce images with a poor spatial resolution due to MCS.

Figure 8.1: Schematic drawing of a list-mode proton CT scanner. Each proton position and
direction is measured before and after the patient with pairs of trackers and the residual energy
with a calorimeter or a range detector. Figure re-printed from [S1].

The most widely spread approach to proton CT is energy-loss proton CT, i.e., linking the
energy lost by each proton to both the water-equivalent path length (WEPL) of the proton and
the integral of the RSP along the path Γ ⊂ R3 of the protons

WEPL ≡
∫ Ein

Eout

1

Swater(E)
dE =

∫ tout

tin

RSP(Γ(t)) dt (8.1)
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with Ein and Eout the entrance and exit energies of the proton, Swater the energy-dependent pro-
ton stopping power in water and tin and tout the entrance and exit times of the proton. In practice,
the true (random) proton path Γ ⊂ R3 cannot be measured and only the MLP Γ̂ is estimated
from measures of the entrance and exit positions and directions. The reconstruction of the 3D
RSP map from Ein, Eout and Γ̂ for a set of protons, in a list-mode approach, is a tomographic
reconstruction problem from integrals along curves and I quickly made the connection with
motion-compensated CT reconstruction (subsection 1.3.2). However, there was no algorithm for
FBP reconstruction along MLP in proton CT, unlike Equation 1.3 for motion-compensated CT
which provides an approximate but efficient solution to this problem. I therefore proposed such
an algorithm [J57], described in section 8.2, which opened a new field of my investigations with
several research projects funding two PhD students (Catherine Therese Quiñones [S4], funded
by a ministry grant, and Feriel Khellaf [S1], funded by a Fondation pour la Recherche Médi-
cale (FRM) project) and four postdoctoral fellows (Nicolas Arbor and Georges Dedes funded by
PRIMES, Nils Krah and Ahmad Addoum funded by the same FRM project). The descriptions
of my contributions in this field have been divided in two chapters, the ones directly related to
energy-loss proton CT in this chapter and other proton CT modalities in the next one.

8.1 Most likely path of protons

Estimation of the MLP Γ̂ of each proton is a prior step of both direct and iterative reconstruction
algorithms. The most common solution is to assume that the object is homogeneous and made of
water [68, 69] and we have used this approach in most of our developments. In these models, the
energy lost by the protons is modeled by a polynomial of order M . In a recent work [J11], Nils
Krah demonstrated that under this assumption, the MLP described in [68, 69] is a polynomial
of order M + 3. The paper also demonstrates how to quickly sample polynomial trajectories for
fast Monte Carlo simulations in homogeneous media.

The question of the effect of the homogeneity assumption on the MLP accuracy in heteroge-
neous objects has been addressed by Feriel Khellaf [J17] by simulating many proton trajectories
in simple objects using Gate / Geant4 (Figure 8.2, left). The protons with the same positions and
directions, before and after the object, were selected and used to estimate the real MLP, i.e., the
most likely transverse position at each depth (Figure 8.2, right). The theoretical MLP, given by
[69], was always close to the real MLP, even in objects with significant transverse heterogeneities,
with a maximum error of 0.41 mm. The maximum difference in an anthropomorphic phantom
was 0.13 mm. The transverse heterogeneities have a significant effect on the energy distribution
of protons and accounting for this effect will likely have more impact than accounting for het-
erogeneities in the MLP estimation. All the works presented hereafter use the MLP of Schulte
et al [69].

8.2 Distance-driven binning

FBP reconstruction from list-mode proton CT data is generally achieved by binning the data in
projection images corresponding to a virtual detector plane. In the first approaches, a single plane
was used to bin list-mode data. Each pixel of this virtual projection mixes then informations of
different protons which have followed different paths, as illustrated in Figure 8.2, and features
in-between the source and the plane are blurred. In [J57], we proposed to use the MLP and to
bin protons for one source position in several virtual planes instead of one only. By doing so,
one computes projection images which have the best spatial resolution for features located in the
corresponding plane (Figure 8.3). During FBP reconstruction, one can chose for every source
and pixel of the RSP map the projection image which maximizes the spatial resolution. The
resulting proton CT image is much better resolved than the ones assuming straight line paths
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most likely path computed from the most probable position at each depth does not differ from the theoretical 
MLP in case of a homogeneous phantom and a phantom with a longitudinal heterogeneity. For the transverse 
heterogeneity, the most likely path is deflected towards the water part of the phantom. In this case, the deviation 
reaches about  −0.28 mm, but is still of the same magnitude as the uncertainty envelope. The uncertainty envelope 
of the real MLP is asymmetric with the larger side of the envelope situated towards the bone part of the phantom. 
For phantom (A), the uncertainty envelope closely follows the theoretical envelope and for phantom (B), it is 
wider in the bone region. For both phantoms (A) and (B), the distribution is symmetric and a simple Gaussian 

Figure 3.  Theoretical MLPs for all tested entry and exit coordinates. Different colors were used depending on the entry position for 
a clear visualization. The exit angles θ2 are equal to 0, ±4, ±8, ±12 and ±16 mrad for lateral deviations ∆t  equal to 0, ±0.5, ±1.0,  
±1.5 and ±2.0 mm, respectively. The axes’ scales are different for a better visualization.

Figure 4.  Trajectories of filtered protons (left) going through phantoms (A) (top), (B) (middle) and (C) (bottom) and an example 
fit used to compute the real MLP (right). The shaded grey areas correspond to bone.

Phys. Med. Biol. 64 (2019) 065003 (13pp)

Figure 8.2: MLP estimation for homogeneous (top) and heterogeneous phantoms with a longitu-
dinal heterogeneity (middle) and a transverse heterogeneity (right). The left column illustrates
the paths projected on a 2D plane, each blue line representing the path of a proton simulated by
Geant4, superimposed on the phantom with water in white and bone in grey. The right column
illustrates how the real MLP is estimated, by fitting a two-term Gaussian to all paths at a given
depth. Figure re-printed from [J17].
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for the protons. This work is fundamental of my involvement in proton CT and a copy of the
article is included in chapter C.
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The proposed algorithm is an approximate algorithm
which takes advantage of improved spatial resolutions in pro-
ton radiographs during voxel-specific backprojection. One
can observe that if the pixel indicators h were Dirac delta
functions and if there was a single proton per indicator, us-
ing Eqs. (8) and (9) without filtering would simply backpro-
ject the proton energy integral G along the most likely proton
path. The intermediate distance-driven binning is to allow the
filtering of the FDK algorithm.

II.E. Simulations

The algorithm was implemented using RTK, an open-
source reconstruction toolkit.33 The evaluation was carried
out on Monte Carlo simulations using GATE v6.2,28 an
end-user software using the Geant4 toolkit v4.9.5.p01.29

Electromagnetic and hadronic interactions of primary
and secondary protons were simulated, both in the
air and in simulated objects. The G4BraggModel be-
low 2 MeV and the G4BetheBlochModel beyond
were used for inelastic electromagnetic interactions. The
G4UrbanMscModel95 described multiple scattering. In-
elastic hadronic interactions with target nuclei were mod-
eled using the G4BinaryCascade for protons with ener-
gies higher than 170 MeV, while the G4PreCompound was
used for lower energies. Elastic hadronic interactions of pro-
tons were simulated with G4HadronElastic. The precal-
culated table of the stopping power and the particle range dur-
ing Geant4 initialization were binned in the range of 0.1 keV
to 10 GeV in a total number of 350 bins. The transportation
step was 1 mm.

An ideal pCT scanner was simulated: a 200 MeV mo-
noenergetic point source was placed at distance ∥o − ap∥
= 100 cm from the isocenter and the characteristics (Ein

i ,
Eout

i , xin
i , ẋin

i , xout
i , and ẋout

i ) of protons traversing the planes
win = 89 cm and wout = 111 cm were recorded. The mea-
surements were exact, i.e., assumed perfect detectors, and the
envelope " of each scanned object was also assumed to be
perfectly known.

Standard 3σ cuts on energy and angle were applied to dis-
card secondary protons produced by nuclear interactions.24

Since it is not possible to measure in reality the exact path
of each proton, the most likely path of each proton was es-
timated using its characteristics (position, direction, and en-
ergy) recorded at each of the two detectors. We used straight
paths outside " and curved paths in " according to the maxi-
mum likelihood formalism of Schulte et al.14 We closely fol-
lowed their work for the parametrization of the estimation of
the most likely paths.

The simulations used the materials properties defined in
Geant4 based on the databases of the National Institute of
Standards and Technology (NIST), including modifications
with respect to NIST based on experiments, e.g., IH2O which
equals 78 eV instead of 75 eV since Geant4 v4.9.3. In both
Eq. (3) and the most likely path estimation, the object was
assumed to be homogeneous and made of water. The energy
integral G [Eq. (3)] was computed numerically with 100 eV
bins.

v

u
w

a0

Entrance
detector

Exit
detector

o

Water

Bone

FIG. 2. Drawing of the setup of simulation 1.

II.E.1. Simulation 1

The first simulation was designed to provide the reader
with insights into the effect of the distance-driven binning
by looking at a single projection image only, i.e., P = 1. We
centered a spherical shell of water with radii 90 and 110 cm
around the proton source, therefore placing the isocenter in
the middle of the water layer (Fig. 2). Three spherical bone
inserts with identical solid angles were placed in the water
sphere with regular radii from the source (90 − 92, 99 − 101,
and 108 − 110 cm). Since all objects are portions of hollow
spheres centered on the source position a1, the projection im-
age for particles travelling along straight lines crossing the
source would be a rectangular function with one rectangle per
insert. The flux of protons through the plane (o,w) was uni-
form and equal to 648 000 protons · mm−2, allowing distance-
driven binning in a fine lattice with 0.1 × 2 × 0.1 mm3 spac-
ing of 2500 × 1 × 2500 samples in the {u, v,w} coordinate
system.

II.E.2. Simulation 2

The second simulation was designed to measure the spa-
tial resolution in reconstructed images relative to the depth
of inserts in the object. Several aluminium cylinders with
ø5 mm were regularly placed along a spiral in a large water
cylinder with ø20 cm (Fig. 3). The total flux of protons
was equal to the one of simulation 1 but P = 720 pro-
jection images were simulated which gave a proton flux
of 900 protons · mm−2 · projection−1. The projection images
were binned in a lattice with 0.5 × 1 × 0.5 mm3 spacing of
500 × 2 × 500 samples. Only the central slice (o, v) of the
pCT image was reconstructed to avoid the cone-beam arti-
facts which are only encountered in other slices and depend
on the scanned object.27, 30 The resolution of reconstructed
images was 2100 × 1 × 2100 voxels with 0.1 mm isotropic
spacing. In addition to the proposed reconstruction formula
[Eq. (9)], the standard FDK algorithm was used with the sino-
grams binned before (w = 90 cm) and after (w = 110 cm) the
objects, respectively.

II.E.3. Simulation 3

The third phantom is a phantom used to measure the spa-
tial resolution of clinical CT scanners, the CTP528 high-
resolution module of the Catphan phantom (The Phantom
Laboratory, Salem, NY). The module consists in various res-
olution gauges made of 2 mm-thick aluminium sheets placed
on a ø10 cm circle in a ø20 cm water cylinder (Fig. 4). The
parameters were the same as the ones of simulation 2.
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II.E.4. Spatial resolution

The spatial resolution was quantified by measuring the
edge response of the inserts with the distance required for the
edge response to rise from 10% to 90%.31 Higher values mean
lower spatial resolution.

III. RESULTS

III.A. Simulation 1

Figure 5 illustrates the distance-driven binning in the pro-
jection space. The effect of multiple Coulomb scattering de-
pended on the distance to the source and the position of the
inserts. The edges of the bone inserts were the sharpest at the
distance w in the sinogram which corresponds to their lo-
cation in space, i.e., at the level of each line profile (Fig. 5,
bottom). The loss of sharpness increased with the distance to
their location (Fig. 5, right). The best spatial resolution was
obtained for the right insert, which was the closest to the en-
trance, whereas the worst spatial resolution was obtained for
the middle insert which is the one at the isocenter. This is
related to the performances of the most likely path estima-
tion, illustrated with the 3σ error envelope (Fig. 5, top-right,
dashed curve) which increases with depth in the object, the in-
crease being higher on the exit side (w < 1000 mm) than on
the entrance side (w > 1000 mm). η for water and bone are 1
and 1.77, respectively, so the minimum and maximum of the
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FIG. 5. Simulation 1. 2D slice of the binned 3D projection image (top-left)
with the three profiles at the distance corresponding to the center of each
insert (bottom-left) and the 10%–90% distance of each insert relative to the
distance w to quantify the spatial resolution (top-right, solid lines). The top-
right plot also displays the 3σ uncertainty of the MLP of protons with en-
trance and exit positions and directions along the central ray apo (dashed
line) computed using Eq. (27) of Schulte’s derivation of the most likely path
(Ref. 14). The 10%–90% distance was measured on each side of the inserts
but the minimum of the two distances is plotted for each insert. The right,
middle and left inserts are located at 90 − 92 , 99 − 101 , and 108 − 110 cm
from the source, respectively.

profiles should be 200 and 215.3 mm [Eq. (3)]. The minimum
is accurate but the maximum is slightly underestimated due to
the use of the IH2O = 78 eV ionization potential of water in-
stead of the IBone = 92 eV ionization potential of bone.

III.B. Simulation 2

The spatial resolution in the reconstructed pCT images can
be visually observed in Fig. 3. The spatial resolution was
not spatially uniform and gradually degrading from the pe-
riphery to the center of the phantom. Zooms on two pCT
images reconstructed with the standard FDK algorithms are
provided for comparison. The binning g(110 cm), which uses
the positions of protons after the object as provided by proton
radiographs, gives the worst spatial resolution. The binning
g(90 cm), which uses the position of protons before the ob-
ject, improves the spatial resolution but the distance-driven
binning g [Eq. (8)] with the proposed reconstruction formula
[Eq. (9)] was visually better.

The depth-dependence and the improved spatial resolu-
tion were quantified by looking at the 10%–90% distance
of the edge profile of each aluminium insert (Fig. 6). Each
4 mm profile was obtained by averaging 360 radial profiles
with equal angular spacing taken from the center of each
insert. The range of spatial resolutions were 0.7 − 1.6 ,
1.0 − 2.4 , and 2.2 − 3.2 mm for the distance-driven bin-
ning, the binning g(90 cm) and the binning g(110 cm), re-
spectively. Note that the inserts were not large enough for
accurately measuring spatial resolutions greater than 1.5 mm
due to the influence of the opposite side, which explains
the noisy pattern of, e.g., g(110 cm). The relative electron
density η was accurately reconstructed for water (ηH2O = 1)
but that of aluminium was underestimated (ηAl = 2.34),
probably because of the ionization potential assumption in
Eq. (3) (IAl = 166 eV).

III.C. Simulation 3

The improvement on spatial resolution was confirmed us-
ing simulations of a real phantom designed to measure the
spatial resolution of photon CT scanners (Fig. 4). Profiles
are provided through the pattern corresponding to 3 lp · cm−1.
The spatial resolution improved with the distance binning
compared to the spatial resolution of reconstruction using the
original FDK algorithm with binning using the proton posi-
tions before and after the object (Fig. 4, bottom left vs two
top slices). Among the two reconstructions with the original
FDK algorithm, the binning before the object had a better spa-
tial resolution.

The effect is emphasized when only a subset of projection
images is used which corresponds to a short scan (Fig. 7).
Parker weighting32 was used to account for the short scan in
each reconstruction of Fig. 7.

IV. DISCUSSION

We have proposed an algorithm to use curved most likely
paths in a pCT filtered backprojection algorithm [Eq. (9)]. Our
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Figure 8.3: Illustration of the distance driven-binning. Without MCS, the left setup would
provide a projection made of three rectangular functions. One can observe on the right that MCS
actually blurs these rectangular functions and the impact depends on the distance w between
the virtual plane and the source. Figures adapted from [J57].

8.3 Two-step reconstruction based on differentiated backprojec-
tion

Not long after, another group proposed an alternative approach based on filtering the backpro-
jection [70]. Similarly to the distance-driven binning, their algorithm bins the list-mode data in
a 3D image space. However, their space is directly that of the final image and they integrate
the binning over the projection angle to obtain the so-called backprojection. The problem is
that the backprojection has an infinite support and they provide a first-order correction term
for the inevitable approximation. At the same time, Rolf Clackdoyle and I were supervising
Jan Hoskovec on Hilbert transform methods for reconstruction (section 4.1) and a differentiated
backprojection approach [37] can avoid this issue, as explained in chapter 4. We therefore applied
this strategy to proton CT [C19]. The resulting algorithm avoids the additional interpolation
required by backprojection after binning since the binning directly occurs on the backprojection
grid. An additional advantage is that it can avoid some amount of truncation of the DBP.

8.4 Oblique ramp filtering

A last solution, which was recently investigated by Feriel Khellaf, co-supervised by Jean Michel
Létang, Nils Krah and me, is to modify the conventional FBP (ramp filtering of the projections
then backprojection), to backproject one projection at a time and apply an oblique ramp filtering
before integration over the line orientations [J7]. The main difficulty in the implementation of
this algorithm is the discretization of the oblique 2D ramp filter, which was eventually obtained
by band-limiting the filter as in the 1D case.
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8.5 Comparison between reconstruction algorithms

The developments of the three direct reconstruction algorithms described in the previous sections
led to comparative studies.

First, we approached David Hansen, who investigated iterative reconstruction for list-mode
proton CT during his PhD and who stated at the International Conference on Translational
Research in Radio-Oncology and Physics for Health in Europe (ICTR-PHE) in 2014, attended
by George Dedes, that FBP reconstruction accounting for MLP reconstruction was not feasible.
We therefore compared the reconstructed images from the same data [J39]. The differences in
spatial resolution between the different algorithms (FBP reconstruction using the distance-driven
binning and several iterative algorithms) were small, but the computational cost was much lower
for the direct FBP reconstruction.

In a separate study [J6], Feriel Khellaf compared the existing direct reconstruction algorithms
which use the MLP, i.e., the three methods presented above and two from other groups [70, 71].
A set of reconstructions of the same phantom is provided in Figure 8.4. Using Monte Carlo sim-
ulated data, we evaluated the RSP accuracy, the spatial resolution and the computation time.
The filtering of the backprojection [70] and the oblique ramp filtering (section 8.4) obtained a
slightly better resolution from data simulated with ideal trackers (i.e., with infinite spatial reso-
lution), but the differences vanished from realistic data [71] which had a lower spatial resolution.
The methods which were better resolved spatially also showed the best RSP accuracy with a
mean absolute error of 0.1%. The computation time was dominated by the MLP computation.
Since the oblique ramp filtering and the filtering of the backprojection require larger images
during reconstruction, the distance-driven binning algorithm (section 8.2) still seems to be the
best compromise for the criteria of this study.

Distance-driven binning
(section 8.2)

Differentiated
backprojection
(section 8.3)

Filtering of the
backprojection [70]

Oblique ramp filter
(section 8.4)

Maximum likelihood 2D
projection binning [71]
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8Figure 8.4: Reconstruction of the same resolution phantom from different reconstruction algo-
rithms. Figure adapted from [J6].

8.6 Calibration of x-ray CT numbers to RSP using proton radio-
graphy

A major difficulty for practically realizing proton CT is the ability to rotate the proton beam
around the patient. That is why it was proposed to measure only a proton radiography, in the
direction of the treatment beam, and to use it to automatically determine the conversion curve
from x-ray CT numbers to RSP using a prior x-ray CT image. Nils Krah investigated this inverse
problem using Monte Carlo simulations [J18], in particular different forward projectors and the
need for regularization. The Monte Carlo simulation was based on an initial x-ray CT number
to know the ground truth, which would not have been available for a phantom such as the ICRP
adult reference computational phantom since, in general, there is no one-to-one mapping between
x-ray CT numbers and RSP. The simpler forward projector resulted in similar accuracy as the
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Monte Carlo forward projector. The correlation between the unknowns of the problem requires
regularization, as illustrated in Figure 8.5.

10

N Krah et al

irradiation plan containing 10 000 pencil beams with randomised positions and beam energies. The positions 
were constrained by the lateral extension of the volume and the energy was chosen so that the pencil beams 
would penetrate the patient at least 20% of its total water equivalent thickness at that point and at most 80%. 
We scored the integrated depth dose profiles individually for all pencil beams. The same plan was simulated 
twice: once using the ground truth CT-RSP curve (see sections 2.2 and 2.3) and once using the optimised one. 
In this way, we obtained 10 000 pairs of integrated depth dose profiles. From each of them, we estimated the 
proton range by determining the water equivalent depth in which the distal edge decayed below 80% of the 
peak value (Paganetti 2012a). The profiles were linearly interpolated to reach subvoxel resolution. We built 
histograms out of the 10 000 range differences and determined the mean value as estimate for the range acc
uracy.

We note that for certain pencil beams directed towards complex structures (e.g. nose and air cavities), the 
80% distal fall-off technique may suffer from range mixing and therefore lead to additional variation of the 
range differences. Manual inspection of a random subsample of profiles led us to conclude that such cases are 
rare enough not to compromise the results in terms of average range accuracy in the Monte Carlo experiment.

2.12.  Region of interest in the proton radiography
To perform the CT-RSP curve optimisation, it suffices to acquire a proton radiography of a region of interest of 
the patient instead of, e.g. the entire head to perform the patient-specific calibration as long as the image contains 
a sufficient amount of pixels. The region could for example be chosen such to reduce the dose given to healthy 
tissue. To investigate how much the optimised CT-RSP curve depends on such a choice, we simulated nine 
proton radiographies capturing differently positioned (but equally sized) rectangular areas (shown in figure 9) 
and calculated an optimised CT-RSP curve for each of them.

Figure 3.  Left: optimised CT-RSP curves obtained without (blue) and with (red) regulariser applied. The black curve is the ground 
truth reference used to simulate the proton radiography. The two dashed vertical lines indicate the three separately regularised 
HU regions ‘air’, ‘soft tissue’, and ‘bone’ (see section 2.10.1). Right: relative difference between the DRRs calculated using the 
regularised and non-regularised CT-RSP curves, respectively.

Figure 4.  Left: optimised CT-RSP curves using two different reference curves to determine the regulariser weights γ . Right: 
optimised CT-RSP curves using different HU-intervals for the parameterisation. The regulariser weights γ  were determined in 
accordance with the smoothness of the reference curve based on Schneider et al (2000) (see section 2.4). For the curve with five HU 
thresholds only, these were placed at HU  =  −1000, −100, 0, 100, 1376. No regularisation was applied to this curve.

Phys. Med. Biol. 64 (2019) 065008 (17pp)

Figure 8.5: CT number to RSP conversion curve determined from a single proton radiography
and an x-ray CT image, without (blue) and with (red) regularization). Figure re-printed from
[J18].

This work was further developed to apply it to x-ray cone-beam CT [C6]. X-ray cone-beam
CT images can now be acquired in some protontherapy rooms and this would provide a solution
for imaging the RSP map in the treatment room, without using prior images. X-ray scatter is
then a problem and must be partially corrected. With scatter correction, Nils Krah showed that
this solution can improve the estimation of the RSP image compared to the planning RSP map
which does not account for anatomical changes.

