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et l’Université Claude Bernard Lyon I

Analyse d’images médicales pour la
fiabilisation des mesures cliniques en

imagerie cardiaque

Medical image analysis for the
reliability of clinical measurements in

cardiac imaging
par

Olivier BERNARD
Docteur en traitement du signal et de l’image

Soutenue le 06 Septembre 2019 devant la commission d’examen

Composition du jury

Président : Pr. Mireille Garreau Université de Rennes 1, France
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parameters, array) through practical sessions and the realization of a project.

5.4 Teaching activities as a full-time associate professor at INSA-Lyon (220
hours on average per year)

− L3 level −

Industrial computing through
assembly programming

TD/TP 24h 2007-2012 30 students

Contents : Fundamentals in hardware architecture of data-processing systems (overall orga-
nization, memory access, instruction set). During the training sessions, a particular microcontroller
solution was studied (PIC, Microship Technology) and used in practical sessions to implement
several programs.
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− M1 level −

Industrial computing through
assembly programming

TD/TP 40h 2007-2012 30 students

TP 32h 2015- 15 students

Contents : Consolidate students knowledge in hardware architecture of data-processing
systems (shared memory, interruption and stack) through training and practical sessions. The
same microcontroller (PIC, Microship Technology) than the one introduced the year before was
used during the practical sessions.

− L3 level −

Computer programming through C
language

TD 16h 2007-2012 30 students

TD/project 20h 2015- 30 students

Contents : Consolidate students knowledge in C programming language (structure, pointer,
function, input/output function parameters, multi-dimensional array). Since 2015, I am deeply
involved in the supervision of IT projects in relation with the applied mathematics module
presented below.

− M1 level −

Object-oriented programming through
C++ language

TD/TP 24h 2007-2012 30 students

TD/TP 24h 2015-2017 30 students

Contents : Fundamentals in object-oriented programming language through UML and C++
language (class/object, attributes/methods, pointers/references, template, STL).

− L3 level −

Applied Mathematics TD/TP 37h 2015- 30 students

Contents : Consolidate student knowledge in applied mathematics : fundamental trans-
formations used in signal theory (Laplacian, Z and Fourier), interpolation/approximation, matrix
inversion through LU and Cholesky decomposition. The different concepts are studied under
Matlab language during the practical sessions. Since 2018, I actively participated in the redesign
of this module for the benefit of teaching basics in neural networks

− L2 level −

Initiation to signal processing Lecture/TD/TP 28h 2015-2017 20 students
Lecture/TD/TP 61h 2018- 20 students

Contents : Signal processing fundamentals : signal representation, system modeling, Fourier
analysis and filtering. Since 2018, I am involved in the supervision of Matlab projects (three
months long) in either computer vision or medical imaging.
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6. Collective responsibility

− L3 level −

Signal processing TD/TP 56h 2007-2012 30 students
TP 48h 2015- 20 students

Contents : Consolidate student knowledge in signal processing : signal acquisition and
modeling, fundamentals transformations (Laplacian, Z, Fourier) for system analysis, analogical
and numerical filtering. Numerical filtering concepts are reinforce during practical sessions based
on the programming of Digital Signal Processors (DSP).

− M2 level −

Image processing Lecture/TP/projects 27h 2007-2012 30 students
Lecture/TP/projects 35h 2018- 20 students

Contents : Image processing fundamentals : image representation, filtering, mathematics
morphology, contour detection, segmentation, classification. During this course, I supervise
several Matlab/Python projects (three months long) in either computer vision or medical imaging.

− M2 (research) level −

advanced in image processing Lecture 4h 2007-2012 15 students
Lecture 4h 2015-2017 15 students

Contents : Consolidate student knowledge in image segmentation through the use of active
contour models.

6 Collective responsibility

6.1 Teaching

6.1.1 Responsible for the Systems and Images part of the EEAP master of research,
Lyon - France

I was responsible of the Systems and Images (SI) branch of the EEAP master of research
at Lyon (France) from 2009 to 2013. In particular, I was in charge of 20 students per year. My
role was to guarantee the good functioning of all the courses from an administrative point of
view (secretariat service), to ensure a continuous renewal of the educational program (during
my term, around 30% of the courses have been renewed) and perform student recruitment each
year. The responsibility of the Systems and Images part of the master took around 20% of my
working time. In 2013, I got a grant to do 2 years of full research. I thus trained an assistant
from 2012 to 2013 and let him the responsibility of the SI branch of the EEAP master since
2013.

6.1.2 Elected member at the board of the Electrical Engineering Department at
INSA-Lyon

In 2012, I was elected to be a member for 4 years at the board of the Electrical Department
at INSA-Lyon. During the first year, I participated to 9 meetings where decisions for the good
functioning of the department (mainly in terms of education and department funding) have to
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be taken. Because I got a grant to perform two years of full research, I had to resign from this
responsibility after one year.

6.2 Research

6.2.1 Responsible of the IT team of Creatis

From 2013 to 2016 I was also responsible of the IT team of CREATIS which is composed by
four 4 engineers. My main role was to reorganize the full IT service so to better integrate the
engineer work into the researcher activities. This was realized by organizing the service around
projects. Each researcher at CREATIS can contact at any time an engineer according to his
(her) domain of expertise (software developer, GPU programming, database management, grid
deployment service) for a particular need. This is then to the charge of the engineer to define the
corresponding informatics needs and to structure together with the researcher a project which has
to be realized as soon as possible according to the availability of the engineer. During my term,
more than 20 projects where realized, such as the organization of international challenges, the
deployment of internal applications through the VIP platform (online service for the deployment
of applications on grid structures) 1, the development of customized software interfaces.

6.2.2 Member of the jury of one PhD defense

I was a member of jury of the PhD defense of Doctor Romane Gauriau in 2015 whose topic
was : shape-based approaches for fast multi-organ localization and segmentation in 3d medical
images. This PhD was done in collaboration between Telecom Paris University and Philips
medisys compagny.

6.3 Associate professor recruitment jury

Since 2007, I participated to two juries for the recruitment of associate professors (named
MCF for ”Mäıtre de Conférences) in France :

MCF 0077 61 section (Computer Engineering, Automation and Signal Processing), deep
learning in medical imaging, Informatics teaching at INSA-Lyon, 2017.

MCF 4238 61 section (Computer Engineering, Automation and Signal Processing), deep
learning in medical imaging, Informatics teaching at INSA-Lyon, 2019.

1. https://www.creatis.insa-lyon.fr/vip/
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Supervision and scientific impacts

1 Supervision activities

Since I got my permanent position as an associate professor at INSA-Lyon, I co-supervised
8 PhD theses (of which 5 have been already defended) and supervised 2 post-doctoral
fellowships and 15 masters of research. The corresponding research topics are listed as
follows :

1. cardiac image analysis,

2. ultrasound image simulation,

3. ultrasound image reconstruction,

4. biomedical image analysis.

A summary of all the research activities I realized since 2007 is provided in Table 1. In each
case, the research topic, the year and the supervisors (names in italic correspond to industrial
supervisors) are provided.

1.1 PhD theses

All PhDs are presented in the same way, following the framework given below :

Student name, Position after the PhD.
PhD title Date of PhD defense

Type of grant Main supervisor, co-supervisor Publications IJ
(international journals),
IC (international
conferences)
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Supervision and scientific impacts

Type Student name Topic Year Co-supervisors
PhD Thomas Dietenbeck 1 2009-2012 D. Friboulet

Daniel Barbosa 1 2009-2013 D. Friboulet, J. D’hooge
Miaomiao Zhang 3 2013-2016 D. Friboulet
Yitian Zhou 1, 2 2014-2017 D. Friboulet, M. De Craene
Joao Pedrosa 1 2014-2018 J. D’hooge
Sarah Leclerc 1 2016-2019 C. Lartizien
Yunyun Sun 1, 2 2018-2021 P. Clarysse
Ewan Evain 1, 2 2018-2021 D. Friboulet, M. De Craene

Postdoctoral Khuram Faraz 2 2018-2019
Martino Alessandrini 1, 2 2011-2013 H. Liebgott

Master Thomas Dietenbeck 4 2008-2009
Mohamed-salah Deghiche 1 2008-2009 D. Friboulet
Benôıt Perrot 4 2009-2010 S. Valette
Antonin Perrot-Audet 4 2009-2010
Kalaimaran Routtramourhy 4 2010-2011 O. Basset
Thomas Philibert 4 2010-2011
Miaomiao Zhang 3 2011-2012 D. Friboulet
Jan Hoskovec 3 2011-2012
Shaojie Wang 1 2014-2015 T. Grenier
Sarah Leclerc 1 2015-2016 T. Grenier
Mathilde Caron 1 2015-2016 M. De Craene
Gaoyang Cai 3 2016-2017 B. Nicolas
Feriel Khellaf 1 2016-2017 J. Bosh
Yunyun Sun 1 2017-2018
Ewan Evain 1 2017-2018 M. De Craene

Table 1 – Summary of my research supervisory.
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1. Supervision activities

Thomas Dietenbeck, Associate professor, Pierre & Marie Curie University, Paris.
Segmentation of 2D-echocardiographic sequences using level-set
constrained with shape and motion priors.

Defended on November,
29th, 2012

French government
grant

Denis Friboulet (50%), Olivier Bernard
(50%)

IJ[21, 31], IC[60, 72,
90, 93]

Contributions :
— integration of a shape prior term adapted to heart morphology into the level-set framework,
— integration of motion information into the level-set formalism to propagate the seg-

mentation process over the whole cardiac sequence.

Summary :
Echocardiography is one of the main cardiac imaging technique, since it is non invasive and

allows a real time acquisition of cardiac structures. The segmentation of the cardiac muscle
(myocardium) in these sequences is thus an important goal for the analysis of the heart function
and for diagnosis assistance. However this segmentation turns out to be a difficult task due to
the physics of ultrasound acquisition which yield inhomogeneities inside the structures and a
poor contrast between the myocardium and the surrounding issues.

In this work, the myocardium segmentation problem is tackle using the level-set formalism.
The myocardium is first approximated by a geometric model (hyperquadrics) which allows to
handle asymmetric shapes such as the myocardium while avoiding a learning step. This repre-
sentation is then embedded into the level-set formalism as a shape prior for the joint segmentation
of the endocardial and epicardial borders. This shape prior term is coupled with a local data
attachment term and a thickness term that prevents both contours from merging. The algorithm
is validated on a dataset of 80 images at end diastolic and end systolic phase with manual
references from 3 cardiologists.

In a second step,the whole sequences is segmented using motion information. To this end, a
level conservation constraint is applied on the implicit function associated to the level-set thanks
to a novel energy term expressed through a variational framework. This energy is then added to
the previously described algorithm in order to constrain the temporal evolution of the contour.
Finally the algorithm is validated on 20 echocardiographic sequences with manual references of
2 experts (corresponding to approximately 1200 images).
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Supervision and scientific impacts

Daniel Barbosa, postdoctorat fellow, Portugal.
Automated assessment of cardiac morphology and function : an
integrated B-Spline framework for real-time segmentation and
tracking of the left ventricle.

Defended on October,
28th, 2013

European grant Jan d’hooge (33%), Denis Friboulet (33%),
Olivier Bernard (33%)

IJ[6, 20, 26, 29, 30],
IC[66, 69, 70, 75, 81, 82,
86, 88, 89, 96]

Contributions :
— development of a new segmentation paradigm named B-Spline Explicit Active Surface

(BEAS) specifically designed to segment 3D shapes near real time,
— strong validation of the application of the BEAS formalism for real-time segmentation of

the left ventricle in 3D echocardiography.

Summary :
With the increasing prevalence of cardiovascular diseases, the need for advanced diagnosis

systems that are able to detect early cardiac dysfunction are now needed more than ever. Real-
time 3D echocardiography has made its way into clinical practice over the last decade and is
now generally accepted as a competitive alternative to cardiac magnetic resonance imaging for
volumetric assessment of left ventricular morphology and function. Nonetheless, there is still a
need for software tools enabling a faster, more accurate analysis, while reducing the burden to
the operating physician and minimizing the intra and interobserver variability of the measured
indices.

The fundamental methodological innovation presented directly focuses on the inheritance of
desirable properties of level-set oriented algorithms, such as advanced region-based segmentation
energies and fast/robust interface evolution via B-Spline filtering, while dramatically reducing
the computational load associated with 3D segmentation problems. This was possible through
a B-spline formulation of the original Active Geometric Functions framework, and by further
exploring the mathematical link between explicit and implicit formulations for the image seg-
mentation problem.

The resulting algorithm provides a very competitive balance between accuracy and compu-
tational burden, enabling real-time 3D segmentation applications. Building on this technical
breakthrough, we extensively validated its use for left ventricle volumetric assessment in a
clinical setting, while at the same time dealing with some fundamental limitations such as its
initialization, the user interaction with the segmented surface and the integration of temporal
information in the boundary identification and tracking problems. This results in an coordinated
suite of algorithms targeting real-time, fully automatic segmentation and tracking of the left
ventricle during the cardiac cycle.
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1. Supervision activities

Miaomiao Zhang, Postdoctoral fellow, China.
Fourier-based reconstruction of ultrafast sectorial images in ultra-
sound.

Defended on December,
16th, 2016

Chinese
government grant

Denis Friboulet (50%), Olivier Bernard
(50%)

IJ[10], IC[47, 48, 51,
58, 64]

Contributions :
— development of a novel Fourier-based plane wave imaging method based on the Fourier

slice theorem used in tomography,
— extension of 2D Fourier-based imaging methods from linear to sectorial imaging,
— extension of proposed Fourier-based diverging wave imaging method to 3D.

Summary :
Echocardiography is one of the most widely used modality in real time heart imaging thanks

to its noninvasive nature and low cost. By providing dense image volumes in real time, three-
dimensional echocardiography can improve the accuracy of the echocardiographic evaluation of
cardiac chamber volumes and be used to assess cardiovascular function and anatomy in various
clinical settings. However, the real-time property of three-dimensional echocardiography is still
limited in terms of frame rate due to the limited speed of sound. To increase the frame rate,
plane wave and diverging wave in transmission have been proposed to drastically reduce the
number of transmissions to reconstruct one image. In this thesis, starting with the 2D plane
wave imaging methods, the reconstruction of 2D/3D echocardiographic sequences in Fourier
domain using diverging waves is addressed. The main contributions are described below.

The first contribution concerns the development of an alternative Fourier-based plane wave
imaging method (i.e. Ultrasound Fourier Slice Beamforming) by using the concept of steered
plane waves both in transmission and in reception. We build a theoretical model to describe the
relationship between the echoes and object function based on the Fourier slice theorem. Results
revealed that the proposed method produces very competitive image quality compared to the
state-of-the-art Fourier-based and spatial-based methods.

The second contribution concerns the extension of Fourier-based imaging methods from linear
to sectorial imaging in 2D by studying the difference between plane wave and diverging wave
transmission in terms of travel time for a given scatterer in the medium and a given transducer
element. We derive an explicit spatial transformation which allows deforming the referential
Cartesian space insonified by a diverging wave into a dedicated one where the modified medium
can be considered as being excited by a plane wave. Comparisons with the current state-of-
the-art method illustrate the potential of the derived methods in producing competitive results
with lower computational complexity when compared to the conventional delay and sum (DAS)
technique.

Finally, the 2D Fourier-based diverging wave imaging methods are extended to 3D by deriving
the equivalence between 3D diverging wave and plane wave. Results show that the proposed
approach provides competitive scores in terms of image quality compared to the DAS technique,
but with a much lower computational complexity.
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Supervision and scientific impacts

Yitian Zhou, Postdoctorat fellow, France.
Quantification du mouvement et de la déformation cardiaques à
partir d’IRM marquée tridimensionnelle sur des données acquises
par des imageurs Philips.

Defended on July, 03rd,
2017

Industrial grant
(CIFRE Philips)

Denis Friboulet (10%), Olivier Bernard
(45%), Mathieu De Craene (45%, Philips)

IJ[3, 17], IC[49, 53, 54]

Contributions :
— development of a fast 3D tagged MR quantification algorithm,
— design of a novel pipeline for generating 3D synthetic cardiac US and MR image sequences

for validation purposes.

Summary :
Cardiovascular disease is one of the major causes of death worldwide. A number of heart

diseases, such as hypertrophy, dilated cardiomyopathy and myocardial infarction, can be diagnosed
through the analysis of cardiac images after quantifying shape and function. Recently, there is
a surge in the development of fast 3D cardiac imaging techniques in both ultrasound (US)
and magnetic resonance (MR) imaging, making it possible to quantify myocardial motion and
strain fully in 3D. However, the application of these deformation quantification algorithms in
clinical routine is somewhat held back by the lack of a solid validation. These quantification
algorithms need to be thoroughly validated before being used in clinics. The main contributions
are described below.

First, a novel 3D extension of the well-known harmonic phase tracking method was derived.
The point-wise phase-based optical flow tracking was combined with an anatomical regularization
model in order to estimate anatomically coherent myocardial motions. In particular, special
efforts were made to ensure a reasonable radial strain estimation by enforcing myocardial
incompressibility through the divergence theorem. The proposed HarpAR algorithm was evaluated
on both healthy volunteers and patients having different levels of ischemia. On volunteer data,
the tracking accuracy was found to be as accurate as the best candidates of a recent benchmark.
On patient data, strain dispersion was shown to correlate with the extent of transmural fibrosis.
Besides, the ischemic segments were distinguished from healthy ones from the strain curves.

Second, a simulation pipeline for generating realistic synthetic cardiac US, cine and tagged
MR sequences from the same virtual subject was designed. Template sequences, a state-of-
the-art electro-mechanical (E/M) model and physical simulators were combined in a unified
framework. The E/M model was exploited for simulating groundtruth cardiac motion fields.
The template sequences were registered to the simulations by a novel warping technique aimed
at ensuring a synthetic motion consistent with the E/M model and a smooth transition between
the myocardium and the background. Finally, backscattering amplitudes and effective proton
densities were derived from the warped templates respectively for US and MR simulations to
exploit the corresponding physical simulators for generating image data. In total, we simulated
18 virtual patients (3 healthy, 3 dyssynchrony and 12 ischemia), each with synthetic sequences
of 3D cine MR, US and tagged MR. The synthetic images were assessed both qualitatively and
quantitatively. They showed realistic image textures similar to real acquisitions. Besides, both
the ejection fraction and regional strain values are in agreement with reference values published
in the literature.

16



1. Supervision activities

Joao Pedrosa, Postdoctorat fellow, Portugal.
Left ventricular segmentation of the heart in real-time 3D echo-
cardiography.

Defended on October,
10th, 2018

European grant Jan D’hooge (80%), Olivier Bernard (20%) IJ[5, 6, 14], IC[45]

Contributions :
— extension of an existing B-spline Explicit Active Surfaces framework to efficiently combine

segmentation and tracking strategies for accurate full cycle left ventricle segmentation,
— efficient integration of statistical shape model into the B-spline Explicit Active Surfaces

framework to improve the robustness of the left ventricle segmentation.

Summary :
Echocardiography plays a crucial role in clinical cardiology with diagnostic, prognostic and

interventional value. Though 2D echocardiography remains the predominant modality for cardiac
assessment, 3D echocardiography has the advantage of allowing for a 3D rendering of the
anatomical structures thus discarding the need for the geometrical assumptions inherent to 2D
echocardiography. Nevertheless, the analysis of 3D images is challenging and time consuming,
fueling the need for software tools that enable a fast, accurate analysis that reduces the burden
on the clinician while at the same time reducing the inter- and intra observer variability of
the clinical indices extracted. In this context, the main contributions of this PhD are described
below.

First, based on the B-spline Explicit Active Surfaces framework, a hybrid energy for seg-
mentation and tracking was introduced, allowing for more accurate full cycle segmentation.
Robust left ventricular myocardial segmentation was reinforced by an efficient coupling between
the endo- and epicardial surfaces. Moreover, automatic short axis orientation of the left ventricle
was proposed, allowing for additional information to be extracted.

Second, a statistical shape model built from cardiac magnetic resonance imaging was used
to improve the robustness of the segmentation by providing information on the expected shapes
of the left ventricle when image information is low or unreliable.

At each step of the development thorough validation of the methods was performed, leading
to the final framework for fast, automatic and robust full heart cycle 3D left ventricular myo-
cardial segmentation. This framework was then implemented in a user-friendly distributable
software application to potentiate its application in future studies. The added value of 3D echo-
cardiography was further highlighted through a method for myocardial performance mapping
through the study of the stress-strain relationships validated against nuclear imaging.
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Supervision and scientific impacts

Sarah Leclerc, PhD student, France.
Multi-structural segmentation in cardiac imaging by the use of
machine learning.

Defense scheduled for
October 2019.

French government
grant

Carole Lartizien (50%), Olivier Bernard
(50%)

IJ[1], IC[41–44]

Contributions :
— development of the largest publicly-available and fully-annotated dataset for 2D echo-

cardiographic assessment (to our knowledge),
— evaluate how far the state-of-the-art U-Net deep convolutional network method can go

at assessing 2D echocardiographic images, i.e. segmenting cardiac structures as well as
estimating clinical indices, thanks to the database especially designed to answer this
objective.

Summary :
Analysis of 2D echocardiographic images plays a crucial role in clinical routine to measure

the cardiac morphology and function and to reach a diagnosis. Such analysis is based on the
interpretation of clinical indices which are extracted from low-level image processing such as seg-
mentation and tracking. In clinical routine, semi-automatic or manual annotation is still daily
work due to the lack of accuracy and reproducibility of fully-automatic cardiac segmentation
methods. This leads to time consuming tasks prone to intra- and inter-observer variability. In
this context, the main contributions of this PhD are described below.

First, a new public dataset called CAMUS (Cardiac Acquisitions for Multi-structure Ultra-
sound Segmentation) was setup. This dataset contains 2D echocardiographic sequences (both
two and four-chamber views) of 500 patients that were acquired in the same medical center with
the same equipment. The size of this dataset as well as its tight bond to every-day clinical issues
give the possibility to train deep learning methods to automatically analyze echocardiographic
data.

Thanks to this dataset, a fine-tuned version of the well-known U-Net convolutional neural
network (CNN) was implemented and evaluated. Results demonstrated that this CNN method
can provide highly accurate segmentation results compared to state-of-the-art techniques within
the inter-observer variability, allowing a robust and reliable automatic estimation of the end
diastolic and end systolic volumes of the left ventricle. However, the developed U-Net method
still fails at accurately estimating the the ejection fraction of the left ventricle, which illustrates
the need to integrate more advanced concepts into conventional U-Net architectures.

The last year of the PhD is thus focused on the introduction of such concepts into the U-Net
framework so to better extract the ejection fraction of the left ventricle and to decrease the
number of anatomically incoherent segmentation at the same time.
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1. Supervision activities

Yunyun Sun, PhD student, France.
Robust estimation of hemodynamic clinical indices in ultrafast ultra-
sound imaging based on deep learning

Defense scheduled for
October 2021.

French government
grant

Patrick Clarysse (50%), Olivier Bernard
(50%)

Summary :
Recent advances in ultrafast ultrasound imaging allows the derivation of new clinical indices

to diagnose cardiac pathologies. In this context, the estimation of the vortex dynamic represents a
novel index with strong potential to characterize the cardiac function. However, ultrafast ultra-
sound imaging suffers from an inherent lower signal to noise ratio compared to conventional
imaging, which inevitably impacts the quality of the extracted measurements.

In this context, the objective of this thesis is to make the estimation of such indices more
robust thanks to the development of dedicated deep learning architectures. The targeted con-
tributions of this Phd are the following :

1. numerical modeling of the intraventricular vectorial flow based on an Lagrangian formulation
where the fluid will be represented as a set of particles interacting with each others and
the myocardial interface,

2. integration of the numerical modeling output into a physical ultrasound simulation pipeline
to generate realistic synthetic sequences,

3. development of a supervised deep learning architecture to estimate vortex dynamics based
on a cohort of virtual patients generated thanks to the pipeline described above.
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Ewan Evain, PhD student, France.
Synthetic imaging and deep learning for robust dense field
estimation in echocardiography : application to myocardial strain
quantification and blood flow estimation.

Defense scheduled for
October 2021.

Industrial grant
(CIFRE Philips)

Denis Friboulet (20%), Olivier Bernard
(40%), Mathieu De Craene (40%, Philips)

Summary : While echocardiography is one of the mostly used imaging techniques in clinical
routines, this modality still suffers from a lack of reproducibility whose reasons are complex :
patient position, breathing, probe orientation and pressure, choice of the acquisition view. All
these factors make difficult the acquisition of coherent images required to assess comparable
measurements between experts. The establishment of databases with references remains a key
challenge in ultrasound imaging both for validation and learning purposes.

In this context, the main objective of this thesis is to develop deep learning architectures
dedicated to the quantification of motion in echocardiographic imaging. The targeted con-
tributions of this PhD are the following :

1. development of a supervised deep learning architecture dedicated to the estimation of
cardiac deformation in ultrasound imaging,

2. development of a cohort of virtual patients which will serve as reference to the deep
learning method described above,

3. pre-clinical study to assess the contribution of the developed technique to the quanti-
fication of myocardial deformation to improve the detection of patients suffering from
heart failure and showing abnormalities of filling (with or without abnormal systolic
function).
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1. Supervision activities

1.2 Masters of research

2008-2009 : Thomas Dietenbeck (Master INSA-Lyon), Segmentation through local B-Spline
level-set model.

2008-2009 : Mohamed Salah Deghiche (Master INSA-Lyon), Segmentation of echocardiographic
images through active contours with shape constraints.

2009-2010 : Antonin Perrot-Audet (Master INSA-Lyon), Localization and segmentation of
cells in 3D confocal microscopy imaging.

2009-2010 : Benôıt Perrot (Master Strasbourg University), Segmentation with user constraints.
2010-2011 : Thomas Philibert (Master INSA-Lyon), Automatic detection and segmentation

of brain aneurysm in CT imaging.
2010-2011 : Kalaimaran Routtramourhy (Master INSA-Lyon), Characterization of biologic

tissue through ultrasound signal deconvolution.
2011-2012 : Jan Hoskovec (Master INSA-Lyon), Ultrasound image reconstruction through

Fourier space.
2011-2012 : Miaomiao Zhang (Master INSA-Lyon), Ultrasound image reconstruction using

distributed compressive sensing.
2014-2015 : Shaojie Wang (Master INSA-Lyon), Cardiac structure detection on ultrasound

3-D image using structured random forest.
2015-2016 : Sarah Leclerc (Master INSA-Lyon), Echocardiography image segmentation through

structured random forest.
2015-2016 : Mathilde Caron (Master École polytechnique-Paris), Cardiac motion and strain

estimation with anatomical regularization.
2016-2017 : Gaoyang Cai (Master INSA-Lyon), Speed estimation of ultrasound wave in

ultrafast imaging.
2016-2017 : Feriel Khellaf (Master Polytech-Lyon), Left ventricle segmentation in 3D ultra-

sound by structured random forests and active shape models.
2017-2018 : Yunyun Sun (Master Telecom Saint-Etienne), Echocardiography image seg-

mentation through deep learning.
2017-2018 : Ewan Evain (Master ECE / UPMC Paris), Robust estimation of myocardial

muscle deformation in echocardiographic imaging by deep neural network.
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2 Scientific impacts

2.1 International collaborations

Since the beginning of my tenure as an associate professor, I set up several international
collaborations to reinforce my research projects :

— collaboration with Pr. Jan D’hooge (KU Leuven, Belgium) on the segmentation of ultra-
sound images through the B-Spline Explicit Active Surface formalism. We co-supervised
3 PhD theses (Thomas Dietenbeck, Daniel Barbosa and Joao Pedrosa) which were valued
by 9 publications IJ[5, 6, 14, 20, 21, 26, 29–31] and 15 conferences IC[45, 60, 66, 69, 70,
72, 75, 81, 82, 86, 88–90, 93, 96],

— collaboration with Pr. Jean-Philippe Thiran (EPFL, Switzerland) on the reconstruction
of ultrafast ultrasound images. This works led to the publication of 2 journal articles
IJ[9, 10] and 7 conferences IC[47, 48, 51, 52, 55, 58, 64]

— collaboration with Pr. Lasse Lovstakken (NTNU, Norway) on the segmentation of
echocardiography through deep learning. This works led to the publication of 1 journal
article IJ[1] and 2 conferences IC[41, 42],

— collaboration with Pr. Pierre-Marc Jodoin (Sherbrook University, Canada) on the
segmentation of cardiac imaging through deep learning. This works led to the publication
of 2 journal articles IJ[1, 4] and 1 conference IC[41].

2.2 National collaboration

I work with Dr. Mathieu De Craene from Philips Medisys (France) on the simulation of
realistic cardiac sequences for validation purposes since 2013. In this regard, we co-supervised
the PhD thesis of Yitian Zhou between 2014 and 2017. This collaboration was valued by 6
publications IJ[2, 3, 12, 17, 18, 24] and 5 conferences IC[49, 53, 54, 59, 65].

2.3 Awards and distinctions

— Special Mention (2nd prize) for best PhD in France awarded by the IEEE Engineering
in Medicine and Biology Society.

— One year grant from the CNRS institute to perform full-time research on the topic of
ultrafast ultrasound imaging.

— Invited professor at the signal processing laboratory (LTS5), Swiss Federal Institute of
Technology (EPFL), Lausanne, Switzerland. During this stay, I worked with Pr. Jean-
Philippe Thiran on the reconstruction of ultrafast ultrasound images through the Fourier
space.

— Five invited talks in international conferences (one of which I am first author).

2.4 Associate editor positions

I got different associate editor positions since 2012 :

— 2012-2016 : associate editor for the IEEE Transactions on Image processing Journal
(impact factor 5.071). I was in charge of more than one hundred papers.

— 2014 : associate editor for the IEEE International Symposium on Biomedical Imaging
(ISBI’14). I was in charge of around 20 papers.

— 2014 : associate editor for the IEEE International Conference on Image Processing (ICIP’2014).
I was in charge of around 20 papers.
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2. Scientific impacts

2.5 Reviewing work

I am a regular reviewer for the following international journals :

— IEEE Transactions on Image Processing (impact factor 5.071),
— IEEE Transactions on Medical Imaging (impact factor 6.131),
— Medical Image Analysis (impact factor 5.356),
— IEEE International Ultrasonics Symposium (IUS),
— IEEE International Symposium on Biomedical Imaging (ISBI),
— IEEE International Conference on Image Processing (ICIP).

2.6 Organization of international challenges

I co-organized several international challenges since 2014 :

— Challenge on Endocardial Three-dimensional Ultrasound Segmentation (CETUS challenge)
co-organized with prof. D’hooge (KU Leuven, Belgium) and Prof. Bosch (Erasmus University,
the Netherlands) during MICCAI’14 conference. 9 teams participated. An open access
database consisting in 45 3D ultrasound sequences with manual annotations (3D meshes of
the left ventricle) has been set up for this event. The database and the online evaluation
platform are still available and will be maintained and kept open as long as the data
remains relevant for clinical research (www.creatis.insa-lyon.fr/EvaluationPlatform/
CETUS/). This event has been valued by the publication of 2 journal articles IJ[7, 15] and
2 conference papers IC[67, 68].

— Plane-wave Imaging Challenge in Medical UltraSound (PICMUS challenge) co-organized
with Prof. Liebgott (University of Lyon, France), Dr. Morales (NTNU, Norway) and
Prof. Jensen (Technical University of Danemark) during the IEEE IUS’16 conference. 29
teams participated. An open access database consisting in numerical phantoms, in vitro
and in vivo data has been set up for this event (https://www.creatis.insa-lyon.
fr/EvaluationPlatform/picmus/). This event has been valued by the publication 1
conference paper IC[50].

— Automated Cardiac Diagnosis Challenge (ACDC challenge) co-organized with Prof. Jodoin
(University of Sherbrook, Canada) and Dr. Lalande (University of Burgundy, France)
during MICCAI’17 conference. 10 teams participated. An open access database consisting
in 150 multi-slice 2D cine MRI sequences with manual annotations (3D binary volumes
of the left ventricle, myocardium and right ventricle) has been set up for this event. The
database and the online evaluation platform are still available and will be maintained
and kept open as long as the data remains relevant for clinical research (https://acdc.
creatis.insa-lyon.fr/). This event has been valued by the publication of 1 journal
article IJ[4].

2.7 Regular involvement to scientific events

I was involved either as a lecturer or as co-organizer of several winter/spring schools :

April 2013 : talk on ”Introduction in ultrasound image segmentation” during the Marie-
Curie Initial Training Network USART spring-school event.

February 2017 : talk on ”Modeling of ultrasound waves and image reconstruction” during
the Marie-Curie Actions European Industrial Doctorate Cardiofunxion winter-school event
- https://www.youtube.com/watch?v=rKfnAZo1tKo&t=4363s.
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February 2018 : co-organizer and lecturer on ”Multimodal generation of realistic synthetic
images” during the Marie-Curie Actions European Industrial Doctorate Cardiofunxion
winter-school event - https://www.youtube.com/watch?v=r09yCA7Aj28&t=316s
https://www.youtube.com/watch?v=07jiLMAsgW4.

April 2019 : co-organizer of the french LABEX PRIMES spring-school event on deep learning
for medical imaging - https://deepimaging2019.sciencesconf.org/.

April 2019 : co-organizer and lecturer on ”Simulation of realistic ultrasound images”during
the IEEE UFFC spring-school event on ultrasound motion imaging and experimentations
- http://www.biomecardio.com/UFFCschool2019/index.html.

I also co-organized a one day seminar on neural network sponsored by the french club
EEA (Electronics, Electrotechnics and Automatic) - https://rnn2018lyon.sciencesconf.

org. During this seminar, more than 70 persons assisted to several lectures in the morning
on the basics of neural networks and participated to an hands-on session in the afternoon to
study a practical implementation of neural network through a given Matlab code.

2.8 Publications and communications

I have currently published 40 articles in international journals, 72 articles in international
conferences and 2 book chapters. I also participated in 5 invited talks. Among my articles
in international journals, 90% belong to the 1st quartile of the most cited journals in their
field (Source Scimago Journal & Country Rank). In particular, I published 12 papers in IEEE
Transactions on Medical Imaging, 8 papers in IEEE Transactions on Ultrasonics, Ferroelectrics,
and Frequency Control, 5 papers in Medical Image Analysis and 4 papers in IEEE Transactions
on Image Processing journals.

Peer-reviewed journals

I published 40 articles in international journals.

[1] S. Leclerc, E. Smistad, J. Pedrosa, A. Østvik, F. Cervenansky, F. Espinosa, T. Espeland,
E. A. R. Berg, P. Jodoin, T. Grenier, C. Lartizien, J. D’hooge, L. Lovstakken, and O.
Bernard. Deep learning for segmentation using an open large-scale dataset in 2d echo-
cardiography. IEEE Transactions on Medical Imaging, pages 1–1, 2019.

[2] M. Alessandrini, B. Chakraborty, B. Heyde, O. Bernard, M. De Craene, M. Sermesant,
and J. D’Hooge. Realistic vendor-specific synthetic ultrasound data for quality assurance
of 2-d speckle tracking echocardiography : Simulation pipeline and open access database.
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65(3) :411–422,
March 2018.

[3] Y. Zhou, S. Giffard-Roisin, M. De Craene, S. Camarasu-Pop, J. D’Hooge, M. Alessandrini,
D. Friboulet, M. Sermesant, and O. Bernard. A Framework for the Generation of Realistic
Synthetic Cardiac Ultrasound and Magnetic Resonance Imaging Sequences From the Same
Virtual Patients. IEEE Transactions on Medical Imaging, 37(3) :741–754, March 2018.

[4] O. Bernard, A. Lalande, C. Zotti, F. Cervenansky, X. Yang, P. Heng, I. Cetin, K. Lekadir,
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Diagnosis : Is the Problem Solved ? IEEE Transactions on Medical Imaging, 37(11) :2514–
2525, 2018.

[5] J. Pedrosa, S. Queirós, O. Bernard, J. Engvall, T. Edvardsen, E. Nagel, and
J. D’hooge. Fast and Fully Automatic Left Ventricular Segmentation and Tracking in Echo-
cardiography Using Shape-Based B-Spline Explicit Active Surfaces. IEEE Transactions
on Medical Imaging, 36(11) :2287–2296, Nov 2017.

[6] D. Barbosa, J. Pedrosa, B. Heyde, T. Dietenbeck, D. Friboulet, O. Bernard, and
J. D’hooge. heartBEATS : A hybrid energy approach for real-time B-spline explicit active
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American Society of Echocardiography, 30(11) :1059 – 1069, 2017.
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2016.
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General introduction

During my PhD, I had the opportunity to work on the segmentation of echocardiographic
images with a particular interest in the statistics of the ultrasonic signal in order to improve
the efficiency of the data attachement term involved in a dedicated active contour model. The
main innovations developed during my PhD thus concern a complete study on the statiscs of
the ultrasonics radiofrequency signal and the derivation of a collocation method based on radial
basis functions to efficently model level-sets evolution in image segmentation. This work was
valued by the publication of 4 articles (2 as first author) in international journals and 6 articles
(5 as first author) in international conferences.

The research activities I have carried out since then are described in the following chapters.
My work concerns signal and image processing applied to medical imaging. In particular, I
focused my intention on three main topics : cardiac segmentation, cardiac motion estimation
and ultrasound image reconstruction, all for a better diagnosis of cardiac diseases. In terms
of methodological developments, I worked on i) variational approaches through level-set and
B-spline explicit active surface formalisms ; ii) statistical learning through random forest and
deep learning techniques ; iii) signal modeling based on the monogenic signal theory ; iv) inverse
problem based on the Fourier slice theorem ; v) optimization problem based on personalized
anatomical regularization. In terms of application, I dedicated my research on cardiac imaging
(mainly ultrasound and MRI), both in terms of image reconstruction and image analysis. The
clinical goal of my research concerns a better diagnosis of heart diseases through reliable and
robust measurements from the image of clinical indices such as ventricular volumes, ejection
fraction and myocardial strain and strain rate.

In terms of fundings, I financed my research through four main sources :

— national fundings thanks to ministerial scholarship (co-supervision of 1 PhD), LABEX
entity (co-supervision of 2 PhDs and 1 postdoc with the LABEX PRIMES) and ANR
project (co-supservion of 1 postdoc from the US-tagging ANR project of professor Hervé
Liebgott) ;

— European fundings (co-supervision of 2 PhDs from the ERC grant of professor Jan
D’hooge) ;

— international fundings (co-supervision of 1 PhD from the China Scholarship Council) ;
— industrial fundings thanks to the French CIFRE doctoral scholarships (2 PhDs co-supervised

with Philips Medisys society).
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Cardiac segmentation : toward
robust volumetric indices estimation

1 Introduction

Analysis of cardiac function plays an important role in clinical cardiology for patient mana-
gement, disease diagnosis, risk evaluation, and therapy decision [80, 178, 283]. Thanks to digital
imagery, the assessment of a set of complementary indices computed from different structures
of the heart is a routine task for cardiac diagnostics.

Because of its well-known capacity for discriminating different types of tissues, Cardiac
Magnetic Resonance Imaging (CMR) (built from series of parallel short axis slices) is considered
as the gold standard of cardiac function analysis through the assessment of the left and right
ventricular ejection fractions (EF) and stroke volumes (SV), the left ventricle (LV) mass and the
myocardium thickness. This requires accurate delineation of the left ventricular endocardium
and epicardium, and of the right ventricular endocardium for both end diastolic (ED) and end
systolic (ES) phase instances. In clinical practice, semi-automatic segmentation is still a daily
practice because of the lack of accuracy of fully-automatic cardiac segmentation methods. This
leads to time consuming tasks prone to intra- and inter-observer variability [164]. The difficulties
of CMR segmentation have been clearly identified [213] : i) presence of poor contrast between
myocardium and surrounding structures (conversely, there is a high contrast between blood and
the myocardium) ; ii) brightness heterogeneities in the left ventricular/right ventricular cavities
due to blood flow ; iii) presence of trabeculae and papillary muscles with intensities similar to
the myocardium ; iv) non-homogeneous partial volume effects due to the limited CMR resolution
along the long-axis ; v) inherent noise due to motion artifacts and heart dynamics ; vi) shape
and intensity variability of the heart structures across patients and pathologies ; vii) presence of
banding artifact.

While CMR remains the gold standard for the assessment of cardiac morphology and function,
real-time 2D echocardiography (RT2DE) is the mostly used modality to diagnose heart pathology
in clinical routine. This attractiveness may be explained by its bedside applicability, excellent
temporal resolution, real-time character, low cost and absence of ionizing radiation. Unfor-
tunately, as for CMR, semi-automatic or manual annotation from ultrasound images is still
daily work in clinical routine due to the lack of accuracy and reproductibility of fully-automatic
cardiac segmentation methods. This also leads to time consuming tasks prone to intra- and
inter-observer variability [13]. The inherent difficulties for segmenting echocardiographic images
have been well documented : i) poor contrast between heart tissues and the blood pool ; ii)
brightness inhomogeneities ; iii) variation in the speckle pattern along the myocardium due to the
orientation of the cardiac probe with respect to tissue ; iv) presence of trabeculae and papillary

41



Cardiac segmentation : toward robust volumetric indices estimation

muscles with intensities similar to the myocardium ; v) significant tissue echogenicity variability
within the population ; vi) shape, intensity and motion variability of the heart structures across
patients and pathologies ; vii) out-of-plane motion.

Over the last decade the assessment of cardiac morphology and function by ultrasound
imaging has made a significant step forward by the introduction of real-time 3D echocardiography
(RT3DE), as it allows a truly 3D visualization of the heart avoiding some of the problems
intrinsically associated with 2D imaging such as foreshortening, out-of-plane motion and the
need of geometric assumptions for volume estimation [169]. Unfortunately, due to the intrinsic
physical limits of acoustical wave propagation, RT3DE currently suffers from a low spatial and
temporal resolution compared to conventional 2D echocardiography and the potential presence of
motion artifacts due to stitching strategies [136]. As a consequence, state-of-the-art commercial
solutions towards LV segmentation still require some degree of user interaction both at the
initialization step and after segmentation/tracking when corrections are required [172]. The
development of fully automatic and fast techniques for LV volumetric assessment is therefore
still an open issue and therefore an active field of research [147]. The majority of methods that
estimate cardiac volumes go through a segmentation step of the anatomical structures of interest
[26, 28, 36, 67, 111, 126, 183, 197, 272].

The remainder of the chapter is organized as follows.

— Sec. 2 : Review of state-of-the-art methods in cardiac image segmentation ;
— Sec. 3 : Presentation of the different datasets I have set up to assess the performance of

segmentation and clinical indices extraction methods ;
— Sec. 4 : Detailed description of a novel formalism, named B-spline Explicit Active Surface

(BEAS), that we introduced to efficently segment real-time 3D echocardiography ;
— Sec. 5 : Presentation of a study we put in place to evaluate how far the state-of-the-art

deep convolutional network methods can go at assessing 2D echocardiographic images ;
— Sec. 6 : Overview of a study that we realized to measure how far state-of-the-art deep

learning methods can go at segmentation cardiac structures as well as classifying pathologies.
— Sec. 7 : Conclusions of this chapter

2 State-of-the-art in cardiac image segmentation

2.1 Cardiac ultrasound

Several surveys of echocardiographic segmentation methods have been proposed, both in
2D [41, 177] and 3D [30, 145]. Most of the reported methods focused on the segmentation
of the LVEndo border. Techniques successfully applied for LV segmentation can be categorized
based on their underlying methodology : deformable models, surface fitting approaches, graph-
cuts, multi-atlas and machine learning techniques. Deformable models constitute the most
widely used technique to segment echocardiography data because of its attractiveness in terms
of mathematical formulation of the segmentation problem, its flexibility in terms of shape
representation and its computational time efficiency (depending on the chosen representation)
[11, 23, 53, 69]. Surface fitting approaches are based on shape interpolation from a set of
points that were previously identified as belonging to the endocardial surface. The most popular
techniques that have been applied in echocardiography are active shape models (ASM) [273]
and Doo-Sabin subdivision surfaces (DSS) [185, 222]. The main feature of ASM corresponds
to the embedded representation of the shape based on a space built from a set of references.
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These methods are known to require a large number of training samples to be meaningful. The
main asset of DSS is its capacity to represent smooth surfaces by a small number of parameters.
Graph-cuts and multi-atlas techniques have also been applied in echocardiogaphy [124, 303]. In
graph-cut techniques, the underlying graph is usually expressed in a coordinate system adapted
to the anatomy of the endocardial surface. The attractiveness of such approach resides in its
capacity of expressing the segmentation problem as a graph and thus benefits from powerful
graph-flow optimization techniques. Multi-atlas segmentation techniques are registration-based
techniques that perform the segmentation of the endocardium from a set of pre-segmented
volumes. Based on the selection of the best atlases after registration, merging techniques are
usually used to enhance the quality of the segmented results. Finally, standard machine learning
approaches have proven their value for LV segmentation in several studies [141, 222, 288].
Usually, these techniques are not designed to produce the final segmented surface but provide
a fundamental intermediate step that guides the segmentation process. For example, methods
based on marginal space learning have been specially designed to accurately locate the myo-
cardial region [288]. Similarly, a boundary fragment model has been successfully applied for the
identification of extracted contours [222]. Finally, random forest-based approaches have been
applied as a discriminative classifier in order to characterize the affiliation of each voxel to the
myocardium [141]. Table 1 gives a summary of the accuracy of existing automatic 3D LV seg-
mentation techniques when compared with manual references. Although this table provides some
evidence of the relative performance of the different approaches, it is clear that a fair and true
comparison is not feasible given the differences in patient population and image quality (due to
different acquisition conditions and equipment). This points to the need for a publicly available
common database.

Table 1 – State-of-the-art algorithms for LV segmentation in RT3DE.

Study *

Algorithm Volumes Segmented Shapes

# T R BA (µ± 2σ) MAD (µ± σ)

EDV ESV EF EDV (ml.) ESV (ml.) EF (%) ED (mm) ES (mm) FC (mm)

Angelini et al. [11] 10 0.63 0.62 0.45 16.1±50 6.6±34 0.5±22
Hansegard et al. [100] 21 0.04 0.91 0.91 0.74 -5.9±21 6.2±19 -7.7±12 2.2±0.6
Leung et al. [144] 99 0.95 -1.47±40 2.9±1.0
Duan et al. [71] 35 0.033 4.0±3.2
Leung et al. [143] 35 6 0.982 1.9±14 1.35±0.5
Yang et al. [288] 67 1.5 1.32±12 1.0±10 1.28±1.1
Rajpoot et al. [218] 34 -5.0±49 1.2±26 -0.7±14 2.2±0.7 1.52±0.4
Dikici et al. [65] 29 0.08 2.0±X 2.0±X
Barbosa et al. [23] 24 1 0.97 0.97 0.91 -1.4±23 2±19 -1.0±10
Pedrosa et al. [197] 30 0.8 0.95 0.96 0.91 -3.3±19 -4.8±16 1.7±5 1.8±0.6 2.0±0.7
Oktay et al. [183] 30 0.91 1.8±10 1.9±0.5 2.1±0.8

* The following symbols were used : EDV : End Diastolic Volume ; ESV : End Systolic Volume ; EF : Ejection Fraction ;
* FC : full cycle ; # : number of exams ; T : average frame processing time (s) per volume ; R : correlation coefficient ;

BA : Bland-Altman analysis ; MAD : mean absolute surface distance.

Deep-learning methods have been successfully applied to the segmentation of the LVEndo in
echocardiography. In 2012, Carneiro et al. developed a two-stage deep learning method for the
segmentation of the LVEndo for 2D echocardiographic images restricted to four-chambers view
acquisitions [41]. Based on a maximum a posteriori framework, the authors formulated the LV
segmentation problem according to two successive steps : i) the automatic selection of several
regions in the tested image where the LVEndo is fully present ; ii) the automatic extraction of
the LVEndo contour from the previously selected regions. These two steps involve a deep belief

43



Cardiac segmentation : toward robust volumetric indices estimation

network. Their method was trained on 400 images from 12 sequences of different patients with
various pathologies and tested on 50 images from 2 sequences of healthy subjects. They obtained
an average Hausdorff distance of ∼18 mm and an average mean absolute distance of ∼8 mm
for the LVEndo. In 2017, Smistad et al. [246] showed that the U-Net CNN [225] could be trained
to successfully segment the left ventricle in 2D ultrasound images. Due to lack of training data,
the network was trained with the output of a state-of-the-art deformable model segmentation
method [244]. On a manually segmented test set, the results showed that the network and the
deformable model obtained the same accuracy with a Dice score of 0.87. Recently, Oktay et
al. [183] used CNNs to segment the 3D LVEndo structure. The core of their neural network is
based on an architecture similar to the 3D U-Net[179], whose segmentation output is constrained
to fit a non-linear compact representation of the underlying anatomy derived from an auto-
encoder network. The performance of their method was assessed on the CETUS database [30].
They obtained the following scores for the segmentation of the 3D LVEndo structure : i) average
Dice values of 0.912 (ED) and 0.873 (ES) ; ii) average Hausdorff distances of 7.0 mm (ED) and
7.7 mm (ES) and iii) average mean absolute distances of 1.9 mm (ED) and 2.1 mm (ES) [183].
Interestingly, the use of only 15 patients during the training phase illustrates the strong potential
of deep learning techniques to analyze echocardiographic images.

