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Abstract. We address the problem of tumor segmentation in 3D ultrasound images. Although6
many studies have examined this subject, there is still a need to improve segmentation algorithms7
so as to obtain the best estimation of tumor volumes. In this paper we propose a new approach8
based on a variational formulation and a multi-grid implementation of a multiple relaxation time9
lattice Boltzmann scheme. The data attachment term, resp. the regularization term, of the energy10
to be minimized is given by a log-likelihood, resp. the Allen-Cahn reaction diffusion equation. We11
investigate the stability and accuracy of the proposed scheme with D3Q7 and D3Q19 lattices. Most12
particularly, we show how to choose the relaxation parameters to obtain a fourth-order order exact13
scheme which is shown to be much more relevant than a single relaxation time, Bhatnagar-Gross-14
Krook, scheme. Experiments conducted on images with ground truth given by a dermatologist show15
that the proposed algorithm significantly increases the Dice index (by 10%) and the sensitivity (by16
25%) compared with a level set algorithm, and is consequently a good alternative to investigate the17
problem of volume underestimation.18
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1. Introduction. This paper addresses the problem of tumor segmentation in23

3D ultrasound images. Practically speaking, there are two main difficulties that need24

to be managed. The first one stems from the intrinsic characteristics of the images,25

namely their size, about 300×299×832 voxels, the fact that the contrast is low and26

the presence of speckle noise. The second one comes from the nature of the object27

to be segmented and the precision required to estimate the volume. Many contri-28

butions on this subject emphasize approaches based on graph cut [25] and level set29

methods [5], [37]. In particular, the latter are well adapted to handle the variability30

of tumor shapes and speckle patterns. They also provide time-efficient algorithms.31

However, level set segmentations suffer from one major defect for concrete medical32

applications. It appears that they tend to underestimate the volume of tumors and33

that they lack accuracy regarding the detection of the tumor boundary. One of the34

main objectives of this study was to discuss a new model, from both theoretical and35

numerical viewpoints, that improves the performance of the segmentation in terms of36

the Dice index, sensitivity and mean average distance (MAD). This model is based37

on a variational formulation whose energy is given by a data attachment term and38

a regularization term. Following [37], the data attachment term is chosen to max-39

imize the log likelihood distance between intensity distributions inside and outside40

the region to be segmented. Note that we use a nonparametric estimation based on41
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Parzen estimates [32]. This choice is motivated by arguments involving the specific42

characteristics of high-frequency images of the skin. It is shown in [37] and [36] that43

the region surrounding a skin tumor is composed of several tissues of different types44

that create heterogeneity in the medium. This phenomenon makes the use of clas-45

sical parametric distributions such as Rayleigh, Rice, Nakagami or K distributions46

inadequate [12]. The main difference from the model studied in [37] is the choice of47

the regularization part of the energy. The regularization term that we propose aims48

at creating a smooth diffuse interface of a given size ε that can be thought of as a49

fuzzification of the boundary sought. A natural choice is the Cahn-Hilliard energy50

that Γ-converges, when ε tends to 0, to the area of the boundary [4]. The L2 gra-51

dient flow of the Cahn-Hilliard energy is the Allen-Cahn reaction diffusion equation52

[1], which is known to be a relevant model to describe phase transitions in various53

physical or chemical applications [20], [17]. Despite its popularity and efficiency in54

multiphase fluid dynamics, the Allen-Cahn equation is still little used in applications55

regarding image processing. The reader may refer for instance to [28], [18] and [44]56

for examples of segmentation algorithms based on this equation or to [2] for examples57

of inpainting models based on the Cahn-Hilliard energy. The experiments discussed58

in this paper show that the flexibility introduced by the diffuse interface makes it59

possible to gain accuracy in the detection of the boundary. A significant part of60

this work is dedicated to the numerical implementation of the gradient flow of the61

variational formulation mentioned above. We investigate the performances of various62

Lattice Boltzmann schemes [43]. Lattice Boltzmann models (LBMs) are widely used63

to simulate solutions of physical phenomena, e.g. fluid dynamics, because of their easy64

parallel implementation, see for instance [33]. As applications to image processing,65

let us mention the contributions of [40], [42] for level set implementations and [9],66

[23] for denoising and contour detection. One has to note that the use of LBMs in67

image processing can be problematic. These models are based on time and velocity68

discretizations of the Boltzmann equation on lattices. The consistency of the dis-69

cretizations and the stability of the schemes are based on the conservation of several70

moments which, although they are significant in physical problems, appear to have71

no real meaning in image processing. This explains why the design of LBM schemes72

in image processing is still an open question, especially with statistical estimations.73

The major contribution of this work is the study of the efficiency of multiple relax-74

ation time (MRT) LBM schemes using D3Q7 and D3Q19 lattices [13], [14]. We show75

in particular how to choose the relaxation parameters to obtain fourth-order exact76

schemes, the stability of which is numerically established using Von Neumann analy-77

sis. These schemes, which are shown to be much more relevant than single relaxation78

time Bhatnagar-Gross-Krook (BGK) schemes [3], [8], [35], are good examples of the79

capability of the MRT method to gain accuracy and stability, even in a nonphysical80

context. Concerning applications, we have conducted experiments on synthetic im-81

ages as well as on images from a clinical data set. The latter were acquired at the82

Melanoma Skin Cancer Clinic, Hamilton Hill, Australia. They measure 300x299x83283

voxels, the last number corresponding to depth, with a lateral, resp. depth, resolution84

of 50 µm, resp. 25 µm. They were chosen to be representative of the diversity of85

clinical cases and were manually segmented by a dermatologist. For each one of the86

3D images, 150 ground truth contours were drawn in the (x, z)-planes (z is the vertical87

axis) so as to obtain a 3D volume by interpolation. Comparisons with the level set88

approach, ADLL, of [37] show that the proposed algorithm significally increases the89