8.7 Mean excitation energy map from energy loss proton CT and
dual-energy x-ray CT

Gloria Vilches-Freixas and Catherine Therese Quiñones were PhD students at the same time.
Since the former was reconstructing the relative electron density (RED) using dual-energy x-ray
CT and the latter was reconstructing the RSP using energy-loss proton CT, we observed that
these two maps could be combined to estimate the map of another local property, the mean
excitation energy [J24]. Indeed, the Bethe Bloch equation, which can be used to compute the
stopping power of ions in a given material at a given energy, depends on two other material
properties, the electron density and the mean excitation energy. If one deduces the stopping
power and the electron density from energy-loss proton CT and dual-energy x-ray CT, respec-
tively, only the mean excitation energy is left unknown. The technique was assessed using Gate
simulations of the ICRP adult reference computational phantom. The proof-of-concept demon-
strated the feasibility of the technique (Figure 8.6). However, it was very sensitive to noise
because the exponential of the ratio of the two input maps is taken for calculating the map of
the mean excitation energy. The slight energy dependence of the RSP [J47] was also a source of
inaccuracy. Further investigations would require experimental validation, but the experimental
determination of the mean excitation energy is not trivial and the one of water alone is still a
subject of discussion.
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2.6. Quantitative evaluation

The reconstructed CT images (SPR, RED) and the I map were
quantitatively evaluated in four to five homogeneous regions-of-interest
(ROIs) per slice (Table 1). Reference SPR, RED and I values were re-
trieved from Geant4 which used Bragg’s additivity rule and ICRU49
elemental I [1]. The reconstructed I was measured in the ROIs and
compared to the reference values in terms of average (Eq. 2) and
standard deviation (Eq. (4)). For I, the median was used instead of the
mean for robustness to outliers and because, unlike the SPR and the
RED, I was not normally distributed in 9 out of 14 ROIs (Shapiro–Wilk
normality test, p < 0.05) due to the non-linearity of Eq. 2 stemming
from the logarithm and the exponential.

3. Results

The errors in extracting I (Table 1), computed as the percentage
relative difference of I inside each ROI with respect to the reference
values, were below 10% for the head and thorax slices, except for the
lung tissue which exhibited a larger relative error. For the pelvis slice,
errors within 15% were obtained. The theoretical standard deviation of
I (Eq. (4)) was in good agreement with the measurements.

For all three anatomical sites, the reconstructed SPR image obtained
through proton CT, the RED image obtained through DECT and the
derived ionization potential image determined combining both imaging
modalities (Fig. 1) displayed similar anatomical information but the
amount of image noise was visually much more predominant for I than
for SPR and RED.

4. Discussion

The difficulty of experimentally extracting the mean excitation en-
ergy of compounds or mixtures has long been discussed [2,8,9,12,14].
Bragg’s additivity rule, which neglects chemical bonds and assumes a

constant and general chemical composition for human tissues, is used
instead of experimental measurements [2,9,25]. We conducted a fea-
sibility study based on simulations to extract the I map of an object
combining DECT and proton CT acquisitions. From these preliminary
results, it seems feasible.

Errors in estimating I were below 15% for all anatomical regions,
except for lung tissue. The accuracy of I was found to be very sensitive
on the accuracy of the RED and the SPR. This was consistent with Eq.
(2): for example, 1% error on the RED or the SPR caused 9% error on I
with SPR/RED=1. Larger errors were obtained in the pelvis ROIs
which could be explained by the higher noise levels.

We computed (Eq. (4)) and validated (Table 1) an analytical ex-
pression of the uncertainty of I according to the uncertainties of the SPR
and the RED. It can be seen that the contribution of the RED uncertainty
is weighted by an additional SPR/RED term with respect to the SPR
uncertainty but since both the SPR and the RED are around 1 for human
tissues, the SPR and RED have about the same contributions to the
uncertainty on I. The formula also indicates that the uncertainty on I is
about 11 times larger than that of the SPR and RED. In the simulations,
we used a DECT dose of 20mGy at the center of a cylindrical phantom
of similar diameter as the considered anatomical region [17] which is
common in clinical routine for CT acquisitions. A similar SPR image
noise was obtained with a proton CT dose of 5mGy. Higher imaging
doses should reduce the uncertainty of I according to Eq. (4). The I
accuracy will not only be limited by the statistical uncertainty and in-
accuracies are expected even with infinite doses due to the energy de-
pendence in Eq. (2) and the reference value for water Iw in the same
equation. Note also that both pCT and CT have non-uniform spatial
distributions of noise which are different from each other and which
will therefore lead to another non-uniform distribution of the noise of I.
The study of this distribution was out of the scope of this work.

At present, there is no clear consensus on which SPR expression is
the most appropriate for computing the theoretical SPR values [26,27].
In this study, we calculated the theoretical SPR using the equation
proposed by Schneider et al. [23], which neglects shell, density, Barkas
and Bloch correction terms and energy dependency. This approxima-
tion of the Bethe-Bloch theory [28,29] has been proven to be valid and
is widely used in proton therapy to compute the stopping power of
human tissues [23]. Bethe-Bloch theory is not valid for proton energies
below 1MeV but it was found to have a negligible clinical impact [27].
Ödén et al. [26] compared Schneider’s approach with the SRIM soft-
ware [30], which incorporates all mentioned corrections, and con-
cluded that Bethe’s equation without correction terms could safely be

Fig. 1. From left to right: reconstructed SPR image (unitless) obtained through proton CT, reconstructed RED image (unitless) obtained through dual-energy CT and
computed I map (in eV) determined using Bethe’s equation.

G. Vilches-Freixas et al. Physics and Imaging in Radiation Oncology 6 (2018) 20–24

22

Figure 8.6: RSP (left), RED (middle) and mean excitation energy (right) of the ICRP adult
reference computational phantom in the head (top), lungs (middle) and pelvis (bottom) regions.
Figure re-printed from [J24].

8.8 Assessment of the clinical relevance of proton CT using Monte
Carlo simulations

Proton CT was deemed to be “the ideal way to determine proton RSP distribution inside the
patient” [59], but it seemed necessary to assess the difference to x-ray CT. To this end, after some
initial developments of George Dedes, Nicolas Arbor simulated x-ray and proton CT images of
the ICRP adult reference computational phantom using Gate / Geant4 [J47]. The two scanners
were idealized in several ways (no x-ray scatter, perfect proton trackers and energy detector, etc.).
X-ray CT was processed as in proton centers, i.e., using a conversion curve from Hounsfield units
to RSP. The resulting RSP maps of the phantom in three locations (head, thorax and abdomen)
were evaluated in terms of RSP accuracy as well as their ability to predict the range of many
small proton pencil beams in different directions and locations. The mean absolute deviation of
the latter varied from 0.18 to 2.01 mm for x-ray CT depending on the anatomical site while it was
smaller than 0.1 mm for proton CT (Figure 8.7). It was concluded that “under the assumption
of a perfect detection system, proton range predictions based on proton CT are therefore both
more accurate and more uniform than those based on x-ray CT”.

7595

Figure 9. Distributions of the voxel-by-voxel absolute deviation of the RSP 
reconstructed from x-ray and proton CT with respect to the ICRP phantom reference. 
Absolute deviation for liver, head and lungs sites are shown for proton CT (left) and for 
x-ray CT with a calibration based on a linear interpolation (middle) and a fit with two 
linear functions (right).
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Figure 10. Two-dimensional RSP absolute deviation with respect to the ICRP reference 
of the proton CT (left) and x-ray CT with a calibration based on a linear interpolation 
(middle) and a fit with two linear functions (right) applied to the head (top), lungs 
(middle) and liver (bottom) sites.
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Figure 11. Absolute deviation of the proton range calculations. Absolute deviation for 
liver, head and lungs cases are shown for the proton CT (left) and for the x-ray CT with 
a calibration based on a linear interpolation (middle) and a fit with two linear functions 
(right).
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Figure 8.7: Distribution of the range errors measured on RSP maps of the ICRP adult reference
computational phantom obtained from simulated x-ray and proton CT images. Two conversion
curves from x-ray CT numbers to RSP were used, one using interpolation between a reference
phantom and the other from a fit of the same data. Figures adapted from [J47].

65



Part III. Proton computed tomography

8.9 Conclusion

This chapter presented my contributions to the problem of energy-loss proton CT reconstruction.
Several algorithms have been proposed since [J57], but our comparative studies indicate that it
is still one of the best solutions. Two forms of combination of proton imaging with x-ray CT
have also been summarized. We have finally assessed the clinical relevance of proton CT using
simulations and found a small but significant improvement over single-energy CT.

George Dedes, who was with us for a few months in 2012 before joining the LMU, continued
to evaluate proton CT images with the distance driven binning algorithm and his group (led by
Katia Parodi with also the strong involvement of Guillaume Landry) produced many interesting
results. First, he compared proton CT to dual-energy CT (chapter 7) using real data acquired
on a prototype proton CT scanner. He found a slight advantage of proton over dual-energy
CT for plastic inserts mimicking human tissues [J13]. The same group has also been actively
investigating RSP resolution of proton CT images reconstructed with the same algorithm [J16,
J21]. This work, after some initial proofs of principles [J22, J33], is now used to develop fluence-
modulated proton CT images by a PhD student, Jannis Dickmann [J3, J8].

In my opinion, the future of proton CT mainly depends on hardware developments. It is
not easy to realize a proton CT scanner which can acquire data sufficiently fast (ideally, with a
proton rate around 10 MHz) to make it clinically practical. It also depends on the availability
of a gantry or of a rotating chair in the treatment room to realize the tomographic acquisition.
If these technical challenges were met, it is my belief that the developments presented in this
chapter would be central towards a clinical proton CT scanner.
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9
Other proton CT modalities

List-mode proton CT scanners as the one sketched in Figure 8.1 have been developped for
reconstructing the RSP map from the measure of the energy loss of each proton. This is not,
however, the only possibility. Inspired by the PhD thesis of Cécile Bopp [72, 73, 74], Jean Michel
Létang and I supervised the PhD of Catherine Therese Quiñones on attenuation and scattering
proton CT [S4]. These three 3D CT images form a 4D image which is multi-modal or, to underline
the fact that they are reconstructed from the same measurements, a multi-variate proton CT
image. Her work has been continued by two postdocs, Nils Krah and Ahmad Addoum. This
chapter describes these investigations and two possibilities to combine energy-loss proton CT
with x-ray CT.

9.1 Attenuation proton CT

A majority of the protons go through the patient and one can use the energy loss of each one
to reconstruct a proton CT image using Equation 8.1 for the forward model. But there is also
a portion of the protons which do not make it through the patient because they encounter
inelastic nuclear interactions. As in x-ray CT, one can therefore take the ratio of the number of
protons after the patient over the number of protons before the patient, which can be related
to the line integral of the inelastic nuclear stopping power map of the scanned object. Unlike
the energy-loss proton CT problem (Equation 8.1), for which a line integral is provided by every
proton, attenuation proton CT is based on counts for several protons and one must bin the
list-mode information. The main contribution of Catherine Therese Quiñones was to adapt the
distance driven-binning algorithm (section 8.2) to attenuation proton CT and to characterize the
accuracy and the precision of the reconstructed RSP [J42]. The central line of Figure 9.1 and
the line profiles in Figure 9.2 illustrate the spatial resolution improvement of the distance-driven
binning algorithm over a single distance binning which assumes a straight-line path (SLP). It also
illustrates visually the increase in noise for the same imaging dose, which was also demonstrated
analytically following the development in [75] for energy-loss proton CT (Figure 9.3). The
accuracy of the reconstructed values relies on the assumption that the inelastic nuclear cross
section is energy independent, which is only valid above 100 MeV and capping artifacts were
observed otherwise.

It is interesting to note the edge-enhancement artefact of SLP images in the bottom line
of Figure 9.2. This was attributed to the interplay between MCS and attenuation known as
the West-Sherwood effect [76]. Since such images can be acquired by an integrating detector
which records a signal proportional to the proton counts, Ahmad Addoum and Nils Krah have
investigated how modeling this effect could lead to an improvement of the spatial resolution of
such images. The corresponding forward problem mixes the models of attenuation and scattering
proton CT (next section). Similarly to projection-based material decomposition in spectral CT
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Figure 5.6: The pCT images reconstructed using the attenuation (κ-maps, top)
and energy loss (RSP-maps, bottom). On the left column are reconstructions using
the MLP while on the right column are reconstructions using SLP. Gray level
parameters were set as described in Figure 5.4. The RSP and κ values of aluminum
are 2.1 and 2.433 ×10−4 mm−1 respectively. The red and blue rectangles are the
regions of interest to extract the average line profiles while the yellow and orange
lines are the distances considered to extract the average radial line profiles which
are shown in Figure 5.7.

5.5 Discussion

We have proposed and characterized an algorithm which integrates a curved most
likely path estimate in pCT reconstructions exploiting proton attenuation. While
the reconstruction algorithm is the same for both energy-loss and attenuation pCT,
differences were observed because of the nature of the projection data.

First, the energy dependence on the accuracy was investigated using a homo-
geneous water cylindrical phantom. In pCT, the incident energy should be enough
for protons to traverse the object to be imaged. For a 20 cm homogeneous water
phantom, a 175 MeV proton beam is already sufficient to acquire data for pCT recon-
structions. It has been shown in Schulte et al. (2008) for pCT reconstructions using
energy loss, that a 175 MeV incident energy demonstrates a better precision than
a 200 MeV incident proton beam. The difference between these energies is however
not significant in attenuation pCT wherein the variation of κ between these energies
is nearly negligible. However, an occurrence of a capping artifact has been observed
for the κ map reconstructed using incident protons with lower momentum, e.g., for
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Figure 5.6: The pCT images reconstructed using the attenuation (κ-maps, top)
and energy loss (RSP-maps, bottom). On the left column are reconstructions using
the MLP while on the right column are reconstructions using SLP. Gray level
parameters were set as described in Figure 5.4. The RSP and κ values of aluminum
are 2.1 and 2.433 ×10−4 mm−1 respectively. The red and blue rectangles are the
regions of interest to extract the average line profiles while the yellow and orange
lines are the distances considered to extract the average radial line profiles which
are shown in Figure 5.7.

5.5 Discussion

We have proposed and characterized an algorithm which integrates a curved most
likely path estimate in pCT reconstructions exploiting proton attenuation. While
the reconstruction algorithm is the same for both energy-loss and attenuation pCT,
differences were observed because of the nature of the projection data.

First, the energy dependence on the accuracy was investigated using a homo-
geneous water cylindrical phantom. In pCT, the incident energy should be enough
for protons to traverse the object to be imaged. For a 20 cm homogeneous water
phantom, a 175 MeV proton beam is already sufficient to acquire data for pCT recon-
structions. It has been shown in Schulte et al. (2008) for pCT reconstructions using
energy loss, that a 175 MeV incident energy demonstrates a better precision than
a 200 MeV incident proton beam. The difference between these energies is however
not significant in attenuation pCT wherein the variation of κ between these energies
is nearly negligible. However, an occurrence of a capping artifact has been observed
for the κ map reconstructed using incident protons with lower momentum, e.g., for
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Figure 6.7: The pCT images reconstructed using scattering pCT (δ-maps, top)
and energy loss pCT (RSP-maps, bottom). On the left column are reconstructions
using the MLP while on the right column are reconstructions using SLP. Gray level
parameters were set as described in Figure 5.4. The RSP and δ values of aluminum
are 2.1 and 3.0 (based on Figure 6.8, left), respectively. The red and blue rectangles
are the regions of interest to extract the average line profiles.

first (1 line pair/cm) and fourth (4 line pairs/cm) set of bar patterns for reconstruc-
tions using the MLP are shown in Figure 6.8. Even the aluminum bar patterns
are very thin, it can be observed that the δ-values are lower than δ0,Al = 4.06 as
observed in Figure 6.1. The spatial resolution of the δ-map and RSP-map recon-
structed using the MLP were quantified using the MTF as shown in Figure 6.9.
Despite the better accuracy and precision achieved with the RSP-map compared
with the δ-map as shown by the line profiles in Figure 6.8, the MTF results shown
in Figure 6.9 demonstrate that the spatial resolution of the δ-map is comparable
with the RSP-map.

Experiment 4: Spiral phantom

Figure 6.10 (left) shows the reconstructed δ and RSP-maps of the Spiral phantom
reconstructed with MLP. The average radial line profiles of the inserts at different
distances from the center are shown in the corresponding figure on the right. The
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Figure 9.1: Comparison of FBP reconstruction using MLP with the distance-driven binning (left)
or conventional FBP reconstructed assuming SLP (right) for energy-loss RSP (top), attenuation
κ (middle) and scattering δ (bottom) proton CT. The colored segments and rectangles refer to
the location of profiles in Figure 9.2. Figure adapted from [S4].
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Figure 6.8: The average line profiles of the 1st gauge (1 line pair/cm, red curve) and
4th gauge (4 line pairs/cm, blue curve) for the δ-map (left) and RSP-map (right)
respectively, for ROIs shown in Figure 6.7. The bottom dashed lines are δwater = 1
and RSPwater = 1 while the top dashed lines are δ0,Al = 4.06 and RSPwater = 2.1.
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Figure 6.9: Modulation transfer function (MTF) as a measure of the spatial resolu-
tion at a specific distance from the center (50 mm) for the RSP and δ pCT images
of the Catphan 528 phantom

position dependency of the δ-values for aluminum is clearly visible. The deviation
of δ away from δ0 is around 14% for the inserts at the periphery region and around
21% for the insert at the center.

The spatial resolution as a function of distance from the center of the δ map
behaves similarly with the RSP map, i.e. the spatial resolution of the outermost
inserts demonstrates a better spatial resolution than the insert at the center. To val-
idate quantitatively the distance to periphery dependence of the spatial resolution,
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Figure 5.7: The top left and top right figures are the average line profiles of the
1st gauge (1 line pair/cm, red curve) and 4th gauge (4 line pairs/cm, blue curve)
for the κ and RSP-maps respectively, for ROIs shown in Figure 5.6. The top and
bottom vertical dashed lines are the expected CT values for aluminum and water,
respectively. The bottom figure shows the average radial line profiles at the borders
of both the MLP and SLP κ-maps.

175 MeV as shown in Figure 5.2. This is quite expected since lower momentum
protons undergo more nuclear inelastic scattering (Figure 5.1) and in regions where
more materials are traversed, such as the center, protons are more attenuated caus-
ing an overestimate of κ. The effect is therefore opposite to beam-hardening in xCT.
This capping artifact is reduced by increasing the energy as shown in Figure 5.2 with
a 200 MeV incident proton beam. Hence, for attenuation pCT, residual energies of
at least 100 MeV are necessary to avoid inhomogeneity artifacts.

The accuracy of the pCT images is also influenced by the nature of proton inter-
actions inside an object. Protons traversing a medium do not only undergo electro-
magnetic interactions but also nuclear scattering. During an inelastic scattering, the
proton loses all its energy to the target nucleus causing the attenuation of the proton
fluence. This interaction triggers breakup or excitation of the target nucleus causing
the production of secondaries among which a majority of protons. A fraction of the
attenuation is also due to elastic nuclear interaction in which a primary proton is
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Figure 6.8: The average line profiles of the 1st gauge (1 line pair/cm, red curve) and
4th gauge (4 line pairs/cm, blue curve) for the δ-map (left) and RSP-map (right)
respectively, for ROIs shown in Figure 6.7. The bottom dashed lines are δwater = 1
and RSPwater = 1 while the top dashed lines are δ0,Al = 4.06 and RSPwater = 2.1.
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Figure 6.9: Modulation transfer function (MTF) as a measure of the spatial resolu-
tion at a specific distance from the center (50 mm) for the RSP and δ pCT images
of the Catphan 528 phantom

position dependency of the δ-values for aluminum is clearly visible. The deviation
of δ away from δ0 is around 14% for the inserts at the periphery region and around
21% for the insert at the center.

The spatial resolution as a function of distance from the center of the δ map
behaves similarly with the RSP map, i.e. the spatial resolution of the outermost
inserts demonstrates a better spatial resolution than the insert at the center. To val-
idate quantitatively the distance to periphery dependence of the spatial resolution,
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Figure 5.7: The top left and top right figures are the average line profiles of the
1st gauge (1 line pair/cm, red curve) and 4th gauge (4 line pairs/cm, blue curve)
for the κ and RSP-maps respectively, for ROIs shown in Figure 5.6. The top and
bottom vertical dashed lines are the expected CT values for aluminum and water,
respectively. The bottom figure shows the average radial line profiles at the borders
of both the MLP and SLP κ-maps.

175 MeV as shown in Figure 5.2. This is quite expected since lower momentum
protons undergo more nuclear inelastic scattering (Figure 5.1) and in regions where
more materials are traversed, such as the center, protons are more attenuated caus-
ing an overestimate of κ. The effect is therefore opposite to beam-hardening in xCT.
This capping artifact is reduced by increasing the energy as shown in Figure 5.2 with
a 200 MeV incident proton beam. Hence, for attenuation pCT, residual energies of
at least 100 MeV are necessary to avoid inhomogeneity artifacts.

The accuracy of the pCT images is also influenced by the nature of proton inter-
actions inside an object. Protons traversing a medium do not only undergo electro-
magnetic interactions but also nuclear scattering. During an inelastic scattering, the
proton loses all its energy to the target nucleus causing the attenuation of the proton
fluence. This interaction triggers breakup or excitation of the target nucleus causing
the production of secondaries among which a majority of protons. A fraction of the
attenuation is also due to elastic nuclear interaction in which a primary proton is

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI094/these.pdf 
© [C.T. Quiñones], [2016], INSA Lyon, tous droits réservés

Figure 9.2: Profiles of energy-loss (left), attenuation (middle) and scattering (right) proton
CT taken in resolution patterns (top) or at the edge of the cylinder (bottom) of the images
in Figure 9.1. The dashed horizontal lines indicate reference values for the materials. Figure
adapted from [S4].

Figure 9.3: Analytically-derived precision as a function of the imaging dose for energy-loss,
scattering and attenuation proton CT. Figure courtesy of Nils Krah.
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Part III. Proton computed tomography

(section 6.2), the inverse problem is non-linear and non-convex. Our first results [A2] indicate
that this technique provides a solution for reconstructing scattering proton CT images from
integrated data (i.e., not list-mode) with an improvement of the spatial resolution compared to
the attenuation image without correction.

9.2 Scattering proton CT

Instead of counting protons, one can estimate how much protons scattered through the object.
The amount of MCS depends on the scattering power [77] of the object, which is a function of
local material properties (the density and the radiation length) and the proton energy. As for
attenuation, estimating the variance of this scattering requires binning the list-mode information
and Catherine Therese Quiñones applied the same reconstruction technique. A similar improve-
ment of the spatial resolution was observed (Figure 9.1, bottom line and corresponding profiles in
Figure 9.2, right). The noise was also much larger than in energy-loss proton CT, but decreased
compared to attenuation proton CT (Figure 9.3). Interestingly, the contrast of scattering powers
of two materials (e.g. bone and water) is generally larger than the one of their respective RSP
contrast, but the constrast-to-noise ratio is lower due to the noise increase. Unlike the RSP,
the scattering power relative to water δ is not energy independent and cupping artefacts were
observed in objects which are not essentially made of water.