2.2 Cardiac MRI

Petitjean et al. proposed in 2011 a complete review of segmentation methods for delineating
the left ventricle (LV) and/or the right ventricle (RV) in short axis cardiac MR images [200]. In
this study, the authors listed the results published in more than 70 peer-reviewed publications.
The reported methods can be divided in two main categories : weak prior and strong prior
methods. The first group involves weak assumptions such as spatial, intensity or anatomical
information. It includes image-based techniques (threshold, dynamic programming) [148], pixel
classification methods (clustering, Gaussian mixture model fitting) [269], deformable models
(active contour, level-set) [45] and graph-based approaches (graph-cut) [18]. The second group
uses methods with strong prior including shape prior based deformable models [213], active shape
and appearance models [165] and atlas based methods [19], all requiring a training dataset with
manual annotations. Although this huge work provides a complete picture of the performance
of the state-of-the-art methods in LV/RV segmentation, it does not benchmark these techniques
with a unique dataset. Such comparison thus remains a glaring issue in our community.

To our knowledge, before 2013 no deep learning techniques was used to analyze CMRI.
However, a drastic change occurred in 2015 during the Kaggle Second Annual Data Science Bowl
during which the undeniable power of deep learning methods was revealed to the community.
Since then, a dozen deep learning papers have been published on the topic of CMRI analysis.
Most papers used 2D convolutional neural networks (CNNs) and analyzed the MRI data slice by
slice. Three papers used deep learning framework to extract relevant features for segmentation.
Emad et al. [81] used a patch-wise CNN to localize the LV in CMRI slices. Kong et al. [130]
developed a temporal regression framework to identify end-diastolic and end-systolic instances
from the cardiac cycle by integrating a 2D CNN with a recurrent neural network (RNN). The
CNN was used to encode the spatial information while the RNN was used to decode the temporal
information. Finally Zhang et al. [294] used a simple CNN to automatically detect missing slices
(apical and basal) in cardiac exams to assess the quality of MRI acquisitions. Four papers
used deep learning methods combined with classical cardiac segmentation tools. Rupprecht et
al. [228] integrated a patch-based CNN into a semi-automatic active contour (a snake) to segment
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cardiac structures. Ngo et al. [175] used a deep belief network (DBN) to accurately initialize and
guide a level-set model to segment the left ventricle. Yang et al. [287] developed a combined
approach between CNN and multi-atlas to perform LV segmentation. In particular, a deep
architecture was trained to learn deep features achieving optimal performance for the label
fusion operation classically involved in multi-atlas segmentation. Alternatively, Avendi et al. [16]
proposed a combined deep-learning and deformable-model approach to automatically segment
the left ventricle. The method works as follows : i) a simple CNN locates and crops the LV ;
ii) a stack of autoencoders pre-segment the LV shape ; iii) the pre-segmented shape is refined
with a deformable model. Although the authors report almost perfect results on Sunnybrook
2009, it is not clear how their method generalizes to more than one cardiac region. Finally,
three papers used standalone deep learning techniques to segment cardiac structures from CMR
data. Poudel et al. [204] proposed a recurrent fully-convolutional network (RFCN) that learns
image representations from the full stack of 2D slices. The derived architecture allows leveraging
inter-slice spatial dependences through internal memory units. Tran et al. [265] developed a deep
fully convolutional neural network architecture to segment both LV and RV structures. Finally,
Oktay et al. [182] proposed an image super-resolution approach based on a residual convolutional
neural network model. Their key idea is to reconstruct high resolution 3D volumes from 2D image
stacks for more accurate image analysis. For more details on deep learning methods applied to
medical image analysis (including cardiac MRI segmentation) please refer to Litjens et al. [147]
and Havaei et al. [102].

2.3 Previous cardiac datasets

To our knowledge, before the two projects we set up from 2014 (see Section 3), no publicly-
available ultrasound datasets was provided in the community to assess the performance of seg-
mentation and clinical indices extraction methods. With regard to MRI, four large datasets of
clinical data have been broadly accepted by the community in the last decade. These datasets
were released in conjunction with an international challenge allowing the organizers to bench-
mark state-of-the-art methods.

The Sunnybrook Cardiac MR Left Ventricle Segmentation challenge - MICCAI
2009 2 provides a database of 45 cardiac cine-MR images from four different pathological groups
namely : heart failure with ischemia, heart failure without ischemia, hypertrophic cardiomyopathy,
and normal subjects. The data is provided with two manually-drawn contours, one for the
endocardium and one for the epicardium [215]. Although the database is still publicly available,
neither collated results nor comparative study have been published thus reducing the impact of
this event. However, recent papers [16, 213, 253] reported results from several automatic and
semi-automatic segmentation methods published since the 2009 challenge. According to those
results, the top performing methods (many of which being only focused on the endocardium
segmentation) report Dice scores between 0.90 and 0.94 for the endocardium and/or the epi-
cardium and an average perpendicular distance of less than 2.0 mm and an average 2D Hausdorff
distance between 3.0 and 5.0 mm.

The LV Segmentation Dataset and Challenge, MICCAI-STACOM 2011 3 focuses
on the comparison of LV segmentation methods [251]. The database is made of CMR acqui-
sitions from 200 patients with coronary artery disease and prior myocardial infarction (100

2. http://smial.sri.utoronto.ca/LV_Challenge/Home.html

3. www.cardiacatlas.org/challenges/lv-segmentation-challenge/
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for training and 100 for testing). In this study, the authors introduced the concept of objective
ground truth based on the evidence from the contribution of several raters. In particular, ground
truths computed for the 100 patients of the testing set were generated from an Expectation-
Maximization framework (the STAPLE algorithm) [282] using the results of two fully-automated
methods (automated raters) and three semi-automated approaches with manual input (manual
raters). No 100% manually annotated ground truth were involved in this study. From the derived
ground truths, the best results in terms of segmentation accuracy were obtained by a guide-point
modeling technique (manual rater) which obtained an average Jaccard score of 0.84 [146].

The Right Ventricle Segmentation Dataset - MICCAI 2012 4 aims at comparing
RV segmentation methods based on a set of 48 cardiac cine-MR data with contours drawn by
one cardiac radiologist (16 for training, 32 for testing) [201]. Three fully-automatic and four
semi-automatic methods were evaluated through this challenge. Back in 2012, the outcome of
the challenge revealed that the best scores were obtained by semi-automatic methods like the
graph-cut method by Grosgeorge et al. [95] which reached an average Dice score of 0.78 and
an average 2D Hausdorff distance of 8.62. In a recent publication, Phi Vu Tran [265] showed
how a fine-tuned fully-convolutional neural network [151] can out-perform every semi-automatic
method with an average Dice score of 0.85.

The 2015 Kaggle Second Annual Data Science Bowl 5 is a challenge for which more
than 190 teams competed to win the $200,000 grand price. The goal of this event was to auto-
matically measure ED and ES volumes from CMR. Challengers were given a database composed
of 500 patients for training and 200 patients for testing. The training images came only with the
ED and ES reference volumes and not a manually segmented ground truth as for the other three
datasets. The outcome of the challenge revealed that the top-performing methods relied on deep
learning technologies, in particular fully convolutional networks (fCNN) [151] and U-Net [225].
Unfortunately, no summary paper was provided in the wake of this challenge.

Table 2 summaries the MRI cardiac datasets mentioned above. Let us also mention that
other fully-annotated cardiac datasets have been released such as HVSMR 2016 6 and the Multi-
Modality Whole Heart Segmentation dataset 7. Although interesting, these datasets contain
images that a clinically atypical. Furthermore, without being bound to a challenge, the UK
Biobank [199] corresponds to the largest existing CMR database which could be used to train and
test deep learning methods whenever the manual annotations of these images will be rendered
public. However, one limit of this database is that it is not free, which inevitably limits its access
by research teams, and thus does not correspond to open science initiatives such as challenges.

3 1st contribution : setting up open-access datasets

In order to get the possibility to assess the potential of state-of-the-art methods in segmenting
cardiac images and extracting relevant clinical indices, we spent lots of time to design several
open-access datasets with manual annotations from cardiologists and radiologist experts.

4. www.litislab.fr/?projet=1rvsc

5. www.kaggle.com/c/second-annual-data-science-bowl

6. http ://segchd.csail.mit.edu/
7. http ://stacom2017.cardiacatlas.org/
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Table 2 – Summary of the full set of existing cardiac MRI datasets which are publicly available
for comparison purposes.

CMRI datasets

Name Year

Nb Subjects Ground truth
Active

train test LV RV Myo Pathology website

Sunnybrook 2009 45 — 4 8 4 4 8

STACOM 2011 100 100 4 8 4 8 8

MICCAI RV 2012 16 32 8 4 8 8 8

Kaggle 2015 500 200 8 8 8 8 8

ACDC 2017 100 50 4 4 4 4 4

3.1 CAMUS dataset

This large scale dataset has been set-up to evaluate how far state-of-the-art deep convo-
lutional networks and other non-deep learning methods can go at assessing 2D echocardiographic
images, i.e. segmenting cardiac structures as well as estimating clinical indices. The full dataset
is made available for download at https://camus.creatis.insa-lyon.fr/challenge/.

3.1.1 Patient selection

The proposed dataset consists of clinical exams from 500 patients, acquired at the University
Hospital of St Etienne (France) and included in this study within the regulation set by the local
ethical committee of the hospital. The acquisitions were optimized to perform LVEF measur-
ements. In order to enforce clinical realism, neither prerequisite nor data selection have been
performed. Consequently, i) some cases were difficult to trace ; ii) the dataset involves a wide
variability of acquisition settings ; iii) for some patients, parts of the wall were not visible in
the images ; iv) for some cases, the probe orientation recommendation to acquire a rigorous
four-chambers view was simply impossible to follow and a five-chambers view was acquired
instead. This produced a highly heterogeneous dataset, both in terms of image quality and
pathological cases, which is typical of daily clinical practice data. Table 3 provides the main
information which characterizes the collected dataset. From this table, one can see that half
of the dataset population has a LVEF lower than 45%, thus being considered at pathological
risk (beyond the uncertainty of the measurement). Also, 19% of the images have a poor quality
(based on the opinion of one expert O1a), indicating that for this subgroup the localization of
the LVEndo and LVEpi as well as the estimation of clinical indices are not considered clinically
accurate and workable. In classical analysis, poor quality images are usually removed from the
dataset because of their clinical uselessness. Therefore, those data were not involved in this
project during the computation of the different metrics but were used to study their influence
as part of the training and validation sets for deep learning techniques. The dataset was divided
into 10 folds to perform standard cross-validation for the machine learning methods. Each fold
contains 50 patients with the same distributions in terms of image quality and LVEF as the full
dataset (see table 3). For each of the 10 test sets, the remaining 450 patients (9 folds) were
used during the training/validation phases of the machine learning techniques. In particular, 8
folds (400 patients) were used for training and 1 (50 patients) for validation, i.e. parameters
optimization.
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Table 3 – The main characteristics of the CAMUS echocardiographic dataset collected from
500 patients

Dataset

Image Quality LVEF

(in percentage) (in percentage)

Good Medium Poor ≤ 45% ≥ 55% else

Full 35 46 19 49 19 32

fold 1 34 48 18 48 20 32
fold 2 34 46 20 50 18 32
fold 3 34 46 20 48 20 32
fold 4 34 46 20 50 20 30
fold 5 34 46 20 48 20 32
fold 6 36 46 18 50 20 30
fold 7 36 46 18 50 20 30
fold 8 36 46 18 50 18 32
fold 9 36 46 18 48 20 32
fold 10 36 46 18 50 18 32

3.1.2 Acquisition protocol

The full dataset was acquired from GE Vivid E95 ultrasound scanners (GE Vingmed Ultra-
sound, Horten Norway), with a GE M5S probe (GE Healthcare, US). No additional protocol
than the one used in clinical routine was put in place. For each patient, 2D apical four-chamber
and two-chamber view sequences were exported from EchoPAC analysis software (GE Vingmed
Ultrasound, Horten, Norway). These standard cardiac views were chosen for this study to
enable the estimation of LVEF values based on the Simpson’s biplane method of discs [86].
Each exported sequence corresponds to a set of B-mode images expressed in polar coordinates.
The same interpolation procedure was used to express all sequences in Cartesian coordinates
with a unique grid resolution, i.e. λ/2 = 0.3 mm along the x-axis (axis parallel to the probe)
and λ/4 = 0.15 mm along the z-axis (axis perpendicular to the probe), where λ corresponds to
the wavelength of the ultrasound probe. At least one full cardiac cycle was acquired for each
patient in each view, allowing manual annotation of cardiac structures at ED and ES.

3.1.3 Reference segmentation and contouring protocol

Establishing a well-defined ground-truth segmentation was of utmost importance for this
work. The main difficulty when delineating 2D echocardiographic images comes from poor
contrast in some regions along with the presence of well-known artifacts (e.g. reverberation,
clutter, acoustic shadowing). One direct consequence is that embedded fully-automatic ultra-
sound cardiac segmentation softwares do not perform well. During the clinical exam, the clinicians
delineate the different contours using semi-automatic tools under time constraints. In this
context, the use of manual annotations extracted from clinical exams is not optimal to design
a reference dataset for machine learning where the coherence and accuracy in the manual
contouring play an important role during the learning phase.
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3.1.4 Cardiologists involvement

Three cardiologists (referred as O1, O2 and O3 in the sequel) participated in the annotation of
the dataset. Considerable effort was spent to define a consistent manual segmentation protocol.
This protocol was designed with the help of O1 and was then strictly followed by all the involved
cardiologists for the off-line manual contouring. In particular, we asked O1 to perform the manual
annotation and to determine ED and ES of the full dataset, while the two others contoured the
test set of fold 5 (50 patients). O1 also annotated twice fold 5 seven months apart (we call
those annotations O1a and O1b). This fold was therefore used to measure both the inter- and
intra-observer variability.

3.1.5 Contouring protocol

According to the recommendation of the American Society of Echocardiography and the
European Association of Cardiovascular Imaging [135], ED is preferably defined as the first
frame after mitral valve closure or the frame in the cardiac cycle in which the respective LV
dimension or volume measurement is the largest. ES is best defined as the frame after aortic
valve closure (e.g. using an apical long axis view image) or the frame in which the cardiac
dimension or volume is smallest. In this work, ED and ES was selected as the frames where the
LV dimension was at its largest or smallest, which is not the most accurate way, especially in the
presence of abnormalities. This simpler approach was used due to the lack of reliable ECG. Thus
the clinical indices, ED/ES volume and EF, reported in this work have to be interpreted with this
in mind. While only the extraction of the LVEndo contour is necessary to estimate LVEF values,
we also asked the cardiologists to manually outline the LVEpi and the LA for all patients. This
was done to study the influence of contextualization (segmentation of several structures at once)
on the performance of the LVEndo segmentation using deep learning techniques. The following
protocol was set up.

— LVEndo : Convention was used for the LV wall, mitral valve plane, trabeculations, papillary
muscles and apex [135]. Basic points were to i) include trabeculae and papillary muscles
in the LV cavity ; ii) keep tissue consistency between ED and ES instants ; iii) terminate
the contours in the mitral valve plane on the ventricular side of the bright ridge, at the
points where the valve leaflets are hinging ; iv) partially exclude left ventricular outflow
tract from the cavity by drawing from septal mitral valve hinge point to the septal wall
to create a smooth shape.

— LVEpi : There is no recommendation for delineating the epicardium. We thus outlined
the epicardium as the interface between the pericardium and the myocardium for the
anterior, anterolateral and inferior segments and the frontier between the right ventricle
cavity and the septum for the inferoseptal segments.

— LA : There are recommendations for LA segmentation to assess the full LA area from
dedicated LA recordings. However, since we have used acquisitions focusing on the LV,
part of the dataset does not cover the full LA surface and is thus not suited to perform
such measurement. Having this in mind, we used the following contouring protocol : i)
start the LA contour from the extremities of the LVEndo contour, at the points where the
valve leaflets are hinging ; ii) have the contour pass by the LA inner border.

Fig. 1 illustrates our manual contouring protocol for a good, a medium, and a poor-quality
image.
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(a) Good image quality

(b) Medium image quality

(c) Poor image quality

Figure 1 – Typical images extracted from the proposed CAMUS database. Endocardium and
epicardium of the left ventricle and left atrium wall are shown respectively in green, red and
blue. [Left] input images ; [Right] corresponding manual annotations.
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3.2 CETUS dataset

This dataset has been set-up to evaluate how far state-of-the-art methods can go at assessing
3D echocardiography, i.e. segmenting the LV structure as well as estimating the corresponding
clinical indices. The full dataset is made available for download at https://www.creatis.

insa-lyon.fr/EvaluationPlatform/CETUS/.

3.2.1 Patient selection

From November 2013 to August 2014, 3D images from 45 patients referred to three different
hospitals (Rennes University Hospital - France, University Hospitals Leuven - Belgium and
Thoraxcenter - Erasmus MC - Rotterdam - Netherlands) for 3D echocardiography were selected
and included in this study (within the regulations set by the local ethical committee of each
hospital). In order to provide a balanced and representative dataset of images with typical
segmentation challenges, data was acquired in a population divided into 3 subgroups : 15 healthy
subjects, 15 patients with a previous myocardial infarction at least 3 months prior to time of
acquisition and 15 patients with dilated cardiomyopathy.

3.2.2 Acquisition protocol

In order to avoid biasing the segmentation results toward the equipment of one vendor,
RT3DE exams were performed using machines from three different vendors : a GE Vivid E9,
using a 4V probe, a Philips iE33, using either a X3-1 or a X5-1 probe, and a Siemens SC2000,
using a 4Z1c probe. Moreover, all three hospitals acquired with two different ultrasound systems
and were asked to acquire five patients from each patient group, so that patient group, hospital
and ultrasound systems were equally distributed. Only images of acceptable quality for clinical
diagnosis were included. The following guidelines were followed during the acquisition and
inclusion of the data. Image quality had to be sufficient for visual analysis by an expert.
Optimization, e.g. choice for harmonics, spatial resolution or other system settings were up to the
operator. Exclusion criteria were i) left bundle branch block (LBBB) or visually dyssynchronous
LV ; ii) frame rate below 16 volumes per second ; iii) mitral plane out of image sector at ED ; iv)
significant stitching or other type of artifacts affecting the visibility of endocardium throughout
the cardiac cycle ; v) poor visualization of a LV wall or a wall out of the image sector to an extent
that the image can no longer be manually analyzed with good confidence (since one important
goal of this study is the assessment of clinical indices based on volume measurements). Given
that datasets were acquired in a clinical setting, a considerable variability in image quality could
be anticipated (Fig. 2).

3.2.3 Training and testing datasets

Fifteen of the 45 RT3DE recordings, together with reference meshes, are made available for
training or tuning of the algorithms. The remaining 30 datasets are used for testing. Care was
taken to ensure that the training and testing datasets had a similar distribution of pathologies,
hospitals and ultrasound machines. Acquired data were fully anonymized and handled within
the regulations set by the local ethical committees of each hospital. All data was converted to
a general 4D image representation format (mhd/raw) without loss of resolution. ED and ES
frames were identified based on ECG and valve opening/closure by a single expert. The training
dataset is released with the associated reference meshes (saved in vtk format) obtained with the
contouring protocol described in Section 3.2.4.
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(a) good (b) fair (c) poor

Figure 2 – Variability in the quality of the volumes acquired in clinical conditions

Characteristics of the training and testing datasets are given in Table 4. Image quality was
assessed by one clinical expert as good, fair or poor. Image quality was slightly better in the
training set. It can be seen that ED volumes as well as ES volumes are significantly different
(p < 0.01) between the training and testing sets : the training set generally has higher volumes.
These are unwanted effects of the fairly low amount of patients per subgroup. We refer the reader
to [32] for more details on the acquisition setup.

3.2.4 Reference segmentation

Establishing a well-defined ground truth segmentation was of utmost importance for this
work. However, there are no clear guidelines for endocardial contouring in 3D echocardiography.
Therefore, considerable effort was spent to define a consistent contouring method for manual
segmentation of the 3D echocardiographic data. For the ground truth drawings, we aimed for
a contour definition in line with clinical standards used in 2D echocardiography. A detailed
contouring guideline was set up at the beginning of the study. This guideline was refined during
the training phase (contouring of the first 15 patients) and also used to resolve conflicts during
consensus discussions.

Contouring protocol : We refer the reader to [190] for a complete description of the
contouring procedure and protocol. In short, convention was defined for LV wall, mitral valve
(MV) plane, trabeculations, papillary muscles and apex. Basic points were to a) include trabeculae
and papillary muscles in the LV cavity ; b) keep tissue consistency between ED and ES instants ;

Table 4 – Characteristics of the two datasets which composed the CETUS database. Results
as mean ± standard deviation.∗ : average significantly different from the training set (unpaired
t-test, p < 0.01).

Dataset
EDV ESV EF Image Quality

ml ml % good/fair/poor

Training 213± 97 151± 91 33± 15 6 / 6 / 3
Testing 152± 62∗ 93± 54∗ 41± 11 8 / 10 / 12
Total 172± 80 113± 73 39± 13 14 / 16 / 15
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c) terminate the contours in the MV plane on the ventricular side of the bright ridge, at the
points where the valve leaflets are hinging ; d) partially exclude left ventricular outflow tract
(LVOT) from the cavity by drawing from septal MV hinge point to the septal wall to create a
smooth shape ; e) draw the apex high up near the epicardium both in ED and ES taking into
consideration that there should be little motion of the true apex point.

Tracing protocol : Manual contouring of the endocardium at the ED and ES phases was
performed independently by 3 expert cardiologists from 3 distinct institutions using a custom
non-commercial contouring package for 3D echocardiograms (named Speqle3D), developed by
the University of Leuven and tested in an earlier study [105]. In order to minimize the impact
of the reference mesh design on the segmentation error measurement, the cardiologists were
asked to manually select a dense number of 3D points that belong to the endocardial border. A
protocol was defined that allowed extracting this dense point cloud in a reproducible manner.
At first, all datasets were oriented by defining the LV long axis, LV apex, LV base and the
right ventricle insertion point. Then, each expert independently traced the endocardial border
in a set of predefined planes (short axis and longitudinal planes). For each longitudinal plane
about 15 points were set at the endocardial border, starting from the mitral valve plane. In the
short axis planes about 10 points were set using a similar process. Finally expert meshes were
generated through spherical harmonic least square fitting of the 3D point cloud. By doing so,
the 3D endocardial surfaces were defined by each expert from more than 110 3D points manually
annotated, which we considered to be a good trade-off between the degree of smoothness of the
final endocardial shape, the accuracy of the extracted border (determined by the resolution and
quality of the ultrasound equipment) and the time required for manual contouring. Since for the
clinical study the volumes are computed directly from the reference meshes and since all the
evaluated methods perform segmentation directly in 3D, we also decided to use the interpolated
reference meshes for the computation of the segmentation accuracy.

Evaluation of correspondence and consensus : Consensus between experts was checked
from pairwise differences in LV volume and EF and Hausdorff distances. To qualify for consensus
between all operators the following criteria had to be met : relative difference in LV volume
≤ 10%, absolute difference in LVEF ≤ 5% and Hausdorff distances ≤ 5mm. All experts were
asked to review the contouring of sets that did not meet criteria in the first round and suggest
modifications, and one or more experts would retrace. Differences were then checked against
(slightly relaxed) criteria : the average of the three pairwise observer differences was evaluated,
and Hausdorff distances ≤ 7mm were accepted (the same initial criteria relative to the volumes
and the EF having been used). In only two cases, the three operators did not agree within the
consensus criteria. These drawings were then accepted, in the context of persistent observer
interpretation difference. From the final contours, a mean mesh was constructed. This mean
mesh (named reference mesh in the sequel) was used in the online evaluation platform as the
experts’ ground truth.
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3.3 ACDC dataset

This dataset has been set up to evaluate how far state-of-the-art deep convolutional network
methods can go at assessing cardiac magnetic resonance images (multi-slice 2D cine MRI),
i.e. segmenting cardiac structures as well as estimating clinical indices. The full dataset is made
available for download at https://acdc.creatis.insa-lyon.fr/.

3.3.1 Patient selection

The ACDC dataset was created from real clinical exams acquired at the University Hospital of
Dijon (France). Our dataset covers several well-defined pathologies with enough cases to properly
train machine learning methods and clearly assess the variability of the main physiological
parameters obtained from cine-MRI (in particular diastolic volume and ejection fraction). The
targeted population is composed of 150 patients evenly divided into 5 classes with well-defined
characteristics according to physiological parameters. These examinations were initially classified
according to medical reports. Patients with ambiguous clinical indices were excluded from this
study. The different subgroups are given hereunder :

— NOR : Examination with normal cardiac anatomy and function. The ejection fraction is
greater than 50%, the wall thickness in diastole is lower than 12 mm, the LV diastolic
volume is below 90 mL/m2 for men and 80 mL/m2 for women [153]. The RV is normal
for each patient (RV volume less than 100 mL/m2 and RV ejection fraction above 40%).
The visual analysis of the segmental LV and RV myocardial contraction is normal.

— MINF : Patients with a systolic heart failure with infarction. Subjects have an ejection
fraction below 40% and abnormal myocardial contractions. Some subjects have a high
diastolic LV volume due to a remodeling of the LV to compensate for the myocardial
infarction.

— DCM : Patients with dilated cardiomyopathy have an ejection fraction below 40%, a LV
volume greater than 100 mL/m2 and a wall thickness in diastole smaller than 12 mm.
As a consequence of dilated LV, some patients of this category have a dilated RV and/or
a high LV mass.

— HCM : Patients with hypertrophic cardiomyopathy, i.e. a normal cardiac function (ejection
fraction greater than 55%) but with myocardial segments thicker than 15 mm in diastole.
In this category, patients can present abnormal cardiac mass indices with values above
110 g/m2.

— ARV : Patients with abnormal right ventricle have a RV volume greater than 110 mL/m2

for men, and greater than 100 mL/m2 for women [160], or/and a RV ejection fraction
below 40%. Almost every subject in this sub-group has a normal LV.

3.3.2 Acquisition protocol

Acquisitions were obtained over a 6 year period with two MRI scanners of different magnetic
strengths (1.5 T - Siemens Area, Siemens Medical Solutions, Germany and 3.0 T - Siemens Trio
Tim, Siemens Medical Solutions, Germany). Cine MR images were acquired with a conventional
SSFP sequence in breath hold with a retrospective or prospective gating [235]. After the acqui-
sitions of long axis slices, a series of short-axis slices covering the LV from the base to the apex
was acquired, with a slice thickness from 5 mm to 10 mm (in general 5 mm) and sometimes an
inter-slice gap of 5 mm. The spatial resolution varies from 1.34 to 1.68 mm2/pixel. Depending on
the patient, 28 to 40 volumes were acquired to cover completely (retrospective gating) or partially
(prospective gating) one cardiac cycle. In the latter case, only 5 to 10% of the end of the cardiac
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cycle was omitted. The full dataset was acquired in clinical routine, leading to natural variability
in the image quality (intrinsic noise, patient movement, banding artifacts, MRI low-frequency
intensity fluctuation, etc.), variable field-of-view and integral or almost integral covering of the
LV. Finally, to be in compliance with previous cardiac MRI segmentation challenges, the long axis
slices were not provided. Even though the use of long axis slices could provide extra information
about the base, the apex and the longitudinal motion of the ventricles, the analysis of short and
long-axis slices are generally independent and outside the scope of this project.

3.3.3 Training and testing datasets

The data for each subject was converted to a general 4D image representation format
(nifti) without loss of resolution. ED and ES frames were identified based on the motion of
the mitral valve from the long axis orientation by a single expert. Both training and testing
data contain whole short-axis slices. The identification of the most basal and apical slices is also
not provided, while the diastolic and systolic phases are indicated. In order for challengers to
normalize the physiological parameters (mainly the LV and RV volumes and the MYO mass)
with the body surface area (BSA), the weight and height of each patient are included in the
dataset. For instance, the BSA can be calculated from the formula of Dubois and Dubois [74],
i.e. BSA = 0.007184 · (weight 0.425 · height 0.725) and normalized parameters can be computed
by simply dividing their values with the corresponding BSA. The training database is composed
of 100 patients, i.e. 20 patients for each group. For all these data, the corresponding manual
references as well as the patient group are provided. The testing dataset is composed of 50
patients, i.e. 10 patients per group. The manual references and group labels of the testing data
are kept private.

3.4 Reference segmentation and contouring protocol

The expert references are manually-drawn 3D volumes of the LV and RV cavities as well
as the myocardium, both at the ED and ES gates. The epicardial border of the RV was not
considered because its accurate position next to the septum is difficult to establish, and the
myocardial thickness of the RV is of the same order of magnitude than the spatial resolution.
The contours were drawn and double-checked by two independent experts (10 and 20 years of
experience) who had to reach consensus in case of discordance. The following annotation rules
were retained : the LV and RV must be completely covered, the papillary muscle are included into
the cavity and there is no interpolation of the muscle at the base of the LV (the contours follow
the limit defined by the aortic valve). The main difficulty when annotating RV corresponds
to correctly localize the pulmonary infundibulum area. This area must not be included into
the RV annotation and a clear separation must be seen between the RV cavity and the root
of the pulmonary artery. Due to the systolic shortening of the RV, the first basal slice is not
mandatory being the same in diastole and systole. Another difficulty is to accurately separate
the RV from the right atrium on the systolic image. As such, we defined the RV as the region on
the right of heart with a significant contraction between ventricular diastole and systole, i.e. the
surface area of the RV must be higher in ventricular diastole than in ventricular systole. For
an easier understanding, illustrations of the annotation rules are provided in the supplementary
materials (available in the supplementary files /multimedia tab). The ground truth label images
were stored in nifti format. The label values vary from 0 to 3 and represent voxels belonging to
the background (0), the RV cavity (1), the myocardium (2) and the LV cavity (3). Fig. 3 to 4
illustrate the protocol used for the manual delineation to create the segmentation references.
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(a) (b)

Figure 3 – Manual segmentation of the left ventricle at the level of the most basal slice. a)
Original image. b) Image with the left ventricle (in blue) and the myocardium (in green).

(a) (b)

Figure 4 – Manual segmentation of the right ventricle at the level of the most basal slice. a)
Original image. b) Right ventricle segmentation in red. Only the posterior part was considered
because of the absence of contraction at the level of the anterior area (white arrow) between
diastole and systole (it is thus not considered as a part of the ventricle).
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(a) (b)

(c) (d)

Figure 5 – Manual segmentation of the right ventricle (RV) at the level of the most basal slice.
The left ventricle is in blue, the myocardium in green and the right ventricle in red. The first
column displays original images while each row corresponds to a given patient. b) RV’s border
is drawn when there is no clear separation between the cavity and the aorta. d) No RV’s border
is drawn when there exists a clear separation between the cavity and the aorta.
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4 2nd contribution : B-spline Explicit Active Surface paradigm
(BEAS)

In this section we present a novel framework, named B-spline Explicit Active Surface, that
we introduced to efficiently segment RT3DE. It is based on an efficient explicit representation of
a deformable model and a dedicated automatic initialization scheme. The obtained results were
evaluated through the CETUS database described in Sec. 3.2. This work has been the subject
of several publications [9, 22, 23, 25, 30, 197].

4.1 Methodology

4.1.1 BEAS framework

The key concept of the BEAS framework [25] is to regard the boundary of an object as an
explicit function, where one of the coordinates of the points on the surface, x = {x1, ..., xn},
is given explicitly as a function of the remaining coordinates, i.e. x1 = ψ(x2, ..., xn). In this
framework, ψ is defined as a linear combination of B-spline basis functions :

x1 = ψ(x2, ..., xn) = ψ(x∗) =
∑

k∈Zn−1

c[k]βd
(

x∗

h
− k

)
, (1)

where x∗ is the point of coordinates {x2, ..., xn} and βd(·) the uniform (n−1)-dimensional B-
spline of degree d. The knots of the B-splines are located on a rectangular grid defined on the
chosen coordinate system, with a regular spacing given by h. The coefficients of the B-spline
representation are gathered in c[k].

Given the volumetric nature of the left ventricle, the B-spline representation was created on
a spherical coordinate system thus defining the active geometric functions as r = ψ(φ, θ). The
angular discretization of the boundary representation was set empirically at 24 × 16 (elevation
× azimuth) and the B-spline scale to 21 for both angular coordinates.

The evolution of the model is defined by the minimization of an energy criterion E. This
energy is expressed by the sum of the data attachment term Ed and a regularization term Er :

E = Ed + Er. (2)

The data attachment energy function Ed follows a variation of the localized Yezzi energy
adapted for endocardial segmentation [22], thus taking into account the expected intensities of
the blood pool and the endocardium :

Ed =

∫
Ω
δφ(x)

∫
Ω
B(x,y) · (uin − uout) dydx, (3)

where δφ(x) is the Dirac operator applied to the level set function φ(x) = ψ(x∗) − x1, which
is defined over the image domain Ω and where Γ = x ∈ Rn |ψ(x∗) = x1 represents the surface
being segmented. uin and uout are the local intensity means around x, respectively inside and
outside the surface. B(x,y) is the mask function in which these local parameters are estimated,
restricted to the points along N(x), the normal direction of the surface, at a distance smaller
than ρ :

B(x,y) =

{
1, if y = x + kN(x), k ∈ [−ρ, ρ]

0, otherwise
(4)
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The neighborhood region limit ρ was set experimentally at 16 mm. The minimization of the
data attachment energy term in Eq. (3) can then be performed through optimization of the
B-spline coefficient c[ki], thus :

∂Ed
∂c[ki]

=

∫
Γ

(
Ī(x∗)− uin

Ain
+
Ī(x∗)− uout

Aout

)
βd
(

x∗

h
− ki

)
dx∗, (5)

where Aj is the area of region j used to estimate the local mean uj and Ī(x∗) corresponds to
the image value at the position x = {ψ(x∗), x2, · · · , xn}.

4.1.2 Statistical shape model

In order to provide accurate shape information to the proposed BEAS approach, a sufficiently
broad and numerous dataset of 3D LV shapes is needed. For that purpose, 289 cardiac magnetic
resonance (cMR) datasets from a large multi-center clinical study, DOPPLER-CIP [216], were
used. This study was aimed at patients whose profile corresponds to suspected chronic ischemic
disease and thus encompasses patients of a broad clinical spectrum. The cMR datasets were
contoured by experts at ED and ES and the 2D slices were aligned using an iterative closest
point (ICP) algorithm [37] to correct for breath-hold slice misalignment. A 3D mesh was then
interpolated from the aligned 2D contours at ED and ES for each patient.

Similar to Queirós et al. [212], the statistical shape model (SSM) was built in the BEAS
coordinate system ; in this case in spherical coordinates. The SSM shapes will then be represented
by their B-spline representation coefficients c[k]. Because such a representation assumes that the
position and orientation of the coordinate system is identical for every shape, the position and
orientation of the training shapes have to be aligned, which can be done according to the centroid
and direction of largest variance of each shape.

Starting from the aligned 3D LV shapes in BEAS space, the first step to build the SSM
is to scale all shapes so that equivalent points from different shapes can be compared without
the influence of the LV size. Considering cs[k] the sth shape of all N shapes, this is done by :
calculating the mean of all shapes c̄[k] = 1

N

∑N
s=1 cs[k], scaling each shape to the current mean

c̄[k] and then repeating these steps until the process converges [51]. The scaling step is done
according to :

cscaled[k] = c[k]

∑
i
w[ki]c̄[ki]c[ki]∑

i
w[ki]c[ki]c[ki]

, (6)

where w[k] is a set of weights chosen to give more significance to the points that tend to be most
stable :

w[ki] =

(
N∑
s=1

V ariance(cs[ki])

)−1

. (7)

Principal Component Analysis (PCA) can then be applied to extract the shape variability of
the LV B-spline coefficients [51]. Through singular value decomposition [122], it is then possible
to obtain the eigenvectors pi and the corresponding eigenvalues λi of the covariance matrix :

S =
1

N

N∑
s=1

(cs[ki]− c̄[ki]) (cs[ki]− c̄[ki])T . (8)
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(a) (b)

Figure 6 – Mean statistical shape models at ED (a) and ES (b).

Since most of the variation can be explained by a small number of eigenvectors, only a
portion of the original set is kept, corresponding to the number of eigenvectors t whose sum
represents 90% of the total variance of all variables. In this way, any shape from the dataset can
be approximated by :

c[k] ≈ c̄[k] + Pb, (9)

where P is the matrix of the first t eigenvectors and b is a vector of t weights which for any
given shape corresponds to b = PT (c[k]− c̄[k]).

To be able to model both ED and ES separately, two different SSMs were created according
to the methodology described above. The mean shapes for each of these models are shown in
Fig. 6. Note that since these models are scaled according to Eq. (6) only shape variations can
be observed in this figure.

4.1.3 SSM-Based Regularization

To then use the SSM with BEAS for the segmentation of new images, two different regu-
larization energies were defined so that the segmented shapes fit those observed in the training
set. These two energies, a hard and a soft SSM-based regularization, were first proposed by
Queirós et al. [212]. In the present study, those energies were adapted to regularize the B-spline
coefficients c[k] of a 3D shape.

The hard SSM-based regularization restricts the segmented shape to the shape variability
observed in the training set. At each iteration, the weights b are computed and each is restricted
to ±m

√
λi, where m defines the limits to the variability from the mean [51]. m is typically set

between 2 and 3 since most of the population lies within three standard deviations and was set
at 2.5 in this study. Through Eq. (9), a new regularized shape creg[k] is then obtained [212]. To
include this hard SSM-based term in the BEAS framework, the energy functional can be defined
as :

Ehard =

∫
Ω
δφ(x)

(
1

2
(c[k]− creg[k])2

)
dx. (10)
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The minimization of this energy according to the B-spline coefficients gives :

∂Ehard
∂c[k]

=

∫
Γ

(c[k]− creg[k]) dx∗. (11)

The soft SSM-based regularization follows the rationale that it is much more probable to
find an average shape than a shape which is close to the variability limits. In that way, the soft
SSM-based regularization penalizes high values of bi and is defined as the squared Mahalanobis
distance to the training shapes [51], thus :

Esoft =
t∑
i=1

b2i
λi

=

∫
Ω
δφ(x)

[
(c[k]− c̄[k])T S−1 (c[k]− c̄[k])

]
dx (12)

Following the derivation shown in Queirós et al. [212], the minimization of Esoft gives :

∂Esoft
∂c[k]

=

∫
Γ

2PD−1b dx∗, (13)

where D is the diagonal matrix of t eigenvalues λ. To incorporate these two energies into BEAS,
the regularization term Er is defined as :

Er = αEhard + βEsoft, (14)

where α and β are hyperparameters controlling the relative weight between the two terms.

4.2 Automatic initialization strategy

The key steps of the proposed algorithm are the sequential detection of the left ventricular
long axis (LAX) and mitral valve plane. Once this information is available, we take advantage
of the information gathered in these two first steps to fit an ellipsoid to the detected endocardial
boundaries. The overview of the key processing blocks of the algorithm are shown in Fig. 8 and
7.
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Figure 7 – Left ventricular long axis (LAX) and base detection : (a) Image pre-processing (red
- edge indicator, green - circle center probability) ; (b) Maximum probability path, displayed
over Pmax ; (c) Base detection (red - sliding averaging plane ; green ball detected base position).

Figure 8 – Ellipsoid fitting : (a) Feature map and optimal ellipsoid fit in cylindrical coordinates
(green) ; (b and c) Initial surface for the 3-D image segmentation step.

4.2.1 Image preprocessing

The first step for the automatic initialization of a 3-D ultrasound volume is to detect the myo-
cardial boundaries using edge operators in several C-planes (i.e. planes parallel to the transducer
surface), perpendicular to the acquisition axis. Given that ultrasound images possess low contrast
between the blood pool and the myocardial tissue, it is proposed to include a robust, phase-based
edge detector, because of its intrinsic invariance to intensity. The local phase extracted using
monogenic signal and applied to 3-D ultrasonic data by Rajpoot et al. [217] has a remarkable
performance in the detection of the myocardial boundaries in low quality ultrasound data, even
in low contrast areas. This edge detector is applied to each of the 2-D C-planes taken 5 mm
apart.

Since the endocardium is approximately a circle in these 2-D C-planes, low level computer
vision methods can be employed to robustly find the most likely position for the center of the LV
cavity. To this end, the Hough transform for circles (HTc) is employed. This transform will return
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the probability of a given position (x, y) in the 2-D C-plane image being the center of a circle
of radius r. By concatenating the output of the HTc, a 4D (x, y, z, r) circle center probability
matrix, Pc, can be generated. To keep r in a physiologically relevant range, rmin, rmax was set
to [15, 35] mm. A schematic diagram of the steps taken in the image preprocessing block are
shown in Fig. 7-a. The multiscale phase-based edge detector algorithm used wavelengths of 24,
30 and 36 pixels, as suggested in the original submission by Rajpoot et al. [217]. Its result was
normalized to its maximum value and thresholded using Th = 0.05 to obtain a binary edge map
detector prior to circle detection.

4.2.2 Long axis detection

To reduce the computational complexity of the long axis detection step, Pc was transformed
into a 3-D matrix, Pmax, by taking into account only the maximum probability value along the
r direction. Subsequently, multi-dimensional dynamic programming (MDP) was used to find
the optimal path that maximizes the center probabilities along the z direction [270]. For each
C-plane slice, Pmax can be seen as a density map and thus, thanks to the MDP algorithm, a
path corresponding to a set of positions on each of the 2-D C-planes that have high probability
of being a center of a circle will be found. Note that during the MDP estimation of the optimal
path, connectivity constraints are imposed to penalize the variation of (x, y) coordinates, to
have a smoother path. Through the positions of the path found with MDP, a straight line
is fit to determine the left ventricular long axis. A demonstrative example of Pmax (in green
transparency) and the optimal path found with MPD (green dots connected with red segments)
are shown in Fig. 7-b.

4.2.3 Base detection

After LAX detection, a perpendicular square plane of size rmax was slid along the LAX. For
each position, an average gray level was taken by averaging intensities over this square plane.
Given that the base plane corresponds both to an area of brighter appearance and to a dark-
to-bright transition, a simple merit function, whose maximum corresponds to the base position,
was built as :

g(z) = ILAX(z) + (ILAX(z)− ILAX(z − ζ)) (15)

where ILAX(z) corresponds to the average gray level of the square plane perpendicular to
the LAX at depth z and ζ is a distance parameter used to assess the expected dark-to-bright
transition. ζ was set to 0.5 cm in all the experiments. Note that the first term in Eq. (15)
accounts for the brighter appearance of the valve plane and the second term accounts for the
variation in the gray level intensity attributable to the blood-valve plane transition.

4.2.4 Ellipsoid fitting

Pc was sampled along the estimated LAX resulting in a 2-D feature map, FM(z, r), which
will correspond to the probability of the estimated LAX positions being the center of a circle of
radius r. Next, this feature map needs to be converted to a true 3-D model that can be used to
initialize the segmentation algorithm. To this end, we propose to formulate the ellipsoid fitting
problem using its parametric equation defined in a cylindrical coordinate system. It should also
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be noted that all the required data was already computed in the long axis detection step, being
thus a very computationally efficient solution. Consider the ellipsoid parametric equation :

x2

a2
+

y2

b2
+

z2

c2
= 1. (16)

Assuming that a = b (i.e. that the ellipsoid is actually a spheroid), it can be easily shown
that x2 + y2 is actually the radius of the circle that results from the intersection of the ellipsoid
and a plane perpendicular to the z axis. Thus, the radius of each z-cut of the ellipsoid can be
expressed as :

r = f(z) = a

√
1− z2

c2
. (17)

The apex was fixed at 2 cm from the probe to provide a rough estimate of the longitudinal
measure for the LV-ellipsoid fitting process. From all the plausible curves f(z) (a ∈ [rin, rmax] and
c ≤ dLAX , where dLAX = baseZ − 2cm), the one maximizing the sum of the radius probability
along the LAX was selected, as shown in Fig. 8-a. Once an automatically fitted ellipsoid is
available for the end-diastolic (ED) frame, it will be used as initialization of the segmentation
algorithm.

4.2.5 Automatic SAx orientation

The short axis (SAx) orientation method used was proposed in Pedrosa et al. [196]. This
method aims at the detection of the right ventricular inferior insertion point and relies on image
intensity information and analysis of the structures surrounding the LV. A detailed description
of this method can be found in Pedrosa et al. [196]. The SAx orientation is crucial to correctly
position the SSM, given that different sides of the LV have different shape characteristics.
However, this orientation algorithm depends on a previous estimate of the LV surface and the
result from the initialization is too rough as it relies on the fitting of an ellipsoid. As such, the
automatic SAx orientation is only applied after an initial stage of segmentation with BEAS.

4.3 Framework description

A conceptual description of the proposed framework is shown in Fig. 9.

4.3.1 Segmentation at ED

The segmentation at ED is composed of two stages. Initially, BEAS is used without the SSM,
so that the energy criterion E is equal to Ed, the data attachment term. This provides an initial
segmentation of the LV, which is used for the SAx orientation estimation but also to refine the
initial estimates of LAx orientation and center according to the centroid and direction of largest
variance of the segmented mesh. With the center position and both the LAx and SAx orientation
well defined, it is then possible to use BEAS with the SSM regularization according to Eq. (14)
to further refine the segmentation.

4.3.2 Localized Anatomical Affine Optical Flow (lAAOF)

lAAOF is then used to propagate the result from ED to the remaining frames. The lAAOF
method was proposed in Queirós et al. [214] and relies on an affine optical flow approach
which independently estimates the motion at each point in the surface based on an anatomically

64



4. 2nd contribution : B-spline Explicit Active Surface paradigm (BEAS)

Figure 9 – Conceptual description of the proposed segmentation and tracking framework. First,
automatic initialization is applied to the ED frame (A). The first stage of segmentation is
then performed using BEAS (B). The result from this segmentation is used to detect the SAx
orientation (C) and this information is then used to perform the second stage of segmentation
using BEAS and the ED SSM. The final ED segmentation is then propagated frame to frame
using the lAAOF (E) and a final refinement to the ES frame is performed using BEAS and the
ES SSM (F).

constrained neighborhood. A detailed description of this method can be found in the original
paper by Queirós et al. [214]. The parameters used to tune the lAAOF were replicated from
[214].

4.3.3 Segmentation at ES

Segmentation at ES is used to further refine the result from the lAAOF, thus bringing
together intensity and shape-based clues. In order to balance the contribution between tracking
and segmentation clues, an energy term was added to penalize the deviation between the result
of the lAAOF and the segmentation. Such an approach was first proposed by Barbosa et al. in
[21] and can be formulated as :

EA =

∫
Γ

(
ψ(x∗)− ψ̃(x∗)

)2
dx∗, (18)

where ψ̃(x∗) is the surface obtained from the tracking using lAAOF. The minimization of
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this energy with regard to the B-spline coefficients can be performed according to :

∂EA
∂c[k]

=

∫
Γ

2
(
ψ(x∗)− ψ̃(x∗)

)
βd
(

x∗

h
− ki

)
dx∗. (19)

The regularization energy criterion is then expressed as :

Er = αEhard + βEsoft + γEA, (20)

where γ is a hyperparameter used to define the balance between tracking and intensity/shape-
based information.

4.4 Experiments

4.4.1 Data description

The proposed framework was tested on the CETUS database described in Sec. 3.2. In par-
ticular, fifteen datasets with the corresponding reference meshes at ED and ES were used as
training, while the remaining 30 datasets were used as test set.

4.4.2 Segmentation performance assessment

First, the 15 training datasets were used to tune the hyperparameters β and γ needed
respectively for the SSM regularization and for the balance between the segmentation and
tracking information. This tuning was performed empirically by visual inspection of the results.
The hyperparameters α, β and γ were set respectively to 1, 0.0005 and 0.25. Note that the
value of β is directly related to the absolute value of eigenvalues λ as defined in Eq. (12), thus
justifying its relative small value.

Using these settings, the framework was then tested on the 30 testing datasets. The evaluation
of the results was conducted using the online MIDAS platform of the CETUS challenge, thus
assuring that the proposed method can be directly compared to other state-of-the-art meth-
ods. The accuracy of the segmentation was evaluated at ED and ES through different distance
metrics : Mean Absolute Distance (MAD) [44], which measures the average distance at any point
between the segmented and reference meshes ; Hausdorff Distance (HD) [109], which measures
the maximum distance between the segmented and reference meshes ; and Dice [64], which is
a measure of the overlap between the segmented and reference meshes. Because the meshes
obtained from BEAS are sampled in the spherical coordinate system, causing the point density
to be different along the surface, which could bias the error metrics to specific regions, the
segmented meshes were remeshed to assure greater smoothness and more uniform mesh point
density. Clinical indices were also studied, namely the Pearson correlation coefficient and limits
of agreement of ED volume (EDV), ES volume (ESV) and ejection fraction (EF). Mean compu-
tational times of the proposed framework were also obtained using MATLAB code running on
an Intel R© Xeon R© E5-1650v2@3.5GHz with 32GB RAM.

4.4.3 Position/orientation performance and sensitivity

Because the characteristics of the SSM are closely related to the position and orientation
(LAx and SAx) of the BEAS coordinate system, it is important to determine the error in
the estimation of these parameters. For that purpose, the position, LAx orientation and SAx
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orientation of the CETUS training set reference meshes were compared to those obtained with
the proposed method.