Dice index (by 10%) and sensitivity (by 25%). It is consequently a good alternative90

to approach the problem of volume underestimation. The main contributions of this91
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work can be summarized as follows.92

- We designed a MRT LBM scheme of a multi-grid variational formulation that93

combines statistical estimations and a phase-field model. To the best of our knowledge,94

this is the first time that such a scheme has been proposed for image segmentation.95

- A rigorous analysis of the consistency and stability of the scheme was conducted.96

It was shown that, even in a nonphysical context, the MRT approach is a good strategy97

to obtain relevant performances and leads to schemes that perform much better than98

BGK schemes.99

- Comparisons with a level set-based algorithm on images of a clinical data set100

show that the proposed algorithm is a good solution to investigate the problem of101

tumor volume underestimation. Moreover, this algorithm is easy to implement with102

readily reproducible simulations.103

This paper is organized as follows. Section 2 is devoted to the mathematical104

description of the MRT LBM scheme for phase-field segmentation. The analysis of105

the consistency and the stability of this scheme is detailed in section 3. In section 4,106

we propose experiments on synthetic and clinical images and make comparisons with107

other approaches. We then draw conclusions on the work presented.108

2. MRT LBM scheme for phase-field segmentation. In this section we de-109

scribe the lattice Boltzmann schemes based on the variational formulation involving110

the Cahn-Hilliard energy. The gradient flow corresponding to this variational formu-111

lation is a nonlinear diffusion equation [6], [7], [41], whose solution evolves in time to112

minimize the given energy.113

2.1. The variational formulation. The energy we consider is given by:114

(2.1) Eε(u) = −LL(u) +
µ

cW
ECHε ,115

where µ and cW are constants (see below). The data attachment term, −LL(u), is116

minus the log likelihood ratio between intensity distributions inside and outside the117

region to be segmented [37], and the regularization term ECHε is the Cahn-Hilliard118

energy:119

(2.2) ECHε (u) =

∫
Ω

(
ε
|∇u|2

2
+

1

ε
W (u)

)
dx.120

Let us elucidate these two terms. In the last equation W is a double-well potentiel,121

typically defined by W (u) = u2(1− u)2/2. It is well known that the L2 gradient flow122

of the Cahn-Hilliard energy is the Allen-Cahn reaction diffusion equation:123

(2.3)
∂u

∂t
=

(
ε∆u− 1

ε
W ′(u)

)
.124

The dynamic of this equation makes the phase-field function u evolve so as to take125

the two distinct values, 0 and 1, in each of the phases. This process creates a diffuse126

interface of size ε where u varies smoothly from 0 to 1. The gradient flow of ECHε127

is associated with a geometric minimization. It can be shown that the Cahn-Hilliard128

energy Γ-converges, when ε tends to 0, to the area of the transition interface up to129

the multiplicative constant cW =
∫ 1

0
W (s)ds, which depends only on W . We refer130

for instance to [19] and [30] for precise statements concerning the Γ-convergence of131

the minimizers of ECHε and this geometric interpretation. We consider now that132

the image to be segmented is divided into two regions. The first one, denoted ΩA,133
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is the region of interest corresponding for instance to phase 1 and the second one,134

ΩB , is the background corresponding to phase 0. It is assumed that the intensity135

distributions in ΩA and ΩB are different. Following [37], the likelihood hypothesis136

H1: “the distributions of intensities I(x) in the two regions ΩA and ΩB are i.i.d.137

random variables with different distributions PA and PB” is compared to the null138

hypothesis H0: “all intensities in ΩA and ΩB are i.i.d. random variables from a139

single distribution PΩA∪ΩB
”. The data attachment term of energy (2.1) is minus the140

log-likelihood ratio of the two hypothesis, this latter being given by:141

(2.4) LL = log

(∏
x∈ΩA

PA(I(x))
∏
x∈ΩB

PB(I(x))∏
x∈ΩA∪ΩB

PΩA∪ΩB
(I(x))

)
.142

We write:143

(2.5) LL =
∑
x∈ΩA

logPA(I(x)) +
∑
x∈ΩB

logPB(I(x)) + c,144

where c is a constant that does not enter into consideration in the minimizing pro-145

cess. In the sequel, the distributions PA and PB are estimated using nonparamet-146

ric Parzen estimates denoted P̂A and P̂B . According to the asymptotic equipar-147

tition theorem [11], we can replace (1/|ΩA|)
∑
x∈ΩA

logPA(I(x)) with the entropy148 ∑
I PA(I) logPA(I) (and the same for PB , P̂A and P̂B). A simple computation shows149

that:150 ∑
I

P̂A(I) log P̂A(I) =
1

|ΩA|
∑
x∈ΩA

log P̂A(I(x))(2.6)151

= DivKL(P̂A||PA) +
∑
I

PA(I) logPA(I),(2.7)152

where DivKL denotes the Kullback-Leibler divergence. Consequently, we may con-153

sider that the log likelihood ratio LL involved in the data attachment term can be154

written as:155

(2.8) LL = (SA + SB),156

with:157

(2.9) SA = |ΩA|
∑
I

P̂A(I) log P̂A(I), SB = |ΩB |
∑
I

P̂B(I) log P̂B(I),158

where |ΩA| =
∫

ΩA
dx, |ΩB | =

∫
ΩB

dx and:159

(2.10) P̂A(I) =

∫
u2Kσ(I(x)− I)dx∫

u2dx
,160

161

(2.11) P̂B(I) =

∫
(u− 1)2Kσ(I(x)− I)dx∫

(u− 1)2dx
,162

are Parzen estimates [24], [32], for the distributions PA and PB involving the phase163

field function u. In the last equations, Kσ denotes a Gaussian kernel with standard164
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deviation σ. The proof of the following proposition (2.1) is very similar to [37] (Ap-165

pendix A). As in [37], we assume that Kσ(I(x) − I) ≈ δ(I(x) − I), where δ denotes166

the Dirac distribution. This approximation can be justified by the discrete nature167

of the data: the values of the Gaussian density are negligible outside the consider168

voxel if σ is small. We also assume that
∫

ΩA
dx ≈

∫
Ω
u2dx because the profil function169

minimizing the Cahn-Hilliard energy is of the form s 7−→ 1
2 −

1
2 tanh( s2ε ) [10], [39].170

These approximations are more and more valid as the number of iterations increases.171

