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Abstract—Preterm neonates can be subject to ventricu-
lomegaly, which is an enlargement of the cerebral ventricle
system (CVS) that can lead to brain damage. In clinical practice,
2D coronal hand-held ultrasonographic scans are performed to
assess CVS dilation. Estimating CVS volumes from 2D images
is, however, imprecise and time consuming since 3D information
is lacking. To address this issue, we propose a 3D reconstruction
method and an automatic deep learning segmentation algorithm.
The accuracy of the 3D reconstruction was assessed by calculating
Mean Absolute Distance (MAD) between manual segmentation
of the corpus callosum (CC) on a ground reference and the 3D
reconstructed volume, a mean value of 1.55 mm was obtained.
The accuracy of the segmentation was evaluated using DICE,
Hausdorff distance (dx) and MAD, respective average values of
0.816, 13.6 mm and 0.62 mm were obtained. The computation
time of a segmentation for one 256 x 256 x 256 volume was 5 s.

Index Terms—preterm neonate, 3D reconstruction, ventricu-
lomegaly, segmentation, deep learning

I. INTRODUCTION

The number of preterm births is increasing and estimated
to 15 million every year in the world. Preterm neonates,
particularly with a very low birth weight (< 1500 g), are
at high risk for CVS dilation. This state corresponds to an
abnormal accumulation of cerebrospinal fluid inside the CVS,
which can pressure the brain against the skull, and lead to
neurological impairments such as cerebral palsy, hearing loss
or blindness [1], [2].

In usual clinical practice, the diagnosis and monitoring of ven-
triculomegaly is performed with 2D freehand ultrasound (US)
imaging. When ventriculomegaly is detected, the CVS volume
is estimated in order to determine the amount of fluid that
must be punctured. In order to get an estimation of the CVS
volume, clinicians usually realize a manual segmentation or
various measurements on 2D images. However this practice is
imprecise (since 3D information is missing), time consuming
and operator dependent.

In this article, we propose an algorithm to reconstruct 3D US

images from 2D freehand image sequences. In addition, the
3D volumes are parametrized according to the standard MRI
coordinate system (axial, coronal and sagittal planes). To allow
for an operator-independent assessment of ventriculomegaly
and to spare clinical time, automatic and fast segmentation
algorithms must be developed. The automatic segmentation
of CVS in 3D US data has been achieved by [4] using an
algorithm based on level-set method and by [5] using an
atlas-based MRI/3D US registration method. Nevertheless the
method proposed by [4] requires 54 min to segment one
volume, which is too long to be used in clinical routine, and
no segmentation time was mentioned by [5]. Recently, deep
learning based algorithms have demonstrated fast and accurate
segmentation results for medical images [7], [8]. In [6], deep
neural networks were used to segment the CVS in 2D US
images and a segmented time of 22 ms for 512 x 512 images
was reported.

In this paper, we propose a pipeline CVS for segmentation
using a deep learning approach after reconstruction of 3D
images from stacks of 2D freehand angular sweep. The
segmentation of the CVS obtained is fast and accurate. To
the best of our knowledge, this is the first work to achieve the
CVS segmentation in 3D US data using deep learning.

II. METHOD
A. Data description

In this study, 15 2D freehand angular sweep (Fig. 1a) image
sequences (Fig. 1b) were acquired by a pediatrician in coronal
orientation. The acquisition were realized through anterior
fontanel with a 2.5D Siemens Acuson 9L4 transducer over
14 patients at the average age of 35.8 = 0.8 SA. Sequences
were composed of 1" images with 7' ranging from 136 to 306
depending on the acquisition. In addition, a sagittal image
(Fig. 4a) was acquired (during the same examination) for
every patient in order to be used as a reference for the
reconstruction algorithm. To evaluate the accuracy of the
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Fig. 1. Representation of a clinician manual sweep of angle 6 (a) and an
acquired image sequence composed of 7" images in coronal view (b).

segmentation and to train the convolutional neural network,
manual CVS segmentation of the 15 volumes were realized
by the clinician. The segmentation were performed on the 2D
angular sweep sequence and reconstructed using the algorithm
that will be presented in the next subsection.

B. 3D reconstruction

First, to cope lateral probe displacements and neonate head
movements, each 2D image of the sequence was realigned to
the following one using a 2D rigid registration routine. The
probe motion was then modeled using Eq. 1.
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The model was designed to represent a rotation with a
rotation center translating at constant speed. The interpretation
of the parameters is given in Table I, axes «’ and 2’ are defined
on the reference sagittal image (Fig. 4a).

TABLE I
INTERPRETATION OF THE MODEL PARAMETERS
Parameter Interpretation
Cyr Initial =’ position of the probe rotation center
C, Initial 2’ position of the probe rotation center
Vgt Velocity in 2’ of the probe rotation center
Vgt Velocity in 2’ of the probe rotation center
A Distance between the probe rotation center and an image
w Angular velocity
6o Initial angular position of the probe

To determine the model parameters, we manually placed
anatomical landmarks (red dots in Fig. 4a and blue dots in
Fig. 4¢) on the reference image (I’) and on one or several
2D sagittal views (I) of the image sequence. The model
parameters were then chosen such that the set of landmarks
S = {(z;,t;) € I,i € [|1, N|]} match as best as possible the
set of targeted landmarks S’ = {(z},z2}) € I',i € [|1, N|]} af-
ter reconstruction. The parameters optimization was performed

by minimizing the sum of the Euclidean distance d (Eq. 2)
between S’ and f(S). All parameters were initialized to 0
and minimization was realized with gradient descent.
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Once the parameters optimization was performed, the im-
ages of the angular sequence were mapped onto a 3D Carte-
sian grid using the optimal model parameters. The volume
interpolation was performed using a voxel based method [9]
with a spherical weighted interpolation of radial v/5. The 3D
reconstructed volume were finally manually centered on the
corpus callosum splenium and rotated to the MRI coordinate
system.