Furthermore, the sensitivity of the segmentation results to variations of these parameters was
studied. This was performed by introducing variations from the reference position or orientation
on each of these parameters and evaluating the segmentation performance. In this way, to
evaluate, for example, the sensitivity to the position, BEAS was initialized at a random position
at a distanceD from the reference mesh position and with the reference SAx and LAx orientation.
The segmentation result was then evaluated on MAD, HD and Dice. To prevent sporadic results
from this random positioning, each image was started from three different random positions each
time and the results averaged.

4.4.4 Parameter sensitivity assessment

To study the robustness and stability of the proposed framework with respect to the multiple
parameters involved, a parameter sensitivity assessment was conducted. As such, the balance of
the different energies, namely α, β and γ, was studied. Each parameter was varied from their
empirically determined preset by 50% of its value and its impact studied in terms of MAD,
HD and Dice. To further analyze the contribution of each component of the framework, the
segmentation performance was analyzed when each of these energy parameters was set to zero.
To highlight the importance of the lAAOF, the segmentation performance of the framework
without the lAAOF was also studied by using the ED segmentation result for initialization of
the ES segmentation.

4.4.5 Statistical analysis

Paired t-tests were used to analyze the significance of differences between the proposed
method and other methods in literature and to analyze the parameter sensitivity of the proposed
method. Results are denoted as mean ± standard deviation.

4.5 Results

4.5.1 Segmentation performance

Tables 5 and 6 show the segmentation and tracking results for the proposed approach, as well
as the performance obtained with other state-of-the-art methods and inter-observer variability
from manual contouring. Those obtained by Queirós et al. [214] and Barbosa et al. [27] also use
BEAS as the segmentation tool but neither use shape-based information. Queirós et al. used the
same lAAOF tracking whereas Barbosa et al. used a global anatomically constrained optical flow
approach followed by block matching refinement instead of the lAAOF. The other approaches
presented were chosen as they are, to the author’s knowledge, the ones presenting the best
segmentation results on the CETUS dataset.

A regionwise analysis of error was also conducted by dividing the LV into the 17-segment
model [42], using the LAx as reference and dividing the LV into basal (35%), mid-cavity (35%)
and apical (30%) regions. The average MAD and HD at ED and ES for the training datasets is
shown in Fig. 10. It can be observed that the greatest errors occur on the apical region and on
the anterior side of the LV. Fig. 11 shows examples of the fully automatic segmentation results
compared to the consensus manual contours by experts.
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Table 5 – Performance on the CETUS testing datasets. MAD, HD and Dice of the proposed
framework, other state-of-the-art approaches and inter-observer variability. All values in mean
± standard deviation (NR stands for not reported). ?, † and ‡ indicate respectively that the
difference to the proposed framework was statistically significant at a p < 0.05, p < 0.01 and
p < 0.001 level. Note that for methods [36, 184, 190, 272] a comparison is not possible as the
data is not publicly available.

Methods
MAD (mm) HD (mm) Dice

ED ES ED ES ED ES

BEAS
1.81 1.98 6.31 6.95 0.909 0.875
±0.59 ±0.66 ±1.69 ±2.14 ±0.034 ±0.046

Queirós et al. [214]
2.26‡ 2.45‡ 8.10‡ 8.19? 0.894‡ 0.861?

±0.72 ±0.85 ±2.62 ±3.03 ±0.040 ±0.054

Barbosa et al. [27]
2.26‡ 2.43‡ 8.10‡ 8.29? 0.894‡ 0.856‡

±0.72 ±0.89 ±2.62 ±3.01 ±0.040 ±0.056

Bernier et al. [36]
2.37 2.64 9.41 9.34 0.882 0.837
NR NR NR NR NR NR

van Stralen et al. [272]
1.91 2.48 6.66 7.38 0.910 0.862
NR NR NR NR NR NR

Oktay et al. [184]
1.94 2.23 7.00 7.53 0.904 0.874
±0.55 ±0.60 ±1.99 ±2.23 ±0.02 ±0.04

Inter-observer 1.01 1.01 3.37 3.30 0.949 0.938
variability et al. [190] ±0.30 ±0.38 ±0.87 ±0.94 ±0.15 ±0.21

Table 6 – Performance on the CETUS testing datasets. Pearson correlation coefficient (R) and
limits of agreement (LOA) (mean ± standard deviation) in comparison to the reference cardiac
indices (EDV, ESV and EF) of the proposed framework, other state-of-the-art approaches and
inter-observer variability. Volumes obtained with the proposed method were not statistically
significantly different at a p < 0.05 level when compared to [27, 214]. Note that for methods
[36, 184, 190, 272] a comparison is not possible as the data is not publicly available.

Methods
EDV (mL) ESV (mL) EF(%)

R LOA R LOA R LOA

BEAS 0.953 −3.29± 19.03 0.960 −4.84± 16.09 0.911 1.7± 5.18

Queirós et al. [214] 0.965 −4.99± 17.66 0.971 −5.83± 13.14 0.927 2.30± 4.20

Barbosa et al. [27] 0.965 −4.99± 17.66 0.967 −6.78± 13.86 0.889 2.88± 5.24

Bernier et al. [36] 0.979 2.74± 13.87 0.968 2.18± 13.73 0.811 0.05± 7.84

van Stralen et al. [272] 0.958 −4.86± 18.08 0.965 −15.39± 15.08 0.751 8.40± 7.72

Oktay et al. [184] 0.961 −4.14± 17.35 0.973 −3.47± 13.62 0.892 0.48± 5.50

Inter-observer
0.981 −0.64± 9.27 0.987 −0.50± 7.35 0.959 0.13± 3.10variability et al. [190]
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Figure 10 – Bullseye plots of average MAD and HD at every region for ED and ES for the
training datasets. Measures in mm.

Figure 11 – Best (a,c) and worst (b,d) automatic segmentation results (red) compared to
manual contours by experts (green) at ED (top row) and ES (bottom row) from the CETUS
training set. The three orthogonal planes shown for each 3D image were chosen according to the
automatically defined LAx/SAx orientation.
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Regarding computational time, the proposed framework took on average 0.9 s for the initia-
lization, 0.6 s for the SAx orientation and a combined time of 1.1 s for the two stages of ED
segmentation. The tracking took on average 0.8 s/frame and the final ES segmentation 0.4 s.
The total time for a fully automatic ED/ES segmentation was on average 11 s. All data was
processed in a non-optimized MATLAB implementation.

4.5.2 Position/orientation performance and sensitivity

At initialization, the position and LAx orientation errors were respectively 3.7±2.1 mm and
5.0± 2.8◦. After refinement at the first stage of ED BEAS segmentation, the position and LAx
orientation errors were reduced to respectively 2.4 ± 1.0 mm and 4.4 ± 2.4◦. Automatic SAx
orientation failed in one of the cases due to low image quality giving an error of 120.2◦ compared
to manual annotation of the RV insertion point. On the remaining datasets the SAx orientation
error was 6.9± 4.4◦.

Fig. 12 shows the influence on the segmentation performance of the position and orientation of
the automatically defined BEAS coordinate system with respect to the position and orientation
of the reference meshes. It can be observed that the position and LAx orientation have the most
influence on the segmentation results, where a distance above 2mm from the reference mesh
centroid or an LAx angle deviation greater than 8◦ give an error larger than what was obtained
with the fully automatic method used in this study.

Figure 12 – Influence of the distance and angle error from the reference position and orientation
on the distance metrics (MAD, HD and Dice) at ED. Horizontal dotted line indicates the
performance obtained with the proposed automatic framework on the CETUS training set.
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4.5.3 Parameter sensitivity assessment

Fig. 13 shows the influence of the parameters α, β and γ on the segmentation results at ED
and ES. For the interval considered from 50% to 150% of the preset value, none of the observed
changes were statistically significant at a p<0.01 level and only the MAD at ES showed several
statistically significant changes at a p<0.05 level when changing β. When parameters β and γ are
set to 0, the difference is statistically significant at a p<0.001 level whereas for α the difference
is not statistically significant. When removing the lAAOF, the ES segmentation presents an
MAD, HD and Dice of 2.9± 1.1mm, 9.8± 2.9mm and 0.861± 0.054 respectively (all statistically
significant at a p<0.001 level).

Figure 13 – Influence of the variation of each of the considered parameters α, β and γ on the
distance metrics (MAD, HD and Dice) at ED (blue) and ES (red dotted). Vertical dotted line
indicates the preset parameter value. ?, † and ‡ indicate respectively that the difference to the
result with the preset values was statistically significant at a p < 0.05, p < 0.01 and p < 0.001
level.

4.6 Discussion

A fully automatic LV segmentation and tracking framework is proposed, combining the
strengths of image information from BEAS and shape-based clues from an SSM for segmentation
and lAAOF to perform tracking. The way in which the SSM is represented on the BEAS space,
through the corresponding B-spline representation coefficients c[k], brings BEAS and the SSM
closer together, avoiding steps such as conversion between the spherical and Cartesian coordinate
systems and scaling/translation operations. It also avoids one of the fundamental problems with
SSM, the point correspondence between different training shapes and with testing shapes. This
approach assumes however that the position and orientation of the coordinate system is identical
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for every shape. For the training shapes, it is trivial to match the position and orientation of
every shape, making the previous assumption valid. When trying to fit the SSM to a new image,
the center and both the LAx and SAx orientations have to be guessed from image features.

4.6.1 Segmentation performance

From Table 5 it is clear that the proposed automatic method shows excellent segmentation
and tracking performance and outperforms any other of the state-of-the-art approaches applied
to the same database. Compared to other approaches using BEAS [27, 214], the impact of the
SSM regularization on ED segmentation is statistically significant. With a better starting point
at ED for the lAAOF, together with the SSM regularization at ES, the ES segmentation results
are also improved, thereby outperforming other state-of-the-art methods. Given the different
strategies used in each framework, it is difficult to say with certainty what is the reason behind
the differences in performance but the following possible reasons can be considered : regarding
the semi-automatic method of Bernier et al. [36] using graph cuts, this method lacks a source
of prior information needed to give an accurate segmentation when image information is low
or incongruous. For both van Stralen et al. [272] and Oktay et al. [184] that information is
provided, respectively, by an active appearance model and a multi-atlas approach. However,
both these approaches use ultrasound data as a prior which can be more variable than cMR,
especially for reduced datasets. Moreover, both these methods intend to model the appearance
of the image, which can be particularly difficult due to the differences between vendors, bad
acquisition window or the presence of artifacts. Regarding the clinical indices on Table 6, the
proposed method has a performance similar to the remaining state-of-the-art methods.

Regarding the regionwise analysis shown in Fig. 10, there could be two possible explanations
for the regions with larger error : either there are inherent image characteristics that make
segmentation more difficult or there are framework specific characteristics that cause these errors,
such as a systematic error on the LAx detection. However, regionwise error analysis in different
frameworks and on manual contouring by experts replicate this trend of larger errors at the
apical and anterolateral regions [30], which points to inherent image characteristics that make
the segmentation more difficult. Indeed, at the apex, image information is low due to noise in
the near field, whereas for the anterolateral region, dropout in this region is common due to its
position and proximity to lung tissue.

As for the computational speed, the proposed framework continues to be computationally
efficient, especially if compared to other state-of-the-art approaches. Oktay et al. [184] reported
an average time of 16 min per image and Van Stralen et al. [274] reported an average seg-
mentation time of 15s in a C++ environment [271] to which the tracking time must be added
(not reported). Furthermore, one can consider ways of decreasing the computational burden of
the proposed method by changing to a more efficient implementation in C++, where it has been
shown that 3D endocardial segmentation can be done using BEAS in approximately 12.5 ms
[25].

4.6.2 Position/orientation performance and sensitivity

As predicted, moving the position and orientation away from the reference has a strong
impact on the performance. The fact that SAx orientation has a smaller effect than center
position and LAx orientation can be explained by the fact that, though the LV is far from being
symmetric, the shape differences between the different sides are much less pronounced than the

72



4. 2nd contribution : B-spline Explicit Active Surface paradigm (BEAS)

shape difference between the apex and base of the LV or those resulting from representing the
LV shape from a wrong position. As such, a compromise between the image information and the
SSM can more easily be found for an incorrect SAx orientation than from an incorrect center
position or LAx orientation.

Fig. 12 also shows that one of the bottlenecks of this method is the positioning and orientation
of the LV. It can be seen that when the reference position and orientation is used, the error
decreases considerably (MAD : 1.4 mm ; HD : 4.9 mm ; Dice : 0.959). As such, it would be
important, in future work, to focus on better automatic initialization methods that, ideally,
would provide the true center of the LV and the LAx and SAx orientation. This would imply
however to move away from the current initialization, which roughly delineates the LV using the
Hough transform, to more complex methodologies, possibly involving machine learning or other
more abstract approaches.

4.6.3 Parameter sensitivity assessment

Overall, the parameter sensitivity assessment showed that the performance of the proposed
method is not significantly impaired within a wide range of the parameter settings. The parameters
related to the SSM regularization seem to have a higher impact as they control the balance
between the image information and the SSM. The parameter related to the balance between
segmentation and tracking has, as expected, no impact on ED segmentation since γ is not used
at ED, and little impact on ES segmentation performance. When each of the parameters is set
to zero, thus turning off the corresponding energy contribution, the performance contribution of
each energy becomes clear and both β and γ are crucial for the results obtained. The contribution
of α is, however, less pronounced. This is due to the fact that the soft energy term already
penalizes shapes away from the mean shape, making it less likely for the segmented shape to
deviate to the hard set limits at m=2.5. Nevertheless, it can be argued that the hard energy
term is important to effectively limit the maximum deviation from the mean shape (if α= 1)
and in more challenging images where image artifacts could make it easier for the segmented
shape to deviate from the mean.

Regarding the lAAOF, it is shown that it also plays an important role in following the
endocardial surface from ED to ES to initialize the segmentation at ES, as the results without
the lAAOF are significantly worse than the proposed method. Nevertheless, in spite of the
fact that in this study the lAAOF was chosen to track the endocardial surface, other tracking
methods could equally be applied in a straightforward manner and, if proven to be more effective
in tracking the LV, could potentially improve the ES segmentation results further. Though in
this study only the parameters related to the balance of the different energies were studied, the
performance of BEAS and the lAAOF also depend on different parameters. Nonetheless, these
have been studied before [22, 196, 214] and the optimal settings found were used in this study.

4.6.4 Limitations and future work

In spite of the promising results shown in this paper, there are limitations which must be
addressed in the future. First, as mentioned in Section 4.6.2, the positioning and orientation of
the LV is a limiting factor of the accuracy of the proposed framework and should be addressed
in the future to provide better segmentation results. Secondly, the parameter tuning performed
in this study was quite limited. While in this study only parameters β and γ were subject to
parameter tuning, there are other parameters that could be further tuned and which were not
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directly addressed. Even though some of these have been tuned before on the same dataset such
as the BEAS [27] and lAAOF [214] parameters, a tuning of all parameters together could prove
beneficial, especially for the framework elements identified as crucial such as the initialization.
Thirdly, in this study only the endocardial border was considered. Nevertheless, the epicardial
border is also of importance to study clinical indices, such as LV mass, and is an essential step for
automatic cardiac strain measurements through the definition of a region-of-interest. As such, it
would be interesting to build an SSM that would describe both the endo- and epicardial borders
so that the current framework could be applied for full myocardial segmentation. However,
the validation of such a framework cannot be done with the CETUS challenge dataset, as
no epicardial contours are provided and, to the author’s knowledge, there are no other freely
available and reliable datasets of 3D ultrasound data with both endo- and epicardial manual
contours.

The dataset used for the SSM must also be considered. First, it could be argued that the
cMR shapes used are not ideal as they are derived from 2D slices rather than from true 3D
data. However, that would imply that replacing the current SSM by one built from true 3D data
would only further improve the results as more accurate data would be embedded into the SSM.
Secondly, the very population targeted by the study from where the shapes were obtained is not
ideal. Given that DOPPLER-CIP targeted patients suspected of chronic ischemic disease, one
cannot consider that the dataset used represents a normal population. However, as before, that
would imply that replacing this population with a more representative one would only improve
results as the SSM is more well suited for the purpose for which it is intended.

74



5. 3rd contribution : deep convolutional neural network study on RT2DE

5 3rd contribution : deep convolutional neural network study on
RT2DE

In this section we present a study that we put in place to evaluate how far the state-of-
the-art deep convolutional network methods can go at assessing 2D echocardiographic images,
i.e. segmenting cardiac structures as well as estimating clinical indices. Comparisons were made
with non-deep learning state-of-the-art methods which obtained among the best results on the
CETUS database [30]. Results were obtained through the CAMUS database described in Sec. 3.1.
This work has been the subject of several publications [137, 138, 245].

5.1 Motivations

The lack of publicly-available large scale dataset in 2D echocardiography has prevented a
thorough evaluation of the potential of deep learning methods to estimate clinical indices, while
these techniques are actively applied with great success for other modalities [33]. Indeed, while
the number of medical imaging challenges comparing deep learning methods has exploded this
last decade, only one focused on cardiac ultrasound image segmentation [30]. Unfortunately,
since the challenge was held in 2014, none of the participant used convolutional neural networks
(CNNs) because these methods had not yet gained popularity in medical imaging. The lack of
well-annotated echocardiographic datasets can be explained by the difficulty of exporting data
from clinical ultrasound equipments and getting a large amount of images carefully annotated by
cardiologists due to the very nature of echocardiography. In this context, thanks to the CAMUS
dataset presented in Sec. 3.1, the purpose of this study is to provide answers to the following
four questions :

1. How well do CNNs perform compared to non-deep learning state-of-the-art techniques ?

2. How many patients are needed to train a CNN to get highly accurate results in 2D
echocardiographic image segmentation ?

3. How accurate can the volumes and ejection fraction be estimated from the segmentation
of CNNs compared to the inter/intra-expert variability ?

4. What improvement can be brought by sophisticated architectures compared to simpler
CNN models for 2D echocardiographic segmentation ?

5.2 Evaluated methods

5.2.1 CNN techniques based on an encoder-decoder architecture

The goal of this study is to assess how far CNNs can go at segmenting 2D echocardiographic
images. As such, we chose to focus on the well-known encoder-decoder networks (EDNs) which
have been the cornerstone of a wide variety of CNNs that were successfully applied in medical
imaging [147]. EDNs are based on a two-stage convolutional network architecture well suited
for segmentation. The first part, known as the encoder, consists of a series of convolutions and
downsampling operations. These operations extract features from the images while spatially
compressing them, thus enabling extraction of high-level features. The second part is the decoder,
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which uses features from the encoder and applies a set of convolutions and upsampling operations
to gradually transform feature maps into a final segmentation.

Among the existing EDNs, one of the most popular architectures used in medical imaging
corresponds the U-Net model proposed by Ronneberger et al. in 2015 [225]. This network
integrates residual connections between the encoder and decoder parts with the goal of helping
in retrieving details that were potentially lost during the downsampling while also stabilizing
gradients. The original U-Net follows a specific scheme of convolutions, where each downsampling
and upsampling step is proceeded by two 3x3 convolutional layers, while the number of features
is doubled per downsampling and reduced in half per upsampling. U-Net has been successfully
applied to a wide range of medical applications [147], but for each application, the network
design has usually been adapted and optimized to get the best segmentation performance
on each application. The main U-Net design choices can be classified in three categories :
i) layer choices : convolutional layer size, activation functions, normalization layers, down-
and upsampling strategies (e.g. max pooling, striding, deconvolution and repeat) ; ii) the
optimization process (gradient descent strategy, weight initialization, loss function, batch size,
regularization constraints, stopping criteria, deep supervision, dropout) ; iii) data handling (pre-
processing, augmentation, sampling). Since the seminal paper in 2015, several studies based on
the EDN structure have been carried out with the goal of outperforming the U-Net. Among those
methods, two types of approaches have been proposed : those based on U-Net architecture but
with extensions such as shape regularization [183] and those with more sophisticated architectures
[174, 302]. In this context, we decided to benchmark the following EDNs for the purpose of seg-
menting 2D echocardiographic images :

5.2.2 U-Net

Taking into account the wide range of possible U-Net designs, we decided to compare the
performance of two independent implementations, i.e. U-Net 1 optimized for speed, and U-Net 2
optimized for accuracy. This leads to two different architectures (which both differ from the
original one proposed by Ronneberger et al.) with their own hyperparameters settings, as shown
in table 7 and table 8. U-Net 1 & 2 enable to investigate the impact of hyperparameters choices
on the quality of the results.

5.2.3 ACNN

Starting from a given segmentation architecture, this method integrates an auxiliary loss to
constrain the segmentation output to fit a non-linear compact representation of the underlying
anatomy derived from an auto-encoder network [183]. For comparison purposes, we used the U-
Net 1 architecture described in table 7 as the segmentation module in our ACNN implementation.
Moreover, the following choices were made to obtain the best results on our dataset : i) a code
of 32 coefficients was set for the auto-encoder network (which allows an average reconstruction
accuracy of 97%) ; ii) the hyperparameter balancing the segmentation and shape regularization
losses was set so that the two losses had close initialization values.

5.2.4 SHG

Stacked Hourglasses (SHG) method integrates three successive encoder-decoder networks
(usually three times the same architecture) where the first two are used as residual blocks [174].
Each output of the encoder-decoder networks is associated with an intermediate segmentation
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loss. This strategy is named as deep supervision. The output of the third network is used as the
final segmentation result. For comparison purposes, we also used the U-Net 1 architecture as
the key encoder-decoder network in our SHG implementation.

5.2.5 U-Net++

This method is also based on deep supervision technique but with the integration of additional
convolution layers in the form of dense skip connections [302]. Starting from the official online
version of the code, we adapted the corresponding architecture to obtain the best results on our
dataset. The following changes were made : i) dropout was removed ; ii) averaging of the last
feature maps of the intermediate outputs was removed ; iii) the original design of layers was
adapted according to the choices we made to optimized U-Net 1 architecture ; iv) the batch size
was set to 20.

Please note that the same data pre- and post-processing strategies were applied for each of
the five tested EDNs.

5.2.6 Non-deep learning state-of-the-art techniques

To compare the performance of the EDN methods described above, we implemented the
following non-deep learning state-of-the-art methods which obtained among the best results
during the CETUS challenge [30] and which were recently improved [197] and applied in 2D [137].

SRF - Structured Random Forests (SRF) refer to an ensemble learning method for classi-
fication or regression. It operates at training time by building a set of decision trees that assign
a label patch to each input image patch, computed as the mean prediction of the individual
trees [66]. During the training phase, each tree individually learns a set of split functions from a
random subset of the training dataset and input features. Those functions are intended to group
patches sharing close image intensities and segmentation patterns. During the testing phase,
the image to segment is fragmented into different overlapping patches. Each image patch goes
through the splitting functions of each tree so that the mean label patch computed from the
reached leaves forms its segmentation. Detailed description of the SRF algorithm implemented
in this project can be found in [137]. Compared to our previous study, data was not split between
ES and ED nor between 4 chambers and 2 chambers views but processed in one indistinctive
pool of images. Since CAMUS has a larger number of patients than the dataset used in [137],
we trained 12 individual trees for each subset of 100 patients.

BEASM - The key concept of the B-Spline Explicit Active Surface Model (BEASM)
framework is to consider the boundary of a deformable interface as an explicit function, where
one of the coordinates of the points within the surface is given explicitly as a function ψ of the
remaining coordinates (see Section 4 for more details on this method). In this framework, ψ is
defined as a linear combination of B-spline basis functions whose controlled knots are located on a
regular rectangular grid defined on the chosen coordinate system (polar space in our case). Based
on a standard variational approach, the evolution of the deformable surface is then governed by
the minimization of an energy function according to the B-spline coefficients [25]. This framework
has been successfully applied in [196] for the coupled segmentation of the LVEndo and LVEpi struc-
tures in echocardiography and further extended by the integration of a shape prior directly into
the B-spline space in [197], named as BEASM in the rest of the paper. Because BEASM amounts
to a deformable-based model, the initialization of the contour plays a crucial role on the quality
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Table 7 – Main characteristics of the U-Net 1 implementation

U-NET 1 ARCHITECTURE

Level Layer Kernel / Pool size Activation Connection

D1
Conv 32 (3,3) ReLU
Conv 32 (3,3) ReLU *

MaxPooling (2*2)

D2
Conv 32 (3,3) ReLU
Conv 32 (3,3) ReLU **

MaxPooling (2*2)

D3
Conv 64 (3,3) ReLU
Conv 64 (3,3) ReLU ***

MaxPooling (2*2)

D4
Conv 128 (3,3) ReLU
Conv 128 (3,3) ReLU ****

MaxPooling (2*2)

D5
Conv 128 (3,3) ReLU
Conv 128 (3,3) ReLU *****

MaxPooling (2*2)

D6
Conv 128 (3,3) ReLU
Conv 128 (3,3) ReLU

U1
UpSampling (2,2)

Conv 128 (3,3) ReLU *****
Conv 128 (3,3) ReLU

U2
UpSampling (2,2)

Conv 128 (3,3) ReLU ****
Conv 128 (3,3) ReLU

U3
UpSampling (2,2)

Conv 64 (3,3) ReLU ***
Conv 64 (3,3) ReLU

U4
UpSampling (2,2)

Conv 32 (3,3) ReLU **
Conv 32 (3,3) ReLU

U5
UpSampling (2,2)

Conv 16 (3,3) ReLU *
Conv 16 (3,3) ReLU

Seg Conv 4 (1,1) Softmax
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Table 8 – Main characteristics of the U-Net 2 implementation

U-NET 2 ARCHITECTURE

Level Layer Kernel / Pool size Activation Connection

D1

Conv 48 (3,3)
BatchNorm ReLU

Conv 48 (3,3)
BatchNorm ReLU *
MaxPooling (2*2)

D2

Conv 96 (3,3)
BatchNorm ReLU

Conv 96 (3,3)
BatchNorm ReLU **
MaxPooling (2*2)

D3

Conv 192 (3,3)
BatchNorm ReLU

Conv 192 (3,3)
BatchNorm ReLU ***
MaxPooling (2*2)

D4

Conv 384 (3,3)
BatchNorm ReLU

Conv 384 (3,3)
BatchNorm ReLU ****
MaxPooling (2*2)

D5

Conv 768 (3,3)
BatchNorm ReLU

Conv 768 (3,3)
BatchNorm ReLU

U1
ConvTranspose 384 (2,2) - s(2,2)

BatchNorm ReLU
Conv 384 (3,3) ****

BatchNorm ReLU
Conv 384 (3,3)

BatchNorm ReLU

U2
ConvTranspose 192 (2,2) - s(2,2)

BatchNorm ReLU
Conv 192 (3,3) ***

BatchNorm ReLU
Conv 192 (3,3)

BatchNorm ReLU

U3
ConvTranspose 96 (2,2) - s(2,2)

BatchNorm ReLU
Conv 96 (3,3) **

BatchNorm ReLU
Conv 96 (3,3)

BatchNorm ReLU

U4
ConvTranspose 48 (2,2) - s(2,2)

BatchNorm ReLU
Conv 48 (3,3) *

BatchNorm ReLU
Conv 48 (3,3)

BatchNorm ReLU

Seg Conv 4 (1,1) Softmax

s : height and width strides
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of the results. We thus decided to implement two different strategies : i) one named BEASM-
fully where the evolving contour is automatically initialized from a method inspired by the work
proposed in [22] ; ii) another named BEASM-semi where the evolving contour is initialized from
three points (two at the base and one at the apex of the LVEndo structure) extracted from
the reference contours. By doing so, we gave the possibility to quantify the influence of the
initialization procedure for BEASM on an heterogeneous ultrasound dataset.

5.3 Results

As stated in Sec. 3.1, the 19% of poor quality images were not used to compute the different
metrics provided in this part. Moreover, to avoid the use of different models according to the
acquisition settings, we trained only one model for each machine learning method on both apical
four-chamber and two-chamber views regardless of the time instant in the cardiac sequence.

5.3.1 Evaluation metrics

Geometrical metrics - To measure the accuracy of the segmentation output (LVEndo,
LVEpi or LA) of a given method, the Dice metric, the mean absolute distance (dm) and the 2D
Hausdorff distance (dH) were used. The Dice similarity index is defined as

D = 2 (|Suser ∩ Sref |) / (|Suser|+ |Sref |)

and is a measure of overlap between the segmented surface Suser extracted from a method and
the corresponding reference surface Sref . The Dice index gives a value between 0 (no overlap)
and 1 (full overlap). dm corresponds to the average distance between Suser and Sref while dH
measures the local maximum distance between the two surfaces.

Clinical metrics - We gauge the methods’ performance with 3 clinical indices : i) the ED
volume (LVEDV in ml) ; ii) the ES volume (LVESV in ml) ; iii) the ejection fraction (LVEF as
a percentage) for which we computed four metrics : the correlation (corr), the bias and the
standard deviation (std) values (computed from conventional definitions) and the mean absolute
error (mae). The combination of the bias and standard deviation also provides useful information
on the corresponding limit of agreement values.

5.3.2 Empirical results

Geometrical scores : Table 9 shows the segmentation testing accuracy computed from
patients having good and medium image quality (406 patients) for the 8 algorithms described
in Sec. 5.2. Mean and standard deviation values for each metric were obtained from cross-
validating on the 10 folds of the database. The values in bold correspond to the best scores for
each metric. From these results, one can see that the EDN implementations get the overall best
segmentation scores on all metrics, for both ED and ES. Interestingly, while the EDN methods
are fully-automatic, they still get better segmentation results than the semi-automatic BEASM
algorithm.

The two U-Nets achieve equivalent results for all the metrics compared to the ones obtained
by the more sophisticated encoder-decoder architectures. This hints to the idea that a plateau
has been reached, which classical tuning, shape regularization techniques and more sophisticated
architectures have difficulties to overcome. This also suggests that a U-Net implementation,
which requires less parameters than SHG and U-Net++ methods and less training time than
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ACNN, offers the best compromise between the network size and performance for the particular
task of 2D echocardiographic image segmentation.

To assess the influence of the layer design in the performance between U-Net 1 and 2,
statistical significance of their respective results was analyzed by performing the Wilcoxon
signed-rank test for each metric. Based on table 9, results from the two U-Nets are statistically
different (p-value < 0.05) for most metrics, apart for the LVEpi Hausdorff distance. However, this
must be qualified by the fact that i) the U-Net geometrical scores are very close (mean dm and
dH difference of 0.1 mm and 0.1 mm, respectively), producing distributions with high degree of
overlap as shown in Fig. 14 ; ii) the U-Net geometrical results lie between the inter-observer and
intra-observer scores for all metrics, proving the robustness of this method in obtaining accurate
segmentation results.

As for the fully automatic non-deep learning state-of-the-art methods, BEASM-fully obtained
on average better Hausdorff distances (mean dH of 9.9 mm at ED and 10.5 mm at ES) while the
SRF got better Dice and dm scores (mean dm of 3.0 mm at ED and 3.5 mm at ES). However, the
large standard deviation values for the SRF illustrate the difficulties of this method in obtaining
consistent segmentations over the entire dataset. As for the BEASM-semi, one can see that the
manual initialization has a strong impact on the quality of the results, with a mean improvement
of 0.8 mm and 2.4 mm for the dm and dH metrics, respectively. Moreover, it is well known that
the left ventricle shape is more difficult to segment at ES, leading to slightly worse performance
for classical algorithms on this time instant. This property is also confirmed in our study since
all the evaluated methods produced better results at ED on every metric.

As complement, we provided in table 10 the geometrical scores obtained on the poor quality
images (94 patients) for the 8 evaluated algorithms. For this part of the dataset, the EDNs also
obtained the best segmentation results on all metrics. Interestingly, while EDN scores on poor
quality images are slightly worse than those computed on good and medium quality, they remain
very competitive compared to the scores given in table 9 (mean LVEndo dm and dH of 2.2 mm
and 7.0 mm and mean LVEpi dm and dH of 2.3 mm and 7.6 mm). To allow visual assessment
of the segmentation performance of the different methods implemented in this work, we provide
in Fig. 15 to 21 the segmentation results obtained by each of the presented methods and the
cardiologists on a given patient with a good image quality.
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Table 9 – Segmentation accuracy (LVEndo and LVEpi) of 8 evaluated methods on the ten test
datasets restricted to patients having good and medium image quality (406 patients in total).
The values in bold refer to the best performance for each measure. p-values are based on the
Wilcoxon signed rank between U-Net 1 and 2 for each evaluation metric. The inter and intra-
observer measures were all computed from fold 5 restricted to patients having good & medium
image quality (40 patients)

Methods *

ED ES

LV Endo LV Epi LV Endo LV Epi

D dm dH D dm dH D dm dH D dm dH

val. mm mm val. mm mm val. mm mm val. mm mm

O1a vs O2 0.919 2.2 6.0 0.913 3.5 8.0 0.873 2.7 6.6 0.890 3.9 8.6
(inter-obs) ±0.033 ±0.9 ±2.0 ±0.037 ±1.7 ±2.9 ±0.060 ±1.2 ±2.4 ±0.047 ±1.8 ±3.3

O1a vs O3 0.886 3.3 8.2 0.943 2.3 6.5 0.823 4.0 8.8 0.931 2.4 6.4
(inter-obs) ±0.050 ±1.5 ±2.5 ±0.018 ±0.8 ±2.6 ±0.091 ±2.0 ±3.5 ±0.025 ±1.0 ±2.4

O2 vs O3 0.921 2.3 6.3 0.922 3.0 7.4 0.888 2.6 6.9 0.885 3.9 8.4
(inter-obs) ±0.037 ±1.2 ±2.5 ±0.036 ±1.5 ±3.0 ±0.058 ±1.3 ±2.9 ±0.054 ±1.9 ±2.8

O1a vs O1b 0.945 1.4 4.6 0.957 1.7 5.0 0.930 1.3 4.5 0.951 1.7 5.0
(intra-obs) ±0.019 ±0.5 ±1.8 ±0.019 ±0.9 ±2.3 ±0.031 ±0.5 ±1.8 ±0.021 ±0.8 ±2.1

SRF
0.895 2.8 11.2 0.914 3.2 13.0 0.848 3.6 11.6 0.901 3.5 13.0
±0.074 ±3.6 ±10.2 ±0.057 ±2.0 ±9.1 ±0.137 ±7.8 ±13.6 ±0.078 ±4.7 ±11.1

BEASM-fully
0.879 3.3 9.2 0.895 3.9 10.6 0.826 3.8 9.9 0.880 4.2 11.2
±0.065 ±1.8 ±4.9 ±0.051 ±2.1 ±5.1 ±0.092 ±2.1 ±5.1 ±0.054 ±2.0 ±5.1

BEASM-semi
0.920 2.2 6.0 0.917 3.2 8.2 0.861 3.1 7.7 0.900 3.5 9.2
±0.039 ±1.2 ±2.4 ±0.038 ±1.6 ±3.0 ±0.070 ±1.6 ±3.2 ±0.042 ±1.7 ±3.4

U-Net 1
0.934 1.7 5.5 0.951 1.9 5.9 0.905 1.8 5.7 0.943 2.0 6.1
±0.042 ±1.0 ±2.9 ±0.024 ±0.9 ±3.4 ±0.063 ±1.3 ±3.7 ±0.035 ±1.2 ±4.1

U-Net 2
0.939 1.6 5.3 0.954 1.7 6.0 0.916 1.6 5.5 0.945 1.9 6.1
±0.043 ±1.3 ±3.6 ±0.023 ±0.9 ±3.4 ±0.061 ±1.6 ±3.8 ±0.039 ±1.2 ±4.6

ACNN
0.932 1.7 5.8 0.950 1.9 6.4 0.903 1.9 6.0 0.942 2.0 6.3
±0.034 ±0.9 ±3.1 ±0.026 ±1.1 ±4.1 ±0.059 ±1.1 ±3.9 ±0.034 ±1.2 ±4.2

SHG
0.934 1.7 5.6 0.951 1.9 5.7 0.906 1.8 5.8 0.944 2.0 6.0
±0.034 ±0.9 ±2.8 ±0.023 ±1.0 ±3.3 ±0.057 ±1.1 ±3.8 ±0.034 ±1.2 ±4.3

U-Net ++
0.927 1.8 6.5 0.945 2.1 7.2 0.904 1.8 6.3 0.939 2.1 7.1
±0.046 ±1.1 ±3.9 ±0.026 ±1.0 ±4.5 ±0.060 ±1.0 ±4.2 ±0.034 ±1.1 ±5.1

p-values � 0.05 � 0.05 � 0.05 � 0.05 � 0.05 ≈ 0.83 � 0.05 � 0.05 � 0.05 � 0.05 � 0.05 ≈ 0.48

* LVEndo : Endocardial contour of the left ventricle ; LVEpi : Epicardial contour of the left ventricle
ED : End diastole ; ES : End systole ; D : Dice index
dm : mean absolute distance ; dH : Hausdorff distance ; mae : mean absolute error
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5. 3rd contribution : deep convolutional neural network study on RT2DE

(a) dm distributions for the LVEndo(left) and LVEpi(right) structures

(b) dH distributions for the LVEndo(left) and LVEpi(right) structures

Figure 14 – dm and dH distributions derived from the U-Net 1 and 2 results obtained on
LVEndoand LVEpistructures.

83



Cardiac segmentation : toward robust volumetric indices estimation

(a) 2CH-ED : dm-endo = 1.4 , dm-epi = 1.5 , dH -
endo = 4.4 , dH -epi = 4.8 mm.

(b) 2CH-ES : dm-endo = 1.6 , dm-epi = 2.4 , dH -
endo = 5.1 , dH -epi = 7.7 mm.

(c) 4CH-ED : dm-endo = 1.0 , dm-epi = 2.2 , dH -
endo = 5.9 , dH -epi = 4.5 mm.

(d) 4CH-ES : dm-endo = 1.0 , dm-epi = 1.7 , dH -
endo = 3.8 , dH -epi = 4.5 mm.

Figure 15 – Segmentation results obtained by the U-Net 1 architecture on Patient 27 (image
defined as good quality). Ground-truth contours are dotted and prediction contours are drawn
in full line.
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(a) 2CH-ED : dm-endo = 1.1 , dm-epi = 1.4 , dH -
endo = 4.0 , dH -epi = 4.0 mm.

(b) 2CH-ES : dm-endo = 1.4 , dm-epi = 1.2 , dH -
endo = 4.4 , dH -epi = 4.33 mm.

(c) 4CH-ED : dm-endo = 1.6 , dm-epi = 2.0 , dH -
endo = 6.8 , dH -epi = 4.6 mm.

(d) 4CH-ES : dm-endo = 1.6 , dm-epi = 1.5 , dH -
endo = 4.7 , dH -epi = 4.3 mm.

Figure 16 – Segmentation results obtained by the U-Net 2 architecture on Patient 27.
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(a) 2CH-ED : dm-endo = 2.7 , dm-epi = 1.8 , dH -
endo = 8.5 , dH -epi = 8.1 mm.

(b) 2CH-ES : dm-endo = 3.8 , dm-epi = 2.6 , dH -
endo = 14.0 , dH -epi = 7.0 mm.

(c) 4CH-ED : dm-endo = 2.3 , dm-epi = 2.3 , dH -
endo = 11.1 , dH -epi = 14.2 mm.

(d) 4CH-ES : dm-endo = 3.2 , dm-epi = 1.7 , dH -
endo = 6.8 , dH -epi = 4.8 mm.

Figure 17 – Segmentation results obtained by the SRF method on Patient 27.

86



5. 3rd contribution : deep convolutional neural network study on RT2DE

(a) 2CH-ED : dm-endo = 3.0 , dm-epi = 3.6 , dH -
endo = 7.2 , dH -epi = 7.7 mm.

(b) 2CH-ES : dm-endo = 2.9 , dm-epi = 2.8 , dH -
endo = 4.7, dH -epi = 5.5 mm.

(c) 4CH-ED : dm-endo = 2.4 , dm-epi = 1.7 , dH -
endo = 6.2 , dH -epi = 6.6 mm.

(d) 4CH-ES : dm-endo = 5.0 , dm-epi = 2.3 , dH -
endo = 14.2 , dH -epi = 6.5 mm.

Figure 18 – Segmentation results obtained by the BEASM method with automatic initialization
on Patient 27.
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(a) 2CH-ED : dm-endo = 1.7 , dm-epi = 4.9 , dH -
endo = 4.1 , dH -epi = 9.6 mm.

(b) 2CH-ES : dm-endo = 1.5 , dm-epi = 3.8 , dH -
endo = 8.5 , dH -epi = 8.5 mm.

(c) 4CH-ED : dm-endo = 2.1 , dm-epi = 3.2 , dH -
endo = 6.2 , dH -epi = 8.2 mm.

(d) 4CH-ES : dm-endo = 3.4 , dm-epi = 2.8 , dH -
endo = 3.5 , dH -epi = 7.7 mm.

Figure 19 – Segmentation results obtained by the BEASM method with semi-automatic initia-
lization on Patient 27.
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(a) 2CH-ED : dm-endo = 3.1 , dm-epi = 4.2 , dH -
endo = 5.9 , dH -epi = 9.0 mm.

(b) 2CH-ES : dm-endo = 3.3 , dm-epi = 5.5 , dH -
endo = 8.1 , dH -epi = 9.5 mm.

(c) 4CH-ED : dm-endo = 2.0 , dm-epi = 1.4, dH -
endo = 4.8 , dH -epi = 3.4 mm.

(d) 4CH-ES : dm-endo = 2.4 , dm-epi = 1.9 , dH -
endo = 6.1 , dH -epi = 9.0 mm.

Figure 20 – Segmentation results obtained by the cardiologist 2 on Patient 27.
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(a) 2CH-ED : dm-endo = 4.5 , dm-epi = 4.1 , dH -
endo = 9.7 , dH -epi = 4.1 mm.

(b) 2CH-ES : dm-endo = 5.9 , dm-epi = 4.5 , dH -
endo = 13.2 , dH -epi = 4.5 mm.

(c) 4CH-ED : dm-endo = 1.7 , dm-epi = 4.0 , dH -
endo = 6.8 , dH -epi = 4.0 mm.

(d) 4CH-ES : dm-endo = 2.7 , dm-epi = 4.4 , dH -
endo = 4.9 , dH -epi = 4.4 mm.

Figure 21 – Segmentation results obtained by the cardiologist 3 on Patient 27.
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Table 10 – LVEndo segmentation accuracy of 5 evaluated methods on the ten test datasets
restricted to patients having poor image quality (94 patients in total). The values in bold
refer to the best performance for each measure. p-values are based on the Wilcoxon signed rank
between the U-Net methods for each evaluation metric.

Methods *

ED ES

LV Endo LV Epi LV Endo LV Epi

D dm dH D dm dH D dm dH D dm dH

val. mm mm val. mm mm val. mm mm val. mm mm

U-Net 1
0.921 2.1 6.5 0.945 2.2 6.8 0.893 2.2 6.8 0.935 2.4 7.2
±0.037 ±1.0 ±3.0 ±0.021 ±1.0 ±3.0 ±0.059 ±1.2 ±4.2 ±0.031 ±1.3 ±4.7

U-Net 2
0.921 2.1 6.9 0.947 2.1 7.3 0.899 2.1 6.7 0.937 2.2 7.7
±0.038 ±1.0 ±3.4 ±0.023 ±1.0 ±4.1 ±0.058 ±1.2 ±3.9 ±0.032 ±1.2 ±4.9

SRF
0.868 3.7 14.8 0.893 4.2 16.0 0.798 4.7 17.7 0.855 4.9 18.7
±0.060 ±1.9 ±9.5 ±0.059 ±2.3 ±8.4 ±0.125 ±3.5 ±13.3 ±0.107 ±3.0 ±12.1

BEAS fully
0.857 4.1 10.9 0.889 4.4 12.0 0.800 4.7 12.3 0.873 4.7 12.5
±0.083 ±2.6 ±6.5 ±0.057 ±2.5 ±6.2 ±0.101 ±2.7 ±6.5 ±0.062 ±2.6 ±6.2

BEAS semi
0.915 2.5 6.5 0.914 3.4 8.6 0.860 3.3 8.3 0.900 3.6 9.5
±0.039 ±1.3 ±2.8 ±0.036 ±1.6 ±3.0 ±0.061 ±1.5 ±3.6 ±0.040 ±1.6 ±3.5

p-values ≈ 0.836 ≈ 0.860 ≈ 0.441 ≈ 0.195 ≈ 0.262 ≈ 0.724 ≈ 0.268 ≈ 0.224 ≈ 0.839 ≈ 0.226 ≈ 0.234 ≈ 0.735
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Clinical scores : Table 11 contains the clinical metrics for the 8 methods. Those indices
were computed with the Simpson’s rule [86] from the segmentation results of each algorithm. The
values in bold represent the best scores for the corresponding index while the p-values allow to
assess the statistical significance between the results of U-Net 1 and 2. As for segmentation, the
EDNs obtained the best clinical scores on all the tested metrics (bias was not taken into account
since the lowest bias value in itself does not necessarily mean the best performing method).
Regarding the estimation of the LVEDV and LVESV, the EDNs obtained high correlation scores
(all above 0.94) and reasonably small biases (at most 11.4 ml), standard deviations (less than
12.9 ml) and mean absolute errors (at most 13.2 ml). Results are more contrasted for the
estimation of the LVEF. For this metric, the EDNs got lower correlation scores (at most 0.82)
but smaller biases (less than 1.8 %), standard deviations (at most 7.8 %) and mean absolute
errors (less than 5.7 %). It is worth pointing out that average EDN scores are all below the inter-
observer scores. This proves the clinical interest of such approaches but also reveals the needs
for improvement as discussed in Section 5.4. Here again, even if the U-Net methods involved
simpler architecture, they obtained similar results compared to the more sophisticated EDNs.
Finally, using the Wilcoxon signed-rank test, U-Net 1 and U-Net 2 produced LVEDV, LVESV and
LVEF results whose difference is statistically significant, although their measures are very close.

Table 11 – Clinical metrics of the 8 evaluated methods on the ten test folds restricted to
patients having good and medium image quality (406 patients in total). All the metrics
were computed using the annotations of expert O1a. The values in bold correspond to the best
performance for the correlation and mean absolute error metrics. p-values are based on the
Wilcoxon signed-rank between U-Net 1 and 2 for the LVEndo, LVEpi and LVEF. The inter and
intra-observer measures were all computed from fold 5 restricted to patients having good and
medium image quality (40 patients).

Methods *

LVEDV LVESV LVEF

corr bias±σ mae corr bias±σ mae corr bias±σ mae

val. ml ml val. ml ml val. % %

O1a vs O2 (inter-obs) 0.940 18.7±12.9 18.7 0.956 18.9±9.3 18.9 0.801 -9.1±8.1 10.0
O1a vs O3 (inter-obs) 0.895 39.0±18.8 39.0 0.860 35.9±17.1 35.9 0.646 -12.6±10.0 13.4
O2 vs O3 (inter-obs) 0.926 -20.3±15.6 21.0 0.916 -17.0±13.5 17.7 0.569 3.5±11.0 8.5
O1a vs O1b (intra-obs) 0.978 -2.8±7.1 6.2 0.981 -0.1±5.8 4.5 0.896 -2.3±5.7 0.9

SRF 0.755 -0.2±25.7 17.4 0.827 9.3±18.0 14.8 0.465 -11.5±15.4 12.8
BEASM-fully 0.704 13.4±30.6 22.9 0.713 18.0±25.8 22.5 0.731 -9.8±8.3 10.7
BEASM-semi 0.886 14.6±19.2 17.8 0.880 18.3±16.9 19.5 0.790 -9.4±7.2 10.0

U-Net 1 0.947 -8.3±12.6 10.9 0.955 -4.9±9.9 8.2 0.791 -0.5±7.7 5.6
U-Net 2 0.954 -6.9 ±11.8 9.8 0.964 -3.7± 9.0 6.8 0.823 -1.0±7.1 5.3
ACNN 0.945 -6.7± 12.9 10.8 0.947 -4.0± 10.8 8.3 0.799 -0.8±7.5 5.7
SHG 0.943 6.4±12.8 10.5 0.938 -3.2±11.3 8.2 0.770 -1.4±7.8 5.7
U-Net ++ 0.946 -11.4± 12.9 13.2 0.952 -5.7± 10.7 8.6 0.789 -1.8± 7.7 5.6

p-values < 0.05 � 0.05 � 0.05

* corr : Pearson correlation coefficient ; mae : mean absolute error.
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5.3.3 U-Net behavior

From the results given in table 9 and 11, it appears that the U-Net method has the most
effective architecture among the tested EDN models in terms of trade-off between the number of
parameters and the achieved performance for the particular task of 2D echocardiographic image
analysis. To better analyze the behavior of this model, we set up several additional experiments
whose results are provided in Fig. 22 and 23. For all these experiments, even if the acquisitions
were optimized to perform LVEF measurements (meaning that part of the LA may or may not
be fully visible depending on the acquisitions), we also investigated the capacity of U-Net to
segment the LA in addition to the LVendo and LVepi. Moreover, since the two tested U-Nets
produced overall close geometrical and clinical scores, we only used in this part the U-Net 1
model since it requires considerably less parameters to learn. Finally, all the given metrics were
computed from both four and two-chamber views and at ED and ES time instants to facilitate
the interpretation of the results.