We have the following result.172

Proposition 2.1. Assuming the above approximations, the gradient flow of en-173

ergy (2.1) is given by:174

(2.12)
∂u

∂t
= 2u log P̂A(I(x)) + 2(u− 1) log P̂B(I(x)) +

µ

cW

(
ε∆u− 1

ε
W ′(u)

)
.175

Proof. We compute the functional derivative δSA/δu:176

δSA
δu

=
δ|ΩA|
δu

∑
I

P̂A(I) log P̂A(I)(2.13)177

+|ΩA|
∑
I

δP̂A(I)

δu
log P̂A(I) + |ΩA|

∑
I

δP̂A(I)

δu
.(2.14)178

Since |ΩA| =
∫

ΩA
dx '

∫
Ω
u2dx, we have:179

(2.15) |ΩA|P̂A(I) =

∫
u2δ(I(x)− I)dx,180

181

(2.16)
δ|ΩA|
δu

P̂A(I) + |ΩA|
δP̂A(I)

δu
= 2uδ(I(x)− I),182

183

(2.17) |ΩA|
δP̂A(I)

δu
= 2u[δ(I(x)− I)− P̂A(I)].184

Consequently, we obtain:185

δSA
δu

= 2u
∑
I

P̂A(I) log P̂A(I) +
∑
I

2u[δ(I(x)− I)− P̂A(I)] log P̂A(I)(2.18)186

+
∑
I

2u[δ(I(x)− I)− P̂A(I)](2.19)187

and:188

(2.20)
δSA
δu

= 2u
∑
I

δ(I(x)− I) log P̂A(I) + 2u
∑
I

δ(I(x)− I)− 2u
∑
I

P̂A(I).189

We also have:190

(2.21)
∑
I

δ(I(x)− I) log P̂A(I) ' δ ∗ log P̂A(I(x)) = log P̂A(I(x)),191
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192

(2.22)
∑
I

δ(I(x)− I) ' δ ∗ 1 = 1,193

194

(2.23)
∑
I

P̂A(I) = 1.195

This means that:196

(2.24)
δSA
δu

= −2u log P̂A(I(x)).197

We obtain in the same way:198

(2.25)
δSB
δu

= −2(u− 1) log P̂B(I(x)).199

Flow (2.12) can be written as a diffusion equation with a source term:200

(2.26)
∂u

∂t
= ∇ · (K∇u) + F,201

where the diffusion coefficient K is given by:202

(2.27) K =
εµ

cW
,203

and the source term F reads:204

(2.28) F = 2u log P̂A(I(x)) + 2(u− 1) log P̂B(I(x))− µ

cW

1

ε
W ′(u).205

The dynamic of gradient flow (2.12) makes the energy Eε decrease to a local minimum206

that may depends on the chosen initial condition since the underlying optimization207

problem is nonconvex. At the same time, the L2 energy ‖u‖2 of the solution of the208

nonlinear diffusion equation may increase in time if the initial condition is located209

inside the tumor. Figures 1 shows results for the synthetic image shown in Fig. 4. In210

this example, the local minimum is reached after about 70 iterations.211

(a) (b)

Fig. 1. (a) Energy Eε as time evolves. (b) L2 energy ‖u‖2 as time evolves.

[H]212
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2.2. LBM schemes. LBMs provide very efficient schemes to simulate solutions213

of physical phenomena, e.g. fluid dynamics. The reader may refer for instance to [43]214

for an introduction and the basic definitions used below. As mentioned before, the215

major contribution of this work is the design and the rigorous analysis of 3D imple-216

mentations of the diffusion equation (2.26) using LBM. Lattice Boltzmann equations217

are a special discretization of the Boltzmann equation. The distribution u depends218

on space, time and velocity: u = u(x, v, t). The v-space is discretized by introducing a219

finite set of n+1 weighted velocity directions ei, and associated distribution functions220

ui = ui(x, t), which are governed by the discrete Boltzmann equation. We :221

(2.29) u = [u0, u1, ..., un]T ,222

with:223

(2.30) u(x, t) =

n∑
i=0

ui(x, t)224

and:225

(2.31) F = [F0, F1, ..., Fn]T ,226

where Fi = tiF with ti the weight of the lattice in the direction ei [43]. The discrete227

Boltzmann equation reads:228

(2.32) ui(x+ τci, t+ τ) = ui(x, t) + τFi +Qi,229

for i = 0, 1, ..., n and where ci = cei, with c = δx/τ the speed of the lattice, δx and230

τ being the lattice spacing and time step. One usually distinguishes two classes of231