C. Segmentation

To achieve the segmentation of the 3D reconstructed vol-
umes, we trained a convolutional neural network with the U-
Net architecture described in Fig. 2. From the 15 reconstructed
volumes, we extracted 256 x 256 x 256 sub-volumes centered
on the corpus callosum splenium. Respectively 8, 3 and 4 vol-
umes from 7, 3 and 4 different patients were used for training,
validation and test. A dropout layer with p = 0.5 was used
just before the last layer. The network was trained with batches
composed of 10 randomly drawn 128 x 128 coronal sub-images
and the network parameters optimization was performed by
minimizing soft-DICE loss, as it was reported to give better
segmentation results for one class classification problem [8].
The stochastic batch gradient descend was performed with
Adam optimizer and the gradient step was set to 1% during
the first 10000 steps, 2~° during the following 10000 steps
and 576 until the end of training. The loss was calculated
over the entire training and validation set every 1000 steps. We
stopped training when the loss had not decreased for 10000
steps (early stopping) and we kept the network that gave the
last best performance over the validation set. Training and
validation curves can be seen on Fig. 3.
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Fig. 3. Training and validation loss as a function of the number of training
steps



1Ch 64 Ch 64 Ch

Input
256 X 256 x1 _’"

@ 128 Ch 128 Ch

128 = 128

256 Ch

@ 256 Ch

64 X 64

512 Ch

32 %32

"N [

Qutput
—————————————————————————————— > -0 > o

________________ >

—P" I—b’»I ————————————————————————————
I_’”l_’”l___________;‘ l_’"l_’"

-/ -

128 Ch 64 Ch 64 Ch 2Ch

x 256 x 2

256 Ch 128 Ch

6
XY
6

@ 2x2max pooling
® 2 x2deconvolution

3 % 3 convolution

4 1 x 1 convolution

» ReLU activation

—» Tensor propagation

- } Skip connecion

Fig. 2. Architecture of the trained U-Net, the tensors (represented in blue) spatial dimensions are given on the left of each floor and the tensor channel

dimension is written on the top of each tensor.

The network was implemented on python using tensorflow
[10]. As a post-processing, we extracted the 5 biggest con-
nected binary region with a volume greater than 1% of the
database mean CVS volume and applied a Gaussian filter of
size 9 x 9 x 9.

III. RESULTS

To evaluate the reconstruction accuracy we calculated
MAD (as defined by Eq. 5) between a manual segmentation
of CC on the reference sagittal image (Fig. 4d) and a manual
segmentation of CC on its corresponding saggital view after
3D reconstruction (Fig. 4e). We obtained a good mean value
of 1.55 £ 1.59 mm. Only one sagittal image was used
to evaluate the accuracy of the reconstruction because the
model reconstruction f does not depend on the sagittal
coordinate y. We can then assume that the same performance
is approximately found on every sagittal view. In addition,
CC is located between the left and right cerebral ventricles
so it gives an idea of the error made in the CVS reconstruction.

The segmentation accuracy was calculated over the entire
test set. We used DICE, dy and MAD as respectively defined
by Eq. 3, 4 and 5 to quantify the performance of the segmen-
tation.
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P and @ respectively stand for the binary reference volumes
and segmented volumes, P and 0@ corresponds to their
respective borders and |X| to the number of elements in
a set X. All quantitative segmentation results (after post-
processing) are given in Table II. Qualitative results are shown
on Fig. 5.

TABLE II
SEGMENTATION ALGORITHM PERFORMANCE
DICE Hausdorff (mm) | MAD (mm)
Mean results | 0.816 £+ 0.04 13.6 + 4.7 0.62 + 0.2

We obtained respective mean value of 0.816 +0.04, 13.6 =
4.7 and 0.62 &= 0.2 for DICE, dy and MAD. As it is shown
by Fig. 3, the training loss is low, which means that the
architecture has a good capacity to learn how to segment the
CSV on the training cases. However the generalization gap
(difference between training and validation loss) remains high
and could be explained by the low number of training volumes.
The segmentation of one 256 x 256 x 256 volumes (16 millions
voxels) was achieved in 5 s using a NVIDIA GeForce GTX
1080 graphic card with 8§ Go RAM.

IV. CONCLUSION

This work proposes a 3D reconstruction algorithm to re-
construct 2D freehand angular manual sweep which allows
the visualization of the data in axial, coronal and sagittal plan.
The segmentation of the 3D CVS automatic segmentation was
achieved in a remarkable time with a good accuracy according
to all the metrics used. We plan to study the performance of
3D CNN to segment CVS and other cerebral structures in
3D US Data. This preliminary work shows that CNN can be



Fig. 4. a) : reference sagittal image, b) : reconstructed volume in sagittal view, c) : image sequence in sagittal view. The red dots on image a) and b)
correspond to the landmarks set .S’, the blue dots on image c) to the landmarks set S and the blue dots on image b) to the landmarks set f(S). d), e) :

manual segmentation (green area) of the CC used to evaluate the accuracy of the 3D reconstruction algorithm.

Fig. 5. 3D representation of the CVS : a) manual reference drawn by the clinician, b) automatic segmentation

used to segment CVS in 3D US volume and open the way to
quantitative 3D US imaging of the preterm neonate brain.
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