Figure 22 – Tukey box plots computed from the geometrical results of the U-Net 1 architecture
for three different schemes (GM for learning to simultaneously segment all three structures from
good and medium image quality, mono for learning to segment one structure from all image
quality, multi for learning to simultaneously segment all three structures from all image quality).
Blue numbers correspond to mean values computed from each set of measurements. p-values are
based on the Wilcoxon signed rank test computed with the multi strategy as reference.
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Figure 23 – Box plots results computed from the U-Net 1 architecture for three different
schemes (GM for the learning from good & medium image quality, mono for the learning of one
structure, multi for the learning of the three structures at the same time). Blue figures displayed
under each box correspond to mean values computed from each set of measurements. p-values
are based on the Wilcoxon signed rank computed with the multi strategy as reference.

Mono versus multi-structures approach : We assessed the influence of learning strategies
on the quality of the segmentation of the LVEndo, LVEpi and LA. In particular, we trained 4
models with the same U-Net 1 architecture but with different training sets including all image
quality, i.e. one network trained on predicting only the LVEndo, one the LVEpi, one the LA,
and one all structures. Results on the full dataset are plotted in green and blue in Fig. 22 and
are referred to as mono and multi. From the derived box plots, one can see that, unrelated to
the structure, the mono and multi-structures approaches produced very close results even if the
corresponding differences are statistically different. These results show that, with the proposed
implementations, learning the segmentation of one structure (e.g. LVEndo) in the context of
the others (e.g. LVEpi & LA) does not improve significantly the results compared to learning
the segmentation of the structure alone. This hints at designing dedicated architectures and/or
loss functions to better exploit the contextual information provided in the segmentation masks.
Furthermore, even if the segmentation of the LA structure is challenging compared to LVEpi and
LVEndo due to acquisition conditions, the U-Net 1 manages to get close results both in terms
of mean absolute distance (mean dm equals to 1.7, 1.9 and 2.1 mm for the LVEndo, LVEpi and
LA respectively) and average Hausdorff distance (mean dH equals to 5.6, 6.0 and 6.4 mm for
the LVEndo, LVEpi and LA respectively).

The effect of poor quality images : We investigated in Fig. 22 the influence of involving
images of poor quality during the training phase. Based on a multi-structures scheme, we
trained two U-Net 1 models with the same architecture, one using the full training dataset
not caring for image quality (plotted in blue and referred as multi in Fig. 22) and one using
the training dataset restricted to patients having good and medium image quality (plotted in
red and referred as GM in Fig. 22). From the obtained box plots, one can observe that the
two different strategies produced very close results even if the corresponding differences are
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mostly statistically significant (apart for the dm metric for the LVEndo and LVEpi). These results
suggest that the 19% (94 patients) of poor quality images i) do not bring additional information
(supporting that the remaining deep learning issues are weakly linked to image quality) ; ii)
do not decrease performance compared to a model trained on the 406 patients with good and
medium image quality. This result suggests that poor image quality, in itself, does not complicate
the segmentation task as much as could be expected and that encoder-decoder based techniques
are able to cope with the variability in image quality found in echocardiography.

Influence of the size of the training database We studied in Fig. 23 the influence of
the size of the training dataset on the quality of the segmentation of the LVEndo, LVEpi and LA
structures. To this aim, we set up 8 different experiments, where the same fold 5 and 6 were
respectively used as test and validation sets. As for the training set, starting from 50 patients, we
added for each new experiment 50 additional patients until 400 patients was reached for the last
trial. In each experiment, the same U-Net 1 architecture was used and optimized in the same
way to derive the best performing parameters from the validation set. Moreover, the number
of training epochs was proportionally lowered to ensure that each network went through the
same number of iterations. From this figure, one can first observe an overall improvement of all
metrics for the three cardiac structures with the increasing number of patients in the training
set. Interestingly, while the improvement between 50 to 200 patients is quite pronounced (e.g. a
decrease of dH for the LVEndo from 7.2 mm to 5.8 mm), one can observe a change in the evolution
of the performance of the U-Net 1 method from 250 patients. Indeed, for this particular value,
results worsen a bit, which may be explained by the bias brought by the validation and test
data as we are not doing cross-validation in this experiment. Moreover, from this value, the dm
scores seem to stabilize around 1.8 mm for the LVEndo, 1.9 mm for the LVEpi and 1.8 mm for the
LA structure. The same conclusions can be made for the Dice metric, with a convergence value
around 0.920 for the LVEndo, 0.947 for the LVEpi and 0.909 for the LA structure. As for the dH
metric, while some improvement can still be observed from 250 to 400 patients for the LVEpi and
LA structures (1.1 mm and 1.0 mm for the LVEpi and the LA, respectively), it is not obvious to
draw the same conclusion for the LVEndo structure since the decrease of its corresponding value
is less pronounced (0.2 mm). In the light of these results, the U-Net 1 implementation performs
better that the state-of-the-art non-deep learning methods after training with only 50 patients.
Moreover, this method needs at least 250 patients during the training phase to reach highly
competitive results, which can be slightly improved with a larger training set.

Influence of the expert annotations : We investigated in Fig. 24 the influence of the
expert annotations during the training phase. To this aim, we trained three models on fold 5
from the same U-Net 1 architecture based each time on the manual contouring from a different
annotator. The validation fold was kept the same for each experiment to avoid any bias error.
The models were then evaluated on the remaining 400 patients annotated by cardiologist O1a.
From this figure, one can observe that the best scores for the three structures are obtained for
the model trained on the annotations of cardiologist O1a, who performed the manual contouring
on the test and validation sets. This observation is consistent with the inter-variability results
provided in table 9 and 11. It confirms that cardiologists have consistent differences in their way
of contouring images and that an EDN has the capacity to learn a specific way of segmenting.

Runtime performance : The two U-Nets were implemented in Python with the same
version of the TensorFlow and Keras libraries and an Nvidia Tesla M60 GPUs (8 Go RAM).
Because of the larger number of trainable parameters involved in the U-Net 2 solution (see table
7 and 8), the running time of the two networks is different. For the training phase, the time
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Figure 24 – Geometric scores of the three cardiologist-specific models on 400 patients (1600
images)

required to train on 400 patients is 24 ± 5 min and 73 ± 1 min for the U-Net 1 and U-Net 2,
respectively. At test time, the segmentation of a single image takes 0.09± 0.03 ms and 0.14± 0.06
ms for the U-Net 1 and U-Net 2, respectively.

5.4 Discussion

5.4.1 Statistical differences between U-Net 1 and 2 results

From table 9 and 11 it has been observed that although U-Net 1 and 2 have very similar
performances, their results were judged most of the time as being statistically different by the
Wilcoxon Signed Rank Test (p-value < 0.05). This can be explained by the fact that when the
number of samples is quite high, any slight but consistent deviation between the two distributions
will make the difference statistically significant. In our study, since we work on a large scale
dataset, most of the statistical tests were performed on a large amount of samples (for instance
table 9 and 11 involve more than 800 paired observations for each statistical test), encouraging
situations where the differences between results produced by two methods are recognized as
statistically significant (even if the evaluated distributions are very close).

5.4.2 Inter and intra-observer variability

To further assess the quality of the EDN segmentation results, we added in table 9 the inter
and intra-observer variability measurements computed from fold 5 (restricted to 40 patients with
good and medium image quality). Concerning the inter-observer variability, the corresponding
Dice scores vary between 0.82 and 0.93, the dm between 2.2 mm and 4.0 mm and the dH
between 6.0 mm and 8.8 mm. The LVEpi is the most difficult structure to annotate while both
LVEndo and LVEpi are harder to contour at ES than at ED. One should also note the large dm
value of 4.0 mm between observer 1a and 3 for the LVEndo structure at ES. This illustrates i) the
difficulty in getting coherent manual annotations between experts from daily clinical practice
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data ; ii) the difficulty for the experts to use unfamiliar software for the analysis ; iii) the needs
to provide interactively the volumetric results to the experts for instant comparison (this was not
done during the manual annotations) ; iv) the difficulty in contouring some data acquired with
non-standard views. Concerning the intra-observer variability, one can observe that the results
obtained on all the segmentation scores are better than the inter-observer ones, with a mean
difference of 1.5 mm for the dm metric and 2.6 mm for the Hausdorff distance. This illustrates
the high consistency of manual contouring from experienced cardiologists, even on challenging
data. Those results also provide important information on the limits to reach in order to consider
that a machine learning algorithm faithfully reproduces the expertise of one cardiologist.

In table 11, we also reported the inter and intra-observer variability measurements computed
from fold 5 (restricted to 40 patients with good and medium image quality) for the LVEDV,
LVESV and LVEF metrics. From these results, one can observe that the experts reached good
agreements for the estimation of the LVEDV and LVESV with mean correlation scores of 0.92 and
0.91, respectively. However, the LVEF results are worse with a mean correlation value of 0.67.
This reveals the extreme difficulty in getting consistent fully manual annotations from ED to
ES and between clinicians. It also illustrates the need for semi- or fully-automatic solutions to
get higher temporal coherency, as illustrated by the higher LVEF scores obtained by the semi-
automatic BEASM method (0.79) and the EDN approaches (0.79 on average). Concerning the
intra-observer variability, results are much more consistent with mean correlation scores of 0.98,
0.98 and 0.90 of the LVEDV, LVESV and LVEF metrics, respectively.

5.4.3 U-Net versus more sophisticated encoder-decoder architectures

Table 9 and 11 underlines that U-Net results are very close to those obtained by more
sophisticated architectures. This is surprising as one might expect that more complex deep
learning designs would improve results, at least marginally. As for ACNN, similar scores may
be explained by the simple shapes encountered in 2D echocardiography. Indeed, the reference
contours drawn by the experts involve truncated ellipse-like shapes whose information seems to
be easily learned by the different EDNs. As a result, the anatomical constraint of the ACNN
does not bring any additional value during the segmentation process, leading to similar or even
slightly lower performance due to the regularization effect (which can lead to simpler shapes than
expected). Concerning SHG and U-Net++, the similar scores may be explained by the results in
Fig. 23. From this figure, we observed that U-Net reaches a plateau in terms of its performances
when training on more than 250 patients. This suggests that the capacity of a U-Net is sufficient
to generalize well on CAMUS dataset. Thus, the increase of the network capacity through the
SHG or the U-Net++ architectures does not bring any improvement.

5.4.4 Accuracy of EDNs at delineating the LVEndo, LVEpi and LA structures

Segmentation results given in table 9 show that the five EDN implementations clearly
outperform the state-of-the-art fully and semi-automatic non-deep-learning methods. In par-
ticular, while also learning from annotated data, SRF does not perform as consistently as the
EDNs. Concerning the deformable model-based BEASM, even if it integrates the annotated
information through a shape prior, this method produces overall significantly less accurate
segmentation results. It thus appears from this study that a well-designed EDN can reach
impressive segmentation scores in echocardiography. Interestingly, the EDN results are better
than the inter-observer scores, on all structures and metrics. Although further investigations
shall be made to validate this assertion, the obtained results tend to show that, when properly
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trained, deep learning techniques are able to reproduce manual annotations with high fidelity.
The results presented in this pilot study should thus stimulate the community to set up public
multi-centric and multi-vendor datasets in echocardiography with annotations from cardiologists
having passed high level consensus criteria. It is also interesting to note that EDN results are
slightly worse than the intra-observer scores, on all structures and metrics (apart for the dm
metric for the LVEpi at ED). This reveals that even if EDNs produce remarkable results, there
still exists room for improvement to faithfully reproduce the manual annotations of one expert,
taking into account its variability due to the ultrasound image quality.

In complement, we counted the number of cases for which the EDNs produced results outside
the inter-observer variability, i.e. a dm value higher than 3.5 mm and 4.0 at ED and ES,
respectively and a dH value higher than 8.2 mm and 8.8 at ED and ES, respectively. From
this experiment, we found that 18% of the segmentations produced by both U-Nets, ACNN or
SHG can be seen as outliers. This value goes up to 30 % for U-Net++. For comparison purpose,
the outliers rate from two series of annotations on fold 5 produced by the same expert O1a is
equal to 13%. Even if the overall performances of the EDNs are remarkable, this confirms the
interest of still improving deep learning solution to produce highly reliable segmentation results
on daily clinical practice data.

5.4.5 Accuracy of EDNs at estimating clinical indices

Clinical scores provided in table 11 show that EDNs produce results below the inter-observer
scores for all the metrics. It thus appears that the evaluated EDNs are serious candidates
to automatically produce trustworthy estimations of the LVEDV and LVESV indices, on par
with medical expertise. Concerning the LVEF, even if the results are better than the inter-
observer scores, a correlation value of 0.82 (for the best performing method) appears too low in
comparison with the intra-observer value of 0.90 to consider the automatic estimate of this index
as sufficiently robust to be dependable in clinical practice. The lower LVEF scores compared to
LVEDV and LVESV measures can be partially explained by the lack of temporal coherency in
the tested EDN implementations. Indeed, for each patient, the ED and ES frames are viewed
as two independent images, potentially generating less efficient estimation of the corresponding
LVEF measures. Numerous deep learning strategies that integrate temporal coherence such as
the recurrent neural networks (the Long Short Term Memory - LSTM - model being one of the
famous network of this family) has been described. The integration of such concepts into the
U-Net formalism seems to be a solution of interest in order to make the LVEF estimation more
accurate.

5.5 Conclusions

In this study, we introduced the largest publicly-available and fully-annotated dataset for 2D
echocardiographic assessment (to our knowledge). The CAMUS dataset, containing 2D apical
four-chamber and two-chamber view sequences acquired from 500 patients, is made available for
download at https://camus.creatis.insa-lyon.fr/challenge/. A dedicated Girder 8 on-line
platform has been setup for new result submissions at https://camus.creatis.insa-lyon.fr/
challenge/. Thanks to this dataset, the following new insights were underlined :

8. https ://girder.readthedocs.io
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— Encoder-decoder networks produced highly accurate segmentation results in 2D echo-
cardiography ;

— Among the different tested architectures, U-Net appeared to be most effective in terms
of trade-off between the number of parameters and the achieved performance ;

— The reasons for the lack of improvement of the more sophisticated networks (ACNN,
SHG and U-Net++) compared to U-Net was addressed ;

— U-Net reached a plateau in terms of its performances when training on more than 250
patients but still continued to improve, implying that though 250 patients was enough to
generalize well on CAMUS, it has the potential to integrate additional variability ;

— U-Net showed impressive robustness to variability, especially to image quality. Consi-
dering the wide range of image quality involved in echocardiography, this result is another
positive element to consider encoder-decoder-based techniques as a solution of choice to
solve the problem of 2D echocardiographic image segmentation ;

— U-Net learned to reproduce a specific way of contouring ;

— The segmentation and clinical results of the encoder-decoder networks were all below the
inter-observer scores ;

— The segmentation and clinical results of the encoder-decoder networks were close to but
slightly worse than the intra-observer scores. This reveals that even if encoder-decoder
networks produced remarkable results, there is still room for improvement to faithfully
reproduce the manual annotation of a given expert.
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6 4th contribution : deep convolutional neural network study on
cardiac MRI

In this section we present a study that we realized to measure how far the state-of-the-art
deep learning method can go at assessing cardiac MRI, i.e. segmenting the myocardium and
the two ventricles as well as classifying pathologies. In the wake of the 2017 MICCAI-ACDC
challenge, we report results from deep learning methods provided by nine research groups for the
segmentation task and four groups for the classification task from the ACDC database described
in Sec. 3.3. This work has been the subject of one main publication [33].

6.1 Motivations

We proposed a new dataset called ACDC (see Section 3.3) which led to the organization
of an international MICCAI challenge in 2017. The richness of the dataset as well as its tight
bound to every-day clinical issues has the potential to enable machine learning methods to fully
analyze cardiac MRI data. ACDC has a larger scope than previous cardiac datasets as it includes
manual expert segmentation of the right ventricle (RV) and left ventricle (LV) cavities, and
the myocardium (epicardial contour more specifically). ACDC also contains patients from five
different medical groups namely : dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy
(HCM), myocardial infarction with altered left ventricular ejection fraction (MINF), abnormal
right ventricle (ARV) and patients without cardiac disease (NOR). The overarching objective of
this study is to provide answers to the following four questions :

1. How accurate recently proposed segmentation methods are at delineating the LV, RV and
myocardium given clinical MR images ?

2. How accurate recently proposed classification methods are at predicting the pathology of
a patient given clinical MR images ?

3. When methods fail, where do they fail ?

4. How far are we from ”solving” the problem of automatic CMRI analysis ?

6.2 Evaluated methods

The ACDC dataset was made available during the ”Automatic Cardiac Diagnosis Challenge
(ACDC)”workshop held in conjunction with the 20th International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI), on September 10th, 2017 in Quebec
City, Canada. After having publicly invited people to participate to this challenge, 106 accounts
were created on the challenge website. Ten teams uploaded meaningful results within the allotted
time for the segmentation contest, while 4 teams participated in the diagnosis contest.

6.2.1 Architecture for cardiac multi-structure segmentation

A summary of the ten architectures involved in this study is provided in table 12. Nine meth-
ods implemented a deep convolutional architecture, most of which a U-Net like networks [225]
analyzing the 3D data slice by slice. The only exception is the method by Tziritas and Grinias [267]
which implemented a Chan-Vese level-set method followed by a MRF graph cut segmentation
method and spline fitting to smooth out the resulting boundaries.
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Table 12 – Overview of methods evaluated during the ACDC challenge.

Reference * Contest Method Remarks

Baumgartner et al. [28] S 2D U-Net Tested several architectures, the best one being a 2D U-Net with a cross-entropy loss
Isensee et al. [111] S 2D+3D U-Net Ensemble of 2D and 3D U-Net architectures with a Dice loss
Jang et al. [113] S 2D M-Net Use of a weighted cross-entropy loss function
Khened et al. [126] S Dense U-Net 2D U-Net with dense blocks and an inception first layer
Patravali et al. [194] S 2D U-Net Tested several architectures, the best one being a 2D U-Net with a Dice loss
Rohé et al. [223] S SVF-Net Multi-atlas strategy where the registration module is realized using an encoder-decoder network
Tziritas and Grinias [267] S Levelset+MRF Chan-Vese levelset followed by graph cut and a B-Spline fitting to smooth out results
Wolterink et al. [286] S Dilated CNN Feed-forward CNN but with dilated convolution operations
Yang et al. [289] S 3D U-Net Use of 3D U-Net but with residual connections instead of the usual concatenation operator
Zotti et al. [304] S 2D Grid-Net Use of a Grid-Net architecture with an automatically-registered shape prior

Cetin et al. [43] C SVM Use of physiological and radiomic (shape, intensity and texture) features
Isensee et al. [111] C RF Extract a series of instant and dynamic features ; use an ensemble of 50 multilayer perceptrons
Khened et al. [126] C RF Extract 11 features from seg. results + patient height/weight ; trained a 100-trees RF classifier
Wolterink et al. [286] C RF Extract 14 features from seg. results + patient height/weight ; trained a 1000-trees RF classifier

* S : Segmentation contest ; C : Classification contest ; SVM : Support Vector Machine ; RF : Random Forest ; MRF : Markov Random Field.

Four papers re-used the U-Net architecture. Baumgartner et al. [28] tested the U-Net and
the FCN architectures with various hyper parameters. They also tested the impact of using 2D
and 3D convolution layers as well as a training Dice loss versus a cross-entropy loss. Their best
architecture ended up being a U-Net with 2D convolution layers trained with a cross-entropy loss.
Isensee et al. [111] implemented an ensemble of 2D and 3D U-Net architectures (with residual
connections along the upsampling layers). Concerning the 3D network, due to large inter slice
gap on the input images, pooling and upscaling operations are carried out only in the short
axis plane. Moreover, due to memory requirements, the 3D network involves a smaller number
of feature maps. Both networks were trained with a Dice loss. Similar to Baumgartner’ study,
Patravali et al. [194] tested a 2D and 3D U-Net trained with different Dice and cross entropy
losses. From their experiments, the best performing architecture was a 2D U-Net with a Dice
loss. Finally, Yang et al. [289] implemented a 3D U-Net but with residual connections instead of
the usual concatenation operator. They also used pre-trained weights for the downsampling path
using the C3D network known to work well on video classification tasks [264]. Their network
was trained with a multi-class Dice loss.

Four papers used a modified version of the U-Net. Jang et al. [113] implemented a ”M-Net”
[162] architecture whose main difference with U-Net resides in the feature maps of the decoding
layers which are concatenated with those of the previous layer. The corresponding network was
trained with a weighted cross-entropy loss. Khened et al. [126] implemented a dense U-Net.
Their method starts by finding the region of interest with a Fourier transform followed by a
Canny edge detector on the first harmonic image and compute an approximate radius and
center of the LV with a circular Hough transform on the edge map previously generated. They
then use a U-Net with dense blocks instead of basic convolution block to make the system
lighter. The first layer of this network also corresponds to an inception layer. The system was
trained with a sum of Dice and cross-entropy losses. Rohé et al. [223] developed a multi-atlas
algorithm that first registers a target image with all images in the training dataset. The registered
label fields are then merged with a soft fusion method using pixel-wise confidence measures.
The registration module implements an encoder-decoder network called SVF-Net [224]. Finally,
Zotti et al. [304] implemented a ”Grid Net” architecture which corresponds to a U-Net with
convolutional layers along the skip connections. The architecture also registers a shape prior
which is used as additional features map before performing the final decision. The model was
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trained with a four term loss function.

Wolterink et al. [286] is the only team that implemented a CNN without an encoder-decoder
architecture. Instead, they used a sequence of convolutional layers with increasing levels of kernel
dilation to ensure that sufficient image context was used for each pixel’s label prediction. This
CNN was fed simultaneously with spatially corresponding ED and ES 2D slices while the output
of the network was split in two, one softmax for ED and one for ES.

6.3 Solutions for automatic cardiac diagnosis

Three participants of the segmentation challenge used their segmentation result to extract
features for cardiac diagnosis. Isensee et al. [111] extracted a series of instants and dynamic
features from the segmentation maps and used an ensemble of 50 multilayer perceptrons (MLP)
and a random forest to perform classification. Khened et al. [126] used 11 features, 9 derived
from their segmentation map in addition to the patient weight and height. From those features,
they trained a 100-trees random forest classifier. Wolterink et al. [286] extracted 14 features (12
from the segmentation maps + patient weight and height) and used a five-class random forest
classifier with 1,000 decision trees.

Cetin et al. [43] were the only one to involve a semi-automatic segmentation method to
manually extract the contours of the cardiac structures. Based on those contours, they computed
567 features including physiological features (e.g. height and weight) and radiomic features
such as shape-based features, intensity statistics, and various texture features. To prevent their
method from overfitting, they selected the most discriminative features and used SVM for classi-
fication.

6.4 Results

6.4.1 Evaluation metrics

In order to evaluate the tested methods in a fair and reproducible manner, we customized a
dedicated Girder 9on-line platform 10. This platform is now available and will be maintained and
kept open as long as the data remains relevant for clinical research. Based to this platform, the
performance of state-of-the-art methods are compared both from a geometrical and a clinical
standpoint. This implies the use of a complementary set of metrics as described hereunder [134].

6.4.2 Geometrical metrics

In order to measure the accuracy of the segmentation output (LV endocardium, myocardium
or RV endocardium) provided by a given method, the Dice metric and the Hausdorff distance
were used. The corresponding formula can be found in Sec. 5.3.1. Concerning the Hausdorff
distance, as opposed to several MRI cardiac segmentation papers which report 2D Hausdorff
distances [16, 213, 253], we report the 3D dH , which allows an intrinsic management of the
missing segmentation problem on the end slices.

9. https://girder.readthedocs.io/en/latest/

10. http://acdc.creatis.insa-lyon.fr/
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6.4.3 Clinical performance

We also implemented three indices for the clinical parameters, namely the correlation (corr),
the bias and the standard deviation (std) values. These three metrics are computed from the
measurements of : i) the ED volumes (LVEDV and RVEDV expressed in mL/m2 for the LV and
RV, respectively) ; ii) the ejection fractions (LVEF and RVEF expressed in percent for the LV
and RV, respectively) ; iii) the myocardium mass (MYMass expressed in g/m2 and calculated in
diastole). The combination of the bias and standard deviation also provides useful information on
the corresponding limit of agreement values. Let us mention that these geometrical and clinical
metrics are complementary in the sense that a good score on one metric does not inevitably
imply a good score on other metrics. This property is fundamentally important to prevent our
system from unexpectedly favoring some methods over others. For instance, a low EF error does
not always mean a good delineation of the ED and ES ventricle since EF relies on the difference
between the ED and ES volumes. As such, a method that would systematically over- or under-
estimate the size of a ventricle in the same order at both ED and ES would potentially have a
low EF bias, a low mean average error and a high EF correlation, but at the same time a low
Dice score and a large Hausdorff distance.

6.5 Segmentation Challenge

Table 13 shows the segmentation testing accuracy (50 patients) for all 10 algorithms. The
red values correspond to the best scores for each metric while the blue values correspond to the
methods that are one pixel away from the top method. We use this color code to underline the
closeness between the involved methods. This one-pixel criterion is a range of agreement of 2.3
mm for the Hausdorff distance (the maximum in-plane diagonal distance between two pixels :√

(1.662) ∗ 2) and 0.02 for the Dice metric (the average Dice score between the segmentation
map of a method and the same segmentation map dilated or eroded by 1 pixel). This one pixel
criterion comes from the fact that the two experts gave themselves a one pixel error margin such
that two annotations were considered identical when their 2D Hausdorff distance was smaller
or equal than one pixel. From these results, one can see that the 2D-3D U-Net ensemble model
proposed by Isensee et al. [111] is overall the top performing method (the corresponding code
is publicly available through the following link 11). This approach is closely followed by other
methods which are less than one pixel away from it, especially for the LV and RV at ED. For
instance, Baumgartner et al., Jang et al., Zotti et al., and Khened et al. are within the range of
agreement of the top performing method for 9 of the 12 metrics. As for the none deep-learning
method by Tziritas and Grinias, it is relatively far away from the top, especially for the RV and
the MYO. To allow a detailed analysis of the results, a set of segmentation output are provided
in Fig. 25 to 29. This should help better assess the quality of the best approaches.

Table 15 contains the clinical metrics for all 10 methods. As for the segmentation part, red
values correspond to the best scores for each metric. Blue values correspond to the methods with
a p-value larger than 5% compared to the best method (we used an unequal variances two-sample
t-test). For the clinical indices, Khened et al. [126] globally outperforms the other approaches
with 14 metrics out of 20 close to the top performing method (i.e. red and blue metrics). In
terms of correlation metrics, most of the methods obtained highly accurate results with values
above 0.96 for the volumes. Methods also get good LVEF results with high correlation scores, a
bias close to zero (0.8% on average), a small mean absolute error (3.2% on average) and small

11. https ://github.com/MIC-DKFZ/ACDC2017
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Table 13 – Segmentation accuracy of the 10 evaluated methods on the testing dataset. Red
is the best method, and blue are the methods within the range of agreement (Dice index of

0.02 and Hausdorff distance of 2.26 mm from the best).

Methods *

ED ES

LV RV Myo LV RV Myo

D dH D dH D dH D dH D dH D dH

val. mm val. mm val. mm val. mm val. mm val. mm

Isensee et al. [111] 0.968 7.4 0.946 10.1 0.902 8.7 0.931 6.9 0.899 12.2 0.919 8.7
Baumgartner et al. [28] 0.963 6.5 0.932 12.7 0.892 8.7 0.911 9.2 0.883 14.7 0.901 10.6
Jang et al. [113] 0.959 7.7 0.929 12.9 0.875 9.9 0.921 7.1 0.885 11.8 0.895 8.9
Zotti et al. [304] 0.957 6.6 0.941 10.3 0.884 8.7 0.905 8.7 0.882 14.1 0.896 9.3
Khened et al. [126] 0.964 8.1 0.935 14.0 0.889 9.8 0.917 9.0 0.879 13.9 0.898 12.6
Wolterink et al. [286] 0.961 7.5 0.928 11.9 0.875 11.1 0.918 9.6 0.872 13.4 0.894 10.7
Jain et al. [194] 0.955 8.2 0.911 13.5 0.882 9.8 0.885 10.9 0.819 18.7 0.897 11.3
Rohé et al. [223] 0.957 7.5 0.916 14.1 0.867 11.5 0.900 10.8 0.845 15.9 0.869 13.0
Tziritas-Grinias [267] 0.948 8.9 0.863 21.0 0.794 12.6 0.865 11.6 0.743 25.7 0.801 14.8
Yang et al. [289] 0.864 47.9 0.789 30.3 N/A N/A 0.775 53.1 0.770 31.1 N/A N/A

* ED :End diastole ; ES : End systole ; LV : Endocardial contour of the left ventricle ; RV : Endocardial contour of the right ventricle ;
Myo : Epicardial contour of the left ventricle (myocardium) ; D : Dice Index ; dH : Hausdorff distance.

standard deviations (4.3%). The most difficult clinical metric to estimate is the EF of the RV
with a correlation score of 0.9 for the best method.

A joint analysis of table 13 and 15 reveals that results on the myocardium (especially at
ES) are those that vary the most. This may be partially explained by the fact that an accurate
myocardium segmentation implies the precise delineation of two walls instead of one for the LV
and RV. Methods also struggle with the RV. The RV often has the highest Hausdorff distances,
the lowest Dice scores, the lowest correlation values, and the largest biases. To further underline
this observation, we recorded in table 14 the percentage of patients for which the predicted EF is
less than 5% away from the ground-truth (5% is often considered as an acceptable error margin
[39]). While the top six methods accurately predict the LV ejection fraction for ≈ 87% of the
patients, that number drastically goes down to ≈ 59% for the RV.

Table 14 – Percentage of patients with an EF error lower than 5%.

Methods LV RV

Isensee et al. [111] 92 % 68%
Jang et al. [113] 88 % 60%
Rohe et al. [223] 88 % 34%
Zotti et al. [304] 84 % 60%

Khened et al. [126] 84 % 56%
Baumgartner et al. [28] 84 % 54%
Wolterink et al. [286] 80 % 38%

Jain et al. [194] 68 % 54%
Tziritas-Grinias [267] 66 % 38%

Yang et al. [289] 58 % 32%
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Figure 25 – Automatic segmentation of a healthy subject (NOR) from the testing database.
Each row corresponds to a given slice of the same volume at end diastole (ED). From top
to bottom : basal slice toward apical slice. From left to right : input image, ground-truth,
Isensee et al. (winner of the segmentation contest), Khened et al. (winner of the classification
contest). For this patient (full volume at ED), Isensee et al. obtained a Dice score of 0.97, 0.92
and 0.96 and a Hausdorff distance of 2.2 mm, 3.1 mm, and 3.1 mm, respectively for the left
ventricle, myocardium and right ventricle. Khened et al. got a Dice score of 0.97, 0.92 and 0.97
and a Hausdorff distance of 3.1 mm, 3.1 mm, and 3.1 mm, respectively for the left ventricle,
myocardium and right ventricle.
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Figure 26 – Automatic segmentation of a patient with a myocardial infarction (MINF) with
altered left ventricular ejection fraction from the testing database. Each row corresponds to a
given slice of the same volume at end diastole. From top to bottom : basal slice toward apical
slice. From left to right : input image, ground-truth, Isensee et al. (winner of the segmentation
contest), Khened et al. (winner of the classification contest). For this patient (full volume at
ED), Isensee et al. obtained a Dice score of 0.97, 0.91 and 0.97 and a Hausdorff distance of
2.7 mm, 3.9 mm, and 4.9 mm, respectively for the left ventricle, myocardium and right ventricle.
Khened et al. got a Dice score of 0.97, 0.90 and 0.95 and a Hausdorff distance of 3.1 mm,
4.1 mm, and 10.7 mm, respectively for the left ventricle, myocardium and right ventricle.
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Figure 27 – Automatic segmentation of a patient with an hypertrophic cardiomiopathy (HCM)
from the testing database. Each row corresponds to a given slice of the same volume at end
diastole. From top to bottom : basal slice toward apical slice. From left to right : input image,
ground-truth, Isensee et al. (winner of the segmentation contest), Khened et al. (winner of the
classification contest). For this patient (full volume at ED), Isensee et al. obtained a Dice score
of 0.92, 0.89 and 0.97 and a Hausdorff distance of 11.6 mm, 10.5 mm, and 5.9 mm, respectively
for the left ventricle, myocardium and right ventricle. Khened et al. got a Dice score of 0.97,
0.92 and 0.96 and a Hausdorff distance of 4.6 mm, 10.0 mm, and 11.7 mm, respectively for the
left ventricle, myocardium and right ventricle.
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Figure 28 – Automatic segmentation of a patient with dilated cardiomiopathy (DCM) from the
testing database. Each row corresponds to a given slice of the same volume at end diastole. From
top to bottom : basal slice toward apical slice. From left to right : input image, ground-truth,
Isensee et al. (winner of the segmentation contest), Khened et al. (winner of the classification
contest). For this patient (full volume at ED), Isensee et al. obtained a Dice score of 0.98, 0.91
and 0.90 and a Hausdorff distance of 4.1 mm, 4.3 mm, and 10.7 mm, respectively for the left
ventricle, myocardium and right ventricle. Khened et al. got a Dice score of 0.97, 0.87 and 0.92
and a Hausdorff distance of 10.4 mm, 11.6 mm, and 10.5 mm, respectively for the left ventricle,
myocardium and right ventricle.
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Figure 29 – Automatic segmentation of a patient with abnormal right ventricle (ARV) from the
testing database. Each row corresponds to a given slice of the same volume at end diastole. From
top to bottom : basal slice toward apical slice. From left to right : input image, ground-truth,
Isensee et al. (winner of the segmentation contest), Khened et al. (winner of the classification
contest). For this patient (full volume at ED), Isensee et al. obtained a Dice score of 0.97, 0.89
and 0.97 and a Hausdorff distance of 24.3 mm, 24.1 mm, and 12.8 mm, respectively for the left
ventricle, myocardium and right ventricle. Khened et al. got a Dice score of 0.97, 0.86 and 0.95
and a Hausdorff distance of 24.3 mm, 24.1 mm, and 12.9 mm, respectively for the left ventricle,
myocardium and right ventricle.
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Table 16 presents an overview of the classification performance of the 4 evaluated methods.
Due to the small number of samples (50 patients), the scores have to be considered with care
since a miss-classification causes an accuracy drop of 2%. From this table, one can see that
Khened et al. [126] obtained nearly perfect results with 48 patients correctly classified. The
confusion matrix of this approach is shown in Fig. 30. Please note that the best approach is
closely followed by the next two methods which obtained an accuracy of 92%.

Table 16 – Results on the classification challenge.

Methods Accuracy
Authors Architectures

Khened et al. [126] Random Forest 0.96
Cetin et al. [43] SVM 0.92

Isensee et al. [111] Random Forest 0.92
Wolterink et al. [286] Random Forest 0.86

Figure 30 – Confusion matrix of the winner of the classification challenge [126].

Let us mention that although MINF and DCM are visually similar, MINF implies a local
lack of myocardial contraction as opposed to DCM. Moreover, for DCM, the LV must exceeds
100 mL/m2. This is why machine learning methods have been able to successfully differentiate
these pathologies.

6.6 Discussion

How far are we from solving the CMRI analysis problem ? Automatic classification
results (healthy subjects and patients with 4 different pathologies), showed that the best methods
are very close to each other with an accuracy above 92%. Although these observations have to
be validated on more patients, it appears from this study that well designed machine learning
techniques can reach near perfect classification scores.

However, conclusions are not so straightforward for the segmentation task. While results
obtained on the LV are competitive, it appears that the same level of accuracy is still difficult
to obtain for the RV and the MYO. It is thus important to assess the performance of the top
methods relatively to the experts variability. Unfortunately, the actual version of the ACDC
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Table 17 – Dice and Hausdorff distances for i) inter- and intra- observers ii) the average of every
submitted deep learning (DL) methods and iii) the winner of the segmentation challenge. RED
corresponds to results within or above the inter-observer variation. The last 5 lines correspond
to metrics computed without the apical and the basal slices.

Methods *

ED ES

LV RV MY O LV RV MY O

D dH D dH D dH D dH D dH D dH

val. mm val. mm val. mm val. mm val. mm val. mm

O1a vs O2 (inter-obs) 0.956 5.6 0.930 12.6 0.870 6.7 0.898 8.1 0.866 14.0 0.891 7.6
O2 vs O1b (inter-obs) 0.950 6.2 0.931 12.1 0.868 7.2 0.895 8.5 0.861 14.1 0.886 8.0
O1a vs O1b (intra-obs) 0.967 4.0 0.957 7.6 0.900 5.1 0.941 5.4 0.930 9.1 0.917 6.0
Average DL methods vs GT 0.965 7.6 0.947 13.2 0.906 10.1 0.927 9.2 0.886 15.2 0.898 10.9
Isensee et al. [111] vs GT 0.968 7.4 0.946 10.1 0.902 8.7 0.931 6.9 0.906 12.1 0.919 8.7

O1a vs O2 (inter-obs) 0.956 4.4 0.938 7.7 0.867 5.0 0.913 5.5 0.890 8.7 0.894 5.5
O2 vs O1b (inter-obs) 0.953 4.9 0.937 8.6 0.864 5.5 0.905 5.8 0.898 9.4 0.886 6.1
O1a vs O1b (intra-obs) 0.971 3.1 0.960 5.8 0.905 3.6 0.950 3.9 0.940 6.9 0.923 4.4
Average DL methods vs GT 0.972 3.7 0.951 8.1 0.896 5.2 0.929 4.2 0.899 9.9 0.915 6.1
Isensee et al. [111] vs GT 0.972 3.7 0.969 6.4 0.910 4.6 0.945 4.2 0.912 8.6 0.930 5.1

* ED : End diastole ; ES : End systole ; LV : Endocardial contour of the left ventricle ; RV : Endocardial contour of
* the right Ventricle ; Myo : Myocardium contours ; D : Dice Index ; dH : Hausdorff distance ; GT : Ground-truth.

dataset comes with one expert annotation per subject and does not provide any inter- or intra-
observer error margin.

In order to evaluate the inter- and intra-observer variabilities, we asked the two experts O1

and O2 that jointly annotated the ACDC ground-truths to independently relabel the images
of the 50 test subjects. O1 annotated twice the images (we call those annotations O1a and
O1b) one month apart while O2 annotated the images once. The average geometric distance
between O1a, O1b and O2 are given in the first three lines of table 17. As one can see, the Dice
scores oscillates between 0.86 and 0.96 and the HD between 4 mm and 14.1 mm. Without much
surprise, the RV at ES is the most difficult region to annotate, even for experimented observers.
It is also interesting to note that the Dice variations (especially for the inter-observer) are very
close to that reported in a recent publication by Wenjia et al. [82]. As for the dH values, the
ones reported in table 17 are larger than those in Wenjia et al.’s paper due to the fact that our
implementation of dH accounts for the 3D structures of the heart. With an inter-slice thickness
of 10 mm (in average), any slight lateral shift between two annotations greatly increases the dH
score.

Below the inter- and intra-observer results given in table 17, we provide i) the average
geometrical metrics obtained by the deep learning methods involved in the challenge and ii)
the scores obtained by Isensee et al., the winner of the segmentation challenge. Interestingly,
their Dice scores are all between the inter-observer and intra-observer scores. This suggests
that state-of-the-art deep learning techniques have reached a plateau in the light of this metric.
Although further investigations shall be made to validate this assertion (especially for images
acquired from a set of more heterogeneous settings), the obtained results tend to show that,
when properly trained, deep learning techniques are able to improve the Dice scores all the way
to those of an expert. As for the dH scores, methods are slightly above the inter-observer scores,
but by only 2 to 3 mm.
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6. 4th contribution : deep convolutional neural network study on cardiac MRI

Table 18 – Inter- and intra-observer variation of the mean absolute error of the LVEDV ,
RVEDV and MYMass. Below, the winner of the challenge and the average deep learning methods
compared with the ACDC ground-truth. RED are result between the inter- and intra-observer
variance.

LVEDV RVEDV MYMass

ml. ml. g.

O1a vs O2 (inter-obs) 10.4 9.2 12.6
O2 vs O1b (inter-obs) 10.8 9.5 11.5
O1a vs O1b(intra-obs) 4.6 5.7 6.2

Average methods vs GT 7.1 10.6 10.4
Isensee et al. vs GT 5.1 7.9 7.3

In table 18, we put the inter- and intra-observer mean absolute errors computed from the
LVEDV , RVEDV and MYMass metrics. From the given numbers, one can see that the inter- and
intra-observer scores are very close to that reported by Wenjia et al. [82]. Moreover, the results
obtained by Isensee et al. and the average deep learning methods are between the inter- and
intra-observer scores.

Where do methods fail ? In the light of the results reported so far, it appears that top
deep learning segmentation methods are in the range of human expects according to the Dice
scores and the clinical metrics but still 2 to 3 mm away from experts in regards of the 3D
Hausdorff distance. One may thus wonder where do methods fail ? One hypothesis can be that
hearts suffering from a pathology may be more difficult to segment. To verify this assumption,
we broke down in Fig. 31 the average Dice and Hausdorff metrics for each pathology obtained
by the challengers on the test set (we remind that each pathological case corresponds the same
amount of patients, both for the training and the testing phases). As one can see, there is no
pathology for which methods systematically fail. For instance, while the HCM Dice score is
somewhat low for the LV-ES (certainly due to the difficulty to see the cardiac cavity), it is larger
than the other pathologies for MYO-ES and MYO-ED. Also, contrary to what one might think,
images from healthy subjects (NOR) are not easier to segment than those from pathological
cases as the scores relative to this group get the largest Hausdorff distances for the LV-ED and
LV-ES.

Another hypothesis would be that 1.5T images are more difficult to segment than 3T CMR
images due to an intrinsic lower SNR. However, after careful analysis of segmentation results,
we found no particular differences between 1.5T and 3T results, as illustrated in table 19. One
reason for this could be explained by the fact that both 1.5T and 3T images were included in the
training set thus allowing neural networks to learn a representation specific to both magnetic
fields.

Another hypothesis commonly accepted in the community is that slices next to the valves
and/or the apex of the ventricle are more difficult to segment due to partial volume effect with
surrounding structures. To investigate this assumption, we computed the total number of 2D
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Figure 31 – Average Dice index and Hausdorff distances for every method reported in Table 13
broken down for every pathology.

Table 19 – Dice scores of the winner of the segmentation challenge [111] on the 1.5T and 3T
CMR images taken from the testset.

ED ES

LV RV MYO LV RV MYO

1.5T 0.97 0.95 0.90 0.93 0.90 0.92

3T 0.97 0.94 0.91 0.94 0.88 0.92

segmentation results produced by each method for which the LV, MYO or RV had a Dice score
below 0.70. The corresponding results are summarized through the histogram in Fig. 32, where
the x-axis stands for the slice position (from the valves on the left to the apex on the right).
Please note that since the number of slices varies from one patient to another, we stacked the
2D segmentation result of each method and made a 3D volume. Each volume was then resized
to 10 slices with a nearest neighborhood interpolation method. From this figure, one can see
that segmentation results obtained next to the valves and the apex are far more error prone. In
particular, we notice almost 50% of results with very low Dice score at the apex (often because
LV/MYO/RV are very small at that position). As for the base, we observe that methods often
struggle to differentiate between the RV, the LV, the atria and the surrounding structures (cf.
Fig. 33). We also put in table 17 the Dice and Hausdorff metrics computed without the apical
and basal slices. While the Dice scores are almost identical with and without the end slices, the
Hausdorff distance decreases significantly, sometimes by a factor of two for the learning methods.
Interestingly, the learning methods fall within the inter- and intra-observer variabilities (apart
for Hausdorff metric for the RV at ES) which shows that segmenting apical and basal slices is
far more difficult, even for experts.

Finally, it is worth pointing that the use of a larger database than the one involved in this
project might help in resolving the listed remaining issues. For instance, the UK Biobank [199]
may be a serious candidate for this purpose. We thus see the UK Biobank and our database as
complementary with the strong potential to offer materials for upcoming research studies.
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Figure 32 – Histogram of degenerated slices ED (left), and ES (right).

Figure 33 – Typical degenerated result at the base of the heart. [Left] input image ; [Middle]
ground truth ; [Right] prediction.

For the need of a new metric : Results reported so far suggest that top deep learning
methods are very close to the inter-observer variability. However, the visual inspection of their
segmentation results reveal that unlike experts, deep learning methods sometimes generate
anatomically impossible results as shown in Fig. 33. Interestingly, the metrics used to gauge
performances seem resilient to such abnormalities. In order to measure the number of anatomically
impossible results, one of our expert visually screened the test results by Isensee et al. [111].
This revealed that results for 41 patients out of 50 had at least one slice with an anatomically
impossible segmentation such as the RV disconnected from the MYO or the LV cavity in
contact with the background (several detailed examples are given in the supplementary materials
available in the supplementary files /multimedia tab). Those 41 patients had problematic results
for 1.6 slices on average, most of them located next to the valves or the apex. This clearly
underlines the fact that clinical and geometrical metrics used to assess results have important
limits and that methods within the inter-observer variability may still be error-prone. This
suggests the need for new evaluation metrics before one may claim that methods have reached
the accuracy of an expert.

6.7 Clinical implications

Results presented thus far suggest that we are at the eve of cracking the nut of fully
automatic CMRI analysis. This would allow to reduce the time spent on analyzing raw data
so conclusions of the examination could be provided to the patient before leaving the radiology
department. In today’s clinical practices, the latest systems provide pre-filled radiologic reports
with an integrated automatic speech recognition technology so doctors can dictate the various
physiological and technical parameters. An automatic CMRI analysis software could thus easily
be integrated within this framework. That being said, further investigations are still required
before such software gets approved by accreditation agencies (CE mark, FDA, ISO, etc.) and
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get integrated in MRI consoles. Also, although classification software get near-perfect results,
the use of a ”diagnostic black box” could not be integrated as-is in a clinical practice. Along
with the pathology prediction, a medical report must always contain the physiological reasons
for which the patient was diagnosed in a certain way. This calls for cardiac parameters such
as EF, volumes, and mass estimated by a segmentation method which, in the context of deep
learning approaches, may sometimes fail at the apex and the base and even produce anatomically
impossible results. One shall also perform further analysis on images acquired by a wider variety
of MRI scanners with different acquisition protocols to better assess the true generalization
accuracy of machine learning algorithms.

Further research is also required on patient data suffering from other pathologies. Although
we believe that some other pathologies such as inflammatory cardiomyopathy could be success-
fully diagnosed with the proposed machine learning methods, other (yet more complex) diseases
such as congenital heart diseases or heart defect, would need dedicated studies.

6.8 Conclusions

ECG-gated sequences such as Cine-MRI allow for accurate analysis of left and right ventricular
functions. The delineation of ventricular endocardium and epicardium allows the calculation of
different parameters, such as LVEF , RVEF , myocardial mass, myocardial thickness, tele-systolic
and tele-diastolic ventricular volumes. These measurements are an integral part of the exam
interpretation by the radiologist and are necessary for the diagnosis of many cardiomyopathies.
In this study, we have shown that state-of-the-art machine learning methods can successfully
classify patient data and get highly accurate segmentation results. Results also reveal that the
best convolutional neural networks get accurate correlation scores on clinical metrics and low bias
and standard deviation on the LVEDV and LVEF , two of the most commonly-used physiological
measures. However, methods are still failing at the base and the apex, especially when consi-
dering the Hausdorff distance.
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7 Summary - Conclusions

From Sec. 3 to 6 we presented our strategy to tackle the problem of fully automatic and fast
techniques for LV volumetric assessment through segmentation tasks in US and MR imaging.

To this purpose, we first proposed to put in place a set of benchmarked datasets to allow
the community with a fair and reproducible comparison of state-of-the-art methods in seg-
menting cardiac images and extracting relevant clinical indices (i.e. the LVEDV, LVESV, LVEF,
RVEDV, RVEF and MYmass). In particular, we set up the following open-access datasets with the
corresponding online evaluation platform :

— the CAMUS dataset containing 2D echocardiographic sequences (both two and four-
chambers views) of 500 patients that were acquired during clincal exams in the same
medical center with the same equipment. This dataset has been set up to evaluate how
far state-of-the-art deep convolutional networks and others non-deep learning methods
can go at segmenting cardiac structures (LVEndo, LVEpi and LA) as well as estimating
clinical indices (LVEDV, LVESV and LVEF) ;

— the CETUS dataset containing 3D echocardiographic sequences of 45 patients that were
acquired during clincal exams in three different centers with three different equipments
(GE, Siemens and Philips). This dataset has been set up to evaluate how far state-of-the-
art methods can go at segmenting LVEndo structure as well as estimating clinical indices
(LVEDV, LVESV and LVEF) ;

— the ACDC dataset containing cine MR sequences (multi-slice 2D cine MRI) of 150
patients that were acquired during clinical exams in the same medical center with two
MRI scanners of different magnetic strengths (1.5T and 3.0T). The target population
is composed of patients evenly divided into 5 classes with well-defined characteristics
according to physiological parameters. This dataset has been set up to evaluate how
far state-of-the-art deep convolutional network methods can go at segmenting cardiac
structures (LV, MYO, RV), estimating clinical indices (LVEDV, LVEF, RVEDV, RVEF and
MYmass) as well as classifying the examination into 5 classes (normal case, heart failure
with infarction, dilated cardiomyopathy, hypertrophic cardiomyopathy, abnormal right
ventricle).