LBM schemes depending on the choice of the collision operator Qi, namely the BGK232

schemes and the MRT schemes. In the BGK case, also called the single relaxation233

time (SRT) case, the collision operator is given by:234

(2.33) Qi = ω(ueqi − ui),235

where ω is the relaxation parameter and:236

(2.34) ueq = [ueq0 , u
eq
1 , ..., u

eq
n ]T237

is the equilibrium distribution, typically the Maxwell distribution. For the problem238

under consideration, it is given by [43]:239

(2.35) ueqi (x, t) = tiu(x, t) .240

The BGK discrete Boltzmann equation is:241

(2.36) ui(x+ τci, t+ τ) = (1− ω)ui(x, t) + ωueqi (x, t) + τFi .242

Since the weight ti sum to 1, equation (2.35) expresses the conservation of the moment243

of order 0. The idea behind MRT schemes is to perform the collision of the particles in244

the space of momenta so that additional relaxation parameters, which can be adjusted245

to gain accuracy and stability, can be introduced [13]. The distribution vector u is246

mapped by means of a linear transform with matrix M to the n-dimensional vector247

space of the first n momenta of the distribution:248

(2.37) m = Mu .249
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The single parameter ω of the BGK approach is replaced by a diagonal matrix Ŝ that250

contains n relaxation parameters. In the same way, the equilibrium distribution ueq251

is replaced by an n dimensional vector meq of equilibrium momenta. The collision252

reads:253

(2.38) m̃(x, t) = (I− Ŝ)m(x, t) + Ŝmeq(x, t) + τFmo(x, t),254

where Fmo is the expression of the source term in the space of momenta. After the255

collision, the streaming process is performed in the initial space,256

(2.39) ũ(x, t) = M−1m̃(x, t),257

258

(2.40) ui(x+ τci, t+ τ) = ũi(x, t) .259

The MRT collision operator is defined by:260

(2.41) Qu = M−1ŜM(ueq − u) .261

The numerical experiments we propose in the sequel are made with D3Q7 and D3Q19262

lattices. The choice of these lattices can be justified as follows. The most accurate263

D3Q27 lattice involves many more computations that do not appear to significantly264

improve the results of the segmentation. The D3Q15 lattice is known to introduce265

numerical oscillations due to the checkerboard (parity) invariance problem [14].266

2.3. The proposed multi-grid scheme. To reduce computation times, a cru-267

cial issue for practical use in a clinical context, and to gain accuracy and stability, we268

propose a multi-grid version of flow (2.12). The image is broken down into cells of269

size a whose coordinates are denoted x̄ with x = ax̄. We denote also Ωx̄ = {x ∈ x̄}270

and P̂x̄(I) the Parzen estimate of the intensity distribution in the volume Ωx̄. Writing271

(δEε/δū)(ū) = |Ωx̄|(δEε/δu)(ū), we obtain:272

(2.42)
∂ū

∂t
= |Ωx̄|

[
δSA
δu

(ū) +
δSB
δu

(ū) +
µ

cW

(
ε∆ū− 1

ε
W ′(ū)

)]
.273

The following equation must be satisfied:274

(2.43) |Ωx̄|
δSA
δu

(ū) = 2ū(
∑
x∈x̄

log P̂A(I(x))),275

and the same for SB . Using the approximation:276

(2.44)
∑
x∈x̄

log P̂A(I(x)) =
∑
I

|Ωx̄|Px̄(I) log P̂A(I),277

we deduce:278

(2.45)
δSA
δu

(ū) = 2ū
∑
I

P̂x̄(I) log P̂A(I)279

and:280

(2.46)
δSB
δu

(ū) = 2(ū− 1)
∑
I

P̂x̄(I) log P̂B(I) .281
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Finally, up to the multiplicative term |Ωx̄|, the multi-grid flow reads:282

(2.47)
∂ū

∂t
= 2ū

∑
I

P̂x̄(I) log P̂A(I)+2(ū−1)
∑
I

P̂x̄(I) log P̂B(I)+
µ

cW

(
ε

a2
∆̄ū− 1

ε
W ′(ū)

)
,283

where ∆̄ denotes the Laplacian at scale a. As before, this flow can be written as a284

diffusion equation with source term285

(2.48) F = 2ū
∑
I

P̂x̄(I) log P̂A(I) + 2(ū− 1)
∑
I

P̂x̄(I) log P̂B(I)− µ

cW

1

ε
W ′(ū),286

and the diffusion coefficient:287

(2.49) K =
εµ

a2cW
.288

As mentioned in section 2.2, we consider two MRT LBM implementations of this289

equation. From now on, we adopt the notations: ∆x = δx, ∆t = |Ωx̄|τ and λ =290

∆x/∆t. The first implementation involves a D3Q7 lattice with velocity directions291

and weights defined by:292

(2.50) ei =

{
(0, 0, 0), i = 0
(±1, 0, 0), (0,±1, 0), (0, 0,±1) i = 1, 2, ..., 6

293

294

(2.51) ti =

{
1/4 i = 0
1/8 i = 1, 2, ..., 6

295

The transformation matrix M in (2.37) is:296

(2.52) M =



1 1 1 1 1 1 1
0 λ −λ 0 0 0 0
0 0 0 λ −λ 0 0
0 0 0 0 0 λ −λ
−6 1 1 1 1 1 1
0 2 2 −1 −1 −1 −1
0 0 0 1 1 −1 −1


.297

As already noted in the introduction, we can choose the equilibrium momenta so298

as not to take into account physical properties [29]. In this implementation, these299

equilibrium momenta are given by:300

(2.53) meq = (u, 0, 0, 0, αu, 0, 0)T ,301

where α is a free parameter. The relaxation matrix we consider is:302

(2.54) Ŝ = diag(0, s1, s1, s1, s2, s3, s3),303

where s1, s2 and s3 are the relaxation parameters. The vector Fmo is defined by:304

(2.55) Fmo = [F, 0, 0, 0, αF, 0, 0]T .305

The second implementation involves a D3Q19 lattice whose velocity directions and306

weights are given by:307

(2.56) ei =

 (0, 0, 0), i = 0
(±1, 0, 0), (0,±1, 0), (0, 0,±1) i = 1, 2, ..., 6
(±1,±1, 0), (±1, 0,±1), (0,±1,±1) i = 7, 8, ..., 18

308
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309

(2.57) ti =

 1/3 i = 0
1/18 i = 1, 2, ..., 6
1/36 i = 7, 8, ..., 18

310

The transformation matrix M in (2.37) is:311

(2.58) M =312

313



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-30 -11 -11 -11 -11 -11 -11 8 8 8 8 8 8 8 8 8 8 8 8