9.3 Conclusion

This chapter summarized how a single list-mode proton CT dataset can be used to reconstruct
other maps than the RSP map: the map of the inelastic nuclear scattering cross section by
looking at the beam attenuation and the scattering power map by looking at the spread of the
beam. The sets of reconstructed CT images provide a fourth dimension which could be useful
to, e.g., better characterize tissues, similarly to what is envisioned for spectral CT (Part II).
However, it has been shown that these three quantities are strongly correlated [60] and the much
larger noise (Figure 9.3) probably discard clinical use at this stage. There is still one modality
which I have never evaluated, the use of the energy straggling as a quantity at the projection
level which depends on the traversed tissues. Characterizing this modality as well as any other
possibilities would be of interest.
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10
Outlook for the future

The purpose of this chapter is to detail on-going activities which have been briefly sketched
throughout the manuscript and to develop new projects for future investigations on the founda-
tions of my previous works. I will mainly continue my research in thes three fields presented in
the previous chapters but I will also apply my knowledge to other modalities.

10.1 Motion correction in tomography

Despite being as old as tomography, the problem of motion cannot be considered solved. Res-
piration-correlated CT [78] and cone-beam CT [8] are used clinically but residual artifacts limit
their usability. I will therefore continue my developments to further improve image quality of
dynamic CT towards the same quality as breathold CT for each time frame. Besides, respiration-
correlated tomography is still not in clinical use in other modalities and I aim to apply breathing
motion correction techniques to an emission modality, SPECT.

Breathing motion correction in quantitative SPECT

The CREATIS research group at the CLB has developed strong ties to its nuclear medicine
department (Lumen, jointly managed by the Hospices Civils de Lyon) in the past few years
under the leadership of David Sarrut. The motivation for this collaboration is the development
of quantitative emission tomography for improving diagnosis as well as targeted radionuclide
therapy, a rapidly expanding treatment modality. The collaboration was motivated by David
Sarrut’s expertise in Monte Carlo simulations for imaging and radiotherapy, which are crucial
tools for quantitative SPECT imaging.

A major issue in SPECT of the lungs and the upper abdomen is breathing motion. For ex-
ample, it “has a large effect on SPECT activity quantitation” of radioembolization according to
Bastiaannet et al [79]. Motivated by this observation and our respective expertise in simulation
of nuclear imaging and motion correction in CT, I am co-supervising Antoine Robert with David
Sarrut since December 2018, a PhD student funded by a CIFRE grant of the Kitware company,
on the topic of breathing motion correction in SPECT. Kitware is interested in developing its
expertise in tomography reconstruction using RTK. A regional project NucleAr meDicine ImAg-
ing with Motion (NADIAM) is also funding a research engineer for the development of a clinical
workflow.

The current investigations focus on data-driven methods which can be applied to patient
data retrospectively, i.e., without modification of the clinical protocols. The breathing signal can
indeed be extracted from list-mode SPECT data [80] and used to reconstruct 4D SPECT images
with state-of-the-art 3D reconstruction techniques for SPECT in each time frame. Breathing
motion is then corrected for, but each frame is reconstructed from a subset of the acquired data
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and will have a poor signal-to-noise ratio. We will therefore investigate motion compensation
strategies similar to those presented in Part I. Simple motion estimation on pairs of projections
will be developed first before developing advanced techniques using 2D/3D registration, similar
to those described in section 2.3 or in the next section 10.1.

Nuclear medicine has invested a lot in targeted radionuclide therapy and targeted sites moving
with breathing will benefit from motion corrected SPECT images. The collaboration with the
Lumen group is a promise of a rapid clinical evaluation of the benefit. The group at the CLB
gathers the expertise to be a major actor of these developments, including my experience in
motion correction in CT.

Estimation of non-cyclic motion from cone-beam projections

My works on motion-compensated cone-beam CT have led me to be convinced that the main
bottleneck in image quality is not the reconstruction algorithm but the accuracy of its input, an
estimate of the motion during the acquisition. In Part I, the motion is often assumed to be cyclic
and this is known to be an approximation. If this condition could be lifted, breathing motion
would be further corrected in motion-compensated cone-beam CT images. The framework of
Jamie McClelland [26] is particularly attractive to address this problem. It uses one or several
surrogate signals describing the irregularity of the motion which are then used to estimate the full
motion during the acquisition. We have been collaborating during the master thesis of Pauline
Mouchès [M2] and the PhD of Adeyemi Akintonde [C9, A7]. Several problems still need to be
solved to be able to estimate the motion on real cone-beam projection images. First, the ampli-
tude of the input breathing signal is used in the chosen model [27], unlike respiration-correlated
imaging which only uses its phase. This can be done by extracting the motion of a diaphragm
dome [J61], but this is difficult to automate and not robust. Second, the truncation of the
cone-beam projections will impact the motion estimation and raise the questions of ROI motion
estimation as well as ROI motion-compensated reconstruction. Indeed, accurate estimation of
the motion seems impossible out of the field-of-view without prior information and, even in the
field-of-view, accurate estimation still needs to be demonstrated. Finally, the motion estimation
relies on a prior CT, as in section 2.3, but the effectiveness of alternating between motion esti-
mation and motion-compensated reconstruction could be explored, e.g. following [81] which has
only been demonstrated on simplistic simulations.

Data consistency conditions in helical 4D CT

Respiration-correlated 4D CT is clinically used, but it is far from being perfect. Acquired images
often suffer from residual motion artifacts, e.g., 90% of the images in [20], and improvement of
the image quality of 4D CT images is needed, e.g. for better radiotherapy planning. The cause
is not unique, but the main one is also irregular breathing motion. DCC have proven efficient
to estimate motion or to calibrate the geometry of a scanner (chapter 5) and Mélanie Mouchet,
PhD student funded by a Siemens CIFRE grant and who is co-supervised by Jean Michel Létang
and me, is investigating their use for improving the image quality of helical 4D CT. Her on-going
works address several methodological challenges. First, there is no literature on DCC for helical
CT. The DCC used in [J31] are applicable only for pairs of source projections which are imaging
the same part of the object. After identifying pairs of source for which DCC can be computed,
Mélanie Mouchet investigates the construction of a graph with source positions as vertices and
DCC as edges. Preliminary results indicate that this graph can be used to detect motion between
two source positions by calculating the shortest path in the graph: if only a small part of the
projections is inconsistent, there should be a “consistent” path between two consistent source
positions. Correcting the 4D CT image artifacts will be the purpose of her future investigations,
e.g., by better sorting projections prior to the reconstruction of the 4D CT frames by accounting
for the DCC discrepancy in an iterative reconstruction algorithm.
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This project is a first example of artifact correction using DCC in helical CT. If we can demon-
strate efficient motion correction, other artifacts could be corrected for in follow-up projects, e.g.,
scatter.

Spectral and dynamic five-dimensional (5D) CT

The development of spectral CT will probably trigger the clinical need to combine dynamic
and spectral CT. For example, such a combination would be helpful for cardiac imaging with
one or more contrast agent(s). Another clinical application is the one which motivated the
PhD thesis of Cyril Mory, the segmentation of the infacted region of the myocardium using late
enhancement if a C-arm scanner with dual-energy were developed for interventional imaging.
Reconstructing energy-resolved and time-resolved images is more complex than treating each
dimension separately due to the increase of the number of sought unknowns in the 5D CT
image. Reconstructing each frame separately will require enough projection data and the x-ray
dose might be detrimental for the patient. Using a motion-compensated strategy combined with
a one-step spectral CT reconstruction is ambitious, but it would be a direction of investigations
for which I have developed the required skills.

10.2 Region-of-interest CT

I first approached the problem of ROI CT by investigating its combination with a motion of
the scanned object (chapter 4). The on-going ANR project region-of-interest and dose reduction
(ROIdoré) aims at determining whether ROI CT can effectively reconstruct images with the
same image quality in the field-of-view as a full field-of-view acquisition and, if yes, whether it
leads, as expected, to a reduction of the patient dose. This project raises a variety of theoretical
questions which will be first investigated by two PhD students in the coming years.

Differentiated backprojection

Aurélien Coussat, a PhD student co-supervised by Rolf Clackdoyle and me, is currently investi-
gating a first category of ROI algorithm, DBP. The PhD investigations are currently centered on
a residual artifact when approaching the border of the field-of-view, which we have also observed
with iterative reconstruction [J34], and which breaks the promise of an image quality equivalent
to a full field-of-view. Aurélien is more specifically trying to address the problem of the truncated
Hilbert transform, which must be solved after DBP when the field-of-view partially overlaps the
patient enveloppe. It is known to have a unique and stable solution [82], but an analytical in-
verse has not been derived yet. With singular value decomposition (SVD), these investigations
have clarified the origin of this problem. Initial results [A3, C2] and future investigations aim to
reduce or solve it using DBP approaches.

Virtual cone-beam reconstruction

An alternative algorithm for 2D ROI CT is the virtual fan-beam approach [83] which combines
the “super short scan” algorithm [84] with a rebinning of the projection data. This algorithm has
only been applied to 2D data. Mathurin Charles has obtained a ministry PhD grant to investigate
its application to 3D data. The circular source trajectory will be handled first because it seems
that one could follow the strategy of the FDK algorithm, i.e., to heuristically apply the 2D
algorithm to the acquired cone-beam projections. Adapting the virtual fan-beam algorithm to
other source trajectories, e.g., the helical trajectory is desirable, but it is a difficult problem that
will be investigated in a separate project in the future.
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Image quality

Evaluation of image quality is a central issue of medical imaging. In tomography, simple metrics
are used first based on simulated data for which the reference is known, e.g., the root mean
square error between a result and a reference. These metrics are insufficient to characterize the
quality of an image and a large part of the field is devoted to better assessing image quality, e.g.,
by modeling observers of the images [85]. The ROIdoré project shall start with simple techniques
to measure image quality, but I intend to develop this skill in the future to better demonstrate
the clinical potential of my developments.

10.3 Ion CT

Ion CT is not clinically available and the investigations of this field should support the develop-
ment of clinical scanners and demonstrate the clinical relevance of this technique. Reconstruction
is a central component of any CT scanner and previous investigations [J39, J6] suggest that the
distance-driven binning algorithm [J57] is a good candidate for a clinical scanner. I also aim at
improving the precision and the resolution of reconstructed images.

Time-of-flight ion imaging

Nils Krah has demonstrated that it is mainly the list-mode approach that will reach an ac-
ceptable spatial resolution for most clinical objectives [J23]. A challenge for clinical use is the
count rate at which current prototypes can operate. For example, one of the most advanced
prototypes, developed by an American collaboration, would require a few minutes for acquiring
a full ion CT image [86], which seems unacceptable for image-guided ion-therapy. This prototype
uses a few calorimeters for measuring the residual energy after the patient [87]. One alternative
possibility for designing a clinical scanner is the measure of the time-of-flight of the ions over a
known distance after the patient to indirectly measure their residual energy [88]. This alterna-
tive strategy would benefit from time-of-flight developments in other modalities, e.g., positron
emission tomography (PET) [89]. The current postdoctoral fellowship of Nils Krah, funded by
the PhysiCancer project Ultra-Fast Timing for Online Control of Particle (CLaRyS-UFT), aims
at evaluating time-of-flight for ion CT based on simulations. I am also part of a European col-
laboration with groups in Germany, Austria and Italy to build a first prototype system with this
approach.

Investigation of the dose advantage of proton CT

The main two benefits of proton CT over x-ray CT according to the literature are the improve-
ment of the RSP estimation and the dose reduction. The former has been demonstrated by the
investigations of George Dedes and Nicolas Arbor [J47]. The latter has been investigated by
Reinhard Schulte et al [75], but recent developments [J21, J16] suggest that the contribution of
MCS to the image precision has not been accounted for. All studies also neglect spatial reso-
lution in the comparison. In collaboration with LMU, I intend to evaluate the noise in proton
and x-ray CT at the same dose and spatial resolution. My intuition is that the dose advantage
has been over-estimated, but a careful evaluation based on realistic simulations is required to be
conclusive.

Filtering of proton tracks with nuclear interactions

The forward model on which most ion CT reconstruction algorithms relies assumes that the
measured ions have only encountered electromagnetic interactions. In practice, a substantial
part of the measured ions also encounter nuclear interactions. The literature is very scarce
on this subject, but simulations show that it significantly increases image noise and biases the
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estimated RSP [69]. Simple strategies can filter out a large part of these proton tracks, but
improving this filtering is desirable. Nils Krah and David Sarrut have co-supervised the master
internship of Risha Upadhay on the use of machine learning strategies to improve this filtering
[90]. The approach is promising, particularly for ions heavier than protons (helium or carbon
ions), and should be further developed. Machine learning is a good candidate because the physics
is well understood and Monte Carlo simulations can easily generate input data for training a
neural network. The main challenge will be the modeling of the detectors in the simulations.

Resolution modeling in ion CT

List-mode ion CT enables the estimation of MLPs, but even perfect detectors cannot estimate
the true ion paths. The uncertainty associated to the estimation is known [69], but it is generally
not accounted for in the reconstruction. In her last PhD thesis chapter [S1], Feriel Khellaf has
demonstrated the possibility to deblur the distance-driven projections, and obtained a significant
improvement of the spatial resolution. I believe that we could go further by jointly reconstructing
and deblurring the proton CT image. This is a problem similar to resolution modeling in emission
tomography [91]. As spatial resolution is the main issue in ion CT, I will investigate such methods
for improving it.

Cone-beam CT prior in the reconstruction

Another direction for improving the spatial resolution of ion CT is the one at the origin of
the Marie Skłodowska-Curie Individual Fellowship of Nils Krah, Proton CT reconstruction with
a Cone Beam CT prior. The project idea was to rely on the excellent spatial resolution of
cone-beam CT, which can be acquired in some ion treatment room, to obtain spatially resolved
and accurate RSP images. Nils Krah proposed an automatic calibration of the cone-beam CT
using a proton radiography [C6], which significantly improves the estimate of the RSP map, but
one proton radiography cannot resolve all ambiguities [J18]. Using the cone-beam CT in the
proton CT reconstruction is a promising alternative [92] which should be further developed in a
filtered-backprojection algorithm.

10.4 Spectral CT

Since the clinical introduction of dual energy CT [93], spectral CT has demonstrated its clinical
relevance and motivated the investment by the x-ray CT manufacturers in photon counting CT
[94]. One can expect the first commercial photon counting scanners in the coming years and
CREATIS should have a central role in their developments given our experience on the first
clinical Philips prototype in the context of the SPCCT project.

One-step reconstruction

One application of SPCCT is the imaging of contrast media with a K-edge in the diagnostic
energy range. However, it seems that its clinical use will be difficult due to the limited sensi-
tivity of the scanner. By jointly decomposing and reconstructing spectral CT images, one-step
reconstruction should improve sensitivity and it should therefore be explored. The postdoctoral
fellowships of Cyril Mory and Pierre-Antoine Rodesch have led to the comparison of several one-
step algorithms on simulated data [J20]. Application to real data has required some corrections
to stabilize the convergence with helical data which are incomplete at both ends of the helix
[C4]. It should now be possible to validate the benefit in sensitivity on real data acquired on
the Philips prototype in Lyon. If a benefit is indeed proven, there will be increased interest in
one-step solutions and we will need to make it routinely applicable by improving the computer
implementation and investigating better performing optimization algorithms.
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Auto-calibration of spectral CT using DCC

Image quality of spectral CT images rely on an accurate description of the forward model, i.e.,
the effective spectra sb in Equation 6.2. They are usually determined by prior knowledge of
the system such as the source spectra measured with a spectrometer and the detector response
measured with monoergetic x-ray sources. But they are not completely stable in time and they
need to be adjusted regularly with measurements of the attenuation of known materials. We
have even observed that they can slightly drift within one scan with some systems and this drift
has a detrimental effect on the image quality of the decomposed spectral CT images. Previous
works have demonstrated the ability of DCC to correct for beam-hardening [95, 96]. Motivated
by these results and the work of Jérôme Lesaint on auto-calibration of the scanner geometry [43],
I intend to investigate auto-calibration of the spectral model using DCC.

Spectral scatter correction without modulation mask

The work of Odran Pivot has demonstrated efficient scatter correction using spectral CT with an
attenuation mask in front of the x-ray souce [J9]. Clinical applicability might be difficult because
the rotation of the source and the detector around the patient will cause slight movements of
the relative position of the mask and the detector. The spectral scatter model based on B-spline
could still be used using other techniques, e.g., convolution kernels [97] or DCC [98].

Spectral CT for multimodal x-ray imaging

Like proton imaging, x-ray imaging can image other quantities in addition to the attenuation
map: the phase and the dark field maps. They usually require coherent monochromatic sources
or optical devices such as grating interferometers which do not meet clinical dose and time con-
straints. Several teams investigate simpler systems which could be used clinically, e.g., Emmanuel
Brun in Grenoble investigates speckle tracking [99]. These efforts will eventually lead to clinical
solutions and I intend to enter this field. Initial efforts include my collaboration with Max Langer
for the implementation of phase contrast simulation in Gate [J4], the visit of a PhD student,
Lina Felsner, from the group of Andreas Maier (Pattern Recognition Lab, Erlangen-Nuremberg,
Germany) on the topic of dark field imaging and initial contacts with Emmanuel Brun. My
contribution shall be the development of algorithms based on my experience with spectral CT
as well as the use of spectral CT for this imaging modalities [100, 101].

10.5 International and local positioning

Different directions for my future investigations have been developed which should be positioned
with respect to other groups. I have gained international recognition in the field of image-guided
radiotherapy, in particular for the problem of motion in cone-beam CT, so the project on this
topic seems natural and is supported by other visible collaborators such as Jamie McClelland
(London). The new orientation of my research towards diagnostic CT is possible thanks to
the collaboration with Siemens for accessing projection data, a rare possibility given to groups
collaborating with constructors (University of Michigan, John Hopkins, etc.). It is even more true
for spectral photon counting CT with only a few prototype scanners worldwide. The other new
orientation towards emission tomography is the riskiest but there does not seem to be a strong
international competition on the topic of motion correction of SPECT for targeted radionuclide
radiotherapy. My positioning seems the strongest in proton CT reconstruction where the outcome
of my investigations should be the most scrutinized, thanks to collaboration with the main groups
(Reinhard Schulte’s and Katia Parodi’s) in this emerging field.

The project has several local assets. My integration in the group of David Sarrut at the
Centre Léon Bérard puts me in an ideal position for the radiotherapy and the nuclear medicine
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applications. The efforts of Philippe Douek to develop photon counting CT in Lyon is an asset
for spectral CT as well as my collaborations with CEA LETI (Grenoble) who is one of the main
developers of counting detectors. On the theoretical side, Rolf Clackdoyle and Laurent Desbat
are internationally recognized for their contributions to the field of analytical tomography with
famous collaborators, e.g., Frédéric Noo and Michel Defrise. Finally, many works on phase
contrast CT originate from ESRF (Grenoble) where Emmanuel Brun (STROBE) and Françoise
Peyrin (CREATIS) work.
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Conclusion

This thesis has presented my main contributions to the field of CT. Each part has dealt with
a fourth dimension, time and energy for x-ray CT and multimodal imaging for proton CT.
These contributions have covered several fields such as applied mathematics, computer sciences,
particle physics and medical physics. This spectrum of scientific fields demonstrates in my
opinion my ability to successfully supervise researchers with a large variety of backgrounds, also
thanks to co-supervisors of these fields. I have learned a lot from these collaborations as well
as from supervising PhD students and postdoctoral fellows, each one a unique character. Being
a supervisor is an art which does not only require scientific qualities but also human ones. I
should undoubtedly keep on improving my human skills with new collaborators, be they under
my supervision, co-supervisors or mere colleagues.

My numerous co-supervisions have taught me a part of the art of supervision, but my motiva-
tion for obtaining my HDR is not the ability to supervise PhD students alone. My co-supervisions
have been happy and fruitful. It is more crucial for me to be also allowed to co-supervise PhD
students with younger researchers who do not have their HDR yet. I value both the extensive
knowledge of experienced researchers and the dynamism of younger ones. So far, I have always
been able to chose my research topics thanks to funded projects and to habilitated colleagues
interested in investigating these topics with me. I want to continue my developments in the field
of CT and this HDR will strengthen my ability to be an independent actor of the field.
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Abstract
Four-dimensional cone-beam computed tomography (4D-CBCT) of the free-
breathing thorax is a valuable tool in image-guided radiation therapy of the 
thorax and the upper abdomen. It allows the determination of the position of 
a tumor throughout the breathing cycle, while only its mean position can be 
extracted from three-dimensional CBCT. The classical approaches are not fully 
satisfactory: respiration-correlated methods allow one to accurately locate 
high-contrast structures in any frame, but contain strong streak artifacts unless 
the acquisition is significantly slowed down. Motion-compensated methods can 
yield streak-free, but static, reconstructions. This work proposes a 4D-CBCT 
method that can be seen as a trade-off between respiration-correlated and 
motion-compensated reconstruction. It builds upon the existing reconstruction 
using spatial and temporal regularization (ROOSTER) and is called motion-
aware ROOSTER (MA-ROOSTER). It performs temporal regularization 
along curved trajectories, following the motion estimated on a prior 4D CT 
scan. MA-ROOSTER does not involve motion-compensated forward and back 
projections: the input motion is used only during temporal regularization. 
MA-ROOSTER is compared to ROOSTER, motion-compensated Feldkamp–
Davis–Kress (MC-FDK), and two respiration-correlated methods, on CBCT 
acquisitions of one physical phantom and two patients. It yields streak-free 
reconstructions, visually similar to MC-FDK, and robust information on 
tumor location throughout the breathing cycle. MA-ROOSTER also allows a 
variation of the lung tissue density during the breathing cycle, similar to that of 
planning CT, which is required for quantitative post-processing.
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1.  Introduction

State-of-the-art radiotherapy strategies for the treatment of thoracic and upper-abdominal 
tumors take the patient’s breathing motion into account. The clinical workflow is currently 
the following: the patient first undergoes a four-dimensional (4D) computed tomography (CT) 
scan, from which doctors determine the treatment plan (Wolthaus et al 2008). This plan takes 
into account, among many parameters, the patient’s breathing motion pattern. Treatment is 
then delivered with a radiotherapy device that can combine a high-energy x-ray beam for 
tumor treatment and cone-beam CT (CBCT) for pre-treatment imaging, both mounted on the 
same gantry (Jaffray et al 2002). On the treatment day, the patient lies down on the table of the 
radiotherapy device and a CBCT acquisition can be performed. The CBCT image is used to 
re-position the table, so as to match the patient position as closely as possible with that of the 
planning CT. When the CBCT image is reconstructed in three dimensions (3D), it is implicitly 
assumed that the patient’s breathing motion does not change much throughout the treatment 
and remains close to what it was during the planning 4D CT. Unfortunately, this assumption 
can be wrong, e.g. if a large tumor shrinks under the effect of radiation, partly restoring the 
patient’s respiratory function. Replacing the 3D with a 4D reconstruction from the same data 
would allow the clinicians to check whether the patient’s breathing motion on the treatment 
day matches that of the planning CT. If the motions do not match, corrective actions, e.g. re-
planning, could be taken, hence improving the radiotherapy.