Thanks to those dataset, the following innovations and new insights were underlined :

1. CAMUS dataset

— Encoder-decoder networks produced highly accurate segmentation results in 2D echo-
cardiography ;

— Among the different tested architectures, U-Net appeared to be most effective in terms
of trade-off between the number of parameters and the achieved performance ;

— The reasons for the lack of improvement of the more sophisticated networks (ACNN,
SHG and U-Net++) compared to U-Net was addressed ;

— U-Net reached a plateau in terms of its performances when training on more than 250
patients but still continued to improve, implying that though 250 patients was enough
to generalize well on CAMUS, it has the potential to integrate additional variability ;

— U-Net showed impressive robustness to variability, especially to image quality. Consi-
dering the wide range of image quality involved in echocardiography, this result is
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another positive element to consider encoder-decoder-based techniques as a solution
of choice to solve the problem of 2D echocardiographic image segmentation ;

— U-Net learned to reproduce a specific way of contouring ;

— The segmentation and clinical results of the encoder-decoder networks were all below
the inter-observer scores ;

— The segmentation and clinical results of the encoder-decoder networks were close to
but slightly worse than the intra-observer scores. This reveals that even if encoder-
decoder networks produced remarkable results, there is still room for improvement to
faithfully reproduce the manual annotation of a given expert.

2. CETUS dataset

— The non-deep learning method that we developed in section 4 (named as BEASM)
produced the current best scores for the segmentation of the LVEndo in 3D echo-
cardiography ;

— The greatest errors produced by the BEASM method occur on the apical region and
on the anterior side of the LV ;

— A deep learning method with anatomical shape regularization [183] gets results that
are quite close to those obtained with our method. The access to only 15 patients
during the training phase illustrates the strong potential of deep learning techniques
to analyze 3D echocardiographic images ;

— the best performing methods get accurate correlation scores on clinical metrics with
low bias and standard deviation on the LVEDV, LVESV and LVEF, the LVEF remaining
the most difficult indices to estimate ;

— The segmentation and clinical results of the best performing methods are all slightly
worse than the inter-observer scores. This reveals that there is still a need for impro-
vement of the developed methods for the segmentation of the LVEndo and the estimation
of the corresponding clinical indices from 3D echocardiography.

3. ACDC dataset

— Deep convolutional networks produced highly accurate segmentation results in cine
MRI ;

— Deep convolutional networks are still failing at the base and the apex, especially when
considering the Hausdorff distance ;

— The best convolutional neural networks get accurate correlation scores on clinical
metrics and low bias and standard deviation on the LVEDV and LVEF, two of the
most commonly-used physiological measures ;

— Deep convolutional networks have still difficulties in estimating the RVEF compared
to the others tested indices ;

— The clinical results of the best convolutional neural network were all below the inter-
observer scores ;

— The segmentation and clinical results of the best convolutional neural network were
close to but slightly worse (apart for the Dice metric) than the intra-observer scores.
This reveals that even if deep convolutional neural networks produced remarkable

118



7. Summary - Conclusions

results, there is still room for improvement to faithfully reproduce the manual annotation
of a given expert ;

— Although these observations have to be validated on more patients, it appears from
this study that well designed machine learning techniques can reach near perfect
classification scores.

From these observations, it clearly appears that deep learning methods can be considered
as a solution of choice to solve the problem of cardiac image segmentation and clinical indices
estimation, both in 2D and 3D echocardiography and in cine MR imaging. Indeed, when the
size of the dataset is enough (i.e. higher than 100 patients in the case of the proposed studies),
both the segmentation and clinical results derived from well designed deep learning techniques
were all below the inter-observer scores. However, in all the realized studies, the best performing
deep learning networks failed to produce results in the range of the intra-variability scores. This
should stimulate the community in still improving deep learning formalism in medical imaging
to faithfully reproduce the manual annotation of a given expert without any anatomical failure.

My research on cardiac image segmentation was carried out through 4 PhDs funded by the
French government (1 ministerial and 1 LABEX PRIMES grants) and Europe (2 PhDs financed
from the ERC grant of professor Jan D’hooge). Results have led to 17 articles in international
journals and 31 articles in international conferences. I also co-organized two challenges on this
topic during MICCAI conferences (2014 and 2017) and setup three dedicated Girder on-line
platforms which are still open for open-access dataset download and new result submissions
(https://www.creatis.insa-lyon.fr/EvaluationPlatform/CETUS/, https://acdc.creatis.
insa-lyon.fr/ and http://camus.creatis.insa-lyon.fr/challenge/)
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Cardiac motion estimation : toward
robust strain estimation

1 Introduction

Cardiovascular diseases (CVD) are the number one cause of death and are expected to have
an increasing prevalence in the coming years [227]. An estimated 17.5 million people died from
CVDs in 2012, representing 31% of all global deaths [163]. Of these deaths, an estimated 7.4
million were due to coronary heart disease and 6.7 million were due to stroke. Assuming similar
growth rates, by 2030 an estimated 23.6 million people will die from cardiovascular diseases in
the world [279].

Heart disease, such as myocardial ischemia and ventricular dyssynchrony, may be identified
and localized by the analysis of the cardiac motion and deformation. Early efforts used surgical
implantation and tracking of radiopaque markers with X-ray imaging for quantifying the ventrical
motion in canine hearts [91]. Such techniques are invasive and affect the regional motion pattern
of the heart during the marker tracking process, thus not feasible clinically. With the advent
of more advanced imaging techniques, non-invasive diagnosis techniques based on inspecting
medical images were developed and have been widely used in clinical practice. Several modalities,
such as echocardiography [123], magnetic resonance (MR) imaging and cardiac computed tomo-
graphy (CT) have been applied to cardiac function analysis [166, 186, 255]. From medical images
acquired by these modalities, physicians can monitor and assess the progression of CVD so that
effective procedures for the disease treatment can be developed accordingly.

So far, cardiac motion and strain imaging have been primarily based on echocardiography
and MR imaging. Cardiac CT has proven to be useful for obtaining a static segmentation
at a high spatial resolution. It is also used for the segmentation of the coronary tree after
contrast injection. Additionally, cardiac multi-detector computed tomography (MDCT) [226] is
able to acquire dynamic images of the heart as a detailed source of information, it presents
however several inherent limitations, if compared with echocardiography and MR imaging :
1) CT relies on ionizing radiation for delivering image contrast, which is harmful to human
tissues ; 2) the temporal resolution of MDCT is lower, hence hindering cardiac motion tracking
since fewer frames are available within the same cardiac cycle ; and 3) although the cardiac
contour is prominent in CT images, the myocardial wall lacks a discernible pattern or ”markers”
that increases the difficulty for motion tracking [255]. As a result, cardiac CT is not as widely
available as echocardiography and MR imaging for motion analysis. In our studies, we therefore
concentrate on cardiac motion tracking methods from echocardiography and cardiac MR.

Traditionally, cardiac deformation is assessed from medical images by visual inspections
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of an expert and each myocardial segment is then assigned a wall motion score. However,
manual motion analysis similar to this is time-consuming and suffers from inter- and intra-
observer variabilities. Automatic motion tracking softwares can help reducing the workload of
the clinicians. Moreover, the medical conditions can be interpreted more objectively. Most of the
motion tracking algorithms assess cardiac function through two categories of indexes : global
and regional indexes. Global indexes include cavity volume, ejection fraction, cardiac output etc.
They are important indexes that reveal the overall performance of the heart in terms of supplying
oxygenated blood to the body. Regional indexes such as strain and left ventricle torsion may
prove beneficial for the diagnosis of disease and evaluation of severity and the quantification
of treatment effect [279]. Combining the global and regional analyses could lead to a reliable
evaluation of the cardiac function.

Regarding the local motion tracking, echocardiography is one of the most common modality
in clinics. The ultrasound is safe since no radiation is involved, real-time, portable and much
cheaper compared to other imaging devices such as MR and CT. The speckle pattern inherent
to ultrasound imaging can be used as natural markers that move with the myocardium. Speckle
remains locally stable during a few consecutive frames. Therefore, the underlying myocardial
motion can be accurately recovered by tracking them. Both the global ejection fraction and local
myocardial strains can be further derived from the tracking field. Recently, with the development
of 2D matrix transducer technology, 3D echocardiography is becoming more and more common
in clinical facilities [5, 170]. Despite the reduced frame rate compared to 2D ultrasound, it still
allows for an accurate quantification of cardiac motion [54]. Cardiac cine MR [232] is considered
as a more advanced modality for assessing global ventricular functions in clinical routine. It has
advantages over other modalities such as echocardiography and tagged MR [17] in that it provides
clearer contrast between the myocardium and the blood pools. This facilitates the segmentation
and the tracking of the borders of myocardium, i.e. the endocardium and the epicardium. From
the trackings, global indexes such as left ventricle ejection fraction can be accurately calculated
which allows an elementary assessment of cardiac function. It is more reproducible than echo-
cardiography since it is easier to segment the myocardial borders. However, another characteristic
of cardiac cine MR is that the images show nearly constant intensities within the myocardium,
hampering somehow the quantification of local indexes such as motion and strain. Although
reliable dense tracking field can still be computed by spatial regularizations, the absence of any
local ”markers” could reduce the tracking accuracy. Aside from ultrasound, cardiac tagged MR
[17] is another imaging technique able to quantify reliable local myocardial deformations. In this
modality, a specific tagging preparation pulse is composited with conventional MR imaging in
order to deliberately create markers (tags) by saturating the tissue magnetizations. Those tags
will move alongside the myocardium over the whole sequence. Deformation fields can therefore
be accurately reconstructed from tracking those virtual markers. Tagged MR is considered as
the gold standard for estimating regional myocardial deformations since it provides the most
detailed information about local motion. However, its use in clinical practice is held back by the
long acquisition time and the limited spatial resolution for distinguishing tissues.

Despite all those developments of imaging techniques, the assessment of cardiac function
generally relies on global measures, such as left ventricle (LV) ejection fraction (EF) and global
longitudinal strain (GLS) [243]. GLS quantified from speckle tracking echocardiography [38] is
currently the best evaluated strain parameter [49][241]. Compared with global strains, regional
strains are less reliable and reproducible as reported in [241][129][242]. Consequently, regional
strain analysis is currently applied as a supplementary diagnosis method, but is still not ready
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for full clinical implementation in spite of their potential impact in many applications[243][195].
One of the reasons is the fact that a well-established validation of regional strain imaging is
still missing at the moment, despite the existence of a large number of dedicated quantification
algorithms both in US [7] and tagged MR [299]. A comprehensive and thorough quantitative
validation of these methods based on dense strain measurements would thus represent a major
progress. Several groups already made some initial attempts towards this objective. Synthetic
US [5, 94, 205], cine MR [205][94] and tagged MR [50][300] images were generated. They all
adopted computer-generated synthetic sequences for validating motion tracking for one specific
image modality. The interest in using synthetic images has been well detailed in several studies
[5][205]. Their main advantage is the straightforward possibility of assessing the accuracy of
algorithms by comparing their performance against the controlled (and thus known) ground-
truth deformations. Nonetheless, the utility of such synthetic images depends heavily on the
realism of the simulations. Lots of efforts have been made this last decade to improve the realism
of cardiac synthetic images in each modality, as described in Sec. 3.

The remainder of the chapter is organized as follows.

— Sec. 2 : Review of state-of-the-art methods in cardiac motion estimation ;
— Sec. 3 : Review of state-of-the-art methods in cardiac simulation ;
— Sec. 4 : Overview of a novel pipeline specifically designed to simulate realistic synthetic

US and MRI sequences from the same virtual patients ;
— Sec. 5 : Detailed description of an anatomical deformable model to efficently quantify

myocardial motion field and strain at once ;
— Sec. 6 : Conclusions of this chapter.

2 State-of-the-art in cardiac motion estimation

2.1 Cine MR

Cardiac cine MR is widely used in clinical practice due to its high soft-tissue contrast,
especially between the myocardium and the neighboring blood pools. The endocardium and
epicardium can therefore be accurately segmented. The temporal resolution is also high enough
to do motion tracking over the cardiac cycle. By tracking the endo and epicardial borders over
the whole cycle, global indexes such as left ventricle ejection fraction is easily quantified. It
is widely accepted as the reference modality for quantifying global cardiac function. However,
inside the muscle, cine MR shows nearly spatially constant intensities. Different from cardiac
ultrasound, there are no natural markers that ”tags” the myocardium. Dedicated strategies have
been thus developed in order to quantify regional cardiac deformation despite the lack of natural
tagging. They can be roughly classified into two categories.

Feature tracking

Hor et al. [106, 107] developed a feature tracking method applied to cardiac cine MR images.
Endocardial and epicardial borders were manually drawn at ED frame. The myocardial border,
as well as the columns of pixels radiating out from the endocardium, were then automatically
propagated through the cardiac cycle by matching individual patterns that represent anatomical
structures [107]. These were identified by the method of maximum likelihood between the regions
of interest of consecutive frames. Myocardial strains were then computed from the tracking
field. Similarly, Maret et al. tracked the myocardial borders from cine MR images and showed
that displacement and strain in the radial and longitudinal direction could be used for the
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detection of transmural scar [161]. Recently in [168], myocardial strain quantified from cine MR
feature tracking was compared with tagged MR quantification results. The authors claimed that
sufficient agreement was found between the two imaging modalities and feature tracking was
considered as potentially feasible and rapid alternative. Similarly in [256] and [40], cine MR
was shown capable of obtaining normal values for myocardial strain measurements on healthy
volunteers and detecting myocardial fibrosis in pediatric hypertrophic cardiomyopathy.

Several other groups also tracked myocardial motion from cine MR images in a similar way. In
[213], myocardial contours were first segmented by a B-spline explicit active surfaces technique,
and then tracked throughout the heart cycle by an anatomically constrained optical flow method.
Lin et al. proposed a generalized robust point matching framework to track the motion of left
ventricle [176]. The displacements of myocardial borders obtained by robust point matching were
further regularized by the free-form deformation model. Shi combined image-derived information
(the tracked myocardial surfaces) and mechanical modeling of the myocardium and solved for
deformations by finite-element models et al. [240].

Registration-based methods

Others regarded the motion tracking as a non-rigid registration problem. They aimed to estimate
appropriate non-linear transformation fields, from which cardiac motion and strain were further
derived. Sundar et al. used a 4D image registration method to estimate cardiac motion [252]. An
attribute vector for every point in the image was used to contain information about intensity,
boundary, and geometric moment invariants. Perperidis et al. proposed two B-spline-based
free-form deformation methods for the spatiotemporal alignment of cardiac cine MR image
sequences [198]. The two B-splines methods use the same transformation but differ in the order
of the optimization process. One performed a combined optimization with spatial and temporal
components. The other optimized each component separately. Cardiac deformations were then
computed from the transformation field. Recently, Tsadok et al. applied non-rigid registration
to cine MR images and observed that the regional longitudinal strain estimates correlated highly
with tagged MR and STE [266].

2.2 Tagged MR

Tagging of myocardial tissue using MRI was first introduced by Zerhouni et al. [293]. The
magnetization of the tissue is labeled or tagged by applying a spatially modulated saturation
radiofrequency (RF) pulse before the actual MR imaging procedure. The tagging preparation
sequence is played out at end-diastole upon detection of the ECG R-wave in planes perpendicular
to the imaging plane. Since magnetization represents a characteristic tissue property, saturated
regions are moving with the underlying tissue and displayed as black lines in the acquired
images. By tracking these black lines, cardiac tissue can be tracked. Due to the T1 relaxation,
the initially modulated magnetization tend to gradually return to its thermal equilibrium state.
In the final image, this induces a progressive loss of contrast in the tags, known as tag fading
[187]. As a result, the tags are only visible during a limited time period. Nonetheless, at 1.5T,
the T1 relaxation time of healthy myocardium is about 850ms and therefore long enough to
study cardiac contraction during the entire duration of a cardiac cycle. Since its introduction in
the late 1980s, cardiac tagged MR has triggered the development of a wide spectrum of strain
quantification methodologies. Some of them were specifically tailored for tagged MR. Some
others are generic methodologies that were readily applied to tagged MR images. In the sequel,
we focus on the methods that were specifically developed to tagged MR. Those methods can be
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divided into four categories. These categories are rather separated, opening up the possibility
of combining their respective advantages. Also, most of these methods were only applied to 2D
tagged MR and adaptations to 3D are currently in an early stage [229], or focus on multiplanar
[149, 189] rather than the volumetric acquisition protocol of Rutz et al. [229].

Detection-based methods

A first option retained by Young et al. and Amini et al. was to first detect the tags planes or
intersections and then to track these extracted features. Amini et al. detected tag planes by
B-spline surfaces and tracked sparse myocardial beads [10]. Young et al. used an active contour
model to track the tag lines in images and then interpolated a 3D dense motion by a finite-element
model [292]. In [291], the tagging stripes were detected by a Gaussian-shaped filter and matched
by a line searching algorithm. The obtained sparse displacements were further regularized by a
finite-element model defined in the local radial, longitudinal and circumferential directions. Chen
et al. applied Gabor filters to detect tag line intersections which are further used to initialize a
meshless deformable model [46].

HARP

HARP is another tagged MR-specific method that became a reference in this modality [186]. A
first step in HARP is to compute phase images. They are computed by applying a band-pass
filter in the Fourier domain. Back to the spatial domain, the tracking is then performed on
phase (rather than intensity) images. The main rationale for substituting intensity by phase is
to improve robustness against tag fading. The overall tracking procedure can be interpreted
as an optical flow performed jointly on two “channels”, each channel corresponding to one
tagging direction. Because the number of tagging directions equals the number of components
of the displacement field, the aperture problem simply disappears. The estimation of HARP
displacements was further improved when introducing the CSPAMM protocol, enabling the use
of a wider k-space HARP filter [133]. However, unlike traditional optical flow algorithms, HARP
does not integrate any spatial regularization. As strain is computed from the spatial derivatives
of trajectories, one expects that outliers in the reconstructed motion field will yield high errors
in the strain field. The HARP community also proposed several strategies for addressing the
limited capture range of tagged images. Indeed, the periodicity of tagged images prevents to
recover displacements exceeding one-half of the tag spacing. Osman proposed an initialization
scheme by sorting the list of points to be tracked [186]. Points with expected smaller motion are
tracked first and the tracking result is used as initialization to neighboring points. This concept
was further developed in [150] where the order is optimized through solving for the shortest
path on a graph where each edge has a cost related to phase continuity between neighboring
voxels in the image. However, the integration of an order to the point-wise tracking is somehow
dangerous. Indeed, “tag jump” errors will be propagated to all subsequent points in the list.

SinMod

The SinMod algorithm has recently emerged as an alternative to HARP [14]. In the local
environment of each pixel, the intensity distribution is modeled as a sinusoid wave orthogonal
to the tagging direction. Then both the local frequency and the inter-frame phase shift are
computed. The ratio of these two quantities gives an estimate of the displacement when combining
the different tagging directions. SinMod was shown to be as fast as HARP and have advantage
in accuracy and robustness to image noise. Yet, the ability of tracking large myocardial motion
(superior than half tag spacing) remains to be further verified. Also, the absence of any spatial
regularization makes strain estimates very sensitive to tracking errors when extracting spatial
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derivatives.

Gabor-based methods

Qian et al. proposed to compute strain directly from the image without tracking the myocardial
motion [211]. The idea is to filter the intensity images through a Gabor filter bank for retrieving
the local orientation and spacing of the tags. This gives a direct access to tissue deformation,
without the need of computing displacements. This concept was further extended by Kause et
al. where the deformation gradient was directly evaluated from the frequency covector fields
[125]. The authors claim that it makes their strain estimate independent to any tracking result.
However, they overlook that a tracking is always required for reporting strain evolution at all
time points per material point.

2.3 Echocardiography

In the fields of cardiology and medical imaging, speckle tracking echocardiography (STE)
is an echocardiographic imaging technique that analyzes the motion of tissues in the heart by
using the naturally occurring speckle pattern in the myocardium when imaged by ultrasound
insonification. 2D STE was introduced for estimating myocardial deformations [181, 219]. STE
represents a noninvasive method of evaluating regional cardiac deformations, which is a valuable
tool for the characterization and quantification of local myocardial deformations. The speckle
pattern is a mixture of interference patterns and natural acoustic reflections, refraction and
scattering [219]. The pattern is generated randomly and each region of the myocardium has a
unique speckle pattern that allows the region to be traced from one frame to the next. The
speckles stay relatively stable, at least during several frames when the acquisition frame rate is
high enough compared to the dynamic of the structure of interest. The movement of the kernel
across the image can thus be tracked. The speckles are therefore used as natural acoustic markers
for ”tagging” the myocardial motion during the cardiac cycle. By adopting a frame-to-frame
tracking approach, the complete LV wall motion throughout the sequence can be accurately
recovered. In principle, speckle can be tracked in both the axial and lateral dimensions. However,
the axial resolution of the ultrasound is far better than the lateral. The tracking ability is
thus decreased in the lateral direction. Moreover, the lateral resolution decreases with imaging
depth, hence further limiting the tracking ability. Over the last decade, several speckle tracking
techniques has been developed in order to quantify regional cardiac deformations. They can be
roughly classified into four categories.

Block matching

B-mode block matching : Block matching algorithms such as [56, 69] represent the conventional
implementations on many existing commercial systems. In these approaches, myocardial tissue
is divided in blocks that are tracked throughout the cardiac cycle. For each local block, an
exhaustive search is performed over a predefined search window in order to find the most
similar patch at the next frame. Similarity can be defined in several ways. For instance, in
[69], the authors chose the normalized cross correlation. The independently tracked patch-wise
displacements are then regularized after block matching by interpolation and filtering, aiming
to ensure a smooth estimate of myocardial motion.

RF block matching : The same concept was equally applied to the raw radiofrequency (RF)
data (modulated signal derived at the first step of the beamforming process). In [152] and
[47], block matching was performed on the RF images. Both studies showed that reasonable
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cardiac deformations could be recovered. However, RF block matching can only handle small
deformations [47]. The current 3D echocardiographic commercial systems have a relatively
low temporal resolution, leading therefore to relatively large deformations between subsequent
frames. The applications of RF tracking to clinics remains an issue. Consequently, it still remains
unclear whether RF speckle tracking is preferable to the conventional B-mode tracking for this
particular task [7].

Optical flow

Intensity-based optical flow : Optical flow has been applied for contour tracking in ultrasound
[70]. By assuming that the intensity of a particular point in a moving pattern does not change over
the image sequence, local motion vectors are solved either locally on independent image patches
or globally using spatial smoothness terms as regularization. The demons algorithms represent
a computationally efficient simplification of the optical flow problem [247, 257]. Somphone et
al. developed a sparse implementation of the demons algorithms [247].

Phase-based optical flow : Optical flow was applied not only to B-mode intensities but
also to phase images [3, 8]. Alessandrini et al. chose to perform the optical flow tracking on
monogenic phases computed from the ultrasound intensity images [3]. They showed that the
displacement estimated from the monogenic phase is robust to possible variations of the local
image energy. Large deformations were coped with by recursively applying the estimation in a
pyramidal refinement scheme.

Elastic image registration

Elastic image registration provides an alternative method to compute a smooth dense defor-
mation field from 3D cardiac ultrasound image sequences [55]. Cardiac motion fields were
represented efficiently by a set of B-spline basis functions. Diffeomorphic free-form deformation
models were then used for registering echocardiographic images in time. Recently in [104],
an elastic registration model was proposed to register the ultrasound images resampled in an
anatomical space. The ultrasound images were first resampled to an anatomical domain of the
heart following the radial, longitudinal and circumferential directions. The resampled images
were then registered by a classic free-form deformation algorithm which allowed the further
derivation of local motion and strain fields.

Prior model-based tracking

All of the methods mentioned above tracked the cardiac motion without using any prior information.
In fact, priors can be embedded in statistical or physical forms in order to improve the motion
tracking accuracy [143, 192]. For instance, Leung et al. used a statistical model of cardiac
motion for regularizing optical flow tracking results [143]. Similarly, in [192], the authors used a
transversely isotropic linear elastic model for regularizing shape-based tracking correspondences.

3 State-of-the-art in cardiac simulation

3.1 Cine MR image simulation

Tobon-Gomez et al. and Wissmann et al. simulated cardiac cine MR image sequences based
on the XCAT phantom [237, 259, 285]. In [259], a tissue segmentation (or labeling) was performed
where different tissue types were associated with relevant T1, T2 and proton density (PD) values
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obtained from the literature. The static T1, T2 and PD maps at end-diastole (ED) were then
warped by cardiac motion obtained from the XCAT phantom. Finally, at each time frame, an
MR simulator was used to generate the cine MR images. Wissmann et al. directly simulated
image intensities by signal equations instead of using an MR simulator [285]. They claim that
this choice facilitates the simulation of sampling strategies, trajectory optimization and post-
processing methods [285]. Haddad et al. and Glatard et al. also synthesized 3D+t cardiac cine
MR images [94, 99]. They adopted a similar approach to that presented in [259] by combining
a beating heart model with an MR simulator. The main difference is in the heart model, which
is extracted from real acquisitions as described in [98]. Recently, Prakosa et al. developed a
pipeline that combines an electromechanical model (E/M) of the heart with template acquisitions
for generating realistic cine MR data [205]. The E/M model has the benefit of relating the
contraction law with its biophysical causes which allows for a more realistic incorporation of
physiological and pathological conditions. The template cine MR sequence was registered to the
first frame, yielding a ”frozen” sequence. This sequence was then warped with the simulation
results to create synthetic images.

3.2 Tagged MR image simulation

Compared to cine MR, little work has been done in simulating cardiac tagged MR. Crum et
al. simulated the LV in short axis slices [57]. They modeled the corresponding anatomy using
a simple ring shape. Using a motion directly computed from a real cine MR sequence, the
authors warped the initial simulated ED image to the rest of the sequence. The tagging pattern
was simulated by applying a sinusoidal modulation function in the spatial domain. Later in
[58], Crum et al. improved the generation of tag intensity profiles by using a frequency-domain
model. Similarly, Waks et al. used a prolate sphere to mimic the LV geometry and a 13-parameter
kinematic motion model [278]. The model parameters were determined by a least-squares fit to
the displacements of the implanted markers tracked from a dog heart acquisition. Sermesant
et al. segmented myocardium from a real tagged MR image and further added tag lines to the
binary mask [238]. Finally, this image was warped by cardiac motions generated by the E/M
model. Clarysse et al. warped a real short-axis tagged MR image by a simple kinematic mode-
based heart motion model [50]. However, the motion model was too simplistic to represent the
complexity of true heart motion. Similarly, in our previous work presented in [300], a normal
cardiac motion pattern was first simulated by the E/M model, and a real acquisition was further
deformed for assigning realistic image intensities. However, only one tagged MR sequence of a
healthy heart was simulated.

3.3 Echocardiography image simulation

Existing simulation techniques mostly combine two elements : one model for anatomy and
motion of the myocardium and one ultrasound simulator to mimic the image formation process.
In this context considerable efforts have been spent in order to have the most realistic models for
anatomy and motion and the most physically sound and computationally effective ultrasound
simulations.

Preliminary work making use of synthetic cardiac US sequences include the ones in [20]
and [250], where an annular shape was adopted to represent a LV short-axis cross section
in combination with a radial motion model to account for contraction and expansion. Since
the introduction of 3D scanners, modeling the whole muscle in 3D has received considerable
attention. For example, a truncated prolate spheroid was employed in [79] to model the LV
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shape in 3D with a complex kinematic model to rule the motion pattern. In [72] a truncated
ellipsoid was adopted for both ventricles to which an electromechanical model of cardiac motion
was applied [231]. Finally, in [54], the geometry was obtained through segmentation of cine
MR images, while the Bestel-Clement-Sorine (BCS) electromechanical model [159] was used for
computing deformation through the cardiac cycle. As compared to kinematic models, electro-
mechanical ones have the benefit of directly relating the contraction law with its biophysical
causes which allows for a more realistic incorporation of physiological and pathological conditions.

Regarding ultrasound simulators, FieldII [117], [115] is commonly considered as the state-
of-the-art for linear acoustics : it provides a library for the calculation of pressure fields from
arbitrarily shaped and apodized transducers. Nevertheless the computational burden associated
to FieldII makes it unfeasible for simulating large data-sets, especially in 3D. In this context,
COLE [88] was recently introduced as a fast alternative for generating 3D ultrasound sequences :
it accelerates the convolution of a 3D point spread function by multiple 1D convolutions while
allowing the integration of various simulated or measured beam profiles as a lookup table.

Ultrasound simulators typically model the tissue response as a collection of point scattering
centers. To account for the different acoustic impedance between the myocardium and the blood
pool all aforementioned frameworks proceed in the following binary fashion : high amplitude
is assigned to scatterers inside the muscle and a low amplitude to the ones outside. As a
consequence, the level of realism of the resulting ultrasound images remains highly unsatisfactory :
surrounding structures such as papillary muscles and heart valves are neglected as well as typical
artifacts such as reverberations, clutter noise, signal dropout and local intensity variations due
to changing cardiac fiber orientation (see Fig. 1(a)). All these elements are critical as they have
a major impact on the performance of algorithms for motion/deformation estimation.

Two solutions represented a considerable leap forward in this scenario [206], [8]. In those
works, instead of a simple binary mask, a real ultrasound recording was used as a template to
obtain realistic speckle textures. By doing so, surrounding structures and ultrasound artifacts
were directly transferred from the template to the simulation (cf. Fig. 1(b) and (c)). However,
both techniques suffer from intrinsic limitations. In [206] the synthetic sequence was obtained
by warping the B-mode pixel data of the template acquisition according to the benchmark
motion field obtained from a BCS model [159]. Such an approach unavoidably introduced un-
realistic warping artifacts in the simulated speckle texture (cf. Fig. 1(b)). In particular, the
framework enforced an unrealistically high temporal speckle correlation which could mislead
the performance assessment of speckle tracking algorithms. To avoid this, in [8] an ultrasound
simulator (FieldII) was used to handle the generation of the synthetic images independently.
Hereto, the template sequence was used to compute the amplitude distribution of the scatter
map fed to the ultrasound simulator. As compared to [206], the approach allowed generating
considerably more realistic speckle images (cf. Fig. 1(c)). The synthetic motion was then obtained
by applying the motion field estimated from the template sequence using the spatio-temporal
elastic registration technique in [140]. This represented a main limitation since i) no control on
the simulated motion was possible, ii) motion estimation errors in the template sequence were
directly reflected on the simulated motion and iii) the benchmark displacement/deformation
was naturally biased towards the registration technique employed in [140] and hence unsuited to
benchmark generic motion estimation algorithms. Moreover, the approach in [8] was proposed
only for 2D ultrasound.
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Figure 1 – Synthetic echocardiographic images used in [54] (a), [206] (b) and [8] (c). All
techniques present intrinsic limitations which limit their usability as benchmarking tools. The
solution in (a) employs a simplistic speckle model (i.e. high speckle intensity inside the muscle
and low intensity outside) leading to unrealistic binary-like images. In (b) the simulated cine-
loop is obtained by warping the B-mode pixel images of a real recording, thus producing
texture warping artifacts. In (c) the presence of warping artifacts is avoided by using an ultra-
sound simulator. Yet, the reference motion field is computed by applying an elastic registration
technique to the real recording working as template and therefore i) no control on the simulated
motion is possible, ii) errors of the registration algorithm are directly reflected on the simulated
motion and, moreover, iii) the benchmark displacement is biased towards the elastic registration
technique employed. The pipeline described in this paper overcomes such limitations
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4 1st contribution : realistic synthetic US and MRI sequences
from the same virtual patients

In this section we present a novel pipeline specifically designed to simulate realistic synthetic
US and MRI sequences from the same virtual patients. This pipeline is based on an efficient use
of real clinical recordings and an electromechanical (E/M) model to generate realistic texture
with controlled motion. The obtained results were analyzed to assess the degree of realism. This
work has been the subject of several publications [4, 5, 7, 54, 301].

4.1 Motivations

Thanks to the litterature review proposed in Sec. 3, it appears that the different simulation
pipelines suffer from a lack of realism, whatever the simulated modality. Based on this observation,
we developed a pipeline to generate realistic 3D cardiac US, cine and tagged MR sequences from
the same virtual patient. The proposed simulation pipeline consists of three main elements : i) use
of real clinical recordings to extract relevant information to improve the realism of the generated
images ; ii) involvement of an E/M model of the heart [158] to generate healthy and pathological
synthetic motion field used as reference ; iii) use of physical simulation environments to model
image formation with the possibility to introduce complex effects such as tag fading for tagged
MR or speckle decorrelation for ultrasound. The proposed extended pipeline was used to create
a database of 18 virtual patients including healthy and various pathological cases, i.e. ischemia
and dyssynchrony. For each patient, benchmark sequences of 3D US, cine and tagged MR were
generated. We generated a total of 90 synthetic sequences representing 2700 image volumes.
The synthetic sequences along with the corresponding reference motion fields are made publicly
available via an open-access database (http://humanheart-project.creatis.insa-lyon.fr/
multimodalityStraus.html).

4.2 Overview

A schematic view of the developed pipeline is shown in Fig. 2. Each block specifies the
number of the subsection where it is described in detail. Briefly, real acquisitions (cine/tagged
MR) are used as template sequences (Sec. 4.3) for deriving realistic textures. The first step
is to segment the right ventricle and the left ventricle on the first frame of cine MR template
sequence (Sec. 4.4.1). The E/M model is then applied to the segmented 3D geometry to simulate
one cardiac cycle (Sec. 4.5.1). For each frame of the simulated sequence, US, cine and/or tagged
MR images are generated from a physical simulator which takes relaxation times T1 and T2 and
proton density maps as inputs for MR simulations (Sec. 4.4) and a scattering map as input
for US simulations (Sec. 4.7.1). To achieve realistic texture, proton density maps (respectively
scattering maps) are derived from the MR (respectively US) template recordings. This requires
a dedicated spatio-temporal alignment between the simulations and the template recordings
(Sec. 4.6). As such, the pipeline will generate synthetic US, cine and tagged MR sequences
with a fully controlled deformation field and with a texture visually similar to the one of the
corresponding template recording.

131

http://humanheart-project.creatis.insa-lyon.fr/multimodalityStraus.html
http://humanheart-project.creatis.insa-lyon.fr/multimodalityStraus.html


Cardiac motion estimation : toward robust strain estimation

F
ig

u
r
e

2
–

P
ro

p
os

ed
p
ip

el
in

e
fo

r
th

e
si

m
u
la

ti
on

of
re

al
is

ti
c

ca
rd

ia
c

U
S

,
ci

n
e

an
d

ta
gg

ed
M

R
se

q
u
en

ce
s.

132



4. 1st contribution : realistic synthetic US and MRI sequences from the same virtual patients

4.3 Template image sequences

3D template recordings used in this study come from the open access database provided in
[258]. For each volunteer, one US, one cine MR and three tagged MR sequences were acquired.
The MR datasets were acquired using a 3T Philips Achieva System (Philips Healthcare, Best,
The Netherlands). The MR sequences processed by the participants were cine steady state free
precession (SSFP) [236] and 3D tagged MR (3DTAG) [230]. Cine MR images were acquired
during breath-holds of approximately 15 seconds and were gated to the vector ECG. 3DTAG
datasets were obtained with three sequential breath-hold acquisitions in each orthogonal directions.
Since MR images were acquired in the same patient coordinate system, cine and tagged MR
sequences are naturally aligned in space. A set of 24 manual landmarks identifying the same
keypoints in all the modalities allows the derivation of a simple rigid transformation to pass from
MR to US coordinates. These landmarks are evenly distributed over the LV, with 8 landmarks
at each of the three ventricular levels (basal, midventricular, apical) [258]. All the acquisitions
represent one cardiac cycle. The US template has a spatial resolution of 0.82× 0.83× 0.73 mm3

while the cine and tagged MR templates have spatial resolutions of 1.25× 1.25× 8.08 mm3 and
0.96× 0.96× 7.71 mm3.

To make the explanation of the full pipeline easier, we first describe the MR simulation from
Sec. 4.4 to Sec. 4.6. Based on the derived formulation, we then give details on the ultrasound
simulation (Sec. 4.7).

4.4 MR modeling

We used the ODIN simulator [121] to generate both cine and tagged MR images. ODIN is
a physical simulator which allows either the selection or the design of specific MR sequences.
To simulate one 3D image, ODIN requires T1, T2 and proton density maps as inputs. In this
study, we used the same T1 and T2 maps to generate both cine and tagged MR sequences for
each virtual patient, only the proton density maps were computed separately for each modality
and for each time instant of the simulated sequence. The first step of the proposed MR pipeline
is the computation of the initial T1 and T2 maps for the first frame. We first describe how these
initial maps were generated. We then give details on the way they were extended to all time
frames.

4.4.1 Heart segmentation

Because we assign different T1/T2 values per structure, we first need to segment the initial
template image into different classes, i.e. myocardium, blood, lung and air. Since cine MR
provides the best image contrast and since all the template modalities can easily be mapped, it
represents a natural choice to extract the heart geometry. We first used the VP2HF segmentation
pipeline proposed in [96] to segment the myocardium and the underlying blood pools. We then
segmented the lung and the air outside the body thanks to simple mathematical morphology
operations. Finally, the remaining unlabeled pixels were classified by thresholding : high intensity
pixels belonging to blood and the rest to muscles. Fig. 3(b) shows a typical segmentation result
obtained by using such procedure.

4.4.2 Initial T1 and T2 maps

We assigned T1 and T2 maps using published reference mean and standard deviation values
(denoted as u and σ) available from [259]. At each pixel location, T1 and T2 values were randomly
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(a) cine MR at ED (b) labeling (c) T 0
1 (d) T 0

2

Figure 3 – Illustration of the different steps involved to simulate the initial T1 and T2 maps
relative to the first frame (ED).

sampled from Gaussian distributions, yielding initial static maps denoted as T 0
1 and T 0

2 (see
Fig. 3(c) and 3(d)). The relevant u and σ values used in this study are listed in Table 1.
Moreover, since the myocardium is our region of interest, a dedicated strategy was applied to
better control its underlying texture. Indeed, since tagged MR intensity changes contain strong
T1 information, it is possible to deduce relevant local and structural T1 values from image
intensities. In particular, temporal intensity changes of the CSPAMM tagged MR sequence can
be described as follows [85] [280] :

Intag = I0
tag exp

{
−n∆t

T1

}
sin(αn)

sin(α0)

n−1∏
j=0

cos(αj), ∀n ≥ 1 (1)

where ∆t is the temporal resolution, n is the frame index and Intag is the tagging intensities
of the material point at frame n. αn corresponds to the RF flip angle at frame n and can be
easily computed from the method described in the appendix of [301]. Eq. (1) thus gives access
to T1 information from the intensity changes of the tagged MR template sequence. In order to
accurately estimate the T1 map of the myocardium, the following procedure was repeated for all
pixels belonging to this region. For a given point at ED, we tracked it through the entire tagged
MR template sequence (this step is later described in Section 4.5.2). This gives a sequence of
intensities Intag for all time instants. The corresponding T1 value was then estimated from linear
least square minimization problem :

arg min
T1

∑
n

(
log
( Intag sin(α0)

I0
tag sin(αn)

n−1∏
j=0

cos(αj)

)
T1 + n∆t

)2

(2)

Since there are three template sequences of tagged MR images per subject (Section 4.3), we
derived three different T1 values for the same myocardium point. A median filtering was then
applied for removing possible outliers, yielding the final T 0

1 myocardial map as shown in Fig.
3(c).

4.4.3 Dynamic T1 and T2 maps

Since each frame of the simulated sequences was generated independently, the initial T 0
1 and

T 0
2 maps previously described had to be extended over time. This was achieved by a dedicated

warping strategy described in Section 4.6. The corresponding dynamic maps are denoted as T k1
and T k2 , k indexing the simulation frame.
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Table 1 – T1 and T2 reference values attached to each label of the segmented cine MR image.

Label Class
T1 (ms) T2 (ms)

u σ u σ

0 Air 0 0 0 0
1 Blood 1516 21 189 26
2 Myocardium 982 46 54 12
3 Lung 1199 117 79 29
4 Other (low) 549 52 49 20
5 Other (high) 1516 21 189 26

4.4.4 Proton density maps

For each simulation frame, we further computed the proton density map from the corresponding
template recordings. This ensures the generation of a texture visually similar to the one of the
underlying template. To this aim, one needs to spatially and temporally align each frame of
the simulated sequence with its counterpart in the template sequence. This was achieved by a
dedicated warping strategy detailed in Section 4.6. The outputs of this step correspond to a set
of warped templates denoted as Ĩkcine and Ĩktag and aligned with each simulation frame k.

Cardiac cine MR images were acquired using the balanced steady state free precession
(bSSFP) MR sequence [236]. The proton density map ρkcine of frame k can then be computed
from the corresponding warped template [236] :

ρkcine = Ĩkcine

√
T k1 /T

k
2 (3)

For tagged MR, the characteristics of the CSPAMM sequence provide the following ρktag map
[280] :

ρktag = Ĩktag exp
TE
T∗
2 /sin(αsk) (4)

where αsk corresponds to the simulated RF flip angle, where TE is the echo time here set to
21 ms. T ∗2 corresponds to the effective spin-spin relaxation times and are here approximated by
the relaxation time T2 [97]. We thus assume T ∗2 = T k2 in the sequel.

4.4.5 ODIN simulation

Each frame k of the simulated sequences was independently generated from ODIN by using
the T k1 , T k2 and ρkmod maps derived above (with mod = cine or tag) as inputs. For the sake of
simplicity, we decided to use the same resolution for those maps and the generated output MR
images. Moreover, since we wanted to reproduce as close as possible the template recordings,
we used the image properties (origin, spacing, size and axis orientations) of the template cine
and tagged MR as reference. This defines the pixel positions of the simulated images for each
modality. The T k1 , T k2 and ρkmod maps were thus interpolated to those pixel positions before being
passed on to ODIN. We used respectively the odinfisp and odinepi MR sequences available under
ODIN for simulating cine and tagged MR images. Indeed these sequences are consistent with
the corresponding real acquisition protocol, i.e. the bSSFP for cine sequence [258] and the EPI
for tagged sequence [230].
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4.5 Cardiac motion

As commented in Section 4.4.1, the first frame of the template cine MR sequence was
segmented into different classes including myocardium region (LV and RV). From this mask,
a volumetric mesh (both LV and RV) was generated using [5] and propagated to all further
simulation and template image time frames as described hereinafter.

4.5.1 E/M simulation

From the myocardial mask of the first frame, a tetrahedral mesh was generated using the
CGAL 12 meshing software [2] and passed to the E/M simulator which generated as output a
sequence of volumetric meshes Sk. The E/M simulator applies the Bestel-Clement-Sorine model
which estimates the electrical activation and the resulting mechanical contraction [158] and is
implemented in the SOFA framework 13. This model was chosen for its realistic properties and
it complies with the four cardiac phases (isovolumic contraction, ejection, passive and active
filling). Cardiac fiber orientations were estimated with a rule-based method (elevation angle
between -70◦ to +70◦) in order to model the E/M anisotropy. It has already shown its efficiency
in the generation of realistic US sequences [5]. A number of biophysical parameters such as the
local myocardial contractility, stiffness and conduction governs the E/M equations. By varying
those parameters, both normal and pathological cardiac motion fields can be simulated. For
each patient, we generated in this study one healthy, one dyssynchrony (LBBB) and four realistic
ischemic hearts. For the dyssynchony, only the right endocardium was initially activated. For the
ischemia, varying scar locations with random and realistic shapes were simulated [75] in parts of
the LV where arterial occlusion can occur : one for the Left Anterior Descending artery (LAD),
one for the Left Circumflex (LCX), and two for Right Coronary Artery (RCA). Corresponding
figures could be found in the supplementary materials of our paper [301].

4.5.2 Motion Tracking

Since the cine and tagged MR were acquired under the same coordinate system, we used
the tagged MR sequence to perform the tracking. The LV and RV of the first E/M model
mesh S0 (the E/M model and the template are naturally aligned at the first frame) were
extracted and processed separately by two state-of-the-art algorithms in order to maximize
the tracking accuracy. The LV border was tracked using the HarpAR algorithm given its good
ability in estimating myocardial deformations, especially the radial strain [299]. The sparse
Demons algorithm was then selected to perform RV tacking given its good tracking accuracy
and its low computational cost [247]. The output of this procedure corresponds to a unique
sequence of segmented meshes Rt attached to both cine and tagged MR.

4.6 Template Warping

As described in Section 4.4.4, a spatio-temporal alignment between the template sequences
and each simulation frame is needed to derivate the proton density maps. We developed a novel
warping framework to tackle this problem. Similar to [5], we used two different strategies to
deal with the myocardium and the surrounding structures (named as background in the sequel),
however we introduce the following innovative aspects : i) we developed a dedicated strategy
to ensure smooth transition at the interface between the myocardium and the background ; ii)

12. the open source Computational Geometry Algorithms Library (CGAL) is available at www.cgal.org.

13. https://www.sofa-framework.org/
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we introduced a model to handle temporal myocardial intensity changes over the cardiac cycle.
Each step of the proposed procedure is detailed hereunder.

4.6.1 Generic transformation model

Similar to [5], we used myocardial landmark points extracted from the two sequences of
meshes Sk and Rt to compute displacement fields. In this study, we added static background
landmarks (denoted as B) to avoid non-physiological movement of the structures surrounding the
heart muscle. These landmarks were detected from the cine MR template sequence. In particular,
for each pixel position, we computed the variation of cine MR intensity over the whole sequence
and we kept the points with the smallest variation and with a minimal spacing of 5 mm. For
each simulation, the number of static background landmarks was fixed to 200.

The goal of the introduced generic model was to compute a global transformation to efficiently
match a source space (represented by the heart mesh M0) with a target space (represented by
the heart mesh M1) where M0 and M1 share the same number of points. In both spaces, we
assumed the presence of the same static background landmarks B. The transformation maps one
pixel x of the source space to a corresponding position y in the target space. As stated above,
different transformation strategies were applied to the myocardium and the background.

Regarding the myocardial points, since they all lie inside the volumetric mesh M0, the
corresponding transformation was directly computed from the two volumetric meshesM0 → M1.
The barycentric coordinates of x in meshM0 were evaluated. From these barycentric coordinates
and the node positions of the target meshM1, we computed the absolute coordinates. This gave
the matched position y. This procedure is denoted as y = MESH{M0→M1}(x).

(a) initial cine MR image at ED (b) image deformed to ES

Figure 4 – Illustration of the use of the generic transformation model. The ED cine MR image
was warped to ES by the generic transformation. The grid superimposed on the image shows the
corresponding deformation. The myocardium and the background are shown in red and green
respectively. The generic transformation was computed from the ED/ES simulation meshes and
the static background points.

Concerning the background points, we used the Thin Plate Spline (TPS) algorithm to model
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the underlying transformation. We randomly selected a fraction of mesh points (800 points in all
the simulations) which, together with the static landmarks, were used to parameterize the TPS
algorithm. This procedure is denoted as y = TPS{M0,B→M1,B}(x). The overall transformation
can thus be written as :

T{M0,B→M1,B}(x)

=

{
MESH{M0→M1}(x), if x ∈ Myocardium

TPS{M0,B→M1,B}(x), otherwise

(5)

Fig. 4 shows an example of the use of the generic transformation defined by Eq. (5) to derive a
deformation map between two time instances.

4.6.2 Temporal alignment

Temporal alignment was performed by linearly stretching/shrinking the time axis of the
template recording in order to match relevant cardiac events used as temporal landmarks in
the simulation sequence. In this paper, ED and ES time events were chosen as landmarks. Each
frame k of the simulation was matched to a cardiac time (ms) in the template sequence by the
φ operator defined as :

φ(k) =


tes

kesk, if k ≤ kes

tes + k−kes
K−kes (tmax − tes), otherwise.

(6)

K is the number of simulated frames and kes corresponds to the ES frame index. Similarly, tmax

is the template cardiac cycle while tes refers to the template ES timing. Both the template cine
and tagged MR sequences were resampled to cardiac timings φ(k), with k ∈ [0,K − 1]. In each
template sequence, the two frames with the cardiac times closest to φ(k) were found. These two
images were then linearly interpolated to φ(k), producing template sequences temporally aligned
with the simulation frames and denoted as Íkmod.

4.6.3 Spatial alignment

After temporal synchronization, spatial alignment was needed to align the resampled images
Íkmod with the corresponding E/M geometry Sk. To this aim, the generic transformation introduced
in Sec. 4.6.1 was used, yielding to the following expression :

Îkmod = Íkmod ◦ T{Rφ(k),B→Sk,B} (7)

where Îkmod is the warped template image aligned both in time and space with the corresponding
simulation mesh Sk. The full spatio-temporal alignment strategy is given in Fig. 5.