12 -4 -4 -4 -4 -4 -4 1 1 1 1 1 1 1 1 1 1 1 1

0 λ −λ 0 0 0 0 λ −λ λ −λ λ −λ λ -λ 0 0 0 0

0 -4 4 0 0 0 0 1 -1 1 -1 1 -1 1 -1 0 0 0 0

0 0 0 λ −λ 0 0 λ λ −λ −λ 0 0 0 0 λ −λ λ −λ
0 0 0 -4 4 0 0 1 1 -1 -1 0 0 0 0 1 -1 1 -1

0 0 0 0 0 λ −λ 0 0 0 0 λ λ −λ −λ λ λ -λ −λ
0 0 0 0 0 -4 4 0 0 0 0 1 1 -1 -1 1 1 -1 -1

0 2 2 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -2 -2 -2 -2

0 -4 -4 2 2 2 2 1 1 1 1 1 1 1 1 -2 -2 -2 -2

0 0 0 1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 0 0 0 0

0 0 0 -2 -2 2 2 1 1 1 1 -1 -1 -1 -1 0 0 0 0

0 0 0 0 0 0 0 1 -1 -1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1

0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1 0 0 0 0

0 0 0 0 0 0 0 1 -1 1 -1 -1 1 -1 1 0 0 0 0

0 0 0 0 0 0 0 -1 -1 1 1 0 0 0 0 1 -1 1 -1

0 0 0 0 0 0 0 0 0 0 0 1 1 -1 -1 -1 -1 1 1


In this implementation, the equilibrium momenta are given by:314

(2.59) meq = (u, αu, βu, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T ,315

where α and β are free parameters. The relaxation matrix we consider is:316

(2.60) Ŝ = diag(0, s1, s2, s2, s2, s2, s2, s2, s2, s1, s2, s1, s2, s1, s1, s1, s2, s2, s2),317

where s1 and s2 are the relaxation parameters. The vector Fmo is defined by:318

(2.61) Fmo = [F, αF, βF, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T .319

The resulting algorithm is described in (2.1) where we drop the overbar to simplify320

the notations. Note that we use the so-called strong splitting [21] when adding the321

source term in the moment space. The main loop of the algorithm stops when the322

L2 distance between two successive iterations is less than 0.1% (moment evaluation).323

Finally, the segmented region of interest is the set where u ≥ 1/2. In the experiments324

described below we compare this new implementation with the BGK implementation325

of [9].326

3. Consistency and stability of the LBM MRT multi-grid phase-field327

schemes. We explain in this section how to choose the various parameters of the MRT328

schemes described above in order to gain accuracy and stability. This is a crucial step329

that may lead to confusion when comparing LBM implementation strategies. For330

instance, in [31], the authors cannot find relevant parameters for MRT schemes. As331

shown in the sequel, and concerning our application, MRT schemes perform much332

better than BGK schemes when parameters are suitably tuned.333
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Algorithm 2.1 LBM MRT multi-grid phase-field segmentation

Initialize u
Compute source term F
Compute source lattice vector F
Compute M, M−1, Ŝ and Fmo
while Tol > 10−3 do

Map to moment space: m(k) = Mu(k)

Add source term (strange splitting): m(k) ←m(k) + ∆tF(k)
mo/2

Evaluate moments
Do collision (moment relaxation): m(k) ← (I− Ŝ)m(k) + Ŝmeq(k)

Add source term (strange splitting): m(k) ←m(k) + ∆tF(k)
mo/2

Map to initial space: u(k) = M−1m(k)

Compute boundary conditions: anti-bounce back conditions

Do streaming: u
(k+1)
i (x+ ciτ, t+ τ)← u

(k+1)
i (x, t)

Update distribution: u = u0 + · · ·+ un
Update source term F
Update source lattice vector Fmo

end while
return u

3.1. Consistency. We follow the approach of [16] where the authors explain334

how to adjust the so-called quartic relaxation parameters in order to enforce fourth-335

order accuracy for the thermal model and diffusive relaxation modes of the Stokes336

problem. Recall that the parameters of the D3Q7 MRT scheme are α, s1, s2 and s3337

and those of the D3Q19 MRT scheme are α, β, s1 and s2. We drop the overbar to338

simplify notations.339

Proposition 3.1. There exist sets of parameters so that the D3Q7 and D3Q19340

MRT diffusion schemes are fourth-order consistent, i.e.:341

(3.1)
∂u

∂t
−∇ · (K∇u) = O(∆t4),342

and thus free of numerical diffusion.343

Proof. We refer to [16] for details and give only the main arguments of the proof.344

Recall that λ denotes the ∆x/∆t ratio. Using Taylor expansions, one can show that345

(3.2)
∂u

∂t
−∇ · (K∇u) +A∆t2 +B∆t3 = O(∆t4),346

with:347

(3.3) K =
λ2

21
∆t(6 + α)

(
1

s1
− 1

2

)
,348

for the D3Q7 scheme and:349

(3.4) K =
λ2

57
∆t(30 + α)

(
1

s2
− 1

2

)
,350

for the D3Q19 scheme. Choosing the following quartic parameters for the D3Q7351
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scheme:352