The methods currently available to reconstruct a CBCT acquisition of a moving object can 
roughly be divided into four classes:

	 •	Respiration-correlated reconstruction techniques, which reconstruct one 3D frame at a 
time and concatenate the results to obtain a 4D reconstruction. These techniques include 
the respiration-correlated versions of the Feldkamp–Davis–Kress (FDK) (Feldkamp et al 
1984, Sonke et al 2005) and simultaneous algebraic reconstruction (Andersen and Kak 
1984, Mory et al 2014) techniques, as well as 3D regularized reconstruction methods 
(Leng et al 2008, Sidky and Pan 2008, Bergner et al 2010). 4D reconstruction techniques 
that do not perform regularization along time also fall into this category. These methods 
allow one to accurately locate high-contrast structures throughout the breathing cycle, 
but each frame has low image quality, due to either streak artifacts, blurring or over-
regularization, unless the scanner is slowed down to improve the sampling of cone-beam 
projections in each 3D frame (Sonke et al 2005).

	 •	Classical motion-compensated reconstruction techniques, which use an a priori motion 
estimation (Li et al 2007, Rit et al 2009a, 2009b, 2011) to back-project along curved 
trajectories. These methods reconstruct one frame from all projections and yield a static 
reconstruction, which is only as good as the motion estimation used in the input.

	 •	Joint motion-estimation and motion-compensated reconstruction methods, which esti-
mate the motion directly from the CBCT data (Brehm et al 2012, Wang and Gu 2013a, 
2013b, Liu et al 2015) and perform a motion-compensated reconstruction. The 3D static 
reconstruction obtained can then be animated with the estimated CBCT motion. These 
approaches are valid alternatives to the one we propose, although they share a limitation 
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with the classical motion-compensated reconstruction techniques: the variation of the 
linear attenuation of lung tissue along the breathing cycle cannot be estimated from such 
reconstructions.

	 •	Regularized 4D reconstruction techniques, which reconstruct the whole cycle at once, 
making use of all the projection data, and enforce some similarity between consecutive 
frames by regularizing along time (Jia et al 2010, Ritschl et al 2012, Wu et al 2012, Mory 
et al 2014).

The proposed method, is halfway between the second and the fourth category. It builds 
upon the existing reconstruction using spatial and temporal regularization (ROOSTER) 
and is called motion-aware ROOSTER (MA-ROOSTER). The only change with respect to 
ROOSTER is that temporal regularization is performed along curved trajectories, following 
an a priori motion estimation computed from the planning 4D CT scan, instead of straight tra-
jectories. In this work, we compare MA-ROOSTER to ROOSTER, to illustrate the benefits of 
motion-aware over straight regularization, and MA-ROOSTER to motion-compensated FDK 
(MC-FDK), both with an accurate and an inaccurate a priori motion estimation, to prove that 
MA-ROOSTER indeed shows some robustness to erroneous input motion, while MC-FDK 
does not. On phantom data, we evaluate the effect of the temporal regularization parameter on 
the robustness to erroneous input motion, using respiration-correlated reconstructions as refer-
ences. Then we show reconstruction results with ROOSTER, MA-ROOSTER and MC-FDK 
on two clinical datasets. Finally, we compare the variations of lung tissue attenuation during 
the breathing cycle in a MA-ROOSTER reconstruction and in 4D planning CT, and show that 
they are consistent with each other.

2.  Materials and methods

Throughout the paper, we shall use the word ‘frame’ to denote a 3D volume of a 4D sequence. 
In other contributions, such 3D volumes are often referred to as ‘phases’, but the ‘phase’ also 
denotes the real number in [0;1], defined as the relative position between two consecutive 
end-inhales. For simplicity, we shall also refer to ‘the frame representing the patient’s body at 
phase 50%’ as ‘frame 50%’.

2.1.  Respiration-correlated FDK

A 4D reconstruction can be obtained by concatenating 3D respiration-correlated FDK recon-
structions (Sonke et  al 2005, Lu et  al 2007, Bergner et  al 2010). The 4D reconstruction 
contains severe streak artifacts but can serve as a reference to estimate the motion of a high-
contrast object like a tumor. Throughout this paper, it is either called respiration-correlated 
FDK or simply 4D FDK.

2.2.  Motion-compensated FDK

The most straightforward approach when a 4D displacement vector field (DVF) is available is 
to compute a 3D motion-compensated FDK (MC-FDK), performed in this paper as described 
in (Rit et al 2009a, 2009b). It belongs to the ‘classical motion-compensated reconstruction 
techniques’ described in the introduction. The DVF extracted from the planning CT allows 
one to warp all frames of the respiratory cycle to the end-exhale frame. By performing an 
MC-FDK using this DVF, we obtain a motion-compensated 3D reconstruction of the end-
exhale frame. The more accurate the DVF, the sharper and better contrasted the reconstruction. 
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MC-FDK is a 3D reconstruction technique: it reconstructs a single frame, and does not pro-
vide any information on the way the tumor actually moves. Therefore, it cannot be used to 
check whether the patient’s breathing motion of the treatment day matches that of the plan-
ning CT. We use it in this paper only as a reference for visual comparison to evaluate image 
quality. Note that with a null DVF, MC-FDK boils down to the blurry static FDK.

2.3.  4D conjugate gradient

The 4D conjugate gradient (CG) method reconstructs a sequence of volumes from a single 
stack of projections through a convex optimization approach. It consists in minimizing the 

single-term cost function ∑ −α α α αR S f p
2

2
 by the linear CG algorithm, where

	 •	∥ ∥. 2 is the �2 norm.
	 •	α is the projection index.
	 •	f is a 4D sequence of volumes.
	 •	 αR  is the forward projection operator at index α. It maps a 3D frame onto a 2D projection 

image.
	 •	 αS  is an interpolator along the time dimension. In this study, S is a linear interpolator. It 

maps a 3D  +  time sequence onto a 3D frame, using the respiratory phase of projection 
α. For example, if f contains ten frames ( f f f, , ...0 1 2 ) and projection α has been acquired at 
phase 0.87, then S f f f0.3 0.78 9= +α .

	 •	 αp  is the measured projection with index α.

The 4D CG reconstructions are blurry and contain streak artifacts, but provide reliable 
information on the motion of objects that are not hidden by the streaks, e.g. large tumors or 
high-contrast structures. The ROOSTER method builds upon 4D CG, adding some regulariza-
tion steps.

2.4. The ROOSTER method

ROOSTER is a recent iterative reconstruction method alternating between several optim
ization goals (Mory et al 2014). It assumes that a motion mask, i.e. a rough segmentation of 
the region where movement is expected to occur, is available. As motion can occur outside the 
lungs, since the rib cage and the abdomen move during breathing, we used the motion mask 
extracted from the 4D planning CT (Vandemeulebroucke et al 2012), dilated by morphologi-
cal operations in order to include the ribs. ROOSTER consists in solving the following five 
subproblems at each iteration of the main loop:

	 •	Minimizing the data-attachment term ∑ −α α α αR S f p
2

2
, by 4D CG.

	 •	Enforcing positivity, by setting all negative voxels of f to zero.
	 •	Removing motion where it is not expected to occur, by averaging along time outside the 

motion mask.
	 •	Enforcing the spatial gradient’s sparsity in each frame using 3D total variation (TV) 

denoising.
	 •	Enforcing the temporal gradient’s sparsity for each spatial position, by one-dimensional 

(1D) TV denoising along time.

Each supbroblem’s output is used as the input for the next subproblem. This constitutes one 
iteration of the main loop, the output of which is fed back to the CG minimizer for the next 
iteration.
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TV denoising is here intended in its convex optimization sense, i.e. applying TV denoising on 

fnoisy yields γ= − + ( )f u f TV uarg min
u

denoised noisy 2

2 , where parameter γ controls the strength 

of the TV regularization (the higher, the stronger the regularization). In convex optimization 
literature, TV denoising is also referred to as the ‘proximal operator’ of TV (Boyd and Ye 
2011). ROOSTER makes use of 3D TV for spatial denoising of each frame (with strength 
parameter γspace and of 1D temporal TV for temporal denoising between frames (with strength 
parameter γtime). They are defined as follows:

= ∇ + ∇ + ∇( ) ∥ ( ) ( ) ( ) ∥TV u u u ux y zspace
2 2 2

1� (1)

and similarly

= ∇( ) ∥ ∥TV u uttime 1� (2)

where ∇ ∇ ∇, ,x y z and ∇t are the gradient operators along the spatial axes x, y, z and along 
the time axis t, respectively, and ∥ ∥. 1 is the �1 norm. In both spatial 3D and temporal 1D 
TV denoising, the minimization is performed by the basis pursuit dequantization algorithm 
(Jacques et al 2010).

2.5.  Motion-active ROOSTER

Through a breathing cycle, a given spatial location can contain tissues within a large range of 
linear attenuation coefficients, e.g. lung tissues and blood vessels. In this case, regularization 
along time as performed in ROOSTER enforces similarity between unrelated objects. As a 
result, it can smooth away the small moving structures and the high-intensity structures of one 
frame can partially spread out to the previous and next frames. The diaphragm, small struc-
tures in the lungs and lung tumors seem to gradually fade from one position to another, while 
they should have sharp edges and a distinct position on every frame. This effect can partly 
be explained by noting that, while TV is often said to favor piecewise-constant functions, 
the 1D TV of a monotonic function is exactly the same as the 1D TV of a step function with 
the same lower and upper bounds. 1D TV therefore favors piecewise-monotonic functions, 
not only piecewise-constant functions. When used to regularize along time, it can cause the 
above-described blurring effect between consecutive frames. To tackle this issue, one could 
try to find a better regularizer along time than 1D TV, e.g. based on the �0 norm of the tem-
poral gradient. In the MA-ROOSTER algorithm, we have chosen to circumvent the problem 
by bending the regularization trajectories, so as to follow the moving structures.

As explained in the introduction, lung cancer patients undergo a 4D CT at the beginning 
of the radiotherapy, on which their treatment is planned. From the 4D planning CT, a 4D 
DVF can be estimated, which maps the end-exhale frame to each other frame. The method 
by which the DVF estimation is performed has little importance for MA-ROOSTER, only 
the DVF itself matters. Since this a priori motion estimation is available, we propose 
improving ROOSTER by performing temporal regularization along curved trajectories 
following the motion. This is illustrated in figure 1. Note that it is mathematically equiva-
lent, but much easier to implement, to first warp all frames onto the end-exhale frame by 
‘backward mapping’ (see chapter 10.2 of Moeslund (2012)), and then to apply straight 
regularization along time on the warped sequence. The regularized frames must then be 
inverse-warped to their original phase (see section 2.6). Note that trilinear interpolation-
based image warping is a linear process, and can therefore be described by a matrix. To 
describe the MA-ROOSTER temporal regularization in a formal way, assuming that we 
reconstruct a sequence f of ten frames, let
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	 •	N be the number of voxels in a 3D frame.

	 •	

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

= �f
f

f
noisy

0

9

 be the sequence to regularize, with { }R∈ ∈f j, 0..9j
N  the individual frames

	 •	
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟= �W

W

W

0

0

0

9

 be the 4D warping operator, with → { }R R ∈W j: , 0..9j
N N  the 3D 

warping operators for each frame.

	 •	

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

Wf
W f

W f
noisy

0 0

9 9

= �  be the warped sequence (each 3D frame in f is warped independently).

	 •	Dtime be the TV denoising along time operator (note that Dtime is not linear).
	 •	 ( )D Wftime noisy  be the denoised warped sequence.

Then ( )= −f W D Wfdenoised
1

time noisy  is the denoised and inverse-warped sequence, which will 
be used as input for the next main loop iteration of MA-ROOSTER.

An inverse DVF can only be obtained when the DVF is diffeomorphic (Arsigny et al 2006). 
And even when a diffeomorphic DVF and its inverse are available, the associated warping 
operators are not the exact inverse of one another, because of interpolation errors. Since invert-
ing W in reasonable time is impossible, we will always use the warping operator associated 
with the inverse DVF, which from a strict linear algebra standpoint is an approximation of 
W−1. Nevertheless, by an abuse of notation, we will write W−1 to denote it. Details on how to 
mitigate the effects of using an imperfect W−1 are given in section 2.6. Note that a null DVF 

Figure 1.  Illustration of the voxel selection for temporal regularization. Top: the 
behavior of ROOSTER, select in each frame the voxel that is located at a fixed spatial 
position. Bottom: behavior of MA-ROOSTER, follow the trajectory of the voxel, given 
by the input DVF. The red arrows are the vectors of the input DVF.
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results in W  =  W−1  =  I, i.e. in temporal regularization along straight lines as in ROOSTER. 
ROOSTER can therefore be seen as a specific case of MA-ROOSTER with a null DVF. 
Intuitively, this means that MA-ROOSTER should yield better results than ROOSTER as soon 
as the DVF is better than null, even when it does not perfectly describe the real displacement.

The temporal regularization enforces a trade-off between the motion present in the pro-
jection data and the one described by the input DVF. It discourages deviating too far from 
the input motion, but does not prevent it. MA-ROOSTER is thus expected to show some 
robustness to motion estimation inaccuracies. The temporal regularization also discourages 
variations in lung tissue attenuation during the breathing cycle, but does not prevent them. 
The attenuation of lung tissue in MA-ROOSTER reconstructions is therefore expected to vary 
slowly throughout the breathing cycle, as a result of the air and blood flows in the lungs.

2.6.  Inverse warping

Some motion estimation methods, including the one we used, provide two so-called ‘inverse-
consistent’ DVFs (Christensen and Johnson 2001, Janssens et al 2011, Wang and Gu 2013b). 
Let W and W−1 be their associated warping operators. They are approximately the inverse of 
each other. In practice, ˆ = −f W Wf1  is a blurry approximation of f, since it has undergone two 
trilinear interpolations, one contained in W, the other one in W−1. With a small trick, however, 
the blurring can be limited. We compute fdenoised as follows:

( )

( ( ) )

( ( ) )

≈

≈ − +

= − +

−

−

−

f W D Wf

W D Wf Wf Wf

W D Wf Wf f

denoised
1

time noisy

1
time noisy noisy noisy

1
time noisy noisy noisy

� (3)

In equation (3), ( )−D Wf Wftime noisy noisy is the correction brought by regularization along time 
to Wfnoisy. Restricting the approximate inverse warping by W−1 to that correction allows one 
to avoid blurring fnoisy.

MA-ROOSTER can also handle the case where only a single DVF is available, i.e. the 
motion estimation method used does not provide the inverse DVF. The inverse warping in that 
case relies on convex optimization, and has been described in Mory and Rit (2015).

2.7.  Metrics

Since the main purpose of MA-ROOSTER is to provide a 4D reconstruction on which tumor 
motion can be measured, we have designed a quantitative metric to measure tumor motion. 
A secondary objective is to yield a reconstruction that is close, in terms of ‘image quality’, to 
what doctors are used to in 3D (i.e. FDK), and which contains as few streak artifacts as possi-
ble, so as not to hamper visual interpretation. This secondary objective being both quite vague 
and extremely difficult to quantify with metrics, in particular on patient data (McCollough 
et al 2012), we have chosen to leave it to visual evaluation.

The motion of tumors throughout the breathing cycle was measured as follows:

	 •	A small region of interest (ROI) containing the full trajectory of the tumor was delineated 
manually. The ROI is static, and in any frame the whole tumor is inside the ROI.

	 •	Each frame was cropped to keep only the ROI. A translation-only motion was estimated 
between each cropped frame and the end-exhale cropped frame, using the open-source 
software Elastix, with the mean squared difference as a similarity measure, and a pyramid 
of four resolutions.
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	 •	The Euclidian norm of the obtained 3D translation vector was computed and is reported 
in graphs (see figures 4, 6, 8, 10 and 12).

2.8. Table subtraction

FDK can be used to reconstruct any voxel contained in the field of view, independent of the 
others. The reconstructed volume can therefore be a small part of the attenuating object. 
Optimization-based tomography methods, on the other hand, require the reconstructed volume 
to fully contain the object (Ziegler et al 2008). In other words, the reconstructed volume should 
be large enough so that any object appearing in the measured projections lies inside it. If this 
requirement is not met, overshoot appears on the borders of the reconstructed volume, which 
then causes streak artifacts once back-projected, and the reconstruction quickly diverges. In 
some radiation therapy centers, patients lie in a stereotactic body frame (SBF), which is typi-
cally much larger than them. Setting the reconstructed volume to be large enough to contain the 
SBF could increase the computation time and memory footprint by a factor of 4 or more, which 
is unacceptable for MA-ROOSTER. The SBF therefore has to be removed from the projections 
before reconstruction. To this end, we performed a static 3D reconstruction of the full volume 
(patient  +  SBF  +  table), masked out the patient, forward projected through the residual 3D 
volume (SBF  +  table) and subtracted the result from the original projections. The corrected 
projections were then used for reconstruction. This simple pre-processing, very close to the one 
proposed in Ziegler et al (2008), proved sufficient to reconstruct a volume as small as possible, 
containing only the patient, without generating overshoot and streak artifacts.

2.9.  Physical phantom data

Since the patient’s breathing motion of the day can differ from the one estimated on the 4D 
planning CT, it is important to evaluate whether MA-ROOSTER can handle inexact input 
motion information, and how errors in its input DVF, extracted from the 4D planning CT, 
propagate to the 4D CBCT reconstruction. MA-ROOSTER should theoretically show some 
robustness to such errors. To evaluate this robustness, we performed reconstructions with both 
underestimated and overestimated DVFs.

Acquisitions were performed on a 4D thorax phantom built at the Université Catholique de 
Louvain (UCL), and shown on figure 2. The phantom’s diaphragm has a controllable motion 
period and amplitude, and can be stopped at specific positions. An insert was added close to 
the diaphragm, simulating a small tumor. The figures focus on slices extracted from the end-
exhale phase, but each MA-ROOSTER reconstruction is a 4D sequence of eight volumes of size 
× ×244 284 308, with isotropic 1 mm voxel size, representing the whole breathing cycle. We 

performed two dynamic acquisitions with either an 18 mm or a 9 mm amplitude in diaphragm 
motion on the cranio–caudal axis, and ten fixed acquisitions, with the ‘diaphragm’ at the follow-
ing positions : 0, 2, 4, 6, 8, 10, 12, 14, 16 and 18 mm. The fixed acquisitions were reconstructed 
with the FDK algorithm (Feldkamp et al 1984), then arranged in two sequences to simulate 4D 
planning CTs. The first sequence was {0, 2, 4, 6, 8, 10, 8, 6, 4, 2} and the second {0, 2, 4, 6, 8, 
10, 12, 14, 16, 18, 16, 14, 12, 10, 8, 6, 4, 2}. From each of these fake 4D CT sequences, a pair 
of inverse-consistent DVFs was estimated using the method described in Janssens et al (2011). 
MA-ROOSTER’s implementation can handle DVFs of an arbitrary number of frames (not nec-
essarily the same as the number of reconstructed frames in f), by interpolating along time if 
required. The DVF-pair extracted from the first sequence describes a 10 mm amplitude motion, 
whereas the one extracted from the second sequence describes an 18 mm amplitude motion. 
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Note that these are the amplitudes for the motion of the diaphragm. The motion of the insert we 
placed on top of the diaphragm is of slightly lower amplitude, and the motion of the structures 
near the neck is of much lower amplitude, since the lungs are made of compressible foam.

Three experiments were conducted:

	 •	Reconstructing the acquisition with 18 mm amplitude motion using the 18 mm amplitude 
DVF (correct motion).

	 •	Reconstructing the acquisition with 18 mm amplitude motion using the 10 mm amplitude 
DVF (underestimated motion).

	 •	Reconstructing the acquisition with 9 mm amplitude motion using the 18 mm amplitude 
DVF (overestimated motion).

In both ROOSTER and MA-ROOSTER, the γtime parameter controls the trade-off between 
the attachment to the projection data and the attachment to the input DVF: γ = 0time  means no 
regularization along time, i.e. the motion in the reconstruction is only the result of the motion 
in the projection data (desirable), but it also means a lot of streak artifacts (not desirable). On 
the other hand, γ = +∞time  means no streaks (desirable), but a strict attachment to the input 
DVF (not desirable). In the case of ROOSTER, the input DVF is null, so γ = +∞time  means 
no motion. Setting γtime to obtain robustness to errors in the input DVF and high image quality, 
i.e. good contrast, sharp structures and few streaks, therefore requires a few trials. In radio-
therapy, the primary goal of a 4D CBCT is to determine the real motion of the tumor, so for 
this application γtime should be set to a small value, even if it means leaving some streaks in the 
image. In addition to evaluating the robustness of MA-ROOSTER to erroneous input motion 
information, the results presented in this section suggest a way to determine a suitable γtime 
experimentally: acquire or generate projections of a moving phantom with known motion, 
perform several reconstructions with incorrect input motion and different values of γtime, and 

Figure 2.  Photograph of the 4D thorax phantom. From left to right: support grid, actual 
thorax phantom with its hydraulic cylinder and electronic control board.
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choose a value sufficiently low to yield robustness to erroneous input motion. In each experi-
ment, four different values of γtime were tested.

2.10.  Clinical data

2.10.1.  4D planning CT.  For both patients, the planning CT, from which the 4D DVF was 
extracted, has been acquired on a brilliance big bore 16-slice 4D CT scanner (Philips Medical 
Systems, Cleveland, OH). Each frame of this 4D CT is a × ×512 512 170 voxel volume, with 
a voxel size of × ×0.88 0.88 2 mm (the last dimension is the cranio–caudal axis). As with the 
phantom, for each patient a pair of inverse-consistent DVFs was estimated on the 4D planning 
CT using the method described in Janssens et al (2011).

2.10.2.  CBCT data.  Two CBCT acquisitions performed on different patients were recon-
structed. Each one contains approximately 635 projections, each made of ×512 512 pixels of 
size ×0.8 0.8 mm. They have been acquired on an Elekta Synergy CBCT, along a 360 degrees 
trajectory, at 5.48 frames per second, using an off-center detector (Cho et al 1996) to enlarge 
the field of view. All 4D methods were set to reconstruct the respiratory cycle as a sequence 
of ten volumes. The size of the reconstructed volumes depends on the patient’s size. It was 
× ×220 280 370 voxels for patient 1, and × ×285 270 307 voxels for patient 2, both with 

isotropic voxels of 1 mm3.

2.10.3.  Parameters.  In both ROOSTER and MA-ROOSTER, γspace was set to the same value 
as for the phantom study, i.e. γ = 0.000 05space . An animated GIF sequence available in the 
supplementary material shows that γ = 0.0001space  leads to over-regularization (stacks.iop.
org/PMB/61/6856/mmedia). As a rule of thumb, a regularization parameter should be set to 
the highest value that does not cause adverse effects, so we have set γ = 0.000 05space , which is 
close to the limit. γtime was set to the value taken from the phantom study, to obtain robustness 
to erroneous input motion and limited streak artifacts removal, i.e. γ = 0.0002time . The supple-
mentary material also contains an animated GIF sequence showing the results obtained with 
a large number of different γtime parameters (patient2_gamma_time.gif). Two other animated 
GIF sequences, with the same layout as figures 9 and 11, show the reconstructions of patients 
1 and 2 through a full breathing cycle (patient1.gif and patient2.gif, respectively).