4.6.4 Motion Correction

The warped template sequences Îkmod rely on motion tracking which may introduce artifacts
in the synthetic images by adding an apparent residual motion to the true motion given by the
E/M model. Contrary to [205], we introduced in this study a dedicated strategy that corrects
the myocardial motion in the warped sequences. To ensure a coherence with the E/M model,
the myocardial intensities of each frame of the simulated sequences were sampled from the
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Figure 5 – Illustration of the temporal and spatial alignments described in Section 4.6.2 and
4.6.3 respectively. The myocardium is segmented at ED. The static background points are shown
as black dots surrounding the mesh. The segmentation mesh is first tracked in the template
sequence, yielding the tracking meshes Rt shown in red (the upper row). Then, the E/M model
is exploited for simulating myocardial deformations starting from the same segmentation mesh,
leading to another sequence of meshes Sk shown in the lower row. Each simulation frame k is
mapped to a cardiac time φ(k) of the template through the temporal alignment. The spatial
alignment T{Rφ(k),B→Sk,B} then register the template image to the corresponding simulation mesh
Sk.

first template images. This was achieved by deforming I0
mod to all simulation frames, yielding a

complementary warped template sequence Īkmod expressed as :

Īkmod = I0
mod ◦ T{S0,B→Sk,B} (8)

This warped sequence was used to provide myocardial intensities while the warped sequence
Îkmod was used to get background intensities. In order to ensure a smooth interface between these
two regions, we computed a Gaussian shaped weighting function centered at the myocardium
for each simulation frame. Since most tracking algorithms aim to quantify the LV myocardium
deformations, we only correct in this work the motion attached to this structure. For each
simulation mesh Sk we extracted the LV surface and further converted it to an implicit function
denoted as Γk. This function equals to 0 at the endo- and epicardium borders, is negative inside
the myocardium and positive outside as is shown Fig. 6. Its minimal value is denoted as τmink .
The weighting function was then defined as follows :

wk(x) = exp

{
−

(Γk(x)− τmink )2

2σ2

}
(9)

where σ controls the transmural profile of the weighting function and was set to 5 in all
the simulations. The warped template sequences with myocardial motion correction were then
computed as follows :

IMk
mod = wkĪ

k
mod + (1− wk)Îkmod (10)

Eq. (10) reveals that most of the myocardial intensities are assigned from the first template
frame, ensuring coherent myocardial motion with the E/M model. The background intensities
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(a) Γk : the implicit function
computed from the LV surface
mesh

(b) wk : the weighting function
computed from the implicit
function

(c) the weighting function’s
1D profile in the radial
direction

Figure 6 – The computation of the Gaussian shaped weighting function.

are principally retrieved from the spatiotemporally aligned template sequence, preserving the
realistic nature of the surrounding structures.

4.6.5 Myocardial intensity changes

The warped template sequences IMk
mod involved constant myocardium intensities over the

cardiac cycle, which is too simplistic. We thus developed dedicated strategies for each modality
to integrate myocardial temporal intensity changes in the simulated sequences.

Regarding tagged MR, Eq. (1) reveals that tagging intensity changes depend on T1 relaxation
and the RF flip angle. We thus used the static T 0

1 map together with the simulated RF flip angles
αsk (details about its computation can be found in the appendix of our paper [301]) to reproduce
myocardial intensity variations for each simulated frame k as follows :

∆IMk
tag = I0

tag

(
exp

{
−k∆ts

T 0
1

}
sin(αsk)

sin(αs0)

k−1∏
j=0

cos(αsj)− 1

)
(11)

where ∆ts corresponds to the simulated temporal resolution, while ∆IMk
tag corresponds to a

non-warped sequence characterizing the temporal intensity changes at each pixel location.

Concerning cine MR, it can be observed that myocardial intensities increase from ED to
ES and gradually decrease to their initial values at the end of the cardiac cycle. We assume
that the intensity varies linearly during these two phases. The intensity change was defined as
a percentage of the initial intensity. This percentage equals to 0 at ED, ξ at ES and changes
linearly in between as follows :

λξ(t) =

{
t
tes ξ, if t ≤ tes
tmax−t
tmax−tes ξ, otherwise

(12)

where tes and tmax were introduced in Section 4.6.2. The ξ parameter was automatically computed
from the template cine MR sequence for all myocardial points. In particular, for a given myo-
cardial point xi, we first retrieved the corresponding intensity values for all time instants thanks
to the protocol described in Section 4.5.2. These intensities are denoted as Incine(xi) in the sequel,
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where n corresponds to the cardiac cine MR frame instant. Each ξ value related to a myocardial
point xi was computed by fitting a linear model :

arg min
ξ

∑
n

(
Incine(xi)− (1 + λξ(tn))I0

cine(xi)
)2

(13)

Since Eq. (13) has a quadratic form with respect to ξ, its resolution is straightforward. For the
points outside the myocardium, ξ was set to 0, meaning that their intensity does not vary over
time. Finally, the intensity variations for each simulated frame k was computed as :

∆IMk
cine = λξ(φ(k)) · I0

cine (14)

where φ(k) is the temporal alignment introduced in Section 4.6.2 and I0
cine is the first template

cine MR image.

The myocardial intensity variations ∆IMk
mod were finally added to the previously generated

warping images IMk
mod. Since the intensity variation maps were computed in static (i.e. without

the integration of any motion), they had to be deformed before summation. The final warped
template sequences with motion correction and integrating myocardial intensity changes were
computed as follows :

Ĩkmod = IMk
mod + wk (∆IMk

mod ◦ T{S0,B→Sk,B}) (15)

where wk is the weighting function given by Eq. (9). Ĩkcine and Ĩktag are therefore the final warped
template cine/tagging sequences used to compute the proton density maps, as described in
Section 4.4.4.

4.7 US simulation

We used COLE simulator [88] to generate US images. COLE is a fast alternative to the
physical simulator such as FieldII [117]. To simulate one 3D US image, COLE requires 3D
cloud of point scatterers mimicking the local tissue echogenicity for each time instant of the
simulated sequence and the characteristics of the spatially variant point spread function of the
simulated imaging system as inputs. The first step in the ultrasound simulation is thus the
definition, at each simulation time k, of a 3D cloud of point scatterers. Each point scatterer
is assigned a scattering amplitude related to the amount of energy reflected back to the probe
(i.e. the intensity of the echo signal). Our approach consists in moving the scatterers according
to the E/M simulation while sampling their amplitude from the real template recording. This
will generate synthetic sequences with fully controlled cardiac motion and realistic ultrasound
speckle texture.

4.7.1 Scatter Map

We call xki =
[
xki , y

k
i , z

k
i

]
and aki the position and the amplitude of the i -th scatterer at

simulation time k. We call IMk
us(x) ∈ [0, 255] the intensity at position x of the warped template

sequences defined in Eq. (10). Note that when non-integer spatial positions need to be accessed,
the intensity value is obtained by using bi-cubic interpolation.

The first step is to generate a scatter map for the first frame k = 0. The coordinates of the
scatterers are obtained by uniformly sampling Nscatt points x0

i through the image domain. Their
echogenicity is obtained by sampling the intensity of the template frame, namely a0

i = F
(
I0
us(x

0
i )
)
,
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where F is the non linear transformation applied to the intensity value in order to compensate
for the log-compression traditionally performed in the ultrasound device prior to display. In
particular, F is defined in such a way that :

20 log10 [F (I(x)] + dB = dB × I(x)

255
, (16)

where dB is the desired contrast in decibel in the simulated image.

Given x0
i , the first simulation mesh is used to distinguish myocardial scatterers (i.e. contained

inside the mesh) from background ones (i.e. outside the mesh). We denote the number of myo-
cardial and background scatterers as Nmyo and Nback, respectively. The barycentric coordinates
of each myocardial scatterer relative to the associated mesh tetrahedron are computed and
stored.

The scatter map generation at times k > 0 proceeds differently for myocardial scatterers and
background ones. Myocardial scatterers move anchored to the simulation meshes to mimic the
motion of cardiac tissue. This is implemented by keeping their barycentric coordinates constant
over time. From the barycentric coordinates and the nodes position of the simulation mesh at the
considered time k > 0, the absolute coordinates of myocardial scatterers xki are then computed.
As e.g. in [72], [54], [8], the amplitude of myocardial scatterers is kept constant over time,
i.e. aki = a0

i . Such a choice of assigning scattering amplitude ensures having temporal coherency
of the speckle texture patterns inside the myocardium. However, the underlying intensity can still
vary with relative position changes over the cardiac cycle between the probe and the scatterers.
As common in clinical scans, the apical portion of the LV epicardium was not fully visualized
in the template recording (cf. Fig. 10). As such, no amplitude information was available for
myocardial scatterers in that region. To avoid the appearance of holes in the simulated sequences
during cardiac contraction, such scatterers were assigned an artificial amplitude equal to the
average of the 50 closest scatterers inside the field of view (i.e. for which amplitude information
was available from the image content). This solution was found sufficient to avoid artifacts.

At each simulation time Nback = Nscatt −Nmyo background scatterers are re-drawn outside
the myocardium following a uniform random distribution. Their random motion accounts for the
lack of speckle coherency which is normally observed in the blood pool. Background scatterers
also mimic the appearance and motion of surrounding structures as valves and papillary muscles
which are not described by the electromechanical model. Background scatterers are visualized
by updating their amplitude at each simulation time by using the intensity from the matched
position in the template recording, as defined by the spatiotemporal mapping in Sec. 4.6.4.
Namely, given a background scatterer xki , the intensity used to compute the corresponding
backscattered amplitude aki is directly obtained from IMk

us(x
k
i ). Note that the perceived motion

of background structures comes from the intensity variations and does not correspond to the
TPS displacement field T , which only serves to relate the two geometries. As such, while the
rendered motion of surrounding structures is visually realistic, their reference displacement is
not available.

4.7.2 Point Spread Function

From the 3D scatter map an ultrasound volume was simulated by convolution with the
spatially variant point spread function (PSF) of the simulated imaging system. In particular
COLE [88] was adopted as ultrasound simulation environment due to its good compromise
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between computational efficiency and accuracy [89]. The properties of the synthetic probe were
set so to match as close as possible the ones of the transducer used in the acquisition of the
template. Namely, the synthetic US system was sampling at 50 MHz and equipped with a phased
array transducer, which was centered at 3.3 MHz and transmitting a Gaussian pulse with a −6
dB relative bandwidth of 65%. A symmetric transverse two-way beam profile was assumed,
focusing at 80 mm when transmitting an dynamically focusing on receive. The simulated images
consisted of 107 × 80 lines in azimuth and elevation direction over an angle of 76 × 76 degrees,
resulting in a frame rate of 30 Hz assuming parallel beam forming and ECG gating. After
envelope extraction, log compression and scan conversion B-mode voxel data were available.

4.8 Result

We used in this study three volunteers from [258]. For each volunteer, we simulated one
healthy and five pathological cases (Section 4.5.1), yielding an open access database composed
of 18 virtual patients. For each patient, five synthetic sequences were generated (one cine MR,
three tagged MR and one US). All the simulations were launched from the virtual imaging
platform VIP 14[94] which allows the execution of applications such as ODIN as a web service
and benefits from the EGI 15 computing power. The generation of one full 3D sequence took
around 6 hours on VIP, knowing that it would have taken over 280 hours 16

4.8.1 Image properties : qualitative assessment

The proposed generic pipeline allows the simulation of multimodality volumes visually similar
to real template recordings, as illustrated by Fig. 7 to 9. In particular, Fig. 7 display the three
dynamic 2D MR slices located at the basal, mid and apical regions of the LV. Fig. 8 illustrates
the three channels of tagged MR simulated in this study. As for the US images, the conventional
short-axis, 2-chamber and 4-chamber views are displayed in Fig. 9. Global deformation values
were in clinical ranges (as detailed in Sec. 4.8.4). To give the readers a straightforward visual
comparison between the template and the simulation, we show in Fig. 10 and Fig. 11 the ultra-
sound and MR simulations corresponding to the LCX pathology. The simulated images were
shown alongside the templates. We observe that the simulations have image textures visually
similar to the templates. Fig. 12 also reveals the efficiency of the Gaussian weighting function
introduced in Sec. 4.6.4 to deal with the interface between the myocardium and the surrounding
structures. Indeed, the proposed scheme allows a smooth transition between the different struc-
tures in this region while preserving a consistent motion inside the myocardium with the E/M
model.

4.8.2 MR image properties : quantitative assessment

The level of realism of the simulated MR images was assessed quantitatively by measuring the
intensity distribution inside the myocardium since it is the feature commonly exploited for the
analysis of MR cardiac datasets. The myocardial histograms at ED and ES for both a simulated
cine MR sequence and its corresponding template are reported in Fig. 13. The analysis first
demonstrated that the computed histograms showed very similar shapes at ED. This is consistent
with the fact that ED corresponds to the reference time in the proposed pipeline from which T1,

14. https://vip.creatis.insa-lyon.fr

15. https://www.egi.eu

16. estimation based on the time needed for computing one 2D slice on a personal computed with 16G of RAM
and a 2.70Ghz CPU on a personal laptop.
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Figure 7 – Simulated cine MR images. Three slices located at basal, mid and apical regions of
the left ventricle are shown. The mesh contour is superposed on the images.
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Figure 8 – Simulated tagged MR images. Three channels with orthogonal tag orientations are
simulated. The mesh contour is superposed on the images.
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Figure 9 – Simulated ultrasound images. The 4-chamber, 2-chamber and short-axis views are
shown. The mesh contour is superposed on the images.
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(a) four chamber view, US

(b) short-axis view, US

Figure 10 – Template US recording (top row) and LCX simulation (bottom row) at matched
time instants for an apical four chamber (a) and a short axis (b) slice. The E/M meshes (i.e.
ground truth segmentation of the LCX simulation) are superimposed to both sequences as white
contours. Template, simulation and, therefore, E/M geometry are aligned by construction at time
zero (i.e. at ED1). From then on, the simulation runs independently of the template recording
and, therefore, the E/M geometry no longer provides a valid segmentation of the latter. In the
figure, this is particularly evident at regions marked by the white arrows. This is a consequence
of the fact that, as due to the simulated ischemia, contraction in the E/M simulation is reduced
as compared to the template.
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(a) short-axis view, Cine MR

(b) short-axis view, Tagged MR

Figure 11 – Template MR recording (top row) and LCX simulation (bottom row) at matched
time instants for a short-axis cine MR slice (a) and a short-axis tagged MR slice (b). The
E/M meshes (i.e. ground truth segmentation of the LCX simulation) are superimposed to both
sequences as white contours. Template, simulation and, therefore, E/M geometry are aligned by
construction at time zero (i.e. at ED1). From then on, the simulation runs independently of the
template recording and, therefore, the E/M geometry no longer provides a valid segmentation
of the latter. In the figure, this is particularly evident at regions marked by the white arrows.
This is a consequence of the fact that, as due to the simulated ischemia, contraction in the E/M
simulation is reduced as compared to the template.
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(a) Template image (b) result obtained using
[5]

(c) result derived from
our method

Figure 12 – Illustration of the interest of the proposed method to better handle the interface
between myocardium and the surrounding structures. a) template image at ES ; b) simulated
image using [5] ; c) simulated image using our approach.

T2 and proton density maps were directly computed from the corresponding template frame.
This result is further confirmed by two statistical tests. Both the Wilcoxon signed-rank test and
the Levene’s test returned p-value greater than 0.05, meaning that the median and variance
of the myocardial intensities are statistically similar. At ES, the histograms are still in a good
agreement, even if some slight difference may be observed. We applied the same statistic tests on
the myocardial intensities. The Wilcoxon signed-rank test returned a p-value greater than 0.05,
revealing that the template and the simulation have similar median values. However, the Levene’s
test returned a p-value below 0.05, meaning that the variances are statistically different. This is
coherent with what we see from the histograms. This is due to the fact that intensities of the T1
and T2 maps were not updated over the cardiac cycle, only warping strategies were performed.
Moreover, the myocardial intensity changes were embedded through the proton density maps
which was modeled through a simple linear fit. Nevertheless, the similarity of the distributions
validates the proposed strategy to handle the myocardial intensity changes while preserving the
motion derived from the E/M model. The myocardial histograms of tagged MR simulations are
also shown in Fig. 13. Results show that the exact same observations can also be made for this
modality.

4.8.3 US image properties : quantitative assessment

Speckle statistics : The level of realism of the simulated US images was assessed quanti-
tatively by measuring the values of image features commonly exploited for the analysis of
cardiac ultrasound datasets. Apart from pixel intensity, first order speckle statistics represent
a reliable feature in common tasks as segmentation [31], [6] and motion estimation [249], [173].
In particular, while blood returns fully developed speckle, leading to the popular Rayleigh model
[277], myocardial tissue generates instead partially developed speckle, leading to sub-Rayleigh
distributions [34], [31], where the main factor influencing the type of statistical distribution is
the number of scattering sites per resolution cell of the ultrasound system [277]. Hereto the local
concentration of scatterers was optimized in order to obtain a realistic statistical description
of the simulated speckle patterns. Experimentally we verified that a spatially uniform and
sufficiently high concentration of scatterers (i.e. > 4 scatterers per resolution cell) was sufficient
to generate realistic speckle statistics. Indeed, since scattering amplitude is directly sampled
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Figure 13 – Histograms of myocardial intensities in both real and simulated MR data. Red
dashed lines mark median intensities. Cine MR results are shown on the left side and tagged
MR shown on the right side.

from a speckle image (i.e. the template frame), the desired statistical properties are directly
inherited from the latter provided the sampling is dense enough. The local histograms for two
image patches extracted from the blood pool and the myocardium are reported in Fig. 14. Each
analyzed ROI was taken equal to three times the size of the resolution cell in each direction and
comprised ∼ 6800 samples. Note that histograms were computed on data before subsampling
and scan conversion (hence the high number of samples). The analysis showed that computed
histograms are in good agreement with the best-fitting distributions known from the literature.

Speckle decorrelation : Speckle patterns decorrelate over time due to tissue motion and
deformation. This is mainly due to the changes in the relative distance between the scattering
centers (i.e. the strain) and, in particular in the case of sectorial probes of use in echocardiography,
to the spatial variations of the system PSF [262]. Motion decorrelation weakens the fundamental
assumption of many speckle tracking solutions and might negatively impact their performance.
Hereto, the level of motion decorrelation present in the proposed sequences was measured.
Note that motion decorrelation is naturally ensured by the proposed framework thanks to the
decoupling of the mechanical simulation, establishing the motion of the individual scatterers,
from the ultrasound simulation. This is a further advantage from the work in [205] where, by
applying the deformation directly to the intensity images, speckle correlation was unrealistically
enforced.

We evaluated motion decorrelation by considering eight 3D blocks distributed uniformly
along the LV. Blocks were centered on an apical four chamber slice of the simulated 3D volume
and their size was 8× 4× 4 mm3 (14× 6× 8 voxels). The pixels inside each block were then
propagated independently over time by using the reference displacement field (i.e. the real tissue
motion from the simulated E/M model). The correlation coefficient ρ between the deformed
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Figure 14 – Statistical distribution for two rectangular speckle patches belonging to the blood
pool and the myocardium (red and green blocks in (a)). Each ROI is rectangular with side equal
to three times the size of the system PSF in the corresponding direction and comprises ∼ 6800
samples. Note that, although voxel data is reported in (a) for a more intuitive visualization,
histograms were computed on raw data, i.e. before down-sampling and scan conversion. In
(b) and (c) the histograms of the RF signal. In (d) and (e) the histograms for the non-
compressed envelope signal. In the fitting of the RF and envelope histograms Gaussian and
Rayleigh distributions show good fit respectively for fully developed speckle regions (i.e. the
blood pool) while generalized Gaussian distribution (GGD) [34] and K-distribution [31] were
adopted for sub-Rayleigh regions (i.e. the tissue). Consistently with what is expected on real
recordings, Gaussian and Rayleigh models correctly fit the amplitude data inside the blood
pool while speckle inside the muscle follows instead more heavily tailed distributions. Note that
histograms have been normalized to have unitary area in order to be comparable with the
associated probability density functions.

(a) (b)

Figure 15 – a) Eight 3D patches used to evaluate speckle decorrelation. b) Time evolution of
the correlation coefficient : in black the measurements within each block, in blue the confidence
interval (µ ± σ). The dashed vertical line denotes block, in blue the confidence interval end of
systole.
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block and the initial one was then measured. The experiment was repeated for the healthy and
the ischemic sequences. The obtained correlation curves are reported along with the confidence
interval in Fig. 15. As expected in a real setting, correlation decreases until end of systole, when
both the change in the distance between the scatterers (as due to strain) and the displacement
w.r.t. the original position (hence, the PSF variation) are the largest. These results are quali-
tatively in agreement with previous simulation studies [262]. Consider that [205] would give by
construction correlation values constantly equal to one (absent interpolation artifacts).

4.8.4 Mechanical properties

Global indices : Table 2 displays the LV volumes at ED and ES along with the corresponding
EF for the healthy and pathological cases. Those values were computed from the simulated
meshes Sk used as benchmark for the proposed database. For the healthy case, the LV volumes
present values around 104 mL at ED and 50 mL at ES, which is in agreement with the reference
range published in [202] when combining all ethnic groups, all ages and both sexes in the analysis.
In the case of dyssynchrony, the ES volumes slightly increase to values around 53 mL, revealing
a reduced blood output. This tendency is clearer for ischemic cases where ES volumes are above
60 mL. Regarding the EF, the values are around 52% for healthy cases and concentrated around
40% for ischemic cases. The EF of the healthy cases are rather close to but slightly below the
reference values from the literature (above 60%) [12].

Table 2 – Average LV volumes at ED/ES and the corresponding EF distributed among the
virtual population.

Healthy LBBB LCX LAD RCA RCA2

ED (mL) 104.0 104.0 104.0 104.0 104.0 104.0
ES (mL) 49.6 52.8 65.7 60.9 60.3 63.4
EF (%) 52.3 49.2 36.8 41.4 42.0 39.0

Strain Curves : We show in Fig. 16 the full set of regional strain (radial, longitudinal and
circumferential) curves at the basal, mid and apical levels of the LV for one healthy and four
pathological cases. The regional strain curves were computed using engineering strain as in [5].
Their properties are in accordance with the ones described in the literature. For instance, in the
LBBB case, the ES timings differ between the septum (AHA no 2,3,8,9,14) and the lateral wall
(AHA no 5,6,11,12,16). The septum is activated slightly before the lateral wall, meaning the
myocardium contracts asynchronously. Besides, ischemic cases show wide disparities between
healthy and pathological segments. Reduced deformation values are observed for those infarcted
AHA segments. In addition, we show in Fig. 17 the global circumferential strain (GCS) for the
18 virtual patients simulated in this paper. We observe that pathological cases display reduced
circumferential deformations compared to healthy ones.
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Fig. 1: Regional strain curves at basal, mid and apical levels of the LV. We show one healthy, one dynssynchrony (LBBB) and
three infarcted hearts (LCX, LAD, RCA). The colormap used for displaying the curves is shown in Fig. 2.Figure 16 – Regional strain curves at basal, mid and apical levels of the LV. We show one
healthy, one dynssynchrony (LBBB) and three infarcted hearts (LCX, LAD, RCA).
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Figure 17 – Global circumferential strain curves corresponding to the 18 simulated virtual
patients.

4.9 Discussion

It is widely acknowledged that multimodality raises many issues in cardiac imaging, beyond
the mapping of all information in a common reference space. Indeed, different modalities were
reported to provide significant differences for the quantification of volumes and ejection fraction
values [114]. Offering to the community a consolidated dataset, on the basis of which generic
or modality-specific algorithms can be quantitatively compared, is a step forward towards
understanding whether reported differences between modalities originate from the processing,
the difference in image quality or can only be explained by more fundamental differences in the
physics of imaging the same complex tissue though different modalities. Our simulation method
ensures that the synthetic MR and US sequences are generated from the same patient. The
E/M simulations generated in the MR system of coordinates were brought to the US system
by a simple rigid transformation composed of translations and rotations. The interest of such
rigid transformation resides in the fact that it will not introduce any local myocardium defor-
mation. The deformation patterns represented in the US and MR sequences are therefore the
same, allowing a straightforward cross-modality comparison. However, this rigid transformation
is sensitive to the accuracy of the 24 manual landmarks (see Sec. 4.3). The manual landmarking
should thus be carefully performed in order to minimize the potential impact on the US simulations.

By combining warpings of the whole template sequence and of the first frame only to each
simulation mesh, we obtained a realistic background while guaranteeing that no registration
error can introduce artifacts inside the myocardium. This is a fundamental difference with all
registration-based methods such as [205] where the error on displacements gets composed with
the true displacement field, making any derived benchmark affected by such artifacts inside the
myocardium. Moreover, we introduced an efficient Gaussian weighting function to deal with the
interface between the myocardium and the background. Such a scheme guarantees a smooth
transition between the different structures around the myocardium and thus avoids potential
artifacts as it may appear for instance from the pipeline developed in [5] (Fig. 12).

Despite the advantages, we also acknowledge a number of limitations and simplifications.
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First, the realism of the computed relaxation times T1 and T2 could be improved to account
for the temporal variations of these quantities as reported in [220]. The corresponding spatial
distribution we used was kept simple (average reference values + Gaussian noise for the back-
ground region). Also, the myocardial T1 values we computed from real tagging templates should
be compared against real T1 mapping acquisitions to validate this process. Additionally, when
computing the proton density for tagged MR simulation, we assumed the effective spin-spin
relaxation time T ∗2 to equal the theoretical T2 value. This assumption simplifies the simulation
method and since they have close values, it should not significantly impact the simulation results.
It should be emphasized however that our modeling strategy was aiming at optimizing the realism
of the generated images rather than rigorously following the underlying physics. With this in
mind, the derivations of most MR parameters we made from real MR images ensure a high level
of realism of the simulated images as shown in Fig. 7, 8 and 9.

We put a lot of effort in this work to make sure that tracking errors would not introduce
any artifacts inside the myocardium. However, it is worth mentioning that the quality of the
simulated data remains sensitive to the tracking accuracy. Since the background is taken from a
frame of the template sequence, tracking errors will appear as a residual motion applied to the
background, resulting in possible tag line fractures occurring at the myocardium/background
interface, although the use of a Gaussian weighting function is expected to limit such unrealistic
artifacts. An accurate tracking is therefore required for producing high quality simulation data,
which we ensured by using high quality images from carefully selected healthy subjects [258].

Finally, the median longitudinal strain corresponding to the cardiac deformations generated
by the E/M model is around 15%, which is still lower than reference clinical values. This has
already been discussed in [5] and remains one of the major limitations of the E/M model.
Compared to [5], the simulations generated in this paper already show increased longitudinal
deformations thanks to a thorough parameter tuning process. Further improvement of the
longitudinal strain as well as the reduction of the dispersion of GCS and the increase of the
EF remain the object of future work.

4.10 Conclusions

We introduced in this study a generic framework allowing the generation of realistic multi-
modal (US, cine and tagged MR) cardiac synthetic sequences for the same virtual patient. The
following novelties were introduced in this study :

— the combination of an E/M model with US/MR physical simulators to introduce the
possibility of interacting with the image formation process ;

— the use of multimodal template sequences from the same patient to extract the most
relevant information from each modality ;

— the introduction of a novel combinative warping strategy, with the goal of reducing motion
artifacts that may occur in myocardium regions ;

— the contribution of the first unified framework which allows the generation of multimodal
(US, cine and tagged MR) realistic synthetic sequences for the same virtual patient ;

— the use of a novel strategy based on a Gaussian weighting function to generate a smooth
interface between the myocardium and the surrounding structures.
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5 2nd contribution : anatomical deformable model for strain
estimation in cardiac imaging

In this section, we present a novel framework based on an anatomical deformable model
to efficiently quantify myocardial motion field and strain at once. Myocardial motion tracking
is regarded as a succession of image-to-image registration problem. To take advantage of the
temporal coherence of the sequence, we chose to adopt a frame-to-frame strategy. The performance
of the proposed method is assessed on the synthetic database presented in Sec. 4.

5.1 Motivations

Based on the literature review we made in Sec. 2, we developed a novel method integrating
the advantages demonstrated by several available strategies. Inspired by the work proposed by
Heyde et al. [105], we decided to express the cardiac deformations directly from the myocardial
space. By doing so, the integration of any prior such as local motion or regularization will be
efficiently adapted to the anatomy of the heart. One of the conceptual key of the proposed
formulation is the regularization of the estimated strain and motion displacement according to
a windows-weighted regression method which maintains a low computational complexity. Based
on the observation that radial direction is the most challenging to recover meaningful strains
in both tagged MR and US, we decided to enforce myocardial incompressibility by correcting
strain values in the radial direction only. This is likely due to the fact that the number of tags
from endocardium to epicardium is small in the radial direction compared to circumferential and
longitudinal directions in tagged MR, while the resolution in the lateral and azimuth directions
is lower than in the axial direction in ultrasound imaging. Finally, it should be emphasized
that the developed approach has the advantage of being generic and can be easily adapted and
applied to any modality. In the sequel, we describe the key aspects of the proposed formalism.

5.2 Anatomical mesh model

An anatomical mesh is first initialized from the 3D segmentation of the myocardium at
ED using any algorithms. The segmentation output can be either a binary mask or a closed
surface mesh that encompasses LV endocardium and epicardium. From this result, a resampling
procedure is then applied for two main purposes : i) the surface mesh is converted to a volumetric
dense mesh which also contains an inner layer between endocardium and epicardium ; ii) the LV
domain is sampled regularly in radial, longitudinal and circumferential directions. This facilitates
regularizing the displacement field on the mesh topology.

5.2.1 Resampling rules and directional indexes

The resampling is done by casting rays from the long axis to the endocardial and epicardial
surfaces as described in Fig. 18. The mid part of the LV is discretized using a cylindrical sampling.
The long axis is sampled uniformly. From each long axis point, Nc rays are then cast with equal
angular binning in the plane orthogonal to the long axis. For each ray, the intersection with the
surface mesh gives two points : one at endocardium and one at epicardium. The average of these
two points produces the inner middle layer. Similarly, apical and basal parts are sampled in a
spherical manner. Azimuth and elevation angles are binned uniformly (see Fig. 18-a and 18-b).

Following this discretization scheme, each point in the generated mesh can be associated to
three indexes. First, each point is either endocardial, mid or epicardial. Second, each point is
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Figure 18 – Resampling of LV surface mesh to volumetric dense mesh.

intercepted by a single ray in the circumferential direction. Finally, each ray is either casted from
one source point on the long axis, being indexed from the sequential cylindrical discretization or
angled with respect to the long axis, being indexed from the sequential spherical discretization
(Fig. 18-a). In this way, every node in the mesh is related to three indexes (mr,ml,mc) where
md ∈ [1, Nd] and Nd (d = r, l, c) is the number of divisions in each of the three directions (radial,
longitudinal or circumferential). Then the spatial coordinates of every node can be written as
P(mr,ml,mc). In our experiments, Nr = 3, Nl = 35 and Nc = 50. As the number of tags in
tagged MR and the resolution in US are low in the radial direction, we chose to use only three
radial layers. Nl and Nc were chosen to produce isotropic cells in the volumetric mesh, which
implies similar cell resolutions in longitudinal and circumferential directions. By convention,
radial indexes are ordered from endocardium to epicardium, longitudinal indexes are ordered
from apex to base, and circumferential indexes go counter-clockwise when looking from the apex.

5.2.2 Local directions

Based on the mapping P, local radial, longitudinal and circumferential directions êr(x),
êl(x) and êc(x) can be computed by normalizing the edges of the volumetric mesh. However,
this set of directions would not be orthogonal. To ensure local orthogonality directions at all
locations except the purely apical ones during the regularization procedure, local directions were
defined as follows. For a non-apical mesh point x whose directional indexes are (mr, ml, mc),
its longitudinal direction can be computed as :

el(x) = P(mr,ml,mc)− P(mr,ml − 1,mc) , if ml > 1

êl(x) =
el(x)

‖el(x)‖
(17)

Its circumferential direction êc(x) was then computed similarly but further corrected to be
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orthogonal to êl(x) :

ec(x) = P(mr,ml,mod(mc + 1, Nc))− P(mr,ml,mc) , if ml > 1

êc(x) =
ec(x)−

(
ec(x) · êl(x)

)
êl(x)∥∥ec(x)−

(
ec(x) · êl(x)

)
êl(x)

∥∥ (18)

Finally, the radial direction êr(x) was obtained from the cross product between êc(x) and
êl(x).

êr(x) = êc(x)× êl(x) , if ml > 1 (19)

For purely apical points (ml = 1), êc(x) has no definition due to the singularity on the apex.
êr(x) was defined in a similar manner by normalizing the edges in the radial direction. êl(x)
was computed by taking the mean of its Nc nearest neighbors located in the same radial layer
and normalizing the result.

5.2.3 Anatomical coordinates

Our goal is to map Cartesian (x) to anatomical (r, l, c) coordinates while satisfying the
following properties :

∀x ∈ Ω, ∇r(x) = êr(x),

∇l(x) = êl(x),

∇c(x) =
1

ρ(x)
êc(x) .

(20)

where Ω is the LV myocardium domain, and ρ(x) is the distance of point x to the LV long axis.

For each direction d ∈ {r, l, c}, we start from a group of reference points {Xd
0} where the

anatomical coordinates are set to be zero. For longitudinal coordinates, the apex is taken as a
reference point. In the circumferential direction, points located at the center of the local windows
(described later in Sec. 5.3.1) are chosen as reference points. Finally, for the radial direction,
{Xr

0} is defined as the set of mid-layer points.

From {Xd
0}, the coordinates are obtained by curvilinear integration. Taking one direction

d ∈ {r, l, c}, d(x) is defined as

d(x) =

{
minCd(x)

∫
Cd(x) êd(s) · ds, if d = r, l

minCd(x)

∫
Cd(x)

1
ρ(s) êd(s) · ds, if d = c .

(21)

where Cd(x) is a geodesic path on the mesh starting at a node ∈ Xd
0 .

The r(x) and l(x) coordinates are computed globally for the whole LV. However, practically,
the c(i)(x) coordinate is defined locally for each window i (described later in Sec. 5.3.1) in order
to ensure its continuity over the window domain. Examples of r, l over the whole myocardial
domain and c(i) over the local window i are plotted in Fig. 19.
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Figure 19 – Anatomical coordinates r, l, c(i) defined on the LV volumetric mesh (in (c), c(i)(x)
has no definition in the surrounding grey region since it is beyond the range of the current
window i).

5.3 Tracking methodology

5.3.1 Anatomical deformation model

Motion model : Let u
(i)
t (x) be a local parametric motion within a window i (described later

in this section) from t → t + 1. As tracking aims at recovering both motion and deformation
values, we opted for an affine transformation in the anatomical coordinates r, l, c(i) that combines
translations, stretching (or shortening) and shearing. This 12-parameter model was defined in
the anatomical system of coordinates introduced in Sec. 5.2 :

u
(i)
t (x) = L(i)

r (x)êr(x) + L
(i)
l (x)êl(x) + L(i)

c (x)êc(x)

with L(i)
r (x) = a(i)

rr r(x) + a
(i)
rl l(x) + a(i)

rc c
(i)(x) + b(i)r

L
(i)
l (x) = a

(i)
lr r(x) + a

(i)
ll l(x) + a

(i)
lc c

(i)(x) + b
(i)
l

L(i)
c (x) = (a(i)

cr r(x) + a
(i)
cl l(x) + a(i)

cc c
(i)(x) + b(i)c )ρ(x)

(22)

The set of zero-order {b(i)r , b(i)l , b
(i)
c } (related to motion), first-order {a(i)

rr , a
(i)
ll , a

(i)
cc } (related

to radial, longitudinal and circumferential strains) and first-order {a(i)
rl , a

(i)
rc , a

(i)
lr , a

(i)
lc , a

(i)
cr , a

(i)
cl }

(related to shearing) parameters fully define the motion in the local window i.

The partition of unity method : As introduced in [76], a global regression problem can be
simplified by solving a set of local ones with the help of the partition of unity technique. A
partition of the LV domain is defined by a set of control points {xi} and by window functions
ϕ(i)(x) associated to each control point. The latter are assumed to satisfy the following conditions :

arg max
x

ϕ(i)(x) = xi, ∀i

ϕ(i)(x) ≥ 0, ∀x ∈ Ω,∑
i

ϕ(i)(x) = 1 ∀x ∈ Ω.

(23)
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Figure 20 – Definition of LV local windows and an example of the window function for the
red-circled window.

where Ω is the LV myocardium. The regularized displacement ut(x) is computed as

ut(x) =
∑
i

ϕi(x) u
(i)
t (x) (24)

where u
(i)
t (x) is the motion model introduced at the beginning of this section.

Window functions : The LV myocardium domain is partitioned into a set of windows as
illustrated in Fig. 20. Window functions are centered at each control point and must decrease
when the distance to the control point increases. Since we opted for tracking a volumetric mesh
and defined a system of coordinates on the mesh, the geodesic distance was chosen rather than
the Cartesian one for computing the window function. Let us first consider a standard Gaussian
kernel involving the geodesic distance ξ between x and the center of the window xi.

g(i)(x) =
1

2πσi
exp

(
−ξ(x,xi)

2

2σ2
i

)
(25)

To use a single σ parameter for various window sizes, we expressed sigmai as

σi = σχi (26)

where χi is computed for each window by averaging ist circumferential and longitudinal extents.
In Eq. (26), σ is an auxiliary parameter named as kernel bandpass. It controls how neighboring
windows will overlap for producing the final displacement estimate in Eq. (24). Each window
function are then defined by normalizing g(i) values for summing to 1 :

ϕ(i)(x) =
g(i)(x)∑
j g

(j)(x)
(27)

Myocardium incompressibility constraint : Imposing a zero divergence is a classic way
of enforcing incompressibility. This constraint can be imposed either as a soft (global) or hard
(local) level. In our case, computing the divergence locally would require complex spatial deri-
vations of the r(x), l(x) and c(i)(x) functions. Therefore, we preferred to impose incompressibility
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within each window, enforcing the overall volume change to be zero. For doing so, we applied the
divergence theorem. If ∂S(i) stands for the surface enclosing the window i, the outward flow of

u
(i)
t (x) through ∂S(i) equals the volume integral of the divergence over that window. Therefore

imposing myocardial incompressibility is equivalent to forcing the flow through ∂S(i) to be zero.
For each local window i defined on the volumetric mesh, ∂S(i) consists of quadrilaterals. Each
of the quadrilateral j can be represented by its center xj , its normal (pointing outward) nj and

its area Aj . The flow of u
(i)
t (x) through ∂S(i) can then be written as

Q
(i)
t =

∑
j∈∂S(i)

u
(i)
t (xj) ·Aj~nj

=
∑

j∈∂S(i)

∑
d=r,l,c

L
(i)
d (xj) (êd(xj) ·Aj~nj)

(28)

Because L
(i)
d (xj) is linear in {b(i)d , a

(i)
rd , a

(i)
ld , a

(i)
cd } (d = r, l, c), so is Q

(i)
t . Imposing Q

(i)
t = 0

amounts to add a linear equality constraint. In other words, arr can be written as a linear

combination of all other parameters {b(i)r , b(i)l , b
(i)
c , a

(i)
rl , a

(i)
rc , a

(i)
lr , a

(i)
ll , a

(i)
lc , a

(i)
cr , a

(i)
cl , a

(i)
cc }, leading to

a 11-parameter motion model per window ϕ(i).

The final motion from t → t + 1 is obtained by mixing all local motions weighted by the
window functions thanks to Eq. (24). This gives a motion model with 11 × N parameters (N
being the window number). Estimating these parameters allows obtaining both anatomically
coherent myocardial motions (i.e. locally affine) and meaningful deformations

5.3.2 Image-based registration

For the motion tracking from t → t+ 1, given an initial estimate of the displacement u(x),
the key idea is to find an optimal incremental displacement field v(x) =

∑
i ϕ

(i)(x) v(i)(x) by
minimizing an energy E defined as follows :

E(v; u) =

∫
Ω

K−1∑
k=0

ωk(x)
(
Itk(x)− It+1

k (x + u(x) + v(x))
)2
dx (29)

In the case of ultrasound or cine MR imaging : i) K = 1 ; ii) Itk(x) represents the image
intensity at point x and time t ; iii) ωk(x) is set as a constant map equals to 1 for all pixel
positions.

In the case of tagged MR imaging : i) K = 3 ; ii) Itk(x) represents the phase intensity at
point x and time t ; iii) ωk(x) is compute from the magnitude information at point x (Mt

k(x))
as :

ωk(x) =
√
Mt

k(x)Mt+1
k (x + u(x) + v(x)) (30)

5.3.3 Multi-scale framework

For capturing large myocardial motion, a multi-scale framework is used. We adopt three
scales with gradually increased window numbers (i.e. smaller windows). The motion field is
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refined each time passing from the current scale to the next. Within each scale, the procedure
described above is iterated until convergence.

Algorithme 1 : Proposed multi-scale algorithm

Set n = 0, u0 = 0
for each scale s do

Compute ϕ(i)

repeat
for each window i do

v
(i)
n = argminv(i) E(i)(v(i); un)

end

vn =
∑

i ϕ
(i)v

(i)
n

un+1 = un + vn
n = n+ 1

until ‖vn‖ < δ;

end

5.4 Results

We introduced in the previous section the computation of the motion field from t → t + 1.
Based on this formalism, we decided to implement a frame-to-frame tracking strategy. The
motion and strain estimation of the myocardium over the whole cardiac cycle is thus regarded as
a succession of frame-to-frame registration problems which are solved by the algorithm described
above. Thanks to the synthetic data generated in Sec. 4, we evaluated the performance of the
proposed anatomical deformable model (referred as ADM in the sequel) across the three cardiac
imaging modalities (US, cine and tagged MR). This would also help to better understand the
properties of each modality, especially the associated ability in quantifying local myocardial
deformations. For comparison purpose, the generic motion tracking based on sparse demons
algorithm was also used to process the same synthetic database [247].

For each virtual patient, we resampled the LV of the first simulation mesh (taken from the
MR space) in the radial, longitudinal and circumferential directions by the method introduced in
Sec. 5.2. The resampled mesh has three layers in the radial direction : endocardium, epicardium
and a mid-myocardium layer. Special efforts were made to ensure that the resampled mesh
remains inside the original simulation mesh. We show in Fig. 21 an example that illustrates the
resampling results. Since the mesh was set in the MR space, as mentioned in Sec. 4.3, a rigid
transformation built upon 24 manually chosen landmarks was then used to bring the resampled
mesh to the US coordinate system. For each imaging modality (US, cine or tagged MR), the
corresponding mesh was then tracked by both the ADM and the sparse demons algorithms. Since
the sparse demons algorithm cannot handle multi-channel data, the three channels of the tagged
MR image were multiplied to create a single sequence of tagging grids. To obtain the ground-
truth motion of the resampled mesh points, the mesh was warped over the whole sequence by
forces computed from the simulation meshes.

In total, 18 virtual patients were tracked, yielding 54 tracked mesh sequences generated by
each algorithm. Similar to [5] and [299], we computed strain using the engineering approach
since this metric describes the myocardial stretch/shortening in the anatomical directions that
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(a) long-axis view (b) short-axis view

Figure 21 – The resampling of the first simulation mesh into a new LV mesh defined following
the radial, longitudinal and circumferential directions. The resampled mesh is shown in red color.
The simulation mesh is shown in white with adjusted opacity level.

are clinically relevant. In particular, for each cardiac phase, local motion and strains (radial,
longitudinal and circumferential) errors were computed for each 17 AHA segments and then
averaged from all time instants, all segments and all virutal patients so to produce the boxplots
provided in Fig. 22. From this figure, one can first observe that the quantification of motion and
strains from tagged MR and US shows smaller errors compared to cine MR. For instance, median
motion errors of the ADM and the sparse demons methods are around 1 mm for both tagged MR
and US, and increase up to 2 mm for cine MR. This validates the fact that motion is harder to
estimate from cine MR imaging since this modality does not carry any marker in the myocardium
region as it is the case in tagged MR and US imaging. From this figure, one can also observe
that the two tested methods reached almost similar accuracy for the estimation of motion and
longitudinal/circumferential strain on tagged MR. However, the proposed ADM model provides
better results for the quantification of the radial strain on this modality. Concerning cine MR
imaging, the sparse demons algorithm clearly outperformed the ADM method on both motion
and strains estimation. For the US modality, the sparse demons algorithm gave more accurate
motion, longitudinal/circumferential strain estimation while the ADM method performed better
on radial strain thanks to the imposed radial regularization.

To study the influence of the chosen data attachment term involved in our formalism, we
replaced the image intensity term in Eq. (29) by the phase information computed from the same
band-pass filter as the one proposed in the HARP formalism [186]. To this end, we re-launched the
two implementations (intensity and phase-based versions) with the exact same parameters and
configurations on the 18 synthetic tagged MR datasets. The corresponding results are provided
in Fig. 23. From the obtained boxplots, we can see that the two implementations produced very
close results in terms of both motion estimation and strain quantification. This illustrates the
robustness of our approach with respect to the chosen data attachment term. Indeed, by the time
the data attachment term involved in Eq. (29) is properly chosen (e.g. either image intensity or
phase information in tagged MR), the proposed ADM method will produce similar results.

5.5 Discussion

From the obtained results, ADM appears to be the most interesting tested method for
quantifying tagged MR, while the sparse demons algorithm seems to be better suited for cine
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Figure 22 – Local motion and strain quantification errors obtained by the sparse demons and
the proposed algorithms (ADM). Both methods were run on the 18 virtual patients simulated in
Sec. 4. For each cardiac phase, local motion and strains errors were computed for each 17 AHA
segments and then averaged from all time instants, all segments and all virutal patients so to
produce the given boxplots.
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Figure 23 – Local motion and strain quantification errors obtained by the the proposed ADM
method using either the image intensity or the phase information as the data attachment term
involved in Eq. (29). Both methods were run on the 18 synthetic tagged MR datasets simulated
in Sec. 4. For each cardiac phase, local motion and strains errors were computed for each 17
AHA segments and then averaged from all time instants, all segments and all virutal patients
so to produce the given boxplots.
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MR and US imaging. The radial regularization strategy developed in the ADM approach appears
to be well suited since it allows a better radial strain estimation in most of the tested imaging
modalities (both tagged MR and US). We also observed from Fig. 22 that a given motion
tracking algorithm can perform differently across different modalities. For instance, the ADM
method outperformed the sparse demons algorithm for radial strain estimation on both tagged
MR and US but get clearly worst results on cine MR. This might be explained by the absence of
local ”markers” in cine MR imaging inside the myocardium, making the tracking in the middle
of the myocardium highly influenced by regularization strategies. Contrary to AMD, sparse
demons algorithm exploits a wider spatial regularization term beyond the myocardium region.
Thefore, any information outside the myocardium can contribute to the tracking, making the
sparse demons algorithm better suited for cine MR imaging.

Tagged MR is usually defined as the gold standard for cardiac motion and strain analysis.
From the boxplots given in Fig. 22, it is interesing to note that this claim is also verified. Indeed,
the results obtained by both the ADM and sparse demons algorithms are globally better when
using tagged MR sequences. However, it is also interesting to see that the results obtained
from the US sequences are not so far compared to the ones obtained from the tagged MR.
This emphasizes the usefulness of US modality when the quality of the acquisition is high
enough (which is the case for the template recordings that we used to generate the synthetic
US sequences). In the futur, we plan to simulate and add typical artifacts (such as shadows or
signal dropouts) in our US synthetic sequences to study their relative influence on the quality
of motion and strain quantification compared to the corresponding performances on tagged MR
from the same virtual patient.

Although the results presented in Fig. 22 constitutes a strong basis for motion and strain
quantification analysis, additional experiments are still needed to make more relevant con-
clusions. For instance, it would have been interesting to evaluate the accuracy of the global
indexes that can be extracted from each simulated modality, such as the left ventricle volumes,
the ejection fraction and the myocardial mass. It would also have been important to study the
performance of the tested methods according to the pathology. Unfortunately, due to the limited
time and ressources, we were not able to conduct yet a more advanced study that could have
harnessed the full potential of our synthetic dataset.

5.6 Conclusions

In this section, we developed a novel framework based on an anatomical deformable model
to efficiently quantify myocardial motion field and strain at once. In the proposed formulation,
myocardial motion tracking is regarded as a succession of image-to-image registration problem.
To take advantage of the temporal coherence of the sequence, we adopted a frame-to-frame
strategy. This framework was assessed through the synthetic US, tagged MR and cine MR
sequences whose pipeline is described in Sec. 4. Thanks to this virtual dataset, the following
insights were underlined :

— ADM and sparce demons algorithms provide better motion estimation and strain quanti-
fication on tagged MR and US compared to cine MR ;

— although the best results are obtained on tagged MR, ultrasound data allow close motion
estimation and strain quantification when the quality of the acquisition is high enough ;

— a given motion tracking algorithm can perform differently across different modalities ;
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— ADM appears to be the most interesting method for quantifying tagged MR, while the
sparse demons algorithm seems to be better suited for cine MR and US imaging ;

— the radial regularization strategy developed in the ADM allows for a better radial strain
estimation on both tagged MR and US imaging.
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6 Summary - Conclusions

From Sec. 4 to 5 we presented our contributions on motion estimation and strain quanti-
fication in US, cine and tagged MR imaging. From the observation that a well-established
validation of strain imaging was still needed in our community, we developed a novel pipeline
specifically designed to simulate realistic synthetic US and MR image sequences from the same
virtual patient. The proposed pipeline was used to create a dataset of 18 virtual patients
including healthy and various pathological cases, i.e. ischemia and dyssynchrony. The aim of this
benchmarked dataset was to provide the community with a fair and reproducible comparison of
state-of-the-art methods for motion estimation and strain quantification. The following innovations
were introduced in this study to generate cardiac sequences with high degree of realism :

— the combination of an E/M model with US/MR physical simulators to introduce the
possibility of interacting with the image formation process ;

— the use of multimodal template sequences from the same patient to extract the most
relevant information from each modality ;

— the introduction of a novel combinative warping strategy, with the goal of reducing motion
artifacts that may occur in myocardium regions ;

— the contribution of the first unified framework which allows the generation of multimodal
(US, cine and tagged MR) realistic synthetic sequences for the same virtual patient ;

— the use of a novel strategy based on a Gaussian weighting function to generate a smooth
interface between the myocardium and the surrounding structures.