(3.5) s2 =

6 + α

1− α

(
1

s1
− 1

2

)
+

3α+ 4

12(α− 1)
(

1
s1
− 1

2

) +
1

2

−1

,353

354

(3.6) s3 =

 1

6
(

1
s1
− 1

2

) +
1

2

−1

,355

we obtain A = B = 0 in (3.2). In the same way as [26], choosing the following quartic356

parameters for the D3Q19 scheme:357

(3.7) s1 =
1

1√
3

+ 1
2

, s2 =
2

1√
3

+ 1
,358

we also obtain A = B = 0 in (3.2).359

In the experiments described below, we set s = s1 = 2/(1/
√

3 + 1) for the D3Q7360

scheme and s = s2 = 2/(1/
√

3 + 1), β = 0 for the D3Q19 scheme. The value of all361

the other parameters are set by the value of the diffusion coefficient K.362

3.2. Stability. We propose numerical experiments in order to demonstrate the363

stability of the D3Q7 and D3Q19 schemes when dealing with the above choice of364

quartic parameters. These experiments are based on the classical Von Neumann365

analysis in the Fourier space (see [27]). The initial condition is given by a plane wave366

of small amplitude with a wave vector k = (kx, ky, kz), a uniform density u and367

possibly a uniform vector velocity V = (Vx, Vy, Vz). Let368

(3.8) f = f0 + δf,369

where f0 = (f0, . . . , fq) (q = 6 for the D3Q7 scheme and q = 18 for the D3Q19370

scheme) represents the uniform equilibrium state specified by the uniform and steady371

density u and the vector velocity V = (Vx, Vy, Vz) and δf is a small perturbation. In372

our context, there is no convection and therefore we can choose Vx = Vy = Vz = 0.373

Inserting equation (3.8) in the the discrete Boltzamnn equation (2.32) with collision374

operator (2.41) leads to:375

(3.9) f(x, t+ ∆t) = Gf(x, t),376

where G is the amplification matrix. Let p = ei kx , and q = ei ky and r = ei kz be the377

phase factors. The amplification matrix G of the D3Q7 scheme can be written as the378

product:379

(3.10) G = PM−1ΨM,380

where:381

(3.11) P = diag(1, p, q, 1/p, q, 1/q, r, 1/r),382
383

(3.12) Ψ =



1 0 0 0 0 0 0
0 s1 0 0 0 0 0
0 0 s1 0 0 0 0
0 0 0 s1 0 0 0
0 0 0 0 s2 0 0
0 0 0 0 0 s3 0
0 0 0 0 0 0 s3


,384
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and M is given by (2.52). The stability of the scheme is based on on equation385

(3.9), which is an eigenvalue problem and therefore requires the determination of386

the eigenvalues of the amplification matrix G. These eigenvalues are obtained by387

numerically solving the following dispersion equation [27]:388

(3.13) det(G− z Id) = 0 ,389

where z = ei∆t is the time factor. The scheme becomes unstable when one of the eigen-390

values of G is greater than 1 or equivalently when one of the solutions zj , j = 1, 2..., 7,391

of the dispersion equation (3.13) satisfies <(ln zj) ≥ 0 [38]. Simulations illustrated in392

Figure 2 show that the D3Q7 scheme is effectively stable when considering the quartic393

parameters chosen. A similar study can be conducted for the D3Q19 scheme. The394

results are shown in Figure 3.395

(a) (b) (c) (d)

Fig. 2. Logarithmic eigenvalues Re[ln(zα)] versus absolute value of wave number |k| for the
D3Q7 scheme. (a) The wave number k has azimuthal angle θ = 0, and polar angle φ = 0; (b) θ = 0,
φ = π/6; (c) θ = 0, φ = π/3; (d) θ = π/6, φ = π/6.

(a) (b) (c) (d)

Fig. 3. Logarithmic eigenvalues Re[ln(zα)] versus absolute value of wave number |k| for the
D3Q19 scheme. (a) The wave number k has azimuthal angle θ = 0, and polar angle φ = 0; (b)
θ = 0, φ = π/6; (c) θ = 0, φ = π/3; (d) θ = π/6, φ = π/6.

4. Experiments. First, we propose expriments on two kinds of synthetic images396

to emphasize the importance of the multi-grid aspect of the proposed algorithm. We397

investigated only the D3Q7 case; similar results can be obtained with the D3Q19398

scheme. In terms of stability, we then compared the above-described MRT schemes399

(with well-chosen quartic parameters) with a BGK, SRT, scheme using both synthetic400

and clinical images. Finally, we describe the results obtained on eight images from a401

clinical data set with ground truth given by a dermatologist and compare these results402

with those given by the ADLL level set algorithm of [37]. We make use of the four403

following classical measurements to evaluate the performance of the segmentation [15],404

[34]. Let us denote Ω and R the segmented and the reference volumes to be compared.405

- The sensitivity S is defined by S(Ω, R) = |Ω ∩R|/|R|.406

- The precision P is defined by P (Ω, R) = |Ω ∩R|/|Ω|.407
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(a) (b) (c) (d) (e)

Fig. 4. D3Q7 MRT segmentation results for a simple synthetic image at different scales: (a)
a = 1, (b) a = 2, (c) a = 3, (d) a = 4, (e) d = 5. The time step is set as ∆t = 0.002. Reference
contour in red.

- The Dice index is given by the harmonic mean of S and P :408

(4.1) D(Ω, R) =
2|Ω ∩R|
|Ω|+ |R|

.409

- The mean absolute difference (MAD) makes it possible to determine if the410

boundary of the segmented volume fits well with the boundary of the reference volume.411

Let us denote N∂Ω, resp. N∂R, the number of voxels in the boundary ∂Ω, resp. ∂R,412

of the segmented, resp. reference, volume. The (symetric) MAD(Ω, R) is defined by:413

(4.2) MAD(Ω, R) =
∑
x∈∂Ω

d(x|R)

2surf(∂Ω)
+
∑
x∈∂R

d(x|Ω)

2surf(∂R)
.414

In this definition, d(x|R) = minx′∈∂R ‖x′ − x‖ is the distance of the point x to the415

boundary ∂R, and the same replacing R with Ω. The terms surf(∂R) and surf(∂Ω)416

denote the number of voxels in the boundaries ∂R and ∂Ω. Note that the MAD is417

measured in µm. In practice, it can be useful to adjust the double-well potentiel W (u)418

to improve the segmentation. Let us denote Wθ the potential defined by Wθ(u) =419