2.10.4.  Reference.  On clinical data, no ground truth of the DVF is available. The DVF esti-
mated on the 4D planning CT may not be an accurate estimate of the patient’s breathing motion 
on treatment days, especially if morphological changes, e.g. tumor shrinkage or atelectasis 
evolution, have occurred in the meantime. As a workaround, we propose using two respiration-
correlated reconstructions, 4D FDK and 4D CG, as references for the motion of high-contrast 
structures (the low-contrast ones are either blurred or hidden by under-sampling artifacts). 
Since we extracted similar motion information from both of these unregularized reconstruc-
tions, we have assumed that this motion information was cross-validated and trustworthy.

3.  Results

3.1.  On a physical phantom

3.1.1.  Correct motion.  Figure 3 shows ROOSTER, MA-ROOSTER and MC-FDK recon-
structions of the phantom with four different values of γtime. The acquisition was performed 
with 18 mm amplitude motion, and the DVF used for the MA-ROOSTER and MC-FDK 
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reconstructions represents that motion. Note that ROOSTER does not make use of the DVF. 
When γtime is high, MA-ROOSTER yields sharper results that ROOSTER, which is not sur-
prising given the additional information it has made use of. Also, the MA-ROOOSTER and 
MC-FDK reconstructions have comparable image quality: when the input DVF is accurate, 
both MA-ROOSTER and MC-FDK perform well.

Figure 4 contains two graphs which show the amplitude of the insert’s motion measured in the 
MA-ROOSTER reconstructions (on the left) and in the ROOSTER reconstructions (on the right), 
as well as on the 4D-FDK reconstruction (on both). The ideal profile, i.e. the one that shows per-
fect robustness to erroneous input motion information, is the dotted black line of the 4D-FDK. 
In this case, with various values of γtime, the insert’s position in the MA-ROOSTER reconstruc-
tions does not differ from the reference position by more than 1 mm. On the other hand, as γtime 
increases, the motion amplitude in the ROOSTER reconstruction decreases: a higher γtime means 
a stricter attachment to the input DVF, which for ROOSTER consists in null motion.

3.1.2.  Underestimated motion.  Figure 5 shows ROOSTER, MA-ROOSTER and MC-
FDK reconstructions of the phantom with four different values of γtime. The acquisition was 
performed with 18 mm amplitude motion, and the DVF used for the MA-ROOSTER and 
MC-FDK reconstructions only represents 10 mm amplitude motion. Since ROOSTER does 
not make use of the DVF, the ROOSTER results are the same as in figure 3. When γtime is 
high, MA-ROOSTER still yields sharper results than ROOSTER, which confirms that MA-
ROOSTER should yield better results than ROOSTER as soon as the DVF is closer to the real 
motion than a null DVF (see section 2.5). With a small value of γtime, MA-ROOOSTER yields 
a much sharper reconstruction than MC-FDK: correctly tuned, MA-ROOSTER shows some 
robustness to errors in the DVF, while MC-FDK does not.

Figure 6 shows the amplitude of the insert’s motion measured in the MA-ROOSTER 
reconstructions and in a 4D-FDK reconstruction. With a small value of γtime, both ROOSTER 
and MA-ROOSTER yield an accurate reconstruction of the motion pattern. With higher val-
ues of γtime, both methods tend to a stricter attachment to their input DVF. Since the one 

Figure 3.  MC-FDK (full volume and zoom in), ROOSTER and MA-ROOSTER 
(zoom in) reconstructions of the UCL 4D phantom, with several values of the temporal 
regularization parameter. The real motion amplitude is 18 mm, and so is the motion 
amplitude in the input DVF.
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used in MA-ROOSTER is closer to reality than the null motion assumed by ROOSTER, 
MA-ROOSTER performs better in that case.

3.1.3.  Overestimated motion.  Figure 7 shows ROOSTER, MA-ROOSTER and MC-FDK 
reconstructions of the phantom with four different values of γtime. The acquisition was 
performed with 9 mm amplitude motion, and the DVF used for the MA-ROOSTER and 
MC-FDK reconstructions represents 18 mm amplitude motion. Again, ROOSTER does 
not make use of the DVF, but the ROOSTER results are different from those in figures 3 
and 5 since the projection data have changed. This time, even with γtime high, there is 
no clear ranking between MA-ROOSTER, which assumes a motion of amplitude 18 mm, 
and ROOSTER, which assumes a motion of amplitude 0 mm (the real motion amplitude 
is 9 mm). This observation is consistent with the statement in section  2.5: if the MA-
ROOSTER’s input DVF is not a better estimate of the real motion than a null DVF, there is 

Figure 4.  Detected position of the moving insert in the MA-ROOSTER reconstructions 
(on the left) and in the ROOSTER reconstructions (on the right) with correct input 
motion. The 4D FDK is used as a reference.

Figure 5.  ROOSTER, MA-ROOSTER and MC-FDK reconstructions of the UCL 4D 
phantom, with several values of the temporal regularization parameter. The real motion 
amplitude is 18 mm, but the input DVF only models 10 mm amplitude motion.
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no reason why MA-ROOSTER should yield better results than ROOSTER. Similarly, as in 
figure 5, with a small value of γtime MA-ROOOSTER yields a much sharper reconstruction 
than MC-FDK.

Figure 8 shows the amplitude of the insert’s motion measured in the MA-ROOSTER 
reconstructions and in a 4D-FDK reconstruction. The ROOSTER results allow one to locate 
the tumor more precisely than MA-ROOSTER ones. In this case, assuming an overestimated 
motion (MA-ROOSTER) is worse than assuming null motion (ROOSTER). Such a situation, 
however, is very unlikely to occur in a clinical context.

3.2.  On patients

As explained in section  2.5, the temporal regularization enforces a trade-off between the 
motion present in the projection data and the one described by the input DVF. Since in 

Figure 6.  The detected position of the moving insert in the MA-ROOSTER 
reconstructions (on the left) and in the ROOSTER reconstructions (on the right) with 
underestimated input motion. The 4D FDK is used as a reference.

Figure 7.  ROOSTER, MA-ROOSTER and MC-FDK reconstructions of the UCL 4D 
phantom, with several values of the temporal regularization parameter. The real motion 
amplitude is 9 mm, but the input DVF models 18 mm amplitude motion.
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radiotherapy one of the the primary goals of 4D CBCT is to compare the breathing motion 
of the treatment day with that of the planning CT, we recommend seting γtime to stick to 
the motion of the projection data. From the phantom study, γ = 0.0002time  seems the safest 
choice, and γ = 0.0005time  would be ‘strong but acceptable’ regularization. We have chosen 
γ = 0.0002time . In other applications where motion evaluation is less critical, e.g. cardiac road-
mapping (Knecht et al 2008), γtime could be set to a higher value.

3.2.1.  Patient 1.  Figure 9 shows sagittal and coronal slices of the reconstructions obtained 
using 4D FDK, 4D CG, ROOSTER and MA-ROOSTER on patient 2, at the end-inhale (rows 
1 and 3) and end-exhale (rows 2 and 4) phases. MC-FDK should show the end-exhale since 
the reference image of the DVF is the end-exhale. The small moving structures in the lungs 
are better contrasted in the MA-ROOSTER reconstruction than in the ROOSTER one, in part
icular on the end-inhale frame.

In terms of the contrast and sharpness of small structures, MA-ROOSTER does much bet-
ter than 4D CG and 4D FDK, but still has some streaks that are absent from the MC-FDK (e.g. 
around the ribs). We recall that the MC-FDK is used only as a reference for image quality, 
since it cannot provide information on the motion on the treatment day.

Figure 10 shows the tumor motion throughout the breathing cycle, measured as described 
in section 2.7. Mostly, it is cranio–caudal motion, but in some patients (not here) the tumor 
may also undergo high-amplitude antero–posterior motion. The reference motion amplitude, 
i.e. the difference between tumor position at end-inhale and end-exhale, measured on both 
unregularized 4D reconstructions, differs from the one estimated on the planning CT by 2 to 
3 mm. In both the ROOSTER and MA-ROOSTER reconstructions the tumor position is at 
maximum 1 mm away from the references.

Artifacts can be observed on the diaphragm and liver of patient 1 at end-exhale, in 
MA-ROOSTER reconstructions. In the corresponding area on the MC-FDK, the region is 
darker than clinically expected. These artifacts have the same profound cause, namely that in 
some phases the motion compensation leads outside the field of view. The difference between 
the nature of the artifacts arise from the different ways motion compensation is performed in 
the two methods. In MA-ROOSTER, all frames are warped to a single one and regularization 
along time is performed on the warped frames. For some frames, this warping implies forward 
or backward mapping outside the field of view, right in the cone-beam artifacts, which ‘brings 
in’ cone-beam artifacts. These are then spread out to the other frames through regularization 

Figure 8.  Detected position of the moving insert in the MA-ROOSTER reconstructions 
(on the left) and in the ROOSTER reconstructions (on the right) with overestimated 
input motion. The 4D FDK is used as a reference.
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along time. In MC-FDK, when the DVF points outside the field of view, the projection data 
is assumed to be null. Fewer back-projected rays reach the inside of the FOV, which results in 
an attenuation that is lower than expected. Patient 1 also has metal artifacts, visible mostly in 
the coronal view, caused by a tracheotomy device. Note that cone-beam artifacts can also be 
observed at the top of the reconstruction of both patients, although these do not interfere with 
motion compensation.

3.2.2.  Patient 2.  Figure 11 shows sagittal and coronal slices of the reconstructions obtained 
using 4D FDK, 4D CG, ROOSTER and MA-ROOSTER on patient 2, in end-inhale (rows 1 
and 3) and end-exhale (rows 2 and 4) phases. MC-FDK shows the end-exhale.

The comparison with ROOSTER yields the same results as for patient 1. On this patient, 
however, MA-ROOSTER achieves a slightly higher contrast than MC-FDK on small struc-
tures, especially below the tumor in the sagittal view, but has a slightly lower contrast 
on the tumor itself. Even with the red cross as a reference spot, it is difficult to notice a 
change in motion amplitude between the various methods. However, this time, the motion 
estimation results are clearly in favor of MA-ROOSTER, as shown in figure 12, which is 
similar to figure 10 but for patient 2. The reference motion amplitude, measured on both 

Figure 9.  Slices through reconstructions of patient 1. Left panels (from left to right): 
4D-FDK, 4D CG, ROOSTER and MA-ROOSTER. Right panels: MC-FDK of the end-
exhale phase. The red cross marks a fixed spot, approximately at the center of the tumor 
in the end-inhale position, to ease visual evaluation of the motion’s amplitude.
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unregularized 4D reconstructions, is 4 mm larger than the one estimated on the planning 
CT. The discrepancy between tumor position in the ROOSTER reconstruction and in the 
references reaches 3 mm at end-exhale, while it remains within 1 mm throughout the cycle 
in the MA-ROOSTER result. Again, this tends to prove that MA-ROOSTER is robust to 
inaccuracies of the input DVF.

3.2.3.  Linear attenuation coefficients of lung tissue.  An interesting feature of MA-ROOSTER 
is that it allows a variation of the linear attenuation coefficients of lung tissue throughout 
the respiratory cycle. To measure this variation, we warped all frames onto frame 50% and 
summed the attenuation of all voxels contained in the mask shown on figure 13. This was per-
formed on the planning CT images and the MA-ROOSTER reconstructions. Since the plan-
ning CT images are in Hounsfield units (HU), a small calculation is necessary to make sure 
that the HUs and linear attenuation coefficients are supposed to follow the same variations. 
For a position x and a phase p,
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The ratios between the sum of voxel values in frame p and in frame 50% should therefore 
be the same in the planning CT expressed in ‘ +HU 1000’ and in the MA-ROOSTER recon-
struction. Figure 14 shows these ratios throughout the breathing cycle on patient 1. The mean 
attenuation in lung tissue in MA-ROOSTER reconstructions follows the same trend as in the 
4D CT reconstruction.

Figure 10.  Distance to end-exhale position (in mm) estimated around the tumor on 
several 4D reconstructions of patient 1, and computed from the DVF.
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4.  Discussion

4.1.  Comparison to ROOSTER and MC-FDK

MA-ROOSTER outperforms ROOSTER when the DVF used is closer to the real motion 
than a null DVF. MA-ROOSTER also outperforms MC-FDK when the DVF does not exactly 
represent the motion of the day, since it corrects for some of the DVF’s inaccuracies. For real 
image-guided radiation therapy (IGRT) cases, any sensible motion estimation on the planning 
CT, even a rough one, will usually be a better estimate of the motion of the day than nothing. 
On the other hand, even if the motion estimation on the planning CT is perfect, it is impossible 
to know a priori whether or not it represents accurately the motion of the day. Therefore, for 
real IGRT cases, MA-ROOSTER is likely to provide more reliable reconstructions than both 
ROOSTER and MC-FDK.

With respect to the classical approach used in ‘motion-compensated’ tomography, which 
consists in bending the forward and back-projection trajectories, motion-aware regularization 
is a new way to make use of an existing motion estimation. The additional parameter to tune, 
γtime, is to be seen more as an additional degree of freedom than as an additional burden, since 

Figure 11.  Slices through reconstructions of patient 2. Left panels (from left to right): 
4D-FDK, 4D CG, ROOSTER and MA-ROOSTER. Right panels: MC-FDK of the end-
exhale phase. The red cross marks a fixed spot, approximately at the center of the tumor 
in end-inhale position, to ease visual evaluation of the motion’s amplitude.
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setting γ = +∞time  yields results very similar (although not theoretically identical) to motion-
compensated ones.

Other denoising methods exist which could be described as ‘motion-aware’, e.g. temporal 
non-local means (TNLM) (Tian et al 2011), since in regularizing between consecutive frames 
they assume that the underlying structures may have moved. TNLM does not require an input 
DVF, but is computationally more demanding than MA-ROOSTER. In addition, the implicit 
motion it uses is likely to be very irregular, and therefore not a proper description of the real 
motion.

4.2.  Phantom studies

It is very unusual, in a clinical context, to have such a large discrepancy in the motion ampl
itude between the planning CT and the CBCT as the ones we used in the phantom study: when 
anatomical changes occur that are likely to alter the patient’s breathing amplitude, doctors 
usually order a re-planning of the treatment on a new 4D planning CT. Our phantom experi-
ments are therefore quite extreme cases (Seppenwoolde et al 2002, Rit et al 2012). On real 
data, we expect the planning CT’s motion to be closer to the motion of the day.

Figure 12.  Distance to end-exhale position (in mm) estimated around the tumor on 
several 4D reconstructions of patient 2, and computed from the DVF.

Figure 13.  Mask used to measure attenuation variation in lung tissue, shown on frame 
50% of the planning CT.
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4.3.  Variation of lung tissue attenuation during the respiratory cycle

While it is clear that lung tissue should not have a constant attenuation over time (Guerrero 
et al 2006), it is hard to say how this attenuation should vary. We restricted ourselves to point-
ing out that the variation of attenuation observed in the MA-ROOSTER reconstructions is 
consistent with that of the planning CT, as shown on figure 14. This feature of MA-ROOSTER 
could prove important in applications that require quantitative CBCT, e.g. (Bernchou et al 
2015).

4.4.  Other applications

In interventional cardiology, an accurate 4D reconstruction of the patient’s beating heart 
would allow functional analysis such as left ventricle ejection fraction measurement, detec-
tion of hypo- or a-kynesia of some myocardium segments, and road-mapping for numerous 
interventions like electrophysiology or aortic valve replacement. But many interventional car-
diology procedures do not require a 4D CT scan, therefore no DVF is available. For patients 
who did undergo a 4D CT before their 4D CBCT, MA-ROOSTER could be tested on 4D 
cardiac CBCT data.

Since MA-ROOSTER has been proved to correct for some of the input DVF’s inaccura-
cies, further work could involve estimating a new DVF from the MA-ROOSTER reconstruc-
tion, and performing a second MA-ROOSTER with this new DVF as the input.

4.5.  Convergence

Neither ROOSTER nor MA-ROOSTER come with a convergence proof. Furthermore, as 
each iteration of the main loop is rather long, the stopping criterion is not based on some 
convergence measurement, but on the number of iterations. Although ROOSTER and 
MA-ROOSTER behave well in practice for the cases we have studied, there is no theor
etical guarantee that they converge, nor that the solution they yield at convergence is more 
desirable than their output after ten iterations. An animated GIF sequence has been added 

Figure 14.  Ratio between the mean attenuation in lungs in a given frame and in frame 
50%, in the planning CT and MA-ROOSTER reconstructions of the CBCT data. MC-
FDK is shown to recall that it cannot describe such variations.
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to the supplementary material which follows the reconstructed image through 100 iterations 
(patient2_iterations.gif). Ten iterations seems to be a good choice, since when the number of 
iterations rises no major image quality improvement is observable, and some dark and bright 
dots appear. These dots are presumably caused by imperfect inverse warping, which causes 
some voxels to be modified by temporal regularization when they should not.

Observations on the convergence of ROOSTER, involving the theory of non-expansive 
mappings, can be found in Mory et al (2014). As each step of ROOSTER can be expressed 
as a proximal mapping, an algorithm similar to ROOSTER can be obtained by minimizing 
a carefully chosen cost function with the Chambolle–Pock method (Chambolle and Pock 
2011). Such an attempt can be found in Mory and Jacques (2014), but the resulting algorithm 
proved impractical because of its slow initial convergence. Future work includes transforming 
ROOSTER and MA-ROOSTER into efficient proximal algorithms.

4.6.  Regularization

Spatial TV regularization has been shown to be better suited to phantom images than to real 
clinical data (Mory et al 2012), as it favors piecewise-constant images. The spatial TV denois-
ing step could be replaced with some wavelet-based denoising. Finding better-suited regular-
izers and implementing them efficiently is also part of the future work on MA-ROOSTER.

4.7.  Computational cost

The reconstructions were performed on an Intel Xeon E5-2620 CPU with 12 cores, equipped 
with an nVidia GTX780 GPU, running OpenSuse 13.1. All three methods were implemented 
using the Reconstruction ToolKit (RTK) (Rit et  al 2013), an open source C++ software 
based on the Insight ToolKit’ (ITK). With this set-up, the total reconstruction time with 
MA-ROOSTER for patient 1 is 21 min, divided as follows: 4D CG optimization took 17 min, 
spatial TV denoising 45 s, warping 80 s, inverse warping 100 s and the other operations can 
be neglected. When the motion estimation method used on the planning CT only yields a 
single 4D DVF (instead of two inverse-consistent 4D DVFs), MA-ROOSTER uses an iterative 
procedure to perform the inverse warping, which increases the duration of that step to 19 min, 
while all the other execution times remain the same.

4.8.  Implementation

All the reconstruction methods used in this paper (4D-FDK, MC-FDK, 4D CG, ROOSTER 
and MA-ROOSTER) have been implemented in the RTK library (http://openrtk.org/), an open-
source software based on ITK. RTK is available to anyone, documented, and we provide help 
on how to compile, use and modify the code through a mailing list open to everyone, as well 
as via a wiki (http://wiki.openrtk.org/). A page on the RTK wiki specifically describes how 
to use ROOSTER and MA-ROOSTER (http://wiki.openrtk.org/index.php/RTK/Examples/ 
4DROOSTERReconstruction) and contains links to the data of both patients (4D planning CT, 
projections, geometry, respiratory signal and DVFs), as well as the command lines to repro-
duce the results on patients. The phantom data (projections, geometry, simulated respiratory 
signal and DVFs) can be made available on request. The implementation of the method we 
used to compute the 4D DVFs from the 4D planning CT (Janssens et al 2011), on the other 
hand, is not open source. Note that MA-ROOSTER can use DVFs generated by any motion 
estimation method, and that how the motion estimation is performed is beyond the scope of 
the present paper.
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5.  Conclusion

The proposed method, MA-ROOSTER, yields a reconstruction that is visually close to 
MC-FDK, while being robust to motion estimation inaccuracies. MA-ROOSTER appears 
as an excellent trade-off between the MC-FDK technique (which provides high-quality 3D 
images, but from which one cannot retrieve the motion of the day nor the attenuation variation 
due to the flows of air and blood in the lungs) and unregularized 4D reconstruction techniques 
(from which one can estimate the motion of the day of large structures, but which have poor 
image quality).
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Spectral Computed Tomography (CT) can perform “color” x-ray detection; for example, photon-
counting detectors can discriminate the energy of individual x-ray photons and divide them into 
several predefined energy bins, thereby providing a spectral analysis of the transmitted x-ray beam. 
By measuring the x-ray attenuation in two or more distinct energy bins, one can gain information 
about the elemental composition of an object, making it possible via material decomposition to 
distinguish between different materials, such as contrast agents and different types of tissues, in a 
single CT scan. This concept of spectral CT is based on the x-ray attenuation differences of various 
materials when simultaneously exposed by a spectrum of x-ray photons (which are emitted in a wide 
spectral range by a standard x-ray tube). Attenuation differences reflect the differences in material 
interactions with low- and high-energy photons, mainly Compton scatter and photoelectric effects 
in the diagnostic energy range. Interaction of x-rays with matter is described by the linear attenua-
tion coefficient μ of an object, which depends on the three-dimensional (3D) position x in space and 
the one-dimensional (1D) energy ϵ of incident photons. The photon fluence Φ after the object of a 
monoenergetic pencil beam is described by the Beer-Lambert law:

	 ε
L

∫µΦ = Φ −












exp ( , )d0 x 	 (19.1)

with ϵ the beam energy, Φ0 the initial beam fluence, and  the line corresponding to the beam.
Conventional CT scanners acquire a single sinogram, mixing all photons regardless of their 

energy. Reconstruction algorithms for single-energy CT either neglect the energy dependency of the 
incident beam or use corrections for multi-energy effects known as beam hardening [8], for example 
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by assuming that a single material composes the object in the field-of-view [7]. Spectral CT scan-
ners employ a variety of strategies to acquire multiple sinograms representative of different energy 
segments of the incoming spectra [38]. The purpose of this chapter is to present specific algorithmic 
solutions required to utilize this additional energy dimension in combination with conventional and 
advanced tomographic reconstruction algorithms.