Based on the literature review we made in Sec. 2, we also developed a novel method, named
anatomical deformable model (ADM), integrating the advantages demonstrated by several available
strategies to efficiently quantify myocardial motion field and strain at once. The proposed ADM
method is based on the following key aspects :

— the expression of cardiac deformations from the myocardial space. By doing so, the
integration of any prior such as local motion or regularization will be efficiently adapted
to the anatomy of the heart ;

— the use of a windows-weighted regression method to regularize the estimated motion and
strain with low computational complexity ;

— the reinforcement of myocardial incompressibility by correcting strain values in the radial
direction only.

Thanks to the proposed virtual dataset, ADM could be quantitatively compared to one of the
most recent state-of-the-art methods, i.e. the sparse demons. The following conclusions/insights
could then be drawn :

— ADM and sparse demons algorithms provide better motion estimation and strain quanti-
fication on tagged MR and US compared to cine MR ;

— although the best results are obtained on tagged MR, ultrasound data allow close motion
estimation and strain quantification when the quality of the acquisition is high enough ;

— a given motion tracking algorithm can perform differently across different modalities ;

— ADM appears to be the most interesting method for quantifying tagged MR, while the
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sparse demons algorithm seems to be better suited for cine MR and US imaging ;

— the radial regularization strategy developed in the ADM allows for a better radial strain
estimation on both tagged MR and US imaging.

Based on the current state of the results we have obtained so far, it seems that there is still
a need to improve motion estimation from cardiac images, although integrative models allow
effective regularization of motion to better estimate myocardial strain values. From the very
encouraging results we recently got in MRI and ultrasound cardiac segmentation, it appears
natural to study the effectiveness of applying deep learning solutions for such a task and see
if statistical learning approaches can be good candidates to also solve the problem of motion
estimation in cardiac imaging.

My research on cardiac motion estimation was carried out through 1 PhD funded by an
industrial grant (French CIFRE PhD with Philips Medisys compagny) and 1 postdoc funded
by the french gouvernment (financed through the US-tagging ANR project of professor Hervé
Liebgott). Results have led to 9 articles in international journals and 11 articles in international
conferences.
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Ultrasound image reconstruction :
toward new imaging techniques

1 Introduction

As described in Sec. 1, echocardiography is one of the most common modality used in clinics.
Among the reasons of its attractiveness, one can mention the fact that ultrasound is safe since
no radiation is involved, real-time, portable and cheaper compared to other imaging devices
such as MR and CT. In echocardiography, the real-time nature of ultrasound devices allows
the investigation of both anatomical and functional information, making it possible to establish
relevant diagnosis at patient bedside. In the last decade, many studies have been proposed in
the literature to measure new clinical indices with high potential for the diagnosis of diseases
thanks to the imaging of dynamic phenomena at high frame rates [52, 83, 275]. The key concept
of these methods resides in the capacity of transmitting hundreds, or even thousands frames per
second by rethinking the conventional ultrasound imaging process. Unfortunately, the increase of
the frame rate deteriorates the quality of the reconstructed information and a trade-off between
frame rate and information quality must be found.

There exists several ways to acquire ultrasound images at high frame rate. One way is to
use the so-called parallel receive beamforming technique to generate several imaging beams in
parallel thanks to the transmission of broader beams [239]. Such tramission can be achieved by
reducing the transmit aperture [103, 276] and by using unfocused or defocused beams [101]. In
this way, the frame rate can be increased with a factor equals to the number of parallel received
beams. However, the increase of the number of parallel received beams must be followed by an
increase of the width of the transmitted beams, resulting in a lower image quality (i.e. signal-to-
noise ratio, contrast and resolution). In order to maintain high resolution while using fewer broad
beams to illuminate the desired field of view, Synthetic Transmit Aperture (STA) imaging has
been proposed [119]. A single element is used to transmit a spherical wave covering the full image
view and all of the elements are used in reception to form a low resolution image. By coherently
combining the images from successive transmissions, one may produce transmit dynamic focusing
along each line of the final image.

Another way to increase the frame rate is to use multiple transmit beams, called Multi-
Line Transmission (MLT). With this technique, several focused ultrasound pulses steered in
different lateral directions are transmitted and the same number of image lines are beamformed
simultaneously [157]. Using MLT, the frame rate can beM times faster, whereM is the number of
parallel pulses in each transmission. However, the interferences, also known as cross-talk between
the simultaneous beams may create artifacts in the resulting image, for instance bright targets
can appear in several locations in the image. Various methods have been proposed to reduce
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the cross-talks by separating the beams either spatially or spectrally [59–61, 73], using beam
transformation techniques [68], second harmonic signal [207] or various apodization schemes
[260, 261].

In order to significantly reduce the number of transmissions, the concept of ultrafast ultra-
sound imaging has been proposed. This type of approach uses a smaller number of defocused
ultrasound waves in transmission to insonify the entire medium [254]. Coherent compounding
of the ultrasound image acquired from each transmission allows for a synthetic focusing in the
full image, as in Synthetic Transmit Aperture imaging [119]. Several approaches were proposed
and validated based on this concept with plane waves (PW) [48, 90, 154] and diverging waves
(DW) insonifications [101, 191] for different applications, such as transient elastography [167]
and cardiac imaging [101, 191]. Provost et al. demonstrated the feasibility of compounding DW
using a sparse virtual array located behind the probe to achieve high frame rates for 3D cardiac
imaging [210]. All these methods are based on the same scheme : i) use of PW or DW to
insonify the whole medium for each firing ; ii) the backscattered echoes are then measured and
processed to reconstruct simultaneously all lines of the image of interest either in the Fourier
domain [48, 90, 154] or in the space domain [101, 167, 191]. It has been shown in [90] that the
computational complexity of the reconstruction process with PW insonifications performed in
the space domain is higher than in the Fourier domain. As far as cardiac imaging is concerned,
all the existing ultrafast methods rely on a sectorial configuration associated to DW, due to
the limited anatomical access to the heart. Moreover, it has to be noted that all the DW-based
proposed methods [101, 191, 210] perform reconstruction in the spatial domain, resulting in a
higher computational complexity.

The remainder of the chapter is organized as follows.

— Sec. 2 : Review of state-of-the-art methods in ultrafast image reconstruction ;
— Sec. 3 : Presentation of a complete study to revisit the influence of the transmission

scheme on plane-wave imaging system ;
— Sec. 4 : Overview of a novel formalism, named Ultrasound Fourier Slice Beamforming

(USTB), that we developed to reconstruct ultrasound images from steered plane-waves ;
— Sec. 5 : Detailed description of a novel method dedicated to an efficient reconstruction of

ultrasound sectorial images using diverging waves ;
— Sec. 6 : Conclusions of this chapter.

2 State-of-the-art in ultrafast image reconstruction

One of the advantage of PW/DW imaging techniques resides in their ability to reach high
frame rate with controlled image quality by playing with the number of firings involved for the
reconstruction of one image [203, 209]. This aspect motivated us to work with such a technique.
A synthetic review of the classical ultrasfast imaging techniques is proposed below.

Plane wave imaging

Lu et al. first proposed in the late 90s a Fourier-based method for high frame rate imaging
with limited diffraction beams (PW being a particular case) [154, 155]. From the use of limited
diffraction beams with normal incidence both in transmission and reception, the authors demons-
trated that it is possible to reconstruct the Fourier spectrum of the object function from the
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following equation :

kz = k +
√
k2 − k2

x , (1)

where (kx, kz) corresponds to the wavenumbers of the image to reconstruct and k is related to
the temporal frequency of the received signal (k = 2π f/c, with c being the speed of sound).

Garcia et al. proposed a f-k migration method for 2D PW imaging based on the exploding
reflector model (ERM) [90]. Their model assumes that all the reflectors in the medium explode
simultaneously and become upward-emitting acoustic sources [92]. By using the virtual exploding
sources, the ERM can reflect the actual two-way propagation of the acoustic wave accurately. By
applying the Stolt’s method to find these virtual sources and applying a spatial transformation,
the actual scatterers’ positions can thus be recovered. Based on this formalism, ultrafast imaging
may be reconstructed from the transmission of a single PW with normal incidence thanks to the
following relation :

kz = 2
√
k2 − k2

x/2 (2)

More recently, Montaldo et al. introduced a 2D time domain PW imaging method based on
the principle of delay-and-sum (DAS) beamforming [167]. Contrary to the methods proposed
by Lu and Garcia, this technique performs the reconstruction of PW imaging directly from the
received raw data without the need to pass through the Fourier spectrum. The whole process of
this method for a single PW is presented in Fig. 1. More particularly, a PW is transmitted into
the medium by exciting the transducer elements simultaneously (Fig. 1a) and the backscattered
echoes are acquired by each element at position x (Fig. 1b). The corresponding signal is named
as RF (x, t) in the sequel. By applying time delays on the raw RF signals and adding the resulting
signals coherently, the whole image can be recontructed (Fig. 1c). In the particular case of a
steered PW with angle θ, the travel time to the point (xs, zs) and back to a transducer element
placed in x can be expressed as [167] :

τ(x, xs, zs) =
1

c
(sin(θ)xs + cos(θ)zs +

√
(xs − x)2 + z2

s ) (3)

Each pixel of the image (xs, zs) is obtained by delaying the RF (x, t) signals with τ(x, xs, zs)
and adding coherently in the transducer direction x (see Eq.(2) in [167]) :

s(xs, zs) =

∫ xs+a

xs−a
RF (x, τ(x, xs, zs))dx (4)

The aperture 2a represents the elements that contribute to the signal and can be expressed
by the F-number (see Eq.(3) in [167]) :

F =
z

2a
(5)

where z represents the depth of the image. Ideally, the F-number is constant in the entire image.

Diverging wave imaging

More recently, Papadacci et al. proposed to adapt Montaldo’s method to ultrafast imaging with
DW in transmission for imaging the heart in 2D [191]. In this formalism, each transmitted DW
is defined by the position of a virtual source located behind the probe and used to insonify the
entire field of view. Hasegawa et al. also proposed a similar approach to perform high frame rate
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Figure 1 – (Figure 2 in [167]) Schematic representation of the single transmit PW method.
(a) The ultrasonic array insonifies the medium using a PW transmission. (b) The backscattered
RF signals are recorded by the transducer array. (c) The beamforming procedure consists in
applying time delays laws and summations to the raw RF signals to focus in the receive mode.
Contrary to standard ultrasonography, each line of the image is calculated using the same RF
data set but with a different set of time delays.

imaging in 2D echocardiography, but using several diverging beams with different directions to
cover the entire medium (15 transmits in [101]). The beamforming process of these methods
is also based on the DAS principle. In particular, if a 2D DW is sent from a virtual source
positioned at (xv, zv), the time to travel to a point (xs, zs) in the medium and come back to a
transducer placed in x can be written as :

τ(x, xs, zs, xv, zv) =
1

c
(
√

(xs − xv)2 + (zs − zv)2 +
√

(xs − x)2 + z2
s ) (6)

Thanks to Eq. (6), a 2D sectorial image can be obtained with the same principle as the one
used in PW imaging.

2.1 Principle of coherent compounding

The insonification with a single wave (PW or DW) provides the highest frame rate, but comes
up with an image quality (defined in terms of resolution and contrast) intrinsically lower than
the one obtained with classical multi-line focused beamforming. To overcome this limitation,
spatial coherent compounding has been used in all the studies mentioned above to improve
image quality. By using several PW with different angles (or several DW with different virtual
source positions), synthetic focus is achieved in the whole image, as it is done in synthetic
transmit aperture (STA) [119]. Fig. 2 shows the principle of coherent PW compounding. Steered
PW are sent through the transducer and insonify the whole region of interest. An ultrasound
image is computed from each single insonification. The individual image obtained from each PW
has low quality. The coherent summation of these images creates synthetic focus throughout the
image and allows to recover a high quality image. It has been shown in [167] that the synthetic
focusing reached by coherent compounding is the same as in the standard focusing method for
an adequate number of PW, allowing the derivation of images with the same level of quality.
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Figure 2 – Principle of coherent PW compounding. The medium is insonified with steered PW,
and the images are reconstructed individually for each PW. The individual images obtained
from each PW are low quality images. The coherent summation of these images creates synthetic
focusing throughout the complete image and allows to recover a high quality image.

2.2 Motion compensation methods for ultrafast imaging

As described above, the final image produced by ultrafast imaging techniques (based on
PW and DW insonifications) are dependent on the coherent summation of images obtained
from several transmissions. However, when the scatterers move rapidly between two transmits, a
time shift appears in the two successive received beamformed signals, resulting in a degradation
of the image quality during coherent compounding [281]. When the motion is less than λ /4 (λ
representing the wavelength), this time shift can be approximated by a phase shift in the received
quadrature-demodulated (IQ) signals [62]. For moving tissues, this phase shift must be taken
into account during the compounding process to decrease the image artifacts caused by motion.
Several approaches have thus been proposed to tackle this problem in synthetic transmit aperture
imaging (STAI) [87, 127, 180, 263, 290]. Recently, motion compensation methods adapted to
coherent compounding with PW and DW insonifications were investigated in [62] and [203],
respectively. In these works only radial motion (i.e. motion perpendicular to the transducer
surface) is considered since lateral motion (i.e. motion parallel to the transducer surface) is
expected to have a smaller influence on the image [281]. Both of these techniques are briefly
described below.

Cross-correlation based motion compensation method for plane wave imaging

In order to reduce the motion artifacts on PW compounded images, Denarie et al. proposed a
transmit sequence with angles alternatively negative and positive (i.e. transmit angle sequences
[−αN , αN ,−αN−1, αN−1, . . . ,−α1, α1, 0]), which allows reducing the influence of motion while
keeping the same contrast as the classical linear sequences [62]. However, the proposed transmit
sequence cannot fully cancel the motion artifacts, so the same authors proposed to adapt the
cross-correlation method to estimate the motion between each PW acquisition and correct it
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before coherent compounding.

Doppler-based motion compensation for diverging wave imaging

Figure 3 – (Fig. 3 in [203]) Triangle transmit sequences & motion estimation. To reduce the
side effects due to sidelobes, a triangle sequence composed of 32 successive transmits is used.
This figure shows an 8-transmit sequence for clarity. Slow-time autocorrelations were calculated
in the ascending and descending stages, and their product was used to estimate the phase delays
due to motion. The insets on the top represent the PSFs (point spread functions) with the
apparent sidelobes. They rotate in clockwise then counter-clockwise directions.

In a recent paper, Poree et al. proposed a motion compensation (MoCo) strategy for high frame
rate echocardiography using a sequence of DW in transmission [203]. To eliminate the artifacts
due to the sidelobes, the authors proposed to use a triangle sequence as shown in Fig. 3. Two
lag-one autocorrelations corresponding to the ascending and descending slopes of the triangle
sequence were calculated and their product was used to estimate the phase delays due to motion.
Finally, by compensating the displacements and phase rotations on each lower-resolution image
and doing coherent summation, the final compounded image can be obtained.
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3 Revisiting the influence of transmission scheme involved in
ultrafast imaging with plane waves

In this section, a complete study is given to revisit the influence of the transmission scheme on
the PW imaging system. Based on an analytical study of the problem, we consider a so-called
efficient dichotomous transmission scheme for linear acquisition which allows improving the
quality of the reconstructed images at a constant frame rate. The efficiency of the transmission
dichotomous scheme is assessed through the use of the current state-of-the-art reconstruction
algorithms for high frame rate imaging. The quality of the reconstructed images is evaluated in
terms of resolution and contrast from both simulations and in vitro experiments. Comparison
with the regular transmission scheme demonstrates the potential of the dichotomous approach
which allows to divide by a factor of four the number of steered PW while maintaining the same
image quality in the particular case of the reconstruction of static images.

3.1 Motivations

As discussed in the previous section, PW imaging in ultrasound is an intense area of research
because of its capacity of reaching frame rate higher than a thousand of frames per second,
leading to applications with strong potential in medical ultrasound [29, 77, 78, 93, 142, 167, 171,
208, 210, 221, 233, 268]. Contrary to the historical line-by-line focused beams approach, this
technique is based on the reconstruction of a conventional B-mode image from the transmission of
one or several steered PW. Although PW imaging appears to be attractive, the images obtained
using a single PW suffer from an intrinsic lower quality (defined in terms of resolution and
contrast) as compared to the conventional multi-lines focused beamforming technique, especially
for large depths. Coherent compounding based on the transmission of N steered PW with
different angles corresponds to the best-established approach to overcome this limitation [167].
The interest of such technique resides in its ability to reproduce a synthetic focus on the full image
in transmission, as it is done in synthetic transmit aperture [119]. The quality of the coherent
summation was first assessed from static targets on numerical simulation and/or in vitro physical
phantoms [48, 90, 167]. The conventional scheme proposed in the corresponding papers involved
a set of steered PW transmitted with an increment angle of 1◦. For instance, conventional PW
imaging techniques based on the transmission of 5 steered PW classically involves angles of
values (-2◦,-1◦,0◦,1◦,2◦). From this framework, it has been observed in most of the studies that
the image quality monotonically increases with the number of transmitted steered PW up to a
convergence state [90, 167]. One of the main interest of PW imaging is its capacity in imaging
dynamic phenomena at high frame rates. In the case of moving targets, the perfect coherent
summation is no longer achieved [281]. The influence of the maximum transmitted angle αmax
and the number of steered PW on the image quality were analytically investigated in [62]. An
alternated transmit scheme with motion compensation was then proposed to reduce the influence
of motion on PW compounded image. In this section, we propose to revisit the influence of the
transmission scheme in the case of PW imaging. Since most of the new concepts introduced
in this manuscript are validated from static phantoms (both in simulation and from in vitro
experiments), we focused our attention on the optimization of the transmission scheme in the
particular case of non-moving object.
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3.2 Methodology

3.2.1 Principles

Let’s start from the explicit expression of a monochromatic PW pic(x, z, t) with a steering
angle αi [167] :

pic(x, z, t) = p0 exp
(
j
(
xkix + zkiz − ωt

))
(7)

where kix = k0 sinαi, k
i
z = k0 cosαi, k0 = 2π/λ (λ corresponding to the conventional wavelength)

and ω = 2πf0. In the particular case of a set of N PW steered in a symmetric manner with a
constant increment angle dα, αi can be reformulated as αi = i dα with i ∈ [−(N − 1)/2, (N − 1)/2],
leading to the following relation for small values of αi :

kix =
2π

λ
sin (i dα) ≈ 2π

λ
i dα. (8)

As demonstrated in [167], the image of a point (xf , zf ) from compounding scheme is the
same as the one obtained by illuminating the medium with a unique wave :

pc(x
′, z′, t) =

(N−1)/2∑
i=−(N−1)/2

p0 exp
(
j
(
x′kix + z′kiz − ωt

))
, (9)

where x′ = x− xf and z′ = z − zf are the coordinates centered at the focal point (xf , zf ). At
the focal depth z = zf , the evolution of the synthetic pressure field along the x-axis is then given
by :

pc(x
′, t) =

(N−1)/2∑
i=−(N−1)/2

p0 exp
(
j
(
x′kix − ωt

))
. (10)

By using the relation given in Eq. (8) and the standard geometrical series relations, the above
equation can be simplified as :

|pc(x′, t)| = |p0|
∣∣∣∣sin (k0 dαx

′N/2)

sin (k0 dαx′/2)

∣∣∣∣ (11)

The above expression allows investigating the dimension of the main lobe and the positions
of the side lobes in the monochromatic case at the center frequency and at the focal depth.
Indeed, Eq. (11) vanishes for

x′ =
λ

Ndα
l, l ∈ Z∗ (12)

The main lobe width is proportional to the distance between the first zeros of the transverse
pressure function (i.e. the distance between l = -1 and 1 in Eq. (12)), thus the width W of the
main lobe corresponding to a coherent summation of N steered PW (N > 1) is in the order of :

W = 2
λ

Ndα
=
N − 1

N

λ

αmax
≈ λ

αmax
(13)

where αmax = N−1
2 dα represents the maximum transmitted angle. Eq. (13) shows that the width

of the main lobe, which is directly linked to the lateral resolution of the system, is uniquely fixed
by two parameters : the wavelength of the probe and the maximum transmitted angle αmax.
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Thus, by maintaining the maximum angle αmax for varying number of steered PW involved in
transmission, the corresponding reconstructed images will share the same resolution.

3.2.2 The dichotomous transmission scheme

For conventional imaging, the focused beam profile can be expressed as [62] :

|p(x′, zf , t)| = |p0|
∣∣∣∣ sin (k0 x

′ L/(2zf ))

sin (k0 x′∆x/(2zf ))

∣∣∣∣ (14)

where L is the size of the aperture, ∆x is the pitch of the linear array. To achieve the equality
of Eq. (11) and (14), the number of steered PW N and the angle increment dα have to satisfy
the following relation :

Ndα =
L

zf
(15)

By replacing dα in the above expression using the relation given in Eq. (13), the maximum
transmitted angle αmax can be reformulated as

αmax =
N − 1

N

L

2zf
≈ L

2zf
(16)

This last expression shows that the maximum transmitted angle αmax can be determined by
the aperture size L and a chosen focused depth zf . Based on Eq. (13) and (16), there can be
several options to choose the angles in between, but the most straightforward is to distribute
them equally in between the extreme values. We named this approach the dichotomous scheme
thereafter and the corresponding algorithm is described below.

1. We first fix the maximum depth zf that we want to image.

2. Thanks to Eq. (16), we then compute the optimal maximum angle αmax that we use
whatever the number of steered PW involved in compounding.

3. The values of the angles of the steered PW used in transmission are then equally distributed
from −αmax to αmax.

3.3 Experiments

3.3.1 Simulation

Based on the previous analytical study, we proposed to quantify from simulation the influence
of the increment angle dα together with the number of steered PW used in compounding on
the resolution of the transmitted field. To this aim, simulations of the synthetic acoustic field
(acoustic field from each transmit summed with spatial coherent compounding) were performed
to assess the system quality in transmission. A standard linear-array probe of 128 elements with
0.19-mm pitch, 13-mm height, a center frequency of 5-MHz (100% bandwidth), and a 23-mm
elevation focus was implemented using Field II [120]. The sampling frequency was set to 100
MHz. The acoustic field transmitted by each steered PW was also calculated using Field II.
Because this part of the study only focuses on the transmission side, it is worth noting that its
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conclusions should benefit to any reconstruction methods based on PW imaging. This point will
be investigated in the next section.

Influence of the increment angle dα

Fig. 4 shows the transmitted synthetic pressure field obtained in the particular case of 3
steered PW with values of steered angles equal to (−αs, 0, αs), αs varying from 1◦ to 21◦. In
the particular case of 3 steered PW, αs corresponds both to the increment angle dα and the
maximum transmitted angle αmax. αs = 1◦ corresponds to the conventional scheme used in
[48, 90, 167]. Coherent summation was performed at 30-mm depth and for two different lateral
positions of the field of view : at the center (left-hand side of Fig. 4) and close to the edge of
the probe (right-hand side of Fig. 4). The first row of Fig. 4 displays the lateral resolution,
measured as the width of the main lobe at -6 dB, at 30-mm depth and for increasing values
of αs. The second row of Fig. 4 shows the normalized synthetic pressure distribution along the
lateral position at 30-mm for αs equals to 1◦, 5◦, 10◦ and 15◦, while the last row displays
these pressure distributions in the entire space. From Fig. 4(a) and 4(b), it can be seen that
the lateral resolution improves with the increase of the value of the steered angle, which is in
accordance with Eq. (13). For a steered angle greater or equal to 10◦, a lateral resolution smaller
than 1-mm is obtained. However, large values of αs increase the magnitude of the grating lobes
near the probe edges ( Fig. 4(d)) because of the large dα, which results in a poor resolution
after 12◦ ( Fig. 4(b)) and thus produced undesirable border effects in terms of imaging system.
Therefore, an optimal steered angle αopt around 10◦ appears to be a good trade-off between a
good resolution (lateral resolution around 0.8-mm) and a small magnitude of the grating lobe.
This value, fixed thanks to the above analytical study from a given probe settings, was used in
the rest of the experiments.

Influence of the number of steered PW

Fig. 5 displays the evolution of the resolution with respect to the number of steered PW used
in transmission computed from simulation of the synthetic acoustic field. The lateral resolution
was measured at 30-mm depth in the center of the image. In this experiment, the conventional
and the dichotomous scheme were compared. For the regular scheme, the angle increment is
fixed to 1◦, implying thus that the maximum angle increases with the number of steered PW.
For the second approach, we used the optimal value αs = 10◦ derived in the particular case of
3 steered PW and then increased the number of steered PW uniformly from −αs to αs. For
instance, in the particular case of 5 steered PW, the values of the involved steered angles are
thus equal to (−αs,−αs/2, 0, αs/2, αs), i.e. (−10◦,−5◦, 0◦, 5◦, 10◦). From this figure, it can be
observed that the lateral resolution improves with the increase of the number of steered PW
in the case of the conventional approach (from 8-mm to 1-mm), which is in accordance with
Eq. (13). Indeed, for a constant value of dα, the width of the main lobe decreases for increasing
values of the number of steered PW, which results in an improvement of the lateral resolution.
On the opposite, the dichotomous transmission scheme yields a quasi constant resolution around
1-mm whatever the number of the involved steered PW, which illustrates the strong interest of
such approach. Moreover, the small decrease of the lateral resolution after the compounding of
3 steered PW can also be explained from Eq. (13). Indeed, it can be analytically observed that
the width of the main lobe slightly increases with the number of steered PW up to a convergence
value equals to λ /αs, which is in accordance with the results observed in Fig. 5.

Fig. 6 gives the normalized synthetic pressures computed along the lateral position at 30-
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(a) (b)

(c) (d)

(e) (f)

Figure 4 – Effect of the value of the steered angle αs on the lateral resolution using synthetic
acoustic field. Each pressure is compounded with 3 steered PW (−αs, 0, αs) at 30-mm depth
on the central axis (left column) and on the edge of the probe (right column). (a)-(b) Lateral
resolution as a function of αs. The black dashed line represents the limit of lateral resolution
at 1 mm. (c)-(d) Normalized synthetic pressure computed along lateral positions for different
values of αs (1◦, 5◦, 10◦, 15◦). (e)-(f) 2-D normalized synthetic pressure distribution obtained
for the different configurations of αs with 5◦, 10◦ and 15◦.
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Figure 5 – Influence of the number of transmitted steered PW on the lateral resolution for the
conventional and the dichotomous scheme.

mm depth using the two transmission schemes with increasing number of steered PW. For both
methods, it can be seen that the grating lobes decrease with the number of steered PW, which
should have an impact on the contrast. For the dichotomous scheme, this figure also reveals the
stable behavior of the main lobe (lateral resolution), the increase of the transmitted steered PW
having mostly an impact on the reduction of the grating lobes effects.

3.3.2 In vitro experiments

We evaluated the performance of the dichotomous and the conventional transmission schemes
associated with the current state-of-the-art reconstructed methods for PW imaging, i.e. the
methods of Lu [154], Garcia [90] and Montaldo [167]. The image quality was assessed experimentally
using an ultrasound phantom (CIRS model : 054GS) [1]. Fig. 7 displays the schematic diagram
of the corresponding phantom along with the two imaging planes involved in this experiment. A
standard linear array probe (128 elements, center frequency of 7.8 MHz, transmitted frequency
of 5 MHz, Verasonics - L12-5-50 mm) with the same characteristics as the one used in Sec. 3.3.1
was interfaced with a Verasonics system to image the phantom. The imaging depth was set to
50 mm. The number of transmitted steered PW varied from 1 to 21, providing a frame rate
between 15400 and 733 fps, respectively. No apodization in transmission and reception was used
for the entire acquisitions. The received raw-data were processed using the three state-of-the-art
techniques for PW imaging described in Sec. 2. The two different transmission schemes presented
in Sec. 3.3.1 were investigated. For the regular scheme, the angle increment is fixed to 1◦ while
for the dichotomous scheme, the optimal steered angle αs was set to 10◦. The beamformed RF
data were Hilbert transformed and normalized to get the envelope images. The corresponding
images were then gamma-compressed using γ = 0.3 as in [90] and finally converted to 8-bit
grayscale to get the B-mode images.

Lateral resolution

Lateral resolution was first investigated from the imaging plane n◦2 given in Fig. 7 (acquisition
centered on the 0.1-mm nylon monofilament targets). The corresponding values were measured
as the width at -6 dB of the Point Spread Function (PSF) corresponding to the two points
present at 20 mm and 40 mm in the image. Fig. 8 investigates the improvement of the lateral
resolution with the number of steered PW for the different reconstruction techniques and for
different depths. First, it can be seen that the three methods produce similar image quality both
for a single PW (Fig. 8a) or using 21 steered PW with coherent compounding (Fig. 8b). These
observations are confirmed by the two graphs provided in Fig. 8c which display the evolution
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(a) (b)

Figure 6 – Normalized synthetic pressure computed along the lateral position at 30-mm depth
in the center of the image with varying numbers of steered PW (3, 11 and 21) using (a) the
regular approach (e.g. 3 steered PW : {−1◦, 0◦,1◦}) and (b) the proposed dichotomous scheme
(e.g. 3 steered PW : {−10◦, 0◦, 10◦}).

Figure 7 – Schematic diagram of the CIRS tissue-mimicking phantom (model : 054GS) with
the corresponding imaging planes used in the experiments
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Figure 8 – B-mode images of a CIRS phantom (model : 054GS) reconstructed from the three
reconstructed methods using (a) 1-PW and (b) 21 steered PW with coherent compounding. (c)
Lateral resolution measurements as a function of the number of steered PW. The solid lines
correspond the proposed dichotomous transmission scheme while the dashed lines correspond to
the regular scheme.
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Figure 9 – Contrast ratio CR as a function of the number of steered PW for the three recons-
tructed methods. The solid lines correspond the proposed dichotomous transmission scheme
while the dashed lines correspond to the regular scheme.

of the lateral resolutions measured at 20 and 40 mm with respect to the number of steered
PW. Indeed, the lateral resolution derived from the dichotomous scheme improves quickly for 3
steered PW and then tends to stabilize to the optimal value whatever the reconstructed method,
i.e. around 0.9-mm at 20-mm depth and between 0.6 and 0.8-mm at 40-mm depth, which is in
coherence with what has been previously observed from simulations. The dichotomous scheme
reaches the optimal lateral resolution values for the transmission of only 3 steered PW (frame
rate of 5133 fps), while the conventional scheme (dashed lines) reaches the same values after the
transmission of 21 steered PW (frame rate of 733 fps).

Image contrast

The image contrast was then investigated from the imaging plane n◦1 given in Fig. 7
(acquisition centered on the hyperechoic target). Fig. 9 shows the improvement of the image
contrast with respect to the number of steered PW for the three reconstruction methods. As
for the lateral resolution case, the use of the dichotomous scheme in transmission (solid lines)
allows a significant improvement of the image quality compared to the conventional approach
(dashed lines) at a constant frame rate. Indeed, the dichotomous scheme reaches the optimal CR
values for the transmission of only 5 steered PW (frame rate of 3080 fps), while the conventional
approach reaches the same values after the transmission of 21 steered PW (frame rate of 733 fps).
Moreover, it is also interesting to note that the reached optimal CR scores are close whatever
the method, varying from 6 to 6.7-dB.

3.4 Conclusions

We revisited in this study the influence of the transmission scheme involved in PW imaging
with coherent compounding. In particular, we investigated the importance of the choice of the
steered angles on the quality of the reconstructed image in terms of resolution and contrast. Based
on the analytical analysis of the synthetic pressure, we showed that the use of a dichotomous
transmission scheme improves significantly the quality of the reconstructed B-mode images at
constant frame rates in the particular case of static images. Experimental comparisons with the
conventional transmission scheme reveal the potential of the dichotomous scheme in dividing
by a factor of four the number of steered PW needed to reconstruct same quality of images,
the optimal number of transmitted waves varying from 21 steered PW using the conventional
approach to 5 steered PW with the dichotomous solution.
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4 1st contribution : Ultrasound Fourier Slice Beamforming

In this section we present a novel formalism, named Ultrasound Fourier Slice Beamforming
(UFSB), that we developed to reconstruct ultrasound images from steered plane-waves. The
interest of such approach is to create strong links between ultrasound image formation with
other modalities such as Computed Tomography (CT). Indeed, the principle of our method is
to express the image beamforming through the Fourier domain where the samples are radially
distribued. By doing so, standard methods such as the Fourier slice theorem can be used to
easily reconstruct ultrasound images. This theory was validated through both simulation and in
vivo acquisitions. This work has been the subject of several publications [35, 295].

4.1 Motivations

The principle of the existing ultrafast Fourier-based methods introduced in Sec. 2 can be
summarized as follows. One PW is first emitted. Backscattered echoes are then measured
(Fig. 10a). 2D-Fourier transform is applied on the received RF raw-data (Fig. 10b). Finally,
a remapping function is used to project the Fourier transform of the received echoes to the
k-space corresponding to the Fourier transform of the image to reconstruct (Fig. 10c). By taking
the inverse 2D Fourier transform, the final ultrasound image is then reconstructed (Fig. 10d).
One important shared property of the previous Fourier-based techniques is that the Fourier
spectrum of the object is sampled along the kz axis direction with a lateral step proportional
to the inverse of the pitch (distance between two consecutive active elements). The Fourier
slice theorem, which is based on the collection of projections of the image to reconstruct from
many different directions, has been widely used in CT [108]. The theorem states that the one
dimensional Fourier transform of a projection of an image provides a slice of the 2D Fourier
transform of the image. Performing projections along different angles thus allows to radially
sample the full spectrum of the image. By doing the inverse Fourier transform of the image
spectrum, the image can be reconstructed. In CT systems, a beam of X-ray is created to pass
through the tissue. A detector placed on the opposite side measures the corresponding projection
along one direction. By rotating the emitter and detector for several angles, the full k-space of
the image can be recovered. Unlike CT, ultrasound systems use the same transducer array to
both transmit and receive the ultrasound wave. The use of the Fourier slice imaging technique
in ultrasound is thus not straightforward and an adaptation of the projection reconstruction
scheme to the specificity of ultrasound image formation is thus required.

Figure 10 – Reconstruction procedure for conventional Fourier-based method. (a) the received
raw-data in (x, t) space ; (b) the 2D Fourier transform of the raw-data ; (c) the remapped object
spectrum ; (d) the reconstructed image.

186



4. 1st contribution : Ultrasound Fourier Slice Beamforming

4.2 Methodology

4.2.1 UFSB : single plane wave imaging

Steered plane wave modeling

Ultrasound Fourier slice imaging is based on the use of steered PW both in emission and in
reception. Let φn(x, t) be a plane-wave steered in the direction defined by n. The scalar pressure
field of this plane-wave can be defined as :

φn(x, t) = φ(ct− n · x) (17)

where x = (x, z) is a point in the medium with x is the lateral axis and z is the axial axis
and φ represents the wave shape, which can thus be rewritten as :

φn(x, t) = φ(ct) ∗ δ(ct− n · x) = φ ∗ δ(ct− n · x) (18)

The wave front of a propagating field corresponds to the location, at a particular time instant
t0 , where the field value is the same, i.e. x verifying φn(x, t0) = cst. In the particular case of
steered plane-wave, thanks to Eq. (18), the corresponding wave front can be easily defined as
the location where δ(ct0 − n · x) = 0, i.e. n · x = ct0 which corresponds to a line perpendicular
to the direction given by n and passing through the point ct0n, as illustrated in Fig. 11.

Figure 11 – Illustration of a wavefront of a steered PW with direction n. All the x in the blue
line has the same wavefront.

Ultrasound image formation

We focus now on finding a relationship between the spectrum of the image to reconstruct and
the received raw-data using a horizontal PW in transmission and steered PW in reception, as
illustrated in Fig. 12. In particular, a linear array is excited to generate a single PW with direction
ne to insonify the medium and is also used to receive the backscattered echoes coherently as a
steered PW in the direction nr. The summation of the output signal of all the elements in such
a system can be modeled as follows :

s(t) =
∑
Z∗

s(xi, t)

≈
∫
D
m(x) · φne(x) ∗ φnr(x)dx

≈
∫
D
m(x) · φer ∗ δ (ct− ner · x) dx (19)
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Figure 12 – Illustration of the image formation introduced in UFSB theory

where Z∗ corresponds to the restriction of the element positions of the probe. ∗ represents the
temporal convolution product and ner = ne + nr. φer corresponds to the convolution between
the impulse responses of the emitted field φe and the received field φr. D corresponds to the
transducer width and m(·) is a function that characterizes both the spatial distribution and the
backscattered amplitude of the different scatterers present in the insonified medium. Typically,
m(·) can be defined as :

m(x) =
∑

{i,j}∈FOV

a(i, j)δ(x− i)δ(z − j) (20)

where a(i, j) is the reflection coefficient of the scatterer positioned at (i, j), FOV corresponds
to the area insonified by the transmitted wave.

Ultrasound Fourier Slice Beamforming concept

The temporal Fourier transform Ft(·) of signal s(t) leads to the following relation :

Ft (s(t)) =

∫ +∞

−∞

[ ∫
D
m(x) · φer ∗ δ (ct− ner · x) dx

]
e−j2πft dt (21)

Given the fundamental relations z = ct and k = 2πf
c , where z and k corresponds to the

spatial distance and the wavenumber defined in the direction given by ner, respectively, Eq. (21)
can be rewritten as :
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Ft (s(t)) =
1

c

∫ +∞

−∞

[ ∫
D
m(x) · φer ∗ δ (z − ner · x) dx

]
e−jkz dz

=
1

c

∫
D

[ ∫ +∞

−∞
m(x) · φer ∗ δ (z − ner · x) e−jkz dz

]
dx

=
1

c

∫
D

[ ∫ +∞

−∞
m(x) · φer e−jk(ner·x) dz

]
dx

=
1

c

x

FOV

m(x) · φer e−jk(ner·x) dx dz (22)

Since m(x) is zero out of the field of view (FOV), we use FOV to represent the limit of
integration in the last step of Eq. (22). In the special case where ne = (0, 1)T and nr = (sin(ξi), cos(ξi))

T ,
Eq. (22) can be rewritten as :

Ft (s(t)) =
1

c

x

FOV

m(x) · φer e−jk(sin(ξi)x+(1+cos(ξi)z)) dx dz,

=
1

c

x

FOV

m(x) · φer e−j(kxx+kzz) dx dz,

=
1

c
F2D

[
m(x) · φer

]
(kx, kz) (23)

where F2D is the 2D Fourier transform operator. According to the Fourier slice theorem,
Eq. (23) can be interpreted as the 2D spatial Fourier transform of the image (m · φer)(·)
restricted to the line of direction ner, with the following fundamental relations :

{
kx = k sin(ξi)
kz = k (1 + cos(ξi))

(24)

and  k = k2x + k2z
2 kz

ξi = arctan
(

kx
kz − k

)
= arctan

(
2 kx kz
k2z − k2x

) (25)

As a consequence, in the particular case where the emitted field is a PW perpendicular to
the probe and the received field is supposed to be a steered PW with angle ξi, Eq. (22)-(25)
show that the temporal Fourier transform of the received signal is equal to a radial line of angle
θi = f(ξi) (with f(·) = arctan(sin(·)/(1 + cos(·)))) in the corresponding k-space domain. By
simply playing with different delay strategies applied on the received signals, we are thus able,
for only one emitted PW, to radially and densely recover the Fourier space of the object and thus
reconstruct an ultrasound image with high frame rate. The acquisition scheme corresponding to
the proposed approach is summarized in Fig. 13.

4.3 UFSB : componding imaging from steered plane waves

It has been shown in [90, 154, 167] that the image quality can be improved by coherently
compounding the images obtained from several steered PW. To be able to perform coherent PW
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Figure 13 – Reconstruction procedure with the proposed method. (a) the received raw-data
in (x, t) space ; (b) the 1D Fourier transform of all the projections of the raw-data at different
angles ξi ; (c) the remapped object spectrum ; (d) the reconstructed image.

compounding with our method, it must be ensured that the UFSB technique can be adapted to
a steered PW in transmission as well. For a steered PW with angle ϕj in transmission, which
means the corresponding direction ne = (sin(ϕj), cos(ϕj))

T , the following relations can be easily
derived :

{
kx = k (sin(ϕj) + sin(ξi))
kz = k (cos(ϕj) + cos(ξi))

(26)

and 
k = k2x + k2z

2 (kx sin(ϕj) + kz cos(ϕj))

ξi = arctan
(

2 kx kz cos(ϕj)+(k2x−k2z) sin(ϕj)
2 kx kz sin(ϕj)+(k2z−k2x) cos(ϕj)

) (27)

As a consequence, in the general case where the emitted field is a steered PW with angle ϕj
and the received field is supposed to be a steered PW with angle ξi, Eq. (26)-(27) show that
the temporal Fourier transform of the received signal still corresponds to a radial line of angle
θi = fϕj (ξi) of the object spectrum (with fϕj (·) = arctan((sin(ϕj) + sin(·))/(cos(ϕj) + cos(·))).
Fig. 14 illustrates the k-space sampling derived from the proposed UFSB method according to
the angle of the transmitted steered PW (ϕj = 0 and ϕj 6= 0), the boundary of the different
spectra being discussed in Sec. 4.8. Such relations not only allow the reconstruction of one image
from the emission of a single steered PW but also allow the application of compounding scheme
directly in the k-space domain. Finally, the spectrum of the image to reconstruct is averaged from
a set of reconstructed spectra obtained from steered PW with different angles in transmission.

4.4 UFSB : summary and practical implementation

The generic implementation of the procedure for the proposed UFSB scheme (based on
steered PW insonifications) can be summarized as follows :

1. Transmit a PW with angle ϕj . The steering angle ϕj is obtained by delaying the firing
time of each element of the array. The delay d is given by d(xi) = xi sin(ϕj)/c, xi ∈
(−D/2, D/2), where xi is the position of the array element, c is the speed of sound,

190



4. 1st contribution : Ultrasound Fourier Slice Beamforming

Figure 14 – Illustration of k-space sampling derived from the UFSB method using in emission
either (a) a PW perpendicular to the probe or (b) a steered PW with direction ϕj .

and D is the aperture size. To make the system causal, an additional constant delay

dt =
∣∣∣ D sin(ϕj)

2c

∣∣∣ is added to the delay function.

2. Receive the back-scattered echoes on each transducer element simultaneously. The 2D
data set s(xi, t) is collected. Each column s(xi, t) corresponds to the received data for the
transducer element at position xi.

3. Do the 1D Fourier transform of the received data s(xi, t) over t to get the echoes in the
frequency domain S(xi, f).

4. Apply delays in reception to receive steered PW with angle ξi. In time domain, the
delays applied on the s(xi, t) should be τ(xi) = xi sin(ξi)/c, xi ∈ (−D/2, D/2) to receive
a steered PW with angle ξi. Since there is a constant delay dt that has been added in
transmission, it should be compensated in reception. The delay applied in reception is
then τ − dt. According to the shift property of the Fourier transform, a multiplication
of complex exponential exp(−j2π f(τ − dt)) is applied on S(xi, f). One radial line of
the 2D Fourier spectrum of the object is obtained by performing the summation of the
corresponding signals S(x, f) exp(−j2π f(τ − dt)) along xi.

5. Repeat step 4 with different angle ξi to fully sample the object spectrum, then interpolate
the radial sampled spectrum on a regular grid.

6. Apply the 2D inverse Fourier transform to reconstruct the corresponding RF image.

7. If successive steered PW are used to perform coherent compounding, repeat steps 3 to 6
for each firing and average all the reconstructed RF images to get the final compounded
image.

Note : The compounding step can also be done in the Fourier domain by averaging the
obtained spectrums. This means to i) repeat step 3 to 5 to get the spectrums of each firing and
average all the spectrums from each steered PW ; ii) do the 2D inverse Fourier transform on the
compounded spectrum to reconstruct the final image.

191



Ultrasound image reconstruction : toward new imaging techniques

4.5 Results

4.6 Numerical simulations

Numerical simulations were performed to assess the performance of the proposed UFSB PW
imaging method. For all the tests, we used the dichotomous transmission scheme described in
Sec. 3 with an optimal steered angle αs of 10◦. The proposed UFSB method was compared with
the current state-of-the-art ultrafast PW imaging algorithms, i.e. the methods of Lu et al. [154],
Garcia et al. [90] and Montaldo et al. [167]. A standard linear-array probe of 128 elements with
0.19-mm pitch, 13-mm height, a center frequency of 5-MHz (100% bandwidth), and a 23-mm
elevation focus was implemented using Field II [120]. The sampling frequency was set to 100
MHz. No apodization was used in both transmission and reception. Each reconstructed image
was obtained from the following protocol : i) raw-data signals were acquired using steered PW
with different transmit angles ; ii) those signals were processed independently and then averaged
to get the compounded RF image ; iii) the corresponding envelope image was derived through
a Hilbert transform and normalized ; iv) the envelope image was then gamma-compressed using
γ = 0.3 and finally converted to 8-bit grayscale to get the B-mode image (except for the lateral
resolution study).

4.6.1 Validation of the UFSB method

We first used a numerical phantom composed of a discrete set of point scatterers to verify
the proposed UFSB method with PW in transmission steered at different angles and for the
compounding scheme. Fig. 15 displays the corresponding images reconstructed from the proposed
UFSB method with different transmission angles of −10◦ (Fig. 15a), 0◦ (Fig. 15b), 10◦ (Fig. 15c)
and the compounded image of the 3 PW (−10◦,0◦,10◦) in transmission (Fig. 15d), respectively.
The red circles correspond to the real position of the scatterers. From the first 3 figures, it can
be seen that the angle of transmitted PW has obviously a direct influence on the direction of the
side lobes of the point spread function. After coherent compounding of the images from different
steered PW (Fig. 15d), the side lobe artifacts can be reduced significantly, resulting in a better
contrast and resolution quality.

4.6.2 Image quality evaluation

Lateral resolution

The lateral resolution of the reconstructed images was then evaluated using the numerical
phantom displayed in Fig. 15. The corresponding values were measured as the width at -6 dB
of the point spread function associated to the points located at 40-mm in the image. Fig. 16
investigates the influence of the number of PW on the lateral resolution using the different
reconstruction techniques. First, it can be seen that the 4 methods produced similar lateral
resolution whatever the number of involved steered PW. In particular, it can be observed that
the lateral resolution improves quickly for 3 PW and then tends to stabilize to the optimal value,
i.e. around 0.65-mm at 40-mm depth. It is also important to note that the lateral resolution
tends to increase a little bit after the compounding of 3 PW. This behavior can be explained by
the chosen dichotomous transmission scheme described in Sec. 3.2.2. From this figure, one can
see that the lateral resolution measured in simulations for increasing number of PW is coherent
with the theoretical evolution (Fig. 5).
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Figure 15 – Point scatterer images reconstructed from the UFSB method using 1 PW in
transmission with steered angles of (a) −10◦ (b) 0◦ and (c) 10◦. (d) Compounded image of the
previous 3 steered PW. The red circles correspond to the true position of the involved scatterers.

Figure 16 – Lateral resolution as a function of the number of PW computed at 40-mm depth.
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Image contrast

The quality of the reconstructed image was then investigated from the contrast ratio (CR)
measurements performed through simulated phantoms (i.e. a homogeneous medium with high
density of scatterers, i.e. 20 per resolution cell, with an anechoic cyst of diameter 8-mm lying at
30-mm depth). Fig. 17 investigates the improvement of the image contrast with the number of
steered PW. First, it can be seen that the 4 methods produced similar image quality both for a
single PW (Fig. 17(a)) or using 21 steered PW with coherent compounding (Fig. 17(b)). These
observations are confirmed by the graph provided in Fig. 17(c) which displays the evolution of
the CR as a function of the number of steered PW. Interestingly, this result shows that among
all the reconstructed methods, the proposed UFSB method provides almost the same CR value
as the method of Lu, which further reveals that the UFSB technique provides very competitive
contrast measurements compared to the state-of-the-art methods.

4.7 In vitro and in vivo experiments

4.7.1 In vitro experiments

The imaging quality was also assessed experimentally using an ultrasound phantom (CIRS
model : 054GS) [1]. Fig. 18 displays the schematic diagram of the corresponding phantom along
with the two imaging planes obtained in this experiment. A standard linear array probe (128
elements, center frequency of 7.8-MHz, transmitted frequency of 5-MHz, Verasonics - L12-5-
50mm) with the same characteristics as the ones used in simulations was interfaced with a
Verasonics system to image the phantom. The imaging depth was set to 50-mm. The number
of transmitted PW varied from 1 to 21, providing a frame rate between 15400 and 733 fps,
respectively. No apodization in transmission and reception was used for the entire acquisitions.
The received raw-data were processed using the proposed UFSB technique for PW, the Fourier-
based methods of Lu et al. [154] and Garcia et al. [90] and the spatial approach of Montaldo et
al. [167]. For all the tests, we use the dichotomous transmission scheme described in Sec. 3.2.2
with an optimal steered angle αs of 10◦.