θW (u). A simple computation shows that the diffusion coefficient K = µε/a2cW420

of equation (2.47) becomes K = µε′/a2cW with θε′ = ε and the coefficient µ/εcW421

of W ′(u) becomes µ/ε′θcW . This means that equation (2.47) is now considered to422

involve three parameters, namely µ, ε and θ. Choosing µ and K determines ε and423

the relaxation parameters of the MRT scheme. In all of the experiments the space424

step ∆x is given by ∆x = 1/N with N = max(Nx, Ny, Nz) with Nx, Ny and Nz the425

number of pixels in each of the directions of the image. In short, the parameters that426

have to be tuned for the experiments are µ, K, θ, the time step ∆t and the scale a.427

4.1. D3Q7 multi-grid phase-field segmentation of synthetic images. The428

first synthetic image we consider is shown in Figure 4. It measures 256 × 256 × 256429

voxels, that is about 17 million voxels. It is corrupted by a Rayleigh distribution430

noise. The segmentation is performed at scales a = 1, 2, 3, 4, 5. The time step is set431

as ∆t = 0.002 to ensure stability at the initial scale a = 1. We choose K = 0.4×10−3,432

µ = 0.02 and θ = 10/a2. The results are presented in Table 1. We can see that the433

Dice index slightly decreases when the scale increases. In contrast, the sensitivity434

increases. This can be explained by the fact that the flow dynamic is less conservative435

at higher scales and by the large number of iterations needed to get convergence at436

the initial scale [22]. Computation times of a simple (nonparallel) implementation437

show that the large size of the image does not allow reasonable segmentations at scale438

1 or 2. Working at scale 3, one obtains a speed-up factor of about 2000. Moreover,439

at higher scales the step time can be chosen much greater than 0.002. For a second440
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Table 1
D3Q7 MRT segmentation results for a simple synthetic image at different scales and time step

set as ∆t = 0.002.

a D S P MAD (pixels) Times (seconds)
1 0.950 0.906 0.999 1.283 33447
2 0.978 0.976 0.980 0.663 1271
3 0.957 0.987 0.929 1.206 173
4 0.931 0.986 0.882 1.893 152
5 0.917 0.986 0.857 2.260 84

test we consider a synthetic image of a tumor measuring 322 × 142 × 172 voxels441

corrupted by a Rayleigh distribution noise, see Figure 5. The parameters are given442

by K = 0.2× 10−3, µ = 0.001, θ = 10/a2 and ∆t = 0.002. The results are presented443

in Table 2. These results confirm the observations made in the previous case.444

(a) (b) (c) (d)

Fig. 5. D3Q7 MRT segmentation results for a synthetic image of a tumor at different scales:
(a) a = 1, (b) a = 2, (c) a = 3, (d) a = 4, (e) d = 5. The time step is set as ∆t = 0.002. Reference
contour in red.

Table 2
D3Q7 MRT segmentation results for a synthetic image of a tumor at different scales. The time

step is set as ∆t = 0.002.

a D S P MAD (pixels) Times (seconds)
1 0.595 0.423 1.000 7.020 6095
2 0.623 0.452 1.000 6.614 816
3 0.635 0.465 0.998 6.534 179
4 0.679 0.516 0.995 5.807 79

We focus now on scales 3 and 4 and increase the time step, which is impossible at scales445

1 and 2 without losing stability. We set ∆t = 0.03. The results of the segmentation446

are shown in Figure 6 and evaluated in Table 3. Increasing the time step makes447

the flow dynamic less conservative and gives much better results in terms of both448

segmentation and computation times. For example, in the case a = 4 and compared449

with the previous time step ∆t = 0.002, the Dice index and MAD are improved by450

31% and 63%, respectively, and the computational time is decreased by 73%.451
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(a) (b)

Fig. 6. D3Q7 MRT segmentation results for a synthetic image of a tumor at scales (a) a = 3
and (b) a = 4. The time step is set as ∆t = 0.03. Reference contour in red.

Table 3
D3Q7 MRT segmentation results for a synthetic image of a tumor at scales a = 3 and a = 4.

The time step is set as ∆t = 0.03.

a D S P MAD (pixels) Times (seconds)
3 0.902 0.854 0.956 1.844 56
4 0.887 0.868 0.908 2.146 21

These first experiments clearly show the advantages of the multi-grid approach: it452

makes the algorithm more stable, it significantly reduces the computation time and453

it improves the results of the segmentation.454

4.2. MRT vs BGK segmentation. We concentrate now on comparing the455

proposed MRT scheme with a classical BGK, SRT, scheme using both the D3Q7 and456

D3Q19 lattices. The aim is to show the benefit of introducing additional relaxation457

parameters to gain stability. For each scheme, we compute the relative error:458

(4.3) err =
‖un+1 − un‖2
‖un‖2

,459

where un = u(tn = nδt). This relative error should decrease in time if the scheme is460

numerically stable. For the first comparison, we make use of the synthetic image of a461

tumor introduced before. The parameters are set as follows: K = 0.3×10−3, µ = 0.01,462

θ = 1, ∆t = 0.04 and ∆t = 0.05. The scale is a = 4. The results of the simulations are463

shown in Figure 7. In the D3Q7 case, we can see that the BGK scheme is much more464

sensitive to increasing the time step ∆t and becomes clearly unstable for ∆t = 0.05,465

whereas the MRT scheme behaves in the same way. The D3Q19 case confirms this466

observation and shows that the instability of the BGK scheme is not caused by the467

choice of the lattice. We reach the same conclusion when using the image 10(d) of468

the clinical data set. The parameters are set as follows: K = 0.5 × 10−3, µ = 0.079,469

θ = 1, ∆t = 0.015 and ∆t = 0.025. The scale is a = 4. The results of the simulations470

are shown in Figure 8. In conclusion, it appears that the MRT approach is a good471

strategy to obtain relevant performance and leads to schemes that behave much better472

than BGK schemes.473

4.3. MRT multi-grid phase-field segmentation of clinical images. We474

now evaluate the proposed MRT scheme using the eight images of clinical data set475

10. Let us recall that these images were chosen to be representative of the diversity of476

clinical cases and were manually segmented by a dermatologist. For each one of the477
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(a) (b) (c) (d)

(e) (f)

Fig. 7. Stability comparison performed on the synthetic image of a tumor. D3Q7 lattice: (a)
Time step: ∆t = 0.04, (b) time step ∆ = 0.05. D3Q19 lattice: (c) time step: ∆t = 0.04, (d) time
step ∆ = 0.05. One slice of the MRT LBM phase-field segmentation: (e) D3Q7 lattice and time
step ∆t = 0.05, (f) D3Q19 lattice at the time step ∆t = 0.05. Reference contour in red.