The central goal of spectral processing steps is to reconstruct not only a 3D μ map at a given 
(effective) energy, but a four-dimensional (4D) μ for the energy range measured with two to five 
energy discrimination measurements provided by a spectral CT scanner. A simplified model 
becomes necessary and many contributions (also presented in this chapter) are based on a model 
proposed by Alvarez and Macovski [4]. This paradigm describes μ as a linear combination of a few 
energy-independent and space-independent functions, which they note:

	  ∑µ ≈
=

( , ) ( ) ( )
1

M

x xa f
m

m m 	 (19.2)

with x the 3D position in the object, M the number of basis functions, am the 3D space-dependent 
(but energy-independent) functions, and fm the energy-dependent (but space-independent) functions. 
Two approaches have been proposed for the fm functions and am volumes in human tissue. Both 
methods only require =M 2 basis functions. One is to assume that the object attenuates x-rays as 
if it was composed of two materials, for example, water and bone [23]. The function fm is then the 
mass-attenuation coefficient of material m, which solely depends on the energy, and the volume am 
is a map of the concentration of material m. The other approach proposes that image contrast is 
based on an x-ray particle model describing the physical interaction of photoelectric absorption and 
Compton scattering. The function fm then approximates the energy dependence of the phenomenon 
m, and the volume am is a map of the cross-section for that type of interaction. In addition to the two 
functions to represent human materials, there can be additional components in the basis to represent 
non-human elements >(M 2), for example, contrast materials having a K-absorption edge in the 
diagnostic energy range [57, 82]. Without loss of generality, we will refer to fm as material-specific 
CT maps in the following sections.

The x-ray source of a CT scanner is polychromatic and characterized by an energy spectrum. 
Similarly, the signal measured by the detector is a function of the energies of impinging photons. 
The impinging spectrum is not equivalent to the measured one because the measurements can be 
distorted while the signal is picked up from the detector and processed by complex electronics. The 
ratio of the spectrum collected with a detector over the impinging spectrum is called a detector 
response function or pulse height distribution. These two energy functions can be merged into an 
effective spectrum, which is the product of the source spectrum and the detector response function. 
The concept of an effective spectrum can describe any spectral system, whether several effective 
spectra are acquired by using different source spectra, for example, with different source voltages, 
by using two detectors with different responses, for example, with different sensitive materials, or 
by using different energy thresholds for photon-counting detectors. Figure 19.1 illustrates the effec-
tive spectra of different systems.

Plugging the model of the linear attenuation coefficient (Equation 19.2) into the Beer-Lambert 
law (Equation 19.1) and accounting for the polychromatism of the effective spectra leads to the for-
ward model of the inverse problem studied in this chapter

	 ε ε ε
L

�
�
∫ ∫∑= −











=+

ˆ ( )exp ( ) ( )d d
1

M

xy s a fib b

m

m m

i

	 (19.3)

with yibˆ  the expectation of the measures for the i-th detector pixel and the b-th effective spectrum sb 
(b stands for energy bin in photon counting systems). The goal of this inverse problem is to estimate 
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the unknown material images a from measures y. The effective spectra s can be estimated indepen-
dently, before using the algorithms presented in this chapter [17, 40, 67]. The energy functions f are 
chosen based on the model in Equation 19.2. This forward model only accounts for the attenuation 
of primary rays and neglects scatter, pile-up, charge sharing, and other complex effects, unless those 
can be taken into account in the effective spectrum.

The following three sections introduce the main classes of spectral CT reconstruction algo-
rithms (Figure 19.2): image-based and projection-based, which perform decomposition into 

FIGURE 19.1  Examples of source spectra (left), detector responses (middle), and effective spectra (right), for 
a fast-switching x-ray source with an energy-integrating detector with a CsI scintillator (top, data from system 
#2 in [81]) and a photon-counting system with four energy bins (bottom, data from [16]).

FIGURE 19.2  The three classes of inversion methods described in this chapter are image-based decomposi-
tion (bottom row, Section 19.1), projection-based decomposition (top row, Section 19.2), and one-step inversion 
(Section 19.3).
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materials and tomographic reconstruction separately, and are therefore referred to as “two-step” 
methods, and one-step inversion, which merges both decomposition and reconstruction into 
a single inverse problem. The final sections describe possible regularizers for these ill-posed 
inverse problems and potential image quality issues specific to spectral CT decomposition and 
reconstruction.

19.1  IMAGE-BASED DECOMPOSITION

Image-based decomposition was initially developed for exploiting two (or more) CT acquisi-
tions obtained at different tube-voltages on a conventional CT scanner [6]. With distinct spectra 
at different voltages, the resulting CT slices display energy dependent differences. Image-based 
decomposition assumes that the b-th single-energy CT represents the attenuation coefficient at 
a given (effective) energy eb, which is true with monoenergetic CT acquisitions at a synchrotron 
[79], by reconstructing from the log-transformed projections s e yb b ibln( ( )/ ), or with the use of an 
efficient beam hardening correction. Under this assumption, the CT image µ eb(·, ) of the b-th 
effective spectrum is, according to Equation 19.2, a linear combination of the sought space-
dependent functions am and the energy-dependent functions fm. Combining the measurements, 
one obtains at each spatial position x a small linear system of equations with as many equations 
as CT images:

	 µ =( ) ( )x Fa x 	 (19.4)
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Given its small size, this system can easily be solved, for example, with the Moore-Penrose pseu-
doinverse (which is the inverse of F if F is invertible). Moreover, since there is no spatial depen-
dence of F, this (pseudo-)inverse can be computed once for all voxels if the effective energy of the 
input CT images is known. Otherwise, it can be directly calibrated using materials with known 
linear attenuation properties. Image-based decomposition can be combined with regularization, 
for example to reduce noise [14, 15, 49, 76]. A simulated example using monochromatic spectra is 
provided in Figure 19.3.

The simplicity of image-based decomposition makes it an attractive solution. It is also exten-
sively used in applications where access to raw data/sinograms is not available, as demonstrated 
in radiotherapy applications [80]. Another advantage compared to projection-based inversions 
is that there is no need to have projections acquired with the same geometry (source and detec-
tor positions and orientations) for all effective spectra, as is, for example, the case when two 
different x-ray sources are used for the acquisition of different spectra. The input CT images 
must still be perfectly registered, and this is true for all algorithms presented here. Even if 
two (or more) CT acquisitions could easily be acquired on any clinical CT scanner with differ-
ent voltages, patient motion, for example, through breathing, reduces significantly the quality 
of spectral results. Another significant drawback of image-based decomposition is the impact 
of beam hardening when using conventional x-ray sources. Inaccuracies of beam hardening 
correction will have a direct influence on the result [71]. Advanced beam hardening correction 
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algorithms require the knowledge of the linear attenuation coefficients of the materials in the 
field-of-view, for example, by relying on the same model as Equation 19.2 [8]. Image-based 
decomposition is therefore simple because it forwards the complexity of Equation 19.3 from 
the decomposition to the beam hardening correction. The difficulty therefore lies in the lat-
ter and has lead to the development of algorithms, which correct for beam hardening in the 
image domain while decomposing by using a different model than Equation 19.2 [34]. Another 
approach, intermediate with one-step inversion (section 19.3), projects the current estimate to 
iteratively correct for beam hardening [35].

19.2  PROJECTION-BASED DECOMPOSITION

Projection-based methods perform first the decomposition in projection space before reconstructing 
material-specific CT maps (Figure 19.2).

19.2.1 D ecomposition into Material Projections

Decomposition into material-specific projections aims to determine, for each pixel of the multi-
energy sinogram, the corresponding line integral through the spatial maps am. For example, if the 
object consists of two materials as in Figure 19.3 and the basis functions fm are the corresponding 
linear attenuation coefficients of the materials, the aimed decomposed data will be the sinogram 

FIGURE 19.3  Left: noiseless simulated dual-energy log-transformed sinograms using monochromatic 
irradiations at 40 keV (top) and 80 keV (bottom). Middle: corresponding single-energy volumes gb. Right: 
decomposed volumes am. The object is made of a liquid water component (top right) and cortical bone (bot-
tom right). The linear attenuation coefficients used for the simulation are those of ICRP retrieved from 
x-ray lib [64], that is, µ µ µ= = =− − −(40 keV) 0.27 cm , (80 keV) 0.18 cm , (40 keV) 1.19 cmwater

1
water

1
water

1 and 
µ = −(80 keV) 0.41cm .bone

1
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of each material, as illustrated in Figure 19.4. Formally, Equation 19.3 is modified by inverting the 
order of the integral over the line i  and the discrete sum over the M basis functions. Projection-
based decomposition then utilizes the forward model:

	


  ∫ ∑= −










=+

y s A fib b

m

im mˆ ( )exp ( ) d
1

M

	 (19.6)

with the unknowns  = ∫ ( )dxA aim mi  corresponding to the i-th line integral through am. This 
decomposition yields a set A of M sinograms (one per basis function), which can each be recon-
structed to obtain one volume per material. Similarly to the image-based problem, decomposing 
the acquired sinograms y into material-specific sinograms A is a small problem when processed 
pixel-by-pixel, with M unknowns to find from B measurements. However, the exponential func-
tion causes the problem to be non-linear and the (weighted) least squares data fidelity term is 
non-convex [1].

In their seminal paper [4], Alvarez and Macovski proposed to approximate the logarithm of the 
expectation of the measures ŷ by a P-th order polynomial of the Aim:

	  ∑ α …
+ +…+ ≤

…y A A Aib

p p p

p p p i
p

i
p

i
pln ˆ

P

1 2 M

1 2 M

1 2 M
1 2 M 	 (19.7)

FIGURE 19.4  Left: noiseless simulated dual-energy sinograms of the object in Figure 19.3 using the 80 kV 
(top) and 120 kV (bottom) spectra and the detector response shown on top of Figure 19.1. Middle: decomposed 
sinograms Am using projection-based decomposition with µwater and µbone as basis functions fm. Right: decom-
posed volumes am. The object is the same as in Figure 19.3.
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with { }…p p, ,1 M  the exponents and α …p p p0 1 M  the coefficients of the polynomial. Another solution is 
to directly approximate the inversion by a polynomial [28]:

	  ∑ β ( ) ( ) ( )…
+ +…+ ≤

…A y y yim

q q q

q q q i
q

i
q

i
q

ln ˆ ln ˆ ln ˆ
P

1 2 B

1 2 B

1 2 B

1 2 B 	 (19.8)

with { }…, ,1 Bq q  the exponents and β …q q q0 1 B the coefficients of this other polynomial. Both methods are 
very efficient solutions, probably best suited to dual-energy decomposition with two basis functions 

= =(B M 2). In any case, they are only approximations of Equation 19.6 or its inverse. The accuracy 
of this approximation can be improved by increasing the polynomial order P, but it also degrades the 
stability of the decomposition. Already in [4], the authors did not use all nine possible monomials and 
later studies suggested a rationale for adequately selecting a subset of monomials [29]. If the effective 
spectra s are known, the coefficients of the polynomials can be computed to best approximate the for-
ward model, as F in image-based decomposition (Equation 19.4). Otherwise, one can directly calibrate 
the polynomial coefficients without estimating s by taking projections through multiple combinations 
of basis material layers with known thicknesses as, for example, in the calibration phantom of [2].

In 2008, in order to deal with three materials and four energy bins, Roessl et al. proposed to 
solve the problem in the maximum likelihood sense [57, 62], that is, to determine which are the 
most likely Aim given the measured yib. To maximize the log-likelihood, they used the Nelder-Mead 
downhill simplex method [47], which is a zero order optimization algorithm for convex problems, 
that is, which does not need the gradient of the cost function with respect to the optimized variables. 
Under standard clinical x-ray exposure, the statistical noise on yib results in very noisy decomposed 
sinograms, which must be filtered to become usable, as illustrated in Figure 19.5.

Brendel et al. [5] proposed to improve Roessl’s optimization using the iterative coordinate 
descent. They also introduced spatial regularization in their minimization problem to limit noise 
in decomposed sinograms: in addition to being in agreement with the measured photon counts, the 
decomposed material line integrals in a pixel i must be similar to those in the neighboring pixels. 
However, regularizing in the projection domain is unusual and it can negatively impact the recon-
structed images if it is inadequately chosen or weighted. Similar approaches based on solving an 
inverse problem include the work of Ducros et al. [16] and Abascal et al. [1] solving a weighted 
least-squares problems using a Gauss-Newton algorithm and an iterative Bregman scheme. The lat-
ter authors also used the Kullbac-Leibler divergence [21], which is more adapted to Poisson noise 
distributions and should lead to a result similar to the maximum likelihood approach of [57, 62].

Intermediate solutions between the polynomial models (Equations 19.7 and 19.8) and the full 
non-linear model (Equation 19.6) have been tailored for the case of more measurements than basis 
functions [2, 3, 26, 27, 41, 94]. Another approach is to use machine learning to solve this complex 
but small problem, for example, by using a neural network [93].

A significant advantage of projection-based decomposition over image-based decomposition 
(section 19.1) is that it does not suffer from beam hardening because the material maps f are energy-
independent. However, it can only be applied if the measurements for different spectra are acquired with 
the same geometry, which is the case for dual-layer detectors and spectral photon-counting detectors but 
not for dual-source systems or fast-switching x-ray sources. For dual-source or fast-switching systems, one 
solution is to interpolate the sinograms to have corresponding measurements, but this step could limit the 
accuracy. Performing several successive acquisitions with different spectra on a standard CT is in theory 
feasible, but just like with image-based methods, patient motion is then a concern.

19.2.2 T omographic Reconstruction

None of the methods presented in subsection 19.2.1 makes any assumption on how the material sino-
grams are reconstructed once they have been decomposed. In fact, any tomographic reconstruction 
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method can be used, including filtered backprojection algorithms. However, the decomposition is sen-
sitive to noise and it is natural to account for this noise in an iterative reconstruction algorithm. A 
first solution is to use an estimate of the variance of the decomposed sinograms in a weighted least 
squares algorithm [61]. The material decomposition process also induces anti-correlated noise between 
the different materials [22], which suggests the use of reconstruction techniques that also account for 
covariances [60]. Variances and covariances can be estimated using the Cramér-Rao lower bound [56]. 
Sawatzky et al. [59] and Mory et al. [43] proposed such an approach. The core idea of these methods is 
that minimizing the usual least-squares data-attachment term yields the best linear unbiased estimator 
(BLUE) only when all data samples are uncorrelated and have equal variance. In all other cases, the 
BLUE is obtained by minimizing a generalized least squares (GLS) term, which involves the inverse of 
the covariance matrix of the noise. Although GLS is formally simple, it is computationally much more 
demanding since all material-specific CT maps fm must be reconstructed simultaneously. It is not clear 
yet whether the improvement in image quality is worth the increased computational complexity [43].

19.3  ONE-STEP INVERSION

One-step methods generate material maps a straight from recorded photon counts y. Similar 
to projection-based decomposition (section 19.2), these methods can rely, for example, on the 
forward model in Equation 19.3, but with the advantage of not requiring matching projections 

FIGURE 19.5  Sinogram of the bone (top) and its reconstruction (bottom) for the same object as Figure 19.4 
with an additional solution of 1 mg/mL gadolinium filling the left hole of the water component. Data simulated 
using the 5-bin spectral model of the Philips small animal prototype in Lyon [65] corrupted with Poisson 
noise. The projection-based decomposition is the algorithm of Roessl et al. [57, 62] with the three-material 
basis µ µ µ{ }= , ,Water Bone Gadoliniumf . Images reconstructed with a filtered backprojection reconstruction. The 
right sinogram resulted from a median filter to remove outliers. Outliers are in the low-count area, for rays that 
traverse both the bone and the gadolinium (see other reconstructions in Figure 19.6).
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(similar to image-based decomposition section 19.1). It also circumvents the fundamental draw-
back of all two-step approaches: the first step may introduce errors, which cannot be compensated 
for in the second step. An excellent illustration of this latter problem is the presence of outliers in 
sinograms decomposed with non-regularized projection-based methods [57, 62]: as the decom-
position process is non-linear, it may strongly amplify the statistical noise on the photon counts, 
resulting in some pixels with entirely incorrect values for the line integral. Reconstructing with-
out first removing these outliers yields material-specific CT maps dominated by powerful streak 
artifacts (Figure 19.5).

19.3.1 F orward Problem and Cost Function

Most one-step reconstruction methods apply an identical forward model, which is the equivalent 
to Equation 19.3 except that the two integrals (over the energies ϵ and the line positions ) are dis-
cretized. Note, there is no analytical solution to this problem. Discretizing the line integral is the 
basis of most iterative single-energy CT reconstruction algorithms and despite being posed as a 
linear inverse problem, single-energy iterative CT is computationally expensive, which partly explains 
why manufacturers have only recently started implementing it in commercial CT scanners [50]. One-
step spectral CT is even more computationally expensive: with the same number of pixels and vox-
els, the number of measurements is multiplied by the number B of effective spectra (second index 
of y) and the number of unknowns is multiplied by the number M of basis energy functions (second 
index of a), plus the inverse problem is non-linear.

In the literature, the cost functions are constructed from different terms to solve this problem. For 
the data-attachment, the most widespread approach is to maximize the likelihood of observing the 
measurements y, given the material-specific CT volumes a under the assumption that the measure-
ments are corrupted by Poisson noise [18, 33, 40, 75, 83]. Other methods minimize a weighted-least 
squares data-attachment term, computed either on the photon counts [77] or on the ratio between 
photon counts and photon counts if there had been no attenuation [9, 12]. For the regularization, 
various conventional options have been considered: positivity [12, 33], total-variation [9, 18], or a 
similar measure based on the spatial gradient [33, 40, 77, 83].

19.3.2  Minimization

Given the size and non-linearity of the one-step inversion problem, the primary challenge is to mini-
mize the cost function. Almost every method uses a different algorithm to solve its cost function and 
the landscape of solutions strongly resembles that of single-energy CT.

Several works attempt to adapt methods developed for single-energy CT, which assume a linear 
problem. Zhao et al. [92] linearize the cost function and use an algebraic reconstruction technique 
(ART) [19]. Li et al. [30] do the same using filtered backprojection reconstruction. Cai et al. [9] 
used a non-linear conjugate gradient. Chen et al. [12] used a heuristic non-convex adaptation of 
ASD-POCS [66]. Rodesch et al. [54] adapted the maximum likelihood polychromatic algorithm of 
De Man et al. [36].

Several works [33, 40, 83] used separable quadratic surrogates (SQS). The surrogate is a tool 
for optimization transfer [25], which aims at accelerating the minimization of the cost function. 
Formally, the function  Φ →:0x

N  is a surrogate of the cost function  Ψ →N:  at ∈0x
N if 
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It is separable if the contribution to Φ of one or a few unknowns can be separated from the ones of 
the other unknowns. The advantage is that the minimization can be split into many subproblems, 
each with one or a few unknowns, which can be solved in one iteration of Newton’s algorithm, if 
these subproblems are quadratic. For spectral CT reconstruction, the existing SQS allows solving a 
subproblem with M unknowns per pixel [33, 40, 83]. Two SQS have been derived in the literature 
for one-step reconstruction [33, 83], but the inequality in Equation 19.9 is only demonstrated for the 
one in [33]. Since the problem is non-convex, SQS minimization would retrieve a local minimum if 
the initialization is not adequately chosen [33].

Some algorithms address the non-convexity using a primal-dual metric algorithm. Foygel Barber 
et al. developed the Mirrored Convex/Concave Optimization for Nonconvex Composite Functions 
(MOCCA) [18, 63], a primal-dual scheme derived from the Chambolle-Pock algorithm [11]. Tairi 
et al. [75] used a variable-metric primal algorithm [13].

Several of these algorithms have been compared in [44] on a simulated test case (three-material 
decomposition from a 5-bin photon-counting detector). All the algorithms converged to a visually 
similar solution, but there were substantial differences in convergence speed. Figure 19.6 demon-
strates the potential benefit of one-step reconstruction, but it is clear that further research is required 
before one-step reconstruction can be routinely applied in a spectral CT scanner.

19.4  REGULARIZATION

The problem of decomposition and reconstruction for spectral CT is an ill-posed inverse problem, 
as is tomographic reconstruction alone [46]. Regularization is therefore required to obtain satisfy-
ing results.

FIGURE 19.6  Projection-based (top, algorithm of [57, 62] combined with filtered-backprojection recon-
struction) and one-step reconstruction (bottom, 500 iterations of the algorithm of [40] without subsets and 
without regularization) using the spectral model and the object described in Figure 19.5. From left to right: 
water, bone, and gadolinium maps. The grayscale is ±10% around the target concentration of each material.
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In two-step decomposition algorithms, the regularization may be applied to each of the two 
steps, as pointed out in sections 19.1 and 19.2. Regularizing the first step is probably mandatory 
in both cases: this is well-known for tomographic CT reconstruction, the first step of image-based 
methods, and it empirically seems to be the case in projection-based decomposition (Figure 19.5), 
although this may depend on the number M of basis functions and the number B of effective spec-
tra. The choice of the regularization and its strength is sensitive because it will impact the inputs of 
the second step. Inverting the decomposition in one step alleviates this difficulty.

There are many options for the regularization of spectral CT. As pointed out in section 19.2, only 
a small number of studies have suggested to regularize the decomposition of projections [1, 5, 16]. 
In general, the regularization is rather applied to the CT maps, that is, in the image domain. Any 
regularization used in tomographic reconstruction may be applied to each volume independently, 
for example, total variation (TV) [18, 63] or a differentiable approximation of TV [33, 40, 78, 83] 
(Figure 19.7), the 1-norm of wavelets coefficients [87] or the 0-norm of dictionaries [91]. Several 
such regularizers have been compared for spectral CT in [58].

Some authors have suggested to assume that the material-specific CT maps share the same structures 
and developed regularizations to take advantage of this similarity to improve the results. Similar strate-
gies have been developed for dual-modality imaging such as anatomical priors from CT used in positron 
emission tomography (PET) reconstruction [52]. Total nuclear variation is a generalization of TV to 
multi-channel images, which was proposed for this specific goal [53]. Like TV, it favors a piecewise 
constant volume for each material, but it also favors volumes where edges have the same location and 
orientation. Several other multi-channel regularizers have been applied to spectral CT data [24, 48, 86].

A final class of regularization is the use of constraints to overcome a larger number of material-
specific CT maps than energy measurements >(M B) [31–33, 42, 89]. Additional constraints are 

FIGURE 19.7  Effect of regularization on one-step reconstruction [40] from the same data as in Figure 19.6. 
The regularizer is Green’s approximation of TV [20] on each material-specific CT map. The number of itera-
tions was increased to 1000 to reach (visual) convergence. The regularization weights (one per material-
specific CT map) have been first chosen to be maximum without visible cross-talk (top) and 100 times larger 
each (bottom). The grayscale is the same as in Figure 19.6.
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added to those in Equation 19.4 or Equation 19.6 by assuming some predefined properties of the 
scanned materials based on volume and/or mass preservation between the sum of each material-
specific CT maps and the mixture. These techniques have been applied in all types of inversions, 
image-based [31, 32, 42], projection-based [89], and one-step [33].

19.5  IMAGE QUALITY ISSUES SPECIFIC TO SPECTRAL CT

Spectral CT scanners can reconstruct regular CT-like volumes: the photon counts obtained from a 
spectral CT acquisition can be either fed to one of the spectral CT reconstruction methods described 
above, yielding material-specific maps, or merged back together into a single sinogram and recon-
structed, generating a regular-CT volume (e.g., in Hounsfield Units, HU). Although they are recon-
structed from identical input data, it turns out that material-specific CT volumes are typically much 
noisier than their HU counterpart. The two fundamental reasons for this phenomenon are: recon-
structing several volumes instead of a single one reduces the amount of measured photons used 
per voxel, which results in higher noise (which can be compensated for by increasing the radiation 
exposure), and the non-linear decomposition process amplifies the noise.