(a) (b) (c) (d)

Fig. 8. Stability comparison performed on an image of the clinical data set (10(d)). D3Q7
lattice: (a) time step ∆t = 0.015, (b) time step ∆ = 0.025. D3Q19 lattice: (c) time step ∆t = 0.015,
(d) time step ∆ = 0.035.

3D images, 150 ground truth contours are drawn in the (x, z)-planes (z is the vertical478

axis) so as to obtain a 3D volume by interpolation. Nearly 50 values of the intensity I479

are retained and the gel area (black area above the epidermis) is removed before the480

tumor segmentation is performed. The entire process in described in Figure 9 and the481

results of the segmentation with the LBM MRT D3Q7 algorithm are shown in Figure482

10.483

Fig. 9. MRT LBM phase-field segmentation process for clinical images.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10. Images from the clinical dataset and results of the LBM MRT D3Q7 segmentation.

The main objective of this section is to usewith the ADLL algorithm of [37], based on484

a level set approach, for comparisons and to show that the new algorithm is relevant485

to investigate the problem of the underestimation of the segmented volume. Let486

us specify that the ADLL and the proposed MRT algorithms share the same data487

attachment term and therefore that the difference between segmentation is only due488

to the regularization term and the implementation. The performance indicators are489

given in Table 4. The scale is a = 4.490

Table 4
Comparisons between ADDL level set [37], LBM MRT D3Q7 and LBM MRT D3Q19 algorithms

Algorithm D S P MAD (pixels)
ADLL 0.755 ± 0.086 0.647 ± 0.134 0.934 ± 0.065 344 ± 106

MRT D3Q7 0.857 ± 0.052 0.859 ± 0.073 0.862 ± 0.082 202 ± 78
MRT D3Q19 0.858 ± 0.048 0.849 ± 0.064 0.873 ± 0.068 199 ± 68

The parameters are tuned adaptively so as to maximize the Dice index for each lesion.491

They are chosen as follows. For the ADLL algorithm: µ ∈ [0.001, 0.01], ∆t ∈ [0.8, 2]492

and T = [2, 10]. For the MRT D3Q7 algorithm: K ∈ [0.27 × 10−3, 1 × 10−3], µ ∈493

[0.132, 0.113], ∆t ∈ [0.01, 0.025] and θ ∈ [0.01, 3]. For the MRT D3Q19 algorithm:494

K ∈ [0.3× 10−3, 2× 10−3], µ ∈ [0.01, 0.16], ∆t ∈ [0.01, 0.04] and θ ∈ [0.0056, 1.5].495

It is not surprising that the ADLL algorithm gives the best precision P . Let us recall496

that precision measures the fact that the segmented volume is indeed part of the tu-497

mor. However this segmented volume is too small, as it is confirmed by the sensitivity498

and the MAD. Sensitivity measures the fact that the entire tumor has been segmented499

and the MAD the average distance to the boundary of the tumor. Quantitively, the500

sensitivity of the ADLL algorithm is about 25% lower. As a consequence, the Dice501

index is also lower, about 14%. This means that the proposed algorithm performs502

better regarding the ability to segment the entire tumor. Moreover, this algorithm503

gives a MAD about 42% higher than the ADLL algorithm, which is a very significant504
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improvement of the performance concerning the detection of the boundary of the tu-505

mor. A compact presentation of these results is given in the trade-off Figure 11 with506

the level sets of the Dice index. Slices of segmentations are shown in Figure 12.507

(a) (b) (c)

Fig. 11. Sensitivity S versus precision P . (a) ADLL level set [37]. (b) LBM MRT D3Q7
lattice. (c) LBM MRT D3Q19 lattice.

Fig. 12. Slices of segmentations. Top row: ADLL level set [37]. Middle row: LBM MRT D3Q7
lattice. Bottom row: LBM MRT D3Q19 lattice. First column: tumor 10(a). Second column: tumor
10(b). Third column: tumor 10(f). Last column: tumor 10(d). Reference contour in red.

The results of the MRT D3Q7 and MRT D3Q19 algorithms are very similar. For508

obvious reasons due to computation costs, one finally may prefer the MRT D3Q7509

implementation.510

5. Conclusion. We have described a new algorithm for tumor segmentation in511

3D ultrasound images. This algorithm is based on a variational formulation whose512

regularization term is given by a phase-field model, namely the Allen-Cahn reaction513

diffusion equation. An original implementation of the corresponding gradient flow514

using LMB MRT schemes as been discussed. It has been shown that it is possible to515

choose the relaxation quartic parameters to obtain a fourth-order exact scheme with-516

out numerical diffusion. Moreover, the multi-grid implementation allows to get rele-517

vant computation times for medical applications. Experiments have been conducted518

to validate the stability of the scheme. Comparisons with a BGK, SRT, implementa-519

tion have demonstrated the significance of the MRT approach. Finally, comparisons520

with the ADLL level set algorithm have proved that our solution is a good alternative521

to investigate the problem of underestimation of tumor volumes.522
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