With the introduction of photon-counting detectors into clinical routine, one can expect to see 
a reduction in detector pixel sizes [69, 84]. The increase in spatial resolution will extend the diag-
nostic range of CT imaging, for example, in the visualization of fine structures in the lung or along 
coronary arteries with stents [37, 65, 68]. In those cases, the high-resolution acquisition enables an 
improved sampling of high-frequency features and reduces noise aliasing [51]. However, for sec-
tions without fine details, a high-frequency noise will significantly reduce the image quality. In the 
future, it will be essential to incorporate these new circumstances into the image reconstruction 
and to optimize it through algorithmic solutions still to be developed. On this note, the additional 
energy dimension provides an increased amount of information, which can be utilized to denoise 
spectral images. The data can be utilized following strategies like prior image constraints [90] or 
dictionaries [39, 85] (section 19.4).

Additionally, material volumes are subject to decomposition errors, commonly referred to as 
“cross-talk”: materials can appear in the wrong material-specific CT volumes. The severity of 
cross-talk depends on how much the materials’ attenuation profiles differ from each other (the more 
similar they are, the stronger the cross-talk) and on how much noise is present in the photon counts 
(the noisier the data, the stronger the cross-talk). In one-step inversion methods, regularization can 
also cause cross-talk: regularizing one material creates discrepancies between the estimated pho-
ton counts and the measured ones, which are compensated by adding or removing some amount 
of another material. This effect is particularly intense on the borders of structures when a strong 
spatial regularization is applied, as illustrated in Figure 19.7.

Ring artifacts are a very common artifact in any type of CT imaging and can have a variety of 
sources. In conventional CT, if one detector element is out of calibration, the reading of this element 
may consistently be incorrect. As a consequence, the later reconstructed CT slice will be affected 
by rings. As photon-counting detectors are highly complex and sensitive compared to conventional 
detectors, a dedicated calibration needs to be performed. While this spectral technology, as well as 
calibration methods, are still under development, rings that may appear after reconstruction can be 
removed to a large degree by classical ring removal algorithms [45, 88]. Regarding rings or other 
artifacts, it is essential to understand that the current hardware does not represent an ideal detector. 
Novel sensor material (imperative for photon-counting CT), along the lines of cadmium telluride 
and cadmium zinc telluride, come with technical challenges which can be addressed by hardware as 
well as software solutions. Pile-up and spectral distortions are two of the main effects, which reduce 
the quality of spectral data from photon-counting detectors. Several investigators have developed 
techniques to model those shortcomings with different software-based techniques [10, 55, 70, 72–74]. 
These achievements represent an ideal opportunity to overcome some of those hardware shortcom-
ings but they still need to be integrated in the image formation algorithms described in this chapter.
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19.6  CONCLUSION

Spectral CT systems, especially systems equipped with a spectral photon-counting detector, 
are a promising development for the clinical routine. Many benefits concerning the diagnostic 
range have been discussed, which include low-dose, high-resolution, quantitative, and K-edge 
imaging. First prototype systems [69, 84] have been installed and have demonstrated benefits 
along the same lines. At the same time, one has to realize that this development comes with 
challenges, which translate into non-ideal imaging performances. The harmonization between 
hardware and software will significantly aid the process of overcoming those current shortcom-
ings. In this chapter, we presented algorithmic solutions, which address a wide range of possible 
spectral CT implementations and the challenges that come along with each of them. In three 
sections, we introduced the main classes of spectral CT reconstruction algorithms: image-based 
and projection-based, which perform decomposition into materials and tomographic reconstruc-
tion separately and are therefore referred to as “two-step” methods, and one-step inversion, 
which merges both decomposition and reconstruction into a single inverse problem. For the 
coming years, while spectral CT will fully translate into the clinical routine, further algorithmic 
developments will be necessary to improve, for example, the sensitivity, to constantly extend the 
diagnostic range of CT imaging.
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Purpose: Proton CT (pCT) has the potential to accurately measure the electron density map of tissues
at low doses but the spatial resolution is prohibitive if the curved paths of protons in matter is not
accounted for. The authors propose to account for an estimate of the most likely path of protons in a
filtered backprojection (FBP) reconstruction algorithm.
Methods: The energy loss of protons is first binned in several proton radiographs at differ-
ent distances to the proton source to exploit the depth-dependency of the estimate of the most
likely path. This process is named the distance-driven binning. A voxel-specific backprojection
is then used to select the adequate radiograph in the distance-driven binning in order to prop-
agate in the pCT image the best achievable spatial resolution in proton radiographs. The im-
provement in spatial resolution is demonstrated using Monte Carlo simulations of resolution
phantoms.
Results: The spatial resolution in the distance-driven binning depended on the distance of the objects
from the source and was optimal in the binned radiograph corresponding to that distance. The spatial
resolution in the reconstructed pCT images decreased with the depth in the scanned object but it
was always better than previous FBP algorithms assuming straight line paths. In a water cylinder
with 20 cm diameter, the observed range of spatial resolutions was 0.7 − 1.6 mm compared to 1.0
− 2.4 mm at best with a straight line path assumption. The improvement was strongly enhanced in
shorter 200◦ scans.
Conclusions: Improved spatial resolution was obtained in pCT images with filtered backprojection
reconstruction using most likely path estimates of protons. The improvement in spatial resolution
combined with the practicality of FBP algorithms compared to iterative reconstruction algorithms
makes this new algorithm a candidate of choice for clinical pCT. © 2013 American Association of
Physicists in Medicine. [http://dx.doi.org/10.1118/1.4789589]

Key words: proton computed tomography, proton CT, filtered backprojection, most likely path

I. INTRODUCTION

Proton computed tomography (pCT) has been considered
very early in the history of CT (Ref. 1) with a continuous
development until the beginning of the 1980s. Its investiga-
tion was then slowed down because the ratio between benefits
and cost was too low compared to photon CT scanners but the
development of proton therapy has triggered new studies on
pCT scanners.2–4

pCT could indeed improve proton therapy compared to
current clinical practice since it could reduce the uncertainty
of the proton therapy planning due to the lack of accuracy in
the proton stopping power of tissues computed from photon
CT images.5, 6 This uncertainty contributes to the range un-
certainty margin which is between 2.5% + 1 mm and 3.5%
+ 3 mm depending on the hospital.7 It would be reduced
with pCT since the proton stopping power is better charac-
terized with protons than photons. Another potential benefit
is the reduction of the imaging dose compared to photon CT
(Refs. 8 and 9) since the energy loss of every proton can be
measured and provides information about the patient tissues,
while measurement of the probability of interactions of pho-
tons with tissues requires a large number of photons. Finally,

pCT is an additional modality which could have its own ad-
vantages for improving the diagnostic.10

pCT has one major drawback compared to photon CT,
its lack of spatial resolution. Indeed, protons traversing mat-
ter undergo multiple deflections due to multiple Coulomb
scattering, resulting in curved trajectories and blurred pro-
ton radiographs.11 Many research initiatives of the past
decade have focused on this issue and it has been proposed
to track each proton individually using pairs of position-
sensitive detectors before and after the scanned object.3, 4, 12

The measured positions are used to estimate the most
likely path of each individual proton which has proven
efficient to improve spatial resolution using Monte Carlo
simulations.9, 13–15

The estimation of the most likely path of each proton re-
solves in a curve. The pCT reconstruction problem, therefore,
relates to the inversion of the generalized Radon transform
where one integrates the sought pCT image over a family
of curves. This problem has already been studied in motion-
compensated CT reconstruction.16 There is still no exact an-
alytical inversion for curved lines, it is only known how to
compensate for a motion that preserves the straightness of
integration lines.17 However, approximate algorithms based

031103-1 Med. Phys. 40 (3), March 2013 © 2013 Am. Assoc. Phys. Med. 031103-10094-2405/2013/40(3)/031103/9/$30.00
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on voxel-specific backprojection have proven efficient to in-
crease spatial resolution.18, 19

Most likely paths have only been used in pCT reconstruc-
tion algorithms to select the protons having straight trajecto-
ries in a filtered backprojection (FBP) algorithm8 or in itera-
tive reconstruction algorithms.20, 21 However, FBP algorithms
with most likely paths would be desirable in clinical prac-
tice to improve spatial resolution with a practical algorithm,
similar to what has been developed for motion-compensated
CT.22 In this paper, we propose a practical FBP algorithm for
pCT reconstruction using the curved most likely path of each
proton based on voxel-specific backprojections with an inter-
mediate binning step to handle the acquired list-mode data.

II. METHOD

II.A. pCT reconstruction problem

Protons lose most of their energy via electromagnetic in-
elastic collisions if they do not undergo nuclear interactions.
The local energy loss dE at a point of space x ∈ R3 is given
by

−dE

dx
(x) = η(x)S(I (x), E(x)), (1)

where η : R3 → R is the relative electron density with
respect to a reference medium (water in this study),
S : R2 → R is the proton stopping power in the reference
medium given by the Bethe-Bloch equation23 which, under
realistic simplifications,24 only depends on I : R3 → R, the
tissue-specific ionization potential, and E : R3 → R, the en-
ergy of the proton crossing the tissue. The ionization potential
I varies moderately in human tissues and has a limited effect
on S so, in pCT, it is typically approximated to that of wa-
ter, i.e., I (x) = Iwater = 78 eV, ∀x ∈ R3 in our simulations.
Under this assumption, integrating Eq. (1) leads to the line
integral

∫

!i

η(x)dl =
∫ Ein

i

Eout
i

dE

S(Iwater, E)
(2)

with i ∈ I ⊂ N the index of tracked protons, !i(t) ∈ R3 the
curved trajectory of the proton, function of time t ∈ R, and
Ein

i and Eout
i the energies of the proton at the entrance and

exit detectors. Finding η from Ein
i , Eout

i and an estimate
!̂i (t) ∈ R3 of the path !i for a set I of protons is the pCT
reconstruction problem.

The energy integral is defined as G : R2 → R to simplify
notations in the following with

G(Ein
i , Eout

i ) =
∫ Ein

i

Eout
i

dE

S(Iwater, E)
. (3)

In practice, the incident energy Ein
i of a monoenergetic proton

beam would be assumed to be known, the exit energy could
be measured with, e.g., a calorimeter detector, and the energy
loss in air would be neglected.

Ω

v

u
w
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i
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i
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u i(w)
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detector
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α

FIG. 1. Schematic top view of the pCT scanner used in this study. The signed
distances wout , win, w and uout

i , uin
i , ui (w) are used in Eqs. (6)– (8), respec-

tively. The effect of multiple Coulomb scattering in the object has purposely
been exaggerated for the sake of the clarity of the scheme.

II.B. pCT scanner for most likely path estimation

Proton path estimation is a crucial problem in pCT recon-
struction because it directly influences the spatial resolution.11

Several solutions have been proposed to the problem of most
likely path (MLP) estimation.9, 13, 14 These recent works on
MLP estimation rely on pCT scanners3, 4 which are able to
track the position and the direction of each proton, before and
after traversing the object.

We assumed a similar cone-beam pCT scanner in this study
with a proton source following a circular trajectory α(t) ∈ R3

around the axis defined by the isocenter o ∈ R3 and the unit
axis v ∈ R3 (Fig. 1). 2D tracking detectors were positioned
before and after the scanned object to record the entrance and
exit positions and directions of each proton noted

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xin
i = !i(t ini )

xout
i = !i(tout

i )

ẋin
i = d!i(t ini )

dt

ẋout
i = d!i(tout

i )
dt

(4)

with t ini , tout
i ∈ R the times at which proton i crosses the en-

trance and exit tracking detectors, respectively. We define
the unit vectors u,w : R3 → R3 depending on the source
position, with w(α(t)) = −α(t)/∥α(t)∥2 and u(α(t)) = v
× w(α(t)) to dispose of a 3D Cartesian coordinate system
{u, v,w} in the frame of reference of the source/detector pair.
u and v therefore define the orientation of the detectors and
w the main beam direction. We also assumed that the convex
hull of the object " ⊂ R3 was known which can practically
be measured with a surface scanner or an initial reconstruc-
tion without MLPs.

The algorithm proposed in this work is applicable to any
MLP estimation !̂i from the convex hull " and the list-mode
proton data Ein

i , xin
i , ẋin

i , Eout
i , xout

i , and ẋout
i .

II.C. Distance-driven binning

Our objective is to adapt existing filtered backprojection
algorithms for pCT reconstruction. Previous filtered backpro-
jection algorithms for pCT have binned list-mode proton data
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in virtual proton radiographs and we recall first this binning
process. Let j ∈ J ⊂ Z2 be a set of spatial indices corre-
sponding to a grid of pixels of the exit tracking detector and
h : R2 → R their indicators,

hj ( y) =
{

1 if y ∈ R2 is in pixel j,

0 else.
(5)

It is assumed that the pCT scanner operates in a step-and-
shoot mode with gantry rotations only during beam-off time
to have, during beam-on times, a discrete number of source
positions ap ∈ R3, p ∈ P = {1, ..., P } with P ∈ N the num-
ber of source positions. The list-mode proton data are par-
titioned in subsets Ip ⊂ I of protons emitted from the same
source position. We define the binning of list-mode data for
each source position in virtual proton radiographs sampled at
the exit detector as

gout
j,p =

∑
i∈Ip

hj

(
uout

i , vout
i

)
G

(
Ein

i , Eout
i

)

∑
i∈Ip

hj

(
uout

i , vout
i

) (6)

with the distances uout
i and vout

i relative to ap = α(t ini ) in the
{u, v,w} system (Fig. 1),

{
uout

i =
(
xout

i − ap

)
· u(ap),

vout
i =

(
xout

i − ap

)
· v.

Repeating this operation for each of the P source positions,
one obtains a typical set of P projection images that has
already been used in standard filtered-backprojection algo-
rithms for pCT reconstruction assuming a straight proton path
between ap and xout

i .8, 24–26

We observe that this principle can be extended, and we pro-
pose to do another binning using the entrance positions xin

i

to bin list-mode proton data on the exit detector assuming a
straight proton path going through ap and xin

i , i.e.,

gin
j,p =

∑
i∈Ip

hj

(
uin

i , vin
i

)
G

(
Ein

i , Eout
i

)

∑
i∈Ip

hj

(
uin

i , vin
i

) (7)

with the distances (Fig. 1),
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

uin
i = wout

win

(
xin

i − ap

)
· u(ap),

vin
i = wout

win

(
xin

i − ap

)
· v,

win =
(
xin

i − ap

)
· w(ap),

wout =
(
xout

i − ap

)
· w(ap).

The ratio wout/win is the constant magnification from the en-
trance to the exit detection plane produced by a cone-beam
with apex ap to obtain the coordinates on the exit flat panel.
Therefore, if protons were traveling in straight lines, gin

j,p and
gout

j,p would be equal and their actual differences are due to
multiple Coulomb scattering.

We extend the binning to any distance from the source and
propose the concept of distance-driven binning, given by

gj,p(w) =
∑

i∈Ip
hj (ui(w), vi(w))G(Ein

i , Eout
i )

∑
i∈Ip

hj (ui(w), vi(w))
(8)

with the distances illustrated in Fig. 1,
⎧
⎪⎪⎨

⎪⎪⎩

ui(w) = wout

w
(!̂i(ti,w) − ap) · u(ap),

vi(w) = wout

w
(!̂i(ti,w) − ap) · v.

Here, ti,w is the time at which proton i crosses the plane
parallel to the detectors at distance w ∈ R from the source,
i.e., (!̂i(ti,w) − ap) · w(ap) = w. Equation (8) is the exten-
sion of Eqs. (6) and (7) to any distance w using the most
likely path !̂i of proton i to interpolate intermediate posi-
tions between entrance and exit positions xin

i and xout
i ; it is

indeed an interpolation process since gj,p(wout ) = gout
j,p and

gj,p(win) = gin
j,p. It was our hypothesis that accounting for

the distance from the source to the binning plane allows im-
provement of the spatial resolution of objects located in that
plane in the binned proton radiographs. This hypothesis has
been validated in the first simulation.

In practice, gj, p is computed at a finite number of distances
in the w direction, trilinear interpolation is used between the
samples and we obtain a 4D sinogram g : R3 × P → R in-
stead of the conventional 3D sinogram, e.g., gin, gout : R2

× P → R. The optimal distance between samples gj, p in the
w direction depends on the curvature of most likely paths, i.e.,
on the spatial straggling of protons due to multiple Coulomb
scattering.

II.D. Distance-driven backprojection

The use of the distance-driven binning requires the mod-
ification of existing FBP algorithms. In this study, we
adapted the Feldkamp–Davis–Kress (FDK) algorithm.27 The
2D weighting and filtering of projection images in the FDK
algorithm is not modified but repeated at every depth w; we
note g̃p : R3 → R the filtered projection acquired at source
position ap. A voxel-specific backprojection is used to select
the adequate distance w, leading to the reconstruction formula

η(x) =
∑

p∈P

#θp

(∥o − ap∥2

w(ap, x)

)2

×g̃p

(
u(ap, x), v(ap, x), w(ap, x)

)
(9)

with
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(ap, x) = wout

w(ap, x)

(
(x − ap) · u(ap)

)
,

v(ap, x) = wout

w(ap, x)

(
(x − ap) · v

)
,

w(ap, x) = (x − ap) · w(ap),

and #θp ∈ R the angle weighting resulting from the dis-
cretization of the integral on the gantry angles. Equation (9)
is similar to the standard FDK reconstruction formula except
for the use of 3D projection images instead of 2D projection
images where the last dimension is related to the distance to
the source w(ap, x). It is worth noting that both the backpro-
jection and its FDK weighting depend on w(ap, x).
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The proposed algorithm is an approximate algorithm
which takes advantage of improved spatial resolutions in pro-
ton radiographs during voxel-specific backprojection. One
can observe that if the pixel indicators h were Dirac delta
functions and if there was a single proton per indicator, us-
ing Eqs. (8) and (9) without filtering would simply backpro-
ject the proton energy integral G along the most likely proton
path. The intermediate distance-driven binning is to allow the
filtering of the FDK algorithm.

II.E. Simulations

The algorithm was implemented using RTK, an open-
source reconstruction toolkit.33 The evaluation was carried
out on Monte Carlo simulations using GATE v6.2,28 an
end-user software using the Geant4 toolkit v4.9.5.p01.29

Electromagnetic and hadronic interactions of primary
and secondary protons were simulated, both in the
air and in simulated objects. The G4BraggModel be-
low 2 MeV and the G4BetheBlochModel beyond
were used for inelastic electromagnetic interactions. The
G4UrbanMscModel95 described multiple scattering. In-
elastic hadronic interactions with target nuclei were mod-
eled using the G4BinaryCascade for protons with ener-
gies higher than 170 MeV, while the G4PreCompound was
used for lower energies. Elastic hadronic interactions of pro-
tons were simulated with G4HadronElastic. The precal-
culated table of the stopping power and the particle range dur-
ing Geant4 initialization were binned in the range of 0.1 keV
to 10 GeV in a total number of 350 bins. The transportation
step was 1 mm.

An ideal pCT scanner was simulated: a 200 MeV mo-
noenergetic point source was placed at distance ∥o − ap∥
= 100 cm from the isocenter and the characteristics (Ein

i ,
Eout

i , xin
i , ẋin

i , xout
i , and ẋout

i ) of protons traversing the planes
win = 89 cm and wout = 111 cm were recorded. The mea-
surements were exact, i.e., assumed perfect detectors, and the
envelope " of each scanned object was also assumed to be
perfectly known.

Standard 3σ cuts on energy and angle were applied to dis-
card secondary protons produced by nuclear interactions.24

Since it is not possible to measure in reality the exact path
of each proton, the most likely path of each proton was es-
timated using its characteristics (position, direction, and en-
ergy) recorded at each of the two detectors. We used straight
paths outside " and curved paths in " according to the maxi-
mum likelihood formalism of Schulte et al.14 We closely fol-
lowed their work for the parametrization of the estimation of
the most likely paths.

The simulations used the materials properties defined in
Geant4 based on the databases of the National Institute of
Standards and Technology (NIST), including modifications
with respect to NIST based on experiments, e.g., IH2O which
equals 78 eV instead of 75 eV since Geant4 v4.9.3. In both
Eq. (3) and the most likely path estimation, the object was
assumed to be homogeneous and made of water. The energy
integral G [Eq. (3)] was computed numerically with 100 eV
bins.

v

u
w

a0

Entrance
detector

Exit
detector

o

Water

Bone

FIG. 2. Drawing of the setup of simulation 1.

II.E.1. Simulation 1

The first simulation was designed to provide the reader
with insights into the effect of the distance-driven binning
by looking at a single projection image only, i.e., P = 1. We
centered a spherical shell of water with radii 90 and 110 cm
around the proton source, therefore placing the isocenter in
the middle of the water layer (Fig. 2). Three spherical bone
inserts with identical solid angles were placed in the water
sphere with regular radii from the source (90 − 92, 99 − 101,
and 108 − 110 cm). Since all objects are portions of hollow
spheres centered on the source position a1, the projection im-
age for particles travelling along straight lines crossing the
source would be a rectangular function with one rectangle per
insert. The flux of protons through the plane (o,w) was uni-
form and equal to 648 000 protons · mm−2, allowing distance-
driven binning in a fine lattice with 0.1 × 2 × 0.1 mm3 spac-
ing of 2500 × 1 × 2500 samples in the {u, v,w} coordinate
system.

II.E.2. Simulation 2

The second simulation was designed to measure the spa-
tial resolution in reconstructed images relative to the depth
of inserts in the object. Several aluminium cylinders with
ø5 mm were regularly placed along a spiral in a large water
cylinder with ø20 cm (Fig. 3). The total flux of protons
was equal to the one of simulation 1 but P = 720 pro-
jection images were simulated which gave a proton flux
of 900 protons · mm−2 · projection−1. The projection images
were binned in a lattice with 0.5 × 1 × 0.5 mm3 spacing of
500 × 2 × 500 samples. Only the central slice (o, v) of the
pCT image was reconstructed to avoid the cone-beam arti-
facts which are only encountered in other slices and depend
on the scanned object.27, 30 The resolution of reconstructed
images was 2100 × 1 × 2100 voxels with 0.1 mm isotropic
spacing. In addition to the proposed reconstruction formula
[Eq. (9)], the standard FDK algorithm was used with the sino-
grams binned before (w = 90 cm) and after (w = 110 cm) the
objects, respectively.

II.E.3. Simulation 3

The third phantom is a phantom used to measure the spa-
tial resolution of clinical CT scanners, the CTP528 high-
resolution module of the Catphan phantom (The Phantom
Laboratory, Salem, NY). The module consists in various res-
olution gauges made of 2 mm-thick aluminium sheets placed
on a ø10 cm circle in a ø20 cm water cylinder (Fig. 4). The
parameters were the same as the ones of simulation 2.
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FIG. 3. Simulation 2. Central slice of the pCT reconstruction with distance-driven binning (left) and zooms on the central (right, top line) and peripheric (right,
bottom line) inserts indicated with squared boxes. Gray-level range: [0.7, 2]. The first column of zoomed images were obtained with the proposed algorithm and
the second and third columns were obtained with the standard FDK algorithm using sinograms binned according to the position of protons at 90 cm (entrance of
the phantom) and 110 cm (exit of the phantom) from the source, respectively.

Binning @ 110 cm Binning @ 90 cm

Distance−driven binning
0 5 10 15

0.8

1

1.2

1.4

1.6

1.8

2

Position (mm)

R
el

at
iv

e 
el

ec
tr

on
 d

en
si

ty
 (n

o 
un

it)

 

 

Binning @ 110 cm
Binning @ 90 cm
Distance−driven binning

FIG. 4. Simulation 3, full scan. (Top-left) central axial slice of the standard FDK reconstruction using the 2D set of projection images g(110 cm) binned
according to the position of protons at the exit of the object. Gray-level range: [0.7, 2]. (Top-right) idem with the sinogram g(90 cm) at the entrance of the object.
(Bottom-left) distance-driven FDK reconstruction using the complete set of 3D projections g. (Bottom-right) profile along the three segments drawn on each
slice.
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II.E.4. Spatial resolution

The spatial resolution was quantified by measuring the
edge response of the inserts with the distance required for the
edge response to rise from 10% to 90%.31 Higher values mean
lower spatial resolution.

III. RESULTS

III.A. Simulation 1

Figure 5 illustrates the distance-driven binning in the pro-
jection space. The effect of multiple Coulomb scattering de-
pended on the distance to the source and the position of the
inserts. The edges of the bone inserts were the sharpest at the
distance w in the sinogram which corresponds to their lo-
cation in space, i.e., at the level of each line profile (Fig. 5,
bottom). The loss of sharpness increased with the distance to
their location (Fig. 5, right). The best spatial resolution was
obtained for the right insert, which was the closest to the en-
trance, whereas the worst spatial resolution was obtained for
the middle insert which is the one at the isocenter. This is
related to the performances of the most likely path estima-
tion, illustrated with the 3σ error envelope (Fig. 5, top-right,
dashed curve) which increases with depth in the object, the in-
crease being higher on the exit side (w < 1000 mm) than on
the entrance side (w > 1000 mm). η for water and bone are 1
and 1.77, respectively, so the minimum and maximum of the
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FIG. 5. Simulation 1. 2D slice of the binned 3D projection image (top-left)
with the three profiles at the distance corresponding to the center of each
insert (bottom-left) and the 10%–90% distance of each insert relative to the
distance w to quantify the spatial resolution (top-right, solid lines). The top-
right plot also displays the 3σ uncertainty of the MLP of protons with en-
trance and exit positions and directions along the central ray apo (dashed
line) computed using Eq. (27) of Schulte’s derivation of the most likely path
(Ref. 14). The 10%–90% distance was measured on each side of the inserts
but the minimum of the two distances is plotted for each insert. The right,
middle and left inserts are located at 90 − 92 , 99 − 101 , and 108 − 110 cm
from the source, respectively.

profiles should be 200 and 215.3 mm [Eq. (3)]. The minimum
is accurate but the maximum is slightly underestimated due to
the use of the IH2O = 78 eV ionization potential of water in-
stead of the IBone = 92 eV ionization potential of bone.

III.B. Simulation 2

The spatial resolution in the reconstructed pCT images can
be visually observed in Fig. 3. The spatial resolution was
not spatially uniform and gradually degrading from the pe-
riphery to the center of the phantom. Zooms on two pCT
images reconstructed with the standard FDK algorithms are
provided for comparison. The binning g(110 cm), which uses
the positions of protons after the object as provided by proton
radiographs, gives the worst spatial resolution. The binning
g(90 cm), which uses the position of protons before the ob-
ject, improves the spatial resolution but the distance-driven
binning g [Eq. (8)] with the proposed reconstruction formula
[Eq. (9)] was visually better.

The depth-dependence and the improved spatial resolu-
tion were quantified by looking at the 10%–90% distance
of the edge profile of each aluminium insert (Fig. 6). Each
4 mm profile was obtained by averaging 360 radial profiles
with equal angular spacing taken from the center of each
insert. The range of spatial resolutions were 0.7 − 1.6 ,
1.0 − 2.4 , and 2.2 − 3.2 mm for the distance-driven bin-
ning, the binning g(90 cm) and the binning g(110 cm), re-
spectively. Note that the inserts were not large enough for
accurately measuring spatial resolutions greater than 1.5 mm
due to the influence of the opposite side, which explains
the noisy pattern of, e.g., g(110 cm). The relative electron
density η was accurately reconstructed for water (ηH2O = 1)
but that of aluminium was underestimated (ηAl = 2.34),
probably because of the ionization potential assumption in
Eq. (3) (IAl = 166 eV).

III.C. Simulation 3

The improvement on spatial resolution was confirmed us-
ing simulations of a real phantom designed to measure the
spatial resolution of photon CT scanners (Fig. 4). Profiles
are provided through the pattern corresponding to 3 lp · cm−1.
The spatial resolution improved with the distance binning
compared to the spatial resolution of reconstruction using the
original FDK algorithm with binning using the proton posi-
tions before and after the object (Fig. 4, bottom left vs two
top slices). Among the two reconstructions with the original
FDK algorithm, the binning before the object had a better spa-
tial resolution.

The effect is emphasized when only a subset of projection
images is used which corresponds to a short scan (Fig. 7).
Parker weighting32 was used to account for the short scan in
each reconstruction of Fig. 7.

IV. DISCUSSION

We have proposed an algorithm to use curved most likely
paths in a pCT filtered backprojection algorithm [Eq. (9)]. Our
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FIG. 6. Simulation 2. Quantification of the spatial resolution of each insert
of Fig. 3. (Top) median (thick line) and 5/95-centile (thin lines) of the 24
average profiles. (Bottom) spatial resolution quantified with the 10%–90%
distance of the edge profile of each edge insert relatively to the insert distance
to the isocenter.

solution uses a distance driven binning in order to improve
the spatial resolution in proton radiographs (Fig. 2). During
backprojection, the spatial position of each voxel is translated
to a distance to the source and the corresponding radiograph
in the binned radiographs is used so that the sharpest binning
is selected for objects at the voxel location. The improve-
ment of the spatial resolution in projection images is prop-
agated to the reconstructed pCT images and substantial im-
provement has been observed compared to other pCT images
reconstructed with the original FDK algorithm (Figs. 3, 4, 6,
and 7).

A side observation of this study is that existing FBP al-
gorithms are more efficient with binning using proton posi-
tions before they enter the scanned object than proton posi-
tions after they exit the scanned object, the latter binning cor-
responding to what is obtained with real proton radiographs
without proton tracking before the exit detector.2 This differ-
ence is due to the higher energy of protons before they enter
the object: since the effect of multiple Coulomb scattering in-
creases with energy loss, the difference between their path and
a straight line will gradually increase and the exit position is
the worst position to estimate the straight line.11 The substan-
tial improvement obtained by tracking the protons before the
object might be sufficient in some cases, for example, when
the observed inserts are not at the center of the object and a
full scan is performed, as is the case in Fig. 4. If the improve-
ment is not sufficient or if short scan acquisitions are used, our
algorithm further increases the spatial resolution at the cost of
a tracking detector after the scanned object in addition to the
detector for measuring the residual energy (Fig. 1).

Several choices have been made in the implementation of
the proposed algorithm which could be modified to further
improve the image quality. First, we have used voxel indica-
tors for the binning [Eq. (5)] but more advanced basis func-
tions could be used to allow, e.g., bilinear splitting during
binning. Another potential improvement is the use of more
robust estimators than the average during binning [Eq. (8)],
e.g., the median, to eliminate outliers such as protons which
underwent hadronic collisions. Finally, we could also allow
binning of one proton through several source positions as it
has been proposed in the parallel geometry.21 These potential
improvements have, however, a computational cost which was
deemed prohibitive in the context of this study where a high
proton flux was used. They might be required in the context
of low dose pCT. Faster reconstruction could also be obtained
by tuning the spacing of the samples of the distance-driven
binning in the w direction. We have used the same spacing as
in the u direction, to enforce fine sampling of the most likely
path, but the spacing could be optimized to reduce computa-
tional cost (Fig. 2)

This FBP algorithm is as approximate as other FBP algo-
rithms used in pCT since there is no exact solution for curved
trajectories. We observed an improved spatial resolution with-
out apparent loss in density resolution (Figs. 3 and 4) because
the algorithm only modifies high frequencies of the sinogram
without modifying low frequencies (Fig. 5). The algorithm
is inspired by our experience in approximate motion com-
pensated FBP reconstruction where limited differences have
been observed with iterative reconstruction.19 In the future,
we intend to compare the proposed algorithm with existing
pCT iterative algorithms to study their relative performances
in terms of spatial and density resolutions at several levels of
imaging doses.

It has been reported that FBP algorithms provide good den-
sity resolution compared to iterative algorithms such as alge-
braic reconstruction algorithms.21 In our simulations, we ob-
served that the electron density of water was accurately re-
constructed but the electron density of aluminum inserts was
systematically underestimated (Figs. 3 and 4). We believe that
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FIG. 7. Simulation 3, short scan. Idem as Fig. 4 with an additional circle arc indicating the angular coverage of the source trajectory with a down-scaled
diameter for illustration purposes (ø20.5 cm on the figure instead of ø200 cm in reality).

the approximation of the ionization potential to that of water
in Eq. (2) is the cause of this inaccuracy since the problem
already arises in the projection space in simulation 1. We are
currently investigating this with an extensive study on den-
sity resolution, also including the simulation of more realistic
beam lines and detectors.

The phantoms simulated in this study were almost homo-
geneous and essentially made of water. These properties have
been used in the most likely path estimation as in many past
studies on pCT, but are unrealistic for patient imaging. We
have planned on evaluating the impact of assuming an homo-
geneous target on the spatial resolution of patient pCT images.
If inhomogeneities were prohibitively degrading spatial reso-
lution, they could still be accounted for in Schulte’s bayesian
framework14 using, e.g., a first pCT image reconstructed with-
out most likely path estimation to roughly estimate the tissues
map.

The major advantage of our algorithm over iterative pCT
algorithms is faster on-the-fly reconstruction. These assets
could become essential for their use in proton therapy treat-
ment rooms when the reconstructed image is required to
check the patient anatomy prior to starting the treatment. In
this context, a short scan could also potentially reduce the ac-

quisition time and the imaging dose, for which the use of most
likely paths seems crucial (Fig. 7).

V. CONCLUSION

We have developed a filtered-backprojection pCT recon-
struction algorithm that takes advantage of the estimation of
the most likely path of protons. Improvement in the spatial
resolution has been observed on Monte Carlo simulations
compared to existing straight-line approximations. The im-
provement in spatial resolution combined with the practicality
of FBP algorithms compared to iterative reconstruction algo-
rithms makes this new algorithm a candidate of choice for
clinical pCT.

ACKNOWLEDGMENTS

This work was supported by the grant ProTom (ITMO
Cancer et Technologie in the Plan Cancer 2009–2013 pro-
gram), the LabEX PRIMES (ANR) and the Lyric grant INCa-
4664.

Medical Physics, Vol. 40, No. 3, March 2013

155



031103-9 Rit et al.: FBP proton CT reconstruction along most likely paths 031103-9

a)Author to whom correspondence should be addressed. Electronic mail:
simon.rit@creatis.insa-lyon.fr

1A. Cormack, “Representation of a function by its line integrals, with some
radiological applications,” J. Appl. Phys. 34, 2722–2727 (1963).

2U. Schneider et al., “First proton radiography of an animal patient,” Med.
Phys. 31, 1046–1051 (2004).

3R. Schulte et al., “Conceptual design of a proton computed tomography
system for applications in proton radiation therapy,” IEEE Trans. Nucl.
Sci. 51, 866–872 (2004).

4V. Sipala et al., “PRIMA: An apparatus for medical application,” Nucl.
Instrum. Methods Phys. Res. A 658, 73–77 (2011).

5B. Schaffner and E. Pedroni, “The precision of proton range calculations
in proton radiotherapy treatment planning: Experimental verification of the
relation between CT-HU and proton stopping power,” Phys. Med. Biol. 43,
1579–1592 (1998).

6M. Yang et al., “Comprehensive analysis of proton range uncertainties re-
lated to patient stopping-power-ratio estimation using the stoichiometric
calibration,” Phys. Med. Biol. 57, 4095–4115 (2012).

7H. Paganetti, “Range uncertainties in proton therapy and the role of Monte
Carlo simulations,” Phys. Med. Biol. 57, R99–117 (2012).

8G. Cirrone et al., “Monte Carlo evaluation of the filtered back projection
method for image reconstruction in proton computed tomography,” Nucl.
Instrum. Methods Phys. Res. A 658, 78–83 (2011).

9D. Wang et al., “Bragg peak prediction from quantitative proton computed
tomography using different path estimates,” Phys. Med. Biol. 56, 587–599
(2011).

10N. Depauw and J. Seco, “Sensitivity study of proton radiography and com-
parison with kV and MV x-ray imaging using Geant4 Monte Carlo simula-
tions,” Phys. Med. Biol. 56, 2407–2421 (2011).

11U. Schneider and E. Pedroni, “Multiple Coulomb scattering and spatial res-
olution in proton radiography,” Med. Phys. 21, 1657–1663 (1994).

12H.-W. Sadrozinski et al., “Development of a head scanner for proton CT,”
Nucl. Instrum. Methods Phys. Res. A 699, 205–210 (2013).

13D. Williams, “The most likely path of an energetic charged particle through
a uniform medium,” Phys. Med. Biol. 49, 2899–2911 (2004).

14R. W. Schulte et al., “A maximum likelihood proton path formalism for
application in proton computed tomography,” Med. Phys. 35, 4849–4856
(2008).

15B. Erdelyi, “A comprehensive study of the most likely path formalism for
proton-computed tomography,” Phys Med Biol 54, 6095–6122 (2009).

16A. Katsevich, “An accurate approximate algorithm for motion compensa-
tion in two-dimensional tomography,” Inverse Probl. 26, 065007 (2010).

17L. Desbat et al., “Compensation of some time dependent defor-
mations in tomography,” IEEE Trans. Med. Imaging 26, 261–269
(2007).

18C. Ritchie et al., “Correction of computed tomography motion artifacts us-
ing pixel-specific back-projection,” IEEE Trans. Med. Imaging 15, 333–
342 (1996).

19S. Rit et al., “Comparison of analytic and algebraic methods for motion-
compensated cone-beam CT reconstruction of the thorax,” IEEE Trans.
Med. Imaging 28, 1513–1525 (2009).

20T. Li et al., “Reconstruction for proton computed tomography by trac-
ing proton trajectories: A Monte Carlo study,” Med. Phys. 33, 699–706
(2006).

21S. Penfold, “Image reconstruction and Monte Carlo simulations in the de-
velopment of proton computed tomography for applications in proton radi-
ation therapy,” Ph.D. thesis, Centre for Medical Radiation Physics, Univer-
sity of Wollongong, 2010.

22S. Rit et al., “On-the-fly motion-compensated cone-beam CT using an
a priori model of the respiratory motion,” Med. Phys. 36, 2283–2296
(2009).

23J. Beringer et al. (Particle Data Group), “Review of particle physics,” Phys.
Rev. D86, 010001 (2012).

24R. Schulte et al., “Density resolution of proton computed tomography,”
Med. Phys. 32, 1035–1046 (2005).

25K. Hanson et al., “Computed tomography using proton energy loss,” Phys.
Med. Biol. 26, 965–983 (1981).

26P. Zygmanski et al., “The measurement of proton stopping power using
proton-cone-beam computed tomography,” Phys. Med. Biol. 45, 511–528
(2000).

27L. Feldkamp et al., “Practical cone-beam algorithm,” J. Opt. Soc. Am. A
1, 612–619 (1984).

28S. Jan et al., “GATE V6: A major enhancement of the GATE simulation
platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol.
56, 881–901 (2011).

29S. Agostinelli et al., “Geant4-a simulation toolkit,” Nucl. Instrum. Methods
Phys. Res. A 506, 250–303 (2003).

30S. Mori et al., “Properties of the prototype 256-row (cone beam) CT
scanner,” Eur. Radiol. 16, 2100–2108 (2006).

31S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Process-
ing (California Technical Publishing, San Diego, CA, 1997).

32D. Parker, “Optimal short scan convolution reconstruction for fanbeam
CT,” Med. Phys. 9, 254–257 (1982).

33See http://www.openrtk.org for recontruction toolkit (RTK).

Medical Physics, Vol. 40, No. 3, March 2013

156



D
Résumé français

Ce mémoire d’habilitation à diriger les recherches (HDR) résume l’ensemble de mes contributions
depuis mon recrutement au Centre National de la Recherche Scientifique (CNRS) et mon affec-
tion au Centre de Recherche En Acquisition et Traitement de l’Image pour la Santé (CREATIS)
en janvier 2010, en se focalisant plus particulièrement sur mes contributions en tant qu’encadrant
de doctorants ou post-doctorants. Le mémoire est divisé en trois parties : la prise en compte du
mouvement en tomodensitométrie (TDM) conique par rayons X, la TDM spectrale et la TDM
proton, chacune de ces problématiques permettant l’obtention d’une image TDM quadridimen-
sionnelle (4D). Ces parties sont précédées d’un curriculum vitæ et suivies d’une conclusion, d’une
liste de références personnelles et de trois annexes contenant chacune une publication en lien avec
une des parties.

Prise en compte du mouvement en TDM conique par rayons X

Le mouvement en tomodensitométrie conique était mon sujet de doctorat et de post-doctorat et
j’ai naturellement commencé par poursuivre ces investigations.

J’ai d’abord participé aux travaux de doctorat de Jef Vandemeulebroucke sur l’estimation de
mouvement en TDM conique pour la reconstruction compensée en mouvement. Ses travaux ce
sont d’abord attachés à prendre en compte la continuité temporelle du mouvement lors de son
estimation à partir d’une image TDM 4D. Dans un second temps, il s’est intéressé à l’estimation
automatique de la localisation de la plèvre pour prendre en compte la discontinuité spatiale du
mouvement induite par le glissement de la plèvre. Ces travaux ont été approfondis par Vivien
Delmon qui a proposé une modélisation B-spline de ce glissement permettant de garantir la
continuité du mouvement dans la direction orthogonale au glissement. Pour finir, ces modèles
de mouvement ont été utilisés par les deux doctorants pour estimer le mouvement à partir
de projections rayons X coniques et reconstruire une image TDM tridimensionnelle (3D) avec
compensation du mouvement respiratoire.

Une seconde catégorie de solutions pour prendre en compte le mouvement respiratoire est
la reconstruction itérative 4D régularisée. Ces travaux ont été principalement menés par Cyril
Mory, durant sa thèse et son post-doctorat. Sa thèse portait sur le mouvement cardiaque en TDM
conique. Ses travaux ont permis le développement d’un algorithme de reconstruction itératif 4D
comportant une régularisation spatiale et temporelle, RecOnstructiOn using Spatial and TEmpo-
ral Regularization (ROOSTER). L’algorithme a été enrichi au cours d’un post-doctorat portant
sur le mouvement respiratoire pour devenir motion-aware ROOSTER (MA-ROOSTER) et tenir
compte d’une estimation du mouvement lors de la régularisation temporelle.

Les travaux de thèse de Jan Hoskovec ont porté sur la combinaison du problème de mou-
vement et de données manquantes en TDM. Ses recherches ont porté sur l’algorithme de rétro-
projection de la dérivée des projections qui permet de résoudre en partie ce problème quand
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l’objet scanné est statique. Elles ont abouti à la prise en compte de mouvements spécifiques,
dont les mouvements rigides par morceaux, et d’étudier la reconstructibilité suivant les données
manquantes et le mouvement.

Jan Hoskovec s’est également intéressé aux conditions de rang, qui sont des conditions math-
ématiques qui sont censées être respectées par les projections. Il a montré que le mouvement
peut généralement être détecté par ces conditions. Par la suite, j’ai participé à l’encadrement
de Jérôme Lesaint qui s’est intéressé à ces mêmes conditions pour la calibration géométrique de
scanners TDM.

TDM spectrale

La TDM spectrale est le terme regroupant les technologies permettant d’acquérir des images
rayons X avec différents spectres polychromatiques effectifs (bi-énergie, comptage, etc...).

Je me suis d’abord intéressé à la formation d’image en TDM spectrale. Il y a différentes
catégories de solutions pour ce problème. Les solutions en deux étapes décomposent d’abord les
projections mesurées en projections d’éléments d’une base dite de décomposition, par exemple
en projections de quelques matériaux, avant application d’une reconstruction tomographique
conventionnelle. Au cours de sa thèse, Gloria Vilches-Freixas a étudié les méthodes polynomiales
qui approximent le problème ou sa solution par une fonction polynomiale. Nicolas Ducros s’est
intéressé aux méthodes itératives régulariées pour la décomposition. Par la suite, Cyril Mory a
étudié les méthodes en une seule étape, qui sont nettement plus complexes à mettre en œuvre.
Une étude comparative a permis de dégager la méthode la plus efficace pour notre problème
parmi les méthodes en une étape existantes. Enfin, Odran Pivot s’est intéressé au cours de
son doctorat à la correction du rayonnement diffusé en TDM spectrale en utilisant un masque
atténuant la fluence de la source de rayons X.

Une des applications cliniques envisagées de la TDM spectrale est l’estimation du pouvoir
d’arrêt des protons, sujet de doctorat de Gloria Vilches-Freixas. Ses recherches ont porté sur la
modélisation spectrale de scanners coniques ainsi que sur l’influence de paramètres d’acquisition
(tensions haute et basse, filtration de la haute énergie) sur l’estimation du pouvoir d’arrêt des
protons. Elle a enfin comparé différentes stratégies de décompositions pour cette estimation.

TDM proton

La dernière partie porte sur la TDM proton, une modalité d’imagerie qui connait un regain
d’intérêt avec le développement de la thérapie proton car elle peut reconstruire directement
le pouvoir d’arrêt proton à partir de la mesure de la perte d’énergie des protons. Je me suis
intéressé à cette modalité car le problème posé par les scanners modernes est une intégrale le
long d’une ligne courbe, tout comme la reconstruction avec compensation de mouvements non-
rigides. J’ai proposé un algorithme de reconstruction de type rétroprojection filtrée permettant
de prendre en compte ces lignes courbes. Par la suite, le doctorat de Feriel Khellaf a permis
de proposer d’autres solutions directes à ce même problème. Ces différentes solutions ont été
comparées aux algorithmes de la littérature. L’intérêt pour la thérapie proton a été évalué par
deux post-doctorants, Georges Dedes et Nicolas Arbor, à partir de simulations Monte Carlo
réalistes.

La thèse de Catherine Therese Quiñones a porté sur la reconstruction d’images TDM proton
autres que l’estimation du pouvoir d’arrêt : la TDM proton d’atténuation et la TDM proton de
diffusion. Ces travaux ont été prolongés par deux post-doctorants, Nils Krah et Ahmad Addoum.

Le mémoire se conclut par quelques perspectives liées essentiellement à mes projets en cours
ainsi que par ma motivation à obtenir mon HDR, principalement la possibilité de co-encadrer
des thèses avec d’autres chercheurs ne l’ayant pas encore ainsi que, si besoin, pouvoir encadrer
des doctorants de manière indépendante.
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