Lateral resolution

The lateral resolution was first investigated experimentally from the imaging plane n◦2 given
in Fig. 18 (acquisition centered on the 0.1-mm nylon monofilament targets). The corresponding
values were measured as the width at -6 dB of the PSF corresponding to the two points present at
20-mm and 40-mm in the image. Fig. 19 investigates the improvement of the lateral resolution
with the number of steered PW for the different reconstructed techniques and for different
depths. First, it can be seen that the 4 methods still produced similar image quality both for a
single PW (Fig. 19(a)) and using 21 steered PW with coherent compounding (Fig. 19(b)). These
observations are confirmed by the two graphs provided in Fig. 19(c) which display the evolution
of the lateral resolutions measured at 20 and 40-mm with respect to the number of steered PW.
Using the dichotomous transmission scheme described in Sec. 3.2.2, it can be observed that the
lateral resolution improves quickly for 3 steered PW and then tends to stabilize to the optimal
value whatever the reconstructed method, i.e. around 0.9-mm at 20-mm depth and between
0.6 and 0.8-mm at 40-mm depth, which is in good agreement with what has been observed
previously from simulations.
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(a)

(b)

(c)

Figure 17 – B-mode images of an anechoic cyst phantom reconstructed from the four PW
imaging methods using (a) 1-PW and (b) 21-PW with coherent compounding. (c) Contrast
ratio CR as a function of the number of steered PW for the 4 reconstruction methods.
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Figure 18 – Schematic diagram of the CIRS tissue-mimicking phantom with the corresponding
imaging planes used in the experiments

Image contrast

The image contrast was then investigated from the imaging plane n◦1 given in Fig. 18
(acquisition centered on the hyperechoic target). Fig. 20 shows the improvement of the image
contrast with respect to the number of steered PW for the four reconstruction methods. It can
be observed that the four methods yield very close contrast ratio whatever the number of steered
PW. In particular, the image contrast improves significantly for a small number of steered PW
and tends to stabilize for more than 9 steered PW, which is also consistent with the simulation
results.

4.7.2 In vivo experiments on a carotid

An in vivo experiment was finally carried out on the carotid artery of a healthy volunteer.
The transducer used in this experiment is a standard linear array probe (128 elements, center
frequency of 7.8-MHz, transmitted frequency 7.8-MHz, Verasonics - L12-5-50mm) with the
same characteristics as the ones used in simulation section. The imaging depth was set to
50-mm. The number of transmitted steered PW varied from 1 to 21, providing a frame rate
between 15400 and 733 fps, respectively. No apodization in transmission and reception is used
for the entire acquisitions. The received raw-data were processed using the three state-of-the-art
techniques for PW imaging described in Sec. 2. The optimal steered angle αs was set to 10◦. The
beamformed RF data were Hilbert transformed and normalized to get the envelope images. The
corresponding images were then log-compressed to get the B-mode images with a 40-dB dynamic
range. Fig. 21(a) and 21(b) shows the carotid images obtained with the proposed UFSB method
and the state-of-the-art PW imaging methods using 1 PW in transmission and 21 steered PW
in transmission with coherent compounding, respectively. As in simulations and in vitro expe-
riments, these results illustrate visually the closeness of the images produced by the different
methods in terms of image quality and speckle definition. In order to further investigate the
influence of the four reconstruction methods, we display in Fig. 21(c) the normalized absolute
differences of the carotid images given in Fig. 21(b). From this figure, it can be seen that
the differences between UFSB and the other three methods are quite small. Particularly, the
difference between UFSB and Lu is almost null for the imaging region (i.e. from 5-mm to 40-
mm depth).
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Figure 19 – B-mode images of a CIRS phantom reconstructed from the four reconstructed meth-
ods using (a) 1 PW and (b) 21 steered PW with coherent compounding. (c) Lateral resolution
measurements as a function of the number of steered PW.
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Figure 20 – Contrast ratio CR as a function of the number of steered PW for the four PW
imaging methods.

4.8 Discussion

We proposed in this section a new reconstruction scheme based on the Fourier slice theorem.
Starting from the same ultrasound modeling system as in [154], we showed that ultrafast imaging
in ultrasound can be represented as a problem of spectrum reconstruction based on the Fourier
slice theorem. As illustrated in Fig. 13, this new technique allows recovering the Fourier spectrum
of the object function radially. From the simulation and experimental results provided in Sec. 4.6
and 4.7, it can be observed that the UFSB technique produces very competitive results compared
to the other existing approaches, the closest method in terms of image quality being the one
proposed by Lu et al.. It is thus of interest to evaluate the proposed UFSB framework and the
two others Fourier-based approaches through the comparison of the properties of the Fourier
spectrum reconstructed from each method.

The spectral content of the object function is determined by the physical limits of the
ultrasound system. In our experiments, the probe consisted of transducer elements with 100%
bandwidth. This means that the spectral content along the kz axis (kz = 2f/c) is defined between
{f0/c, 3f0/c}, where f0 is the center frequency of the transducer. The lateral sampling frequency
of the object function is conditioned by the pitch p of the probe, limiting the spectral content
along the kx axis to the range {−1/(2 p), 1/(2 p)}. As detailed in Sec. 4.2.1, the UFSB technique
allows sampling the Fourier spectrum of the object function radially with angle θi = fϕj (ξi),
where ϕj and ξi correspond to the angle of the steered PW in emission and reception, respectively.
By playing with different delay strategies applied on the received signals, it is thus possible, for
only one emitted PW with angle ϕj , to receive steered PW with different angles and thus
radially recover the Fourier space of the object. Because of the physical limits described above,
we constrained for each experiment the value of θi in the interval − θmax ≤ θi ≤ θmax, where
θmax is defined as

θmax = arctan

(
kx,max
kz,min

)
= arctan

(
c

2 p f0

)
(28)

From Eq. (24) given in Sec. 4.2.1, it can be observed that for a fixed value of ξi, the UFSB
k-space sampling corresponds to a line passing through the origin with an angle θi = f(ξi).
Therefore the accessible range for θi corresponds to a cone of apex 2 θmax. In the same way, for a
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(a)

(b)

(c)

Figure 21 – In vivo experiments - Carotid image reconstructed from the four PW imaging
methods using (a) 1 PW and (b) 21 steered PW with coherent compounding. (c) Absolute
differences of the UFSB and the other 3 reconstructed methods from the figures in (b).
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fixed value of k, the UFSB k-space sampling corresponds to a circle centered at (kx, kz) = (0, k),
with a diameter of 2 k. Since the two conditions must be verified simultaneously, the generic k-
space sampling derived from the proposed UFSB technique corresponds to the diagrams provided
in Fig. 14

Contrary to the proposed UFSB scheme, the two others Fourier-based techniques proposed
by Lu et al. [154] and Garcia et al. [90] sample the Fourier spectrum of the object function
along the kz axis direction with a lateral step proportional to the inverse of the pitch. In order
to investigate the influence of the different Fourier sampling schemes, we display in Fig. 22 the
normalized absolute differences of the Fourier spectrum of the experimental images provided
at the top row of Fig. 19 reconstructed from the three different Fourier techniques. From this
figure, it may be first seen that the difference of spectrum between Lu and Garcia methods is
null for the central part of the spectrum, as it has been already observed in [90]. Moreover,
this figure also reveals that the Fourier spectrum of the proposed UFSB technique is close to
the one obtained from Lu et al., the difference being uniformly distributed over the Fourier
space with a relative difference of the order of 15% of the normalized values. Even if the Fourier
sampling scheme is different, the proposed UFSB technique and the one of Lu et al. reconstruct
close Fourier spectrum, the differences arising from the interpolation between the samples which
are not distributed in the same manner. This result reinforces the experimental observations
that reconstructions provided by the two methods are close and the differences between z-axis
sampling and radial sampling are marginal.

Figure 22 – Spectrum mapping obtained from the experimental images given at the top row of
Fig. 19. (a) Magnitude of the spectrum reconstructed using the proposed UFSB technique. (b)
Absolute differences of Lu’s and Garcia’s spectrum. (c) Absolute differences of Lu’s and UFSB’s
spectrum.

Another strong interest of performing PW image reconstruction in Fourier domain concerns
its lower computational complexity. As introduced in [90], the computational complexity decreases
from O(nenens) for the DAS technique to O(nens log(nens)) for the method of Lu and Garcia
thanks to Fourier formulation, where ne denotes the number of elements in the transducer
and ns denotes the number of time samples. The reconstruction of one image using the UFSB
method requires ne 1-D FFTs (complexity of O(ne ns log(ns))), one 2D FFT (complexity of
O(nx ns log(nx ns))), the computation of (nξ ne ns/2) multiplications for the delays applied in
reception (the ratio of 2 being explained by the use of half of the spectrum) and two times the
computation of (nx ns) interpolated values (one for the regridding step performed in the Fourier
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space and one for the spatial transformation introduced in this work), where nξ represents the
number of angles used in reception. The computational complexity of the proposed UFSB method
thus corresponds to O(nξ ne ns), making this method less attractive than the other two Fourier-
based methods. Nethertheless, the proposed UFSB method provides stimulating conceptual link
between ultrasound image formation and other imaging modalities such as CT.

4.9 Conclusions

In this section, we developed an alternative Fourier-based ultrafast imaging method named
Ultrasound Fourier Slice Beamforming (UFSB). The theoretical aspect of the UFSB framework is
based on the exploitation of the standard Fourier slice theorem to reconstruct ultrasound images.
The reconstructive procedure, the spectrum boundary and the spectrum comparison with two
others Fourier-based methods were investigated through simulations and experiments. Results
revealed that the UFSB technique produces very competitive results in terms of image quality
compared to the state-of-the-art methods but with either equivalent or higher computational
complexity, making our solution less attractive.
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5 2nd contribution : extension of Fourier-based techniques for
ultrafast imaging with diverging waves

In this section we present a novel method dedicated to an efficient reconstruction of ultra-
sound sectorial images using DW. Our formalism is based on the derivation of an isomorphism
in terms of travel time between a planar system based on PW and a sectorial one based on DW.
In particular, we proposed an explicit spatial transformation, which allows the reconstruction of
wide-angle images from the compounding scheme in transmission, the optimal quality of images
being reached for 15 DWs (frame rate of 855 frames/s) on both numerical and in vitro phantoms.
This work has been the subject of several publications [294–298].

5.1 Motivations

Thanks to the litterature review proposed in Sec. 2, it appears that the different ultrafast
imaging methods based on PW or DW can be classified into two groups : the Fourier-based
techniques where the received raw-data are used to reconstruct the Fourier spectrum of the
image of interest [90, 154] and the spatial-based approaches where the images are directly
computed from the space domain [101, 167, 191]. The main advantage of the Fourier-based
approaches concerns the computational complexity which has been investigated in several studies
in the context of planar acquisition from steered PW [90, 132]. In particular, the computational
complexity of the DAS method proposed in [167] is equal to O(ne ne ns) and decreases to
O(ne ns log(ne ns)) for Fourier-based techniques [90] (ne representing the number of transducer
elements and ns the number of samples of the beamformed signal). Despite their computational
interest, Fourier-based techniques have not been proposed so far to reconstruct sectorial images
from DW. Based on this observation, we developed in this study an explicit transformation which
allows a direct extension of existing Fourier-based techniques derived for planar acquisition to
the reconstruction of sectorial images with wide angles (90◦). The key concept of the proposed
formulation is based on the derivation of an isomorphism in terms of travel time between a
planar system based on PW and a sectorial one based on DW.

5.2 Methodology

In this section, we propose a formulation which allows a direct extension of the Fourier-based
methods of Lu et al. [154] and Bernard et al. [35] to sectorial acquisitions using a combination of
DWs in transmission. These two methods are well adapted to the formulation given below since
the underlying image formation explicitly involves the same transducer for both transmission and
reception. Contrary to these approaches, the method of Garcia et al. is based on the exploding
reflector model, leading to approximations which are not adapted in this work (see [90] for more
details).

5.2.1 Extension of Fourier-based techniques to sectorial imaging

The key idea of this part is to establish an isomorphism in terms of travel time when either a
DW or a PW is used in transmission as illustrated in Fig. 23. Indeed, such a relation would allow
the reconstruction of a sectorial image from a DW using the same formalism as the one derived
for planar acquisition. Isomorphism between travel times has been first proposed by Garcia et
al. to adapt the seismic Stolt’s migration technique to ultrasound plane wave imaging [90]. Let
us define a probe located at z = 0, centered at x = 0 and where each transducer element E is
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positioned at (xE , 0). Getting inspired by the recent works performed on ultrasfast imaging for
sectorial acquisition [101, 191, 203], we propose in this work to use DW in order to insonify the
entire field of view with one transmission. Such a wave is obtained through the excitation of a
virtual source located behind the probe and placed at (xv, zv), where xv ∈ [−L/2, L/2] (L being
the width of the probe), and zv ≤ 0 is determined by the chosen angular aperture α and the
sub-aperture width D as :

zv = − D/2

tan(α)
(29)

The transmit delays ∆E associated with the virtual source position and computed for each
transducer element are then calculated as :

∆E = (
√

(xE − xv)2 + z2
v + zv) / c (30)

where the second term in the brackets is used as an offset to ensure that the smallest
transmitted delay is null. In this context, the travel time of a DW to reach a point scatterer
positioned at (xd, zd) in the medium and to come back to a transducer element placed at (xE , 0)
is given by :

τd(xE) =
(√

(xd − xv)2 + (zd − zv)2 + zv (31)

+
√

(xd − xE)2 + z2
d

)
/ c

In the case of PW with normal incidence, the travel time involved to reach a point scatterer
(xp, zp) and to come back to the same transducer element (xE , 0) is given by :

τp(xE) = (zp +
√

(xp − xE)2 + z2
p ) / c (32)

By equating the first order Taylor approximation of Eq. (31) and Eq. (32) at xE = xv, the
following relation between (xd, zd) and (xp, zp) can be derived :



xp ≈
(xd−xv)

(√
(xd−xv)2+(zd−zv)2 +zv

)
zd+
√

(xd−xv)2+z2d

+
(xd−xv)

√
(xd−xv)2+z2d

zd+
√

(xd−xv)2+z2d
+ xv

zp ≈
zd

(√
(xd−xv)2+(zd−zv)2 +zv +

√
(xd−xv)2+z2d

)
zd+
√

(xd−xv)2+z2d

(33)

and
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Figure 23 – Illustration of the travel time (te and tr) involved when either (a) a DW or (b) PW
is used in transmission. In both cases, (te+ tr) corresponds to the time needed by the insonifying
wave to reach a scatterer (orange dot) and then come back to a specific transducer element.



xd ≈ 1
2

(xp−xv)
(
z2v−(zp +

√
(xp−xv)2+z2p − zv)

2
)

zv zp− (zp+
√

(xp−xv)2+z2p−zv) (
√

(xp−xv)2+z2p)

+xv

zd ≈ 1
2

zp
(
z2v−(zp+

√
(xp−xv)2+z2p−zv)

2
)

zv zp− (zp+
√

(xp−xv)2+z2p−zv) (
√

(xp−xv)2+z2p)

(34)

From Eq. (33) and Eq. (34) the following algorithm is thus proposed to reconstruct a sectorial
image : i) transmission of a DW using a standard phased-array ; ii) from the received echo,
application of a standard Fourier-based technique derived for PW. From Eq. (33), one can see
that the output of this step will reconstruct the desired ultrasound image but expressed in the
(xp, zp) coordinate system ; iii) application of the spatial transformation given through Eq. (34)
which allows expressing the reconstructed image in the conventional cartesian space.

5.2.2 Correctness of the proposed formulation

It is worth pointing out that Eq. (33) and Eq. (34) have been obtained for the particular
case xE = xv, meaning that the equivalence between the travel time of Eq. (31) and Eq. (32)
is exact only near the region defined by x = xv, where the Taylor approximation remains valid.
We thus investigated the error in terms of travel time difference for the special case xv = 0
when the relation provided by Eq. (33) and Eq. (34) are used for each point in the medium.
More precisely, for each point (xd, zd) of the medium, we first computed the set of travel times
{τd(i)} i∈ [1,N ] from the virtual source point (0, zv) to (xd, zd) back to each transducer element
i of the probe (N being the number of elements). We then derived the corresponding (xp, zp)
points and compute the set of travel times {τp(i)} i∈ [1,N ] from the probe to (xp, zp) back to each
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Figure 24 – Error map derived from the travel time equivalence between a sectorial acquisition
using DW and the equivalent PW imaging after the application of the proposed spatial
transformation. The computed error is expressed relatively to the wavelength used in the expe-
riments. The black line on the top of the figure models the transducer location while the axis
origin is located at the center of the probe. The two black curves drawn inside the error map
represent the boundary of the region at the edge of the image where the maximum error is higher
than λ/8

transducer element i. In the case of a perfect equivalence between the two systems, the set of
the pair-wise difference τd(i) − τp(i) over the probe element should be zero. Fig. 24 shows the
corresponding maximum value (i.e. max

i
(τd(i)− τp(i))) computed for each point of the medium

in terms of the wavelength λ. From this figure, one may first observe that there is no difference in
terms of travel time at the center of the probe and this error increases at the edge of the image.
The maximum error appears in the near field (depth lower than 1-cm) at the edges of the image
with a value around 0.8 × λ. This figure also allows the assessment of the potential defocusing
effect induced by the proposed formulation. Indeed, each value displayed in Fig. 24 corresponds
to the maximum of the error between the two systems computed over the full aperture. Since for
each reconstructed point, the travel time error for most of the elements is below λ/8 (which is
the commonly accepted value under which errors in travel distances can be neglected), it reveals
the marginal effect of defocusing during the beamforming process. Finally, it is worth pointing
out that the neglected effect of defocusing also justifies the correct reconstruction of the point
positioning after the spatial transformation. This aspect will be further investigated in Sec. 5.4.

5.2.3 Summary and pratical implementation

The formulations introduced in Sec. 5.2.1 allow the reconstructiion of an image from the
transmission of a diverging wave with a virtual source positioned at any (xv, zv). Thus, by
reproducing the scheme proposed in [191], i.e. emitting several diverging waves with virtual
sources positioned at zv = −D/(2 tan(α)) and for different xv values, our formalism can be used
to reconstruct wide field of view ultrasound images with efficient compounding scheme. The
implementation of the procedure for sectorial imaging from the two Fourier-based techniques
described in Sec. ?? and Sec. 4.2 can thus be summarized as follows :
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1. Transmit one or several DWs to insonify the medium. In particular, for a virtual source
positioned at (xv, zv), the corresponding DW is generated by applying the delays given
in Eq. (4) for each transducer element.

2. Receive simultaneously on each transducer the backscattered echoes. This step allows the
collection of a 2D matrix for each DW insonification.

3. Apply one particular Fourier-based reconstruction method designed for PW (i.e. Lu or
Bernard’s method) on each received 2D matrix. This step allows the reconstruction of an
RF image which is expressed in a space with coordinates (xp, zp).

4. Apply the spatial transformation given in Eq. (8) to reconstruct the corresponding RF
image in the Cartesian space with coordinates (xd, zd).

5. If successive DWs are used to perform coherent compounding, repeat steps 3 and 4 for
each firing and average all the reconstructed RF images to get the final compounded
image.

Note that step 3) implies the interpolation of the collected data on a regular grid in the
Fourier domain in order to compute the reconstructed image using a regular 2D inverse Fourier
transform. Such interpolation is an old topic which has been widely studied in the literature
[112, 188, 248]. In particular, as described in details in [188], the linear interpolation applied in
k-space leads to the multiplication of the real image by a squared sinc function. This results in a
decrease of the intensity of the current reconstructed image along depth. To reduce this artifact,
we applied a depth-varying intensity correction for the Fourier-based techniques. An intensity
correction of 0.5-dB/MHz/cm was used.

5.3 Experiments

The performance of the proposed transformation associated with the Fourier-based techniques
proposed by Bernard and Lu was evaluated from both numerical and in vitro phantoms, as well
as from in vivo data from a cardiac acquisition.

5.3.1 Acquisition protocol

The same standard phased-array probe of 64 elements with a center frequency of 2.5-MHz
(100% bandwidth), 0.32-mm pitch, 13-mm height and 60-mm elevation focus was used for all
the tests. No apodization was used in transmission or reception. The imaging depth was set to
100-mm. For all the tests, the two extended Fourier methods were compared with the current
state-of-the-art spatial-based method of Papadacci et al. Each reconstructed image was obtained
from the following protocol : i) raw-data signals were acquired using DW with different virtual
source point positions ; ii) those signals were processed either following the two Fourier based
methods described above or using the method of Papadacci et al. to obtain the compounded
RF image ; iii) the corresponding envelope image was derived through a Hilbert transform and
normalized ; iv) the envelope image was then gamma-compressed using γ = 0.3 as in [90] and
finally converted to 8-bit grayscale to get the B-mode image.

5.3.2 Transmission scheme

For comparison purposes and because of its efficiency, we used the same transmission scheme
as the one proposed in [191]. Each DW involved in transmission was emitted from a virtual
source point with an angular aperture of 90◦ and a sub-aperture width composed of 21 elements.
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For a single transmission, the virtual source was placed at the center of the probe. For three
transmissions, the two others sources were placed near the edges of the transducer (i.e. at
xv = [−6.7, 0, 6.7]-mm). For more than three transmissions, the additional virtual sources were
uniformly distributed (i.e. at xv = [−6.7,−3.35, 0, 3.35, 6.7]-mm for 5 transmissions in our expe-
riments). The number of transmitted DWs varied from 1 to 25, providing a frame rate between
7700 and 308 frame per second (fps).

5.3.3 Evaluation metrics

The image quality was assessed from the lateral resolution and the image contrast metrics.
The contrast was measured from the B-mode images using the following classical contrast ratio
(CR) [284] :

CR = 20 log10

|µt − µb|√
(σ2
t + σ2

b )/2
, (35)

where µt and µb (σ2
t and σ2

b ) are the means (variances) of gray levels in the targets and the
surrounding background.

5.3.4 Numerical simulations

The conceptual correctness of the proposed spatial transformation was first investigated from
a simple synthetic phantom composed of a discrete set of point scatterers (Fig. 26). The same
phantom was also used to evaluate the quality of the reconstructed images through the lateral
resolution. The corresponding values were measured as the full width at half maximum of the
point spread function associated to the points located at 20-mm, 40-mm, 60-mm and 80-mm in
the image. The image contrast was investigated from another phantom composed of a medium
with high density of scatterers (20 per resolution cell) with two anechoic cysts of diameter 8-mm
lying at 40 and 80-mm depth, respectively. For all the numerical simulations, the corresponding
raw-data were generated using Field II [116, 118].

5.3.5 In vitro experiments

The in vitro experiments were performed with a Verasonics research scanner (V-256, Verasonics
Inc., Redmond, WA) and a 2.5 MHz phased-array transducer (ATL P4-2, 64 elements). The CIRS
tissue-mimicking phantom displayed in Fig. 25 was used for the in vitro experiments. The lateral
resolution was first investigated from the acquisition centered on the 0.1-mm nylon monofilament
targets positioned at 20-mm, 40-mm, 60-mm and 80-mm. The performance in terms of contrast
was then measured from the hyperechoic cyst presents at 40-mm depth.

5.3.6 In vivo experiments

The in vivo experiments were performed with a Verasonics research scanner (V-1-128, Verasonics
Inc., Redmond, WA) and a 2.5 MHz phased-array transducer (ATL P4-2, 64 elements). Very
recently, Porée et al. have introduced a scheme for coherent compounding of tilted DWs which has
been validated in cardiac imaging [203]. In particular, to deal with high myocardium velocities,
the authors have proposed to use a triangle transmit sequence of DWs, combined with tissue
Doppler imaging to perform motion compensation (MoCo). In order to assess the ability of our
approach to deal with in vivo data, we applied the exact same transmission scheme as the one
described in [203] to reconstruct a cardiac sequence with and without motion compensation. In

207



Ultrasound image reconstruction : toward new imaging techniques

Figure 25 – Schematic diagram of the CIRS tissue-mimicking phantom (model : 054GS) with
the corresponding imaging sector used in the DWs experiments.

particular, we used 32 DWs in transmission (tilted from −25◦ to +25◦ with a triangle strategy)
for the reconstruction of each frame of the final sequence. The cardiac data from Porée et al. [203]
were reanalyzed as follows : i) apply the triangle transmit sequence of DWs given in [203], ii) for
each firing, reconstruct a beamformed sectorial image using the extension of Lu’s method ; iii)
apply the MoCo algorithm described in [203] on each of the image obtained at the previous step ;
iv) perform the compounding on the corrected images ; v) repeat this process for each frame of
the sequence.

5.4 Results

5.4.1 Numerical Simulations

Validation of the proposed framework

Fig. 26 displays the images reconstructed from the algorithm described in Sec. 5.2.3 associated
with the Fourier-based method of Bernard (Fig. 26(a) and 26(b)) and Lu (Fig. 26(c)) as well
as the image reconstructed by the method of Papadacci et al. (Fig. 26(d)). The red circles
correspond to the real position of the scatterers. From these figures, it can be seen that the
proposed transformation allows the reconstruction of all the scatterers with the correct position
whatever the chosen Fourier-based technique. This illustrates the marginal effect of the error
map presented in Sec. 5.2.2 and validates the flexibility of the proposed approach.

Lateral resolution

Fig. 27(a) investigates the influence of the number of DWs on the lateral resolution using the
different reconstruction techniques and for the different depths at the middle of the image (azi-
muth angle of 0◦). First, it can be seen that the 3 methods produce similar image quality whatever
the depth and the number of DWs. In particular, it can be observed that the lateral resolution
improves quickly for 3 DWs and then tends to stabilize to the optimal value, i.e. around 0.8-mm
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(a) Sectorial extension of Bernard’s method using 1
DW

(b) Sectorial extension of Bernard’s method using 15
DWs

(c) Sectorial extension of Lu’s method using 15 DWs (d) Papadacci’s method using 15 DWs

Figure 26 – Synthetic phantom reconstructed from the extension of the Fourier-based methods
of Bernard et al. and Lu et al. as well as the method of Papadacci et al. The red points correspond
to the real position of the scatterers involved in the simulation.
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(a) (b)

Figure 27 – Numerical phantom - lateral resolution measurements as a function of the number
of DWs computed at 20-mm, 40-mm, 60-mm and 80-mm at (a) the middle of the image (azimuth
angle of 0◦) and (b) at the edge of the image (azimuth angle of 40◦).

at 20-mm depth, 1.4-mm at 40-mm depth, 2.0-mm at 60-mm depth and 2.7-mm at 80-mm depth.
It is also important to note that, for each depth, the lateral resolution tends to degrade a little
bit after the compounding of 3 DWs. This behavior can be explained by the chosen transmission
scheme. Indeed, in the particular case of a monochromatic far-field approximation at a focal
distance F , the width W of the main lobe corresponding to a coherent summation of N DWs
(N > 1) is in the order of (see Eq. (4) in [191]) :

W = 2
λF

Wva

N − 1

N
(36)

where λ = 2π/k and Wva corresponds to the width of the virtual array which is considered
as fixed in this study. Based on this equation, we display in Fig. 28 the evolution of the
approximation of the full width at half-maximum from the probe settings used in our simulations
at a focal distance of 60-mm. From this figure, one can see that the theoretical evolution of this
measure is consistent with the lateral resolution measured in simulations.

Fig. 27(b) investigates the influence of the number of DW on the lateral resolution using the
different reconstruction techniques and for different depths at the edge of the image (azimuth
angle of 40◦). As for the middle case, it can be seen that the 3 methods produce similar image
quality whatever the depth and the number of the involved DWs. It is also interesting to note
that the lateral resolution (computed along the azimuth direction for consistency) degrades with
the azimuth angle. For instance, at 80-mm depth, the lateral resolution goes from values around
2.7-mm at the middle of the image to values around 3.4-mm at the edge. This phenomenon can
be explained by the fact that the region where the different DWs contribute to the image pixels
is optimal at the middle of the image, leading to a better image resolution. The limited opening
angle of the effective aperture may also reinforce this phenomenon. Finally, it can be observed
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Figure 28 – Approximation of the full width at half maximum of the main lobe corresponding
to the coherent summation of DWs in the case of a monochromatic far-field at a focal distance
of 60-mm.

from Fig. 27(a) and 27(b) that the difference in terms of lateral resolution between Papadacci’s
method and the Fourier based methods varies in average from 0.06-mm (at 20-mm depth) to
0.10-mm (at 80-mm), which corresponds of a maximum difference lower than λ/6. Since this
difference is much lower than half of the wavelength, this phenomenon may be considered as
negligible.

Image contrast

Fig. 29(a) displays the CR values measured for two different depths at the middle of the image
(azimuth angle of 0◦) for each compounding experiment. The three methods yield very close
results, the CR measurements showing same tendency with an increasing number of DW and with
better CR scores at 40-mm. This can be easily explained by the intrinsic decrease of the transmit
ultrasound pressure with depth which inevitably induces lower contrast. It is also interesting to
note that for more than 15 DWs, the image contrast tends to stabilize to the optimal value for
all methods, which is consistent with the results provided in [191]. Finally, Fig. 29(b) to 29(d)
display the images reconstructed with the three different methods using 15 DWs. These results
illustrate visually the closeness in terms of image quality and speckle definition of the images
reconstructed from the proposed extension of the Fourier-based techniques and the spatial-based
method of Papadacci et al.. Fig. 30 displays the CR values measured for two different depths at
the edge of the image (azimuth angle of 40◦). As for the cysts in the middle, it can be seen that
the 3 methods yield very similar image quality whatever the depth and the number of involved
DW. It is of importance to note that the image contrast decreases a little bit with the azimuth
angle. For instance, at 40-mm depth, the CR decreases from values around 13-dB at the middle
of the image down to values around 10-dB at the edge.

5.4.2 In vitro and in vivo experiments

Lateral resolution

Fig. 31 illustrates the impact of DW compounding number on the lateral resolution for the
different reconstruction techniques and for the different depths. All the experimental results are
consistent with what have been previously observed from simulations, both in terms of tendency
and measured values. Indeed, for all the methods, the lateral resolution improved quickly for 3
DWs and then tended to stabilize to the optimal value, i.e. around 0.8-mm at 20-mm depth,
1.4-mm at 40-mm depth, 2.1-mm at 60-mm depth and 3.2-mm at 80-mm depth. Moreover, it
is worth pointing out that at each depth, the different methods reached the optimal lateral
resolution values for the transmission of 15 DWs, leading to an optimal frame rate of 855 fps.
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(a) Contrast ratio measurements for different depths (b) Sectorial extension of Bernard’s method

(c) Sectorial extension of Lu’s method (d) Papadacci’s method

Figure 29 – Numerical phantom - (a) contrast ratio measurements computed at the middle of
the image (azimuth angle of 0◦) as a function of the number of DWs. B-mode images recons-
tructed from (b) the proposed extension of Bernard’s method, (c) the proposed extension of
Lu’s method and (d) the spatial-based method of Papadacci using 15 DWs with coherent
compounding.

(a) Contrast ratio measurements for different depths (b) Sectorial extension of Bernard’s method

Figure 30 – Numerical phantom - (a) contrast ratio measurements computed at the edge of the
image (azimuth angle of 40◦) as a function of the number of DWs. B-mode images reconstructed
from (b) the proposed extension of Bernard’s method using 15 DWs with coherent compounding.
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Figure 31 – Experimental acquisition - lateral resolution measurements computed at the middle
of the image (azimuth angle of 0◦) as a function of the number of DWs computed at 20-mm,
40-mm, 60-mm and 80-mm.

Image contrast

We investigated in Fig. 32 the quality of the reconstructed images in terms of contrast. In
particular, Fig. 32(a) displays the CR values measured at 40-mm depth for each compounding
experiment. From the corresponding graph, it can be observed that the three methods yield very
close results. The CR measurements involve same tendency over the increase of the number of
DW. The optimal CR values are reached in all cases after the transmission of 15 DW (frame
rate of 855 fps), which is in accordance with the simulation results we obtained in Sec. 5.4.1.
Fig. 32(b) to 32(d) display the reconstructed B-mode images obtained using 15 DW with coherent
compounding. As in simulations, these results illustrate visually the closeness in terms of image
quality and speckle definition of the images produced by different methods. It is also interesting
to note that the decrease of the intensity observed at the two borders of the image can be
explained, on the left side, by the presence of a structure with high reflectivity (due to an
unexpected flaw present in the CIRS phantom we used at the interface between the background
and the hyperechoic cyst of +3dB) which produces classical ultrasound shadow and, on the
right side, by the physical limit of the CIRS phantom which induces reverberation phenomenon.
Finally, the limited opening angle of the transducer elements and the limited opening angle of
the effective aperture may be additional causes responsible for the observed decrease of intensity
at the edges.

In vivo experiment

Fig. 33 displays one particular frame of the full sequence we reconstructed from a real acquisition
performed on a healthy volunteer with and without motion compensation, as described in
Sec. 5.3.6. The transmission scheme used during the acquisition process allowed us to compute
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(a) Contrast ratio measurements (b) Sectorial extension of Bernard’s method

(c) Sectorial extension of Lu’s method (d) Papadacci’s method

Figure 32 – Real acquisition - (a) Contrast ratio measurements as a function of the number of
DWs. B-mode images reconstructed from (b) the proposed extension of Bernard’s method, (c)
the proposed extension of Lu’s method and (d) the spatial-based method of Papadacci using 15
DWs with coherent compounding.
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Figure 33 – Motion compensation for high frame rate echocardiography of the left ventricle
using the sectorial extension of Lu’s method. Each frame has been reconstructed from the
transmission of 32 DWs (tilted from −25◦ to +25◦ with a triangle strategy as described in
[203]). Online movies are also available in the supplementary materials. The data from Porée et
al. [203] were reanalyzed with the technique described in the present paper.

a B-mode sequence of the whole left and right ventricles at high frame rate (250 fps). This
result demonstrates the feasibility of the proposed formulation in a real setting, as well as its
flexibility, since we could easily integrate the motion compensation framework proposed by Porée
et al. [203].

5.5 Discussion

5.5.1 Fourier-based methods of sectorial imaging

We proposed in this study an explicit transformation which allows the extension of existing
Fourier-based approaches, initially proposed for planar acquisition, to the reconstruction of
sectorial images with wide angle using DW. The proposed formulation was evaluated through
the extension of two Fourier-based techniques, i.e. the one proposed by Lu et al. which samples
the Fourier space along the kz axis direction and the one of Bernard et al. which samples the
Fourier space radially. Results obtained from both simulations and experiments revealed that the
two extended Fourier-based approaches reconstruct images with comparable quality as it is the
case for planar acquisition, the introduced spatial transform having no effect on their relative
behavior. More importantly, we also demonstrated in this study that the proposed extended
Fourier-based approaches produce competitive results compared to the state-of-the art method
proposed by Papadacci et al. both in terms of lateral resolution and image contrast. Although the
proposed transformation has been specifically designed for the transmission scheme described
in [191] (i.e. the virtual source point of each DW lies on a horizontal line positioned behind the
probe), our approach can also be easily used for other strategies like, for instance, the steered
diverging waves presented in [101]. In the case of SDW of angle θ, the second term zv of Eq. (30)
has to be simply replaced by −min

E

√
(xE − xv)2 + z2

v to ensure that the smallest transmit

delay is null. The same reasoning then holds to derivate the akin spatial transformation. The
corresponding equations have been used to produce the results given in Sec. 5.4.2.
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5.5.2 Computational complexity

One strong interest of Fourier-based techniques for sectorial acquisition is a potential reduction
of the computational complexity compared to the conventional DAS method. To determine the
computational complexity of the proposed extension of Lu and Bernard methods, let ne denotes
the number of elements that compose the transducer (in general 64, 128 or 192), ns the number
of time samples (typically in the range 1000-3000), nx the number of samples along the x-axis
for the reconstructed image (typically between 100 and 500) and nξ the number of angles over
two used in reception for Bernard’s method (the ratio of 2 being explained by the use of half of
the spectrum). This value was fixed to 85 in our experiments, the reader is refered to [35] for
more details.

Complexity of Papadacci’s method

The DAS method proposed by Papadacci et al. must retrieve λ (nx ns ne) interpolated data and
perform λ (nx ns) summations over ne, λ being the ratio between the scanned sectorial area and
the corresponding encompassing rectangle (with dimensions nx ns). For an angular aperture of
90◦, λ is defined between [0.5, 1]. The computational complexity of the method of Papadacci et
al. thus corresponds to O(nx ns ne).

Complexity of the proposed extension of Lu’s method

The sectorial extension of Lu’s method requires two 2-D FFTs (complexity ofO(nx ns log(nx ns)))
and two times the computation of (nx ns) interpolated values (one for the regridding step
performed in the Fourier space and one for the spatial transformation introduced in this work).
The computational complexity of the extension of Lu’s method thus reduces toO(nx ns log(nx ns))
compared to the method of Papadacci.

Complexity of the proposed extension of Bernard’s method

The sectorial extension of Bernard’s method requires ne 1-D FFTs (complexity ofO(ne ns log(ns))),
one 2D FFT (complexity of O(nx ns log(nx ns))), the computation of (nξ ns ne) multiplications
for the delays applied in reception and two times the computation of (nx ns) interpolated values
(one for the regridding step performed in the Fourier space and one for the spatial transformation
introduced in this work). The computational complexity of the extension of Bernard’s method
thus corresponds to O(nξ ns ne), making the extension of this method less attractive than for
the extension of Lu’s method.

5.5.3 Extension to temporal acquisitions with tissue motion

Tissue motion is an important source of artifact in ultrafast imaging. In particular, when
the motion of the structures of interest between two consecutive firings is higher than λ/8, it is
common to observe a weakening of the compounding effect if no particular strategy is applied.
Several approaches have thus been proposed to tackle this problem, both on PW [63] and DW
[203]. In this paper, we showed the feasibility of the application of the motion compensation
algorithm developed in [203] on the images reconstructed from the proposed approach. This
shows the accuracy of our technique and validates further the marginal effect of the error map
presented in Sec. 5.2.2.
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5.5.4 Perspectives

One potential strong interest of the Fourier-based method compared to the DAS technique
concerns its lower computational complexity. In the particular case of sectorial reconstruction, we
have shown that the computational ratio between the sectorial extension of Lu’s method and the
standard DAS technique is of the order ne / log(nx ns). Although the proposed transformation
has been derived for 2D, it can be easily extended to 3D. To this end, one has to take into account
the y-coordinate in the travel time equations of the PW (Eq. (32)) and the DW (Eq. (31)). By
equating the first order Taylor approximation at xE = xv and yE = yv, one can obtain the
corresponding spatial transformation between (xp, yp, zp) and (xd, yd, zd). Interestingly, in the
3D case, the computational ratio between the proposed method and the DAS technique goes up
to nex ney / log(nx ny ns), making the interest of our approach even more stronger.

5.6 Conclusions

In this study, an explicit transformation for the extension of Fourier-based techniques to the
reconstruction of sectorial images using DW has been presented. The key concept of the proposed
formulation is based on the derivation of an isomorphism in terms of travel time between a planar
system based on PW and a sectorial one based on DW. In particular, we proposed an explicit
spatial transformation which allows the reconstruction of wide angle images from compounding
scheme in transmission, the optimal quality of images being reached for 15 DWs (frame rate
of 855 fps) on both numerical and in vitro phantoms. Results obtained from simulations and
experiments revealed that the proposed extension of Lu’s method produces competitive results
with lower computational complexity when compared to conventional delay-and-sum technique.
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6 Summary - Conclusions

From Sec. 3 to 5 we presented the work we performed on the reconstruction of ultrasound
images. Starting from the observation that Fourier-based approaches are more efficient in terms of
computational complexity compared to conventional delay-and-sum techniques, we focused our
intention on such approaches. In particular, we developed a novel Fourier-based technique, named
Ultrasound Fourier Slice Beamforming, where the acquired samples are radially distributed into
the Fourier space. By doing so, the classical Fourier slice theorem can be used to reconstruct
ultrasound images. This new technique was validated through both simulation and in vivo acqui-
sitions. Results show that our method produces very competitive results in terms of image quality
compared to the state-of-the-art methods but with either equivalent or higher computational
complexity, making our solution less attractive. However, from our point of view, the modeling
we proposed remains conceptually relevant since this is the first time that strong links between
ultrasound image formation with others modalities such as Computed Tomography are created.

Based on the literature review we made in Sec. 2, we developped an innovative method, which
is the first Fourier-based approach applicable to diverging wave acquisitions. The key aspects of
this approach are the following :

— establishment of an isomorphism in terms of travel time between a planar system based
on PW and a sectorial one based on DW ;

— derivation of an explicit spatial transformation which allows the reconstruction of wide-
angle sectorial images from standard Fourier-based techniques initially developed for PW
imaging ;

— generalization of the explicit spatial transformation from different virtual source positions
to allow the use of compounding scheme to improve the quality of the reconstructed image.

Our method was evaluated on both simulations and in vitro/in vivo experiments. Results
revealed that the proposed extension of Lu’s method produces competitive results with lower
computational complexity when compared to conventional delay-and-sum technique. Interestingly,
our solution has been successfully applied for the reconstruction of high frame rate cardiac images
(250 images/s with a wide sector angle of 90◦) from an adult healthy volunteer. This illustrates
the ability of our proposed solution to be used for cardiac applications.

My research on ultrasound image reconstruction was carried out through 1 PhD funded by
the chinese government (China Scholarship Council grant). Results have led to 4 articles in
international journals and 11 articles in international conferences.
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Research perspectives

As presented in this manuscript, the estimation of clinical indices in cardiac imaging has
improved significantly over the past 15 years. Key publications that we have produced have
shown that the most relevant indices used in clinical routines (i.e. cavity volumes and ejection
fraction) can be automatically estimated with scores below the inter-observer variabilities both
in MRI and ultrasound imaging (both in 2D and 3D) [30, 33, 139, 197].

Interestingly, one of the major keys to this improvement is the creation of public referenced
databases that integrate more and more patients. Indeed, the design of such databases has
first been stimulated by the need for validation linked to the explosion in the number of meth-
ods proposed in the field. In particular, thanks to the work we made in [30], we showed that
advanced image processing techniques such as our newly developed B-spline Explicit Active
Contour approach [197, 213] can provide highly accurate performances (e.g. correlations of 0.97,
0.97 and 0.91 for the estimation of the left ventricle volumes at end-diasole, end systole and
the ejection fraction in US imaging [24]) with very fast processing time (lower than one second
per volume). Interestingly, this study also revealed that machine learning techniques, especially
structured random forest [67] and deep learning with anatomical regularization [183], provide
among the best current 3-D left ventricle segmentation scores despite the use of a very limited
training database (15 patients).

Inspired by the results derived from the CETUS study [30, 183, 197], we investigated in [33,
139] the ability of deep learning solutions to accurately segment cardiac structures based on more
advanced databases (patient population of 150 and 500 in MRI and 2D ultrasound, respectively).
From both studies, it clearly appears that the problem of cardiac structures segmentation is
about to be solved in both modalities, with clinical indices estimated by the best current deep
learning networks all below the inter-observer scores and quite close but still higher than those
of the intra-observer [33, 139].

As far as cardiac motion estimation is concerned, results derived in our studies are also
promising, but clearly less advanced than the ones obtained in cardiac segmentation [7, 299]. The
most successful aspects of our work in this area concern the developement of a generic pipeline
which allows the generation of realistic synthetic cardiac sequences in both MRI (cine/tagged)
and ultrasound (2D/3D) imaging [4, 301]. The generated virtual populations have been used
to date to evaluate the quality of dedicated approaches (state-of-the-art methods and/or our
proposed personalized anatomical deformable model) for estimating cardiac motion and myo-
cardial strain. Results show that the personalized anatomical deformable scheme is a good
approach to effectively regularize strain from motion estimation. However, the quality of the
derived measures also revealed that there is still a need to improve motion estimation from
cardiac imaging. Two serious ways for such improvement are emerging : i) the development of
dedicated cardiac acquisition sequences to produce new image sequences with better properties
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for motion estimation ; ii) the exploitation of recent advances in deep learning techniques to
specialize some of these approaches to motion estimation in cardiac imaging and see whether
the same quality of results as those obtained for the segmentation task can be reached. Based
on these findings, I plan to organize my research at mid and long term as described below.

Mid-term research perspectives

From a mid-term research point of view, my objective is to continue my work on the reliability
of clinical measurements in cardiac imaging.

Cardiac segmentation

With regards to the estimation of robust volumetric indices through cardiac segmentation,
my goal is to finish solving this problem by developing dedicated solutions based on deep-
learning that will produce results within the intra-observer scores with cardiac shapes which
will be anatomically plausible in any case. Indeed, the results we recently obtained in MRI
imaging showed that the best performing deep learning method provides on average 1.6 slices
out of 12 segmented ones per volume with impossible anatomical shapes (i.e. the right ventricle
disconnected from the myocardium or the left ventricle cavity in contact with the background)
for 41 patients out of the 50 in the testing database [33]. This reveals that even if the most
successful current methods obtained on average results within the inter-observer variability,
they may still be subject to errors that an expert will not do in clinical routines.

Based on these observations and on the fact that for both MRI and US imaging, the best
current methods produce results still higher than the intra-observers scores, I have already begun
to explore ways to further improve segmentation results in cardiac imaging. The two serious
tracks under consideration concern the localization of structures of interest before segmentation
and the introduction of relevant shape constraints into deep learning formalism. Concerning the
first aspect, recent work that we have done have shown that accurate localization of the left
ventricle allows segmentation scores to be within the intra-observer variability. This stimulated
us to work on deep learning architectures that optimize both localization and segmentation in
parallel. This work is currently being investigated with one of my PhD student financed by the
LABEX PRIMES. With regard to anatomical errors, there is already works in the literature
that propose solutions to solve this problem. Among the existing techniques, the work of Oktay
et al. , recently proposed in [183], seems to be one of the most advanced. In this study, the
authors used CNNs to segment the cardiac structures. The core of their neural network is based
on an architecture similar to the U-Net, whose segmentation output is constrained to fit a non-
linear compact representation of the underlying anatomy derived from an auto-encoder network.
The use of an auto-encoder to create a compact dedicated space to efficiently represent cardiac
structures seems to be an excellent idea. Unfortunately, the current use of such a space does not
guarantee that the segmentation output will be anatomically plausible in any case. I therefore
plan to work on such encoder-decoder approaches to generate compact space to efficiently code
cardiac shapes but with the hard constraint of imposing plausible anatomical shapes at the
output of the segmentation model. Thus, the combination of the two approaches mentioned
above will ensure that my final solution will obtain segmentation results within the inter- and
intra-observer scores with anatomical shapes that will be relevant in all cases.
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Cardiac motion estimation

With regards to the different dynamic indices that can be extracted from cardiac sequences,
my objective is first of all to improve the quality of the motion estimation that can be extracted
from the images, with a particular focus in ultrasound imaging. Indeed, ultrasound imaging
seems to be a modality of choice for motion estimation since it is a real time imaging, with the
possibility of making acquisitions at very high rates (> 500 fps) and with an intrinsic speckle
texture allowing to follow motion patterns both in muscle and blood.

Based on the very good results we obtained in segmentation, I intend to extend my work
on deep learning to motion estimation in cardiac imaging. The current best performing deep
learning methods applied in medical imaging are mostly based on supervised learning [147]. Such
approaches involve setting up benchmark datasets from which the algorithm learns to reproduce
the associated references. The creation of such datasets for applications like view classification or
anatomical structures segmentation is “easily” possible. This explains why the majority of deep
learning solutions are currently focused on solving such problems, particulary in cardiac imaging
[131]. As far as motion estimation is concerned, the establishment of benchmark databases is
much more difficult to set up, which explains the reduced number of studies on such subject.
Most of the existing deep learning methods which address the motion estimation problem come
from computer vision and are based on realistic synthetic sequences to form the training dataset
[110]. Thus, the application of such techniques in cardiac imaging will inevitably require, as
a first key step, the creation of synthetic datasets that are realistic in terms of motion and
image properties. Obviously, I intend to use my work and experience on simulation of realistic
synthetic cardiac sequences to generate such benchmark datasets. In particular, I plan to develop
a generic deep learning algorithm to estimate any kind of motion in echocardiographic imaging.
Such architecture will be fed by a significant number of synthetic data generated through a
physical simulator. One of the interest of going through a physical simulator is to integrate the
speckle decorrelation phenomenon within the simulated sequences. Indeed this phenomenon is
partly responsible for the limited effectiveness of current state-of-the-art methods in estimating
motion in echocardiography since it implies differences between the actual tissue motion and
the apparent motion on the image. Such a scheme will therefore give the possibility to our deep
learning solution to specialize on the particularity of the decorrelation of speckle which happens
in ultrasound images and thus move one step forward compared to state-of-the-art methods. It
should be noted that the conception of such a physical simulator is already under way through
the LABEX PRIMES funding of a postdoctoral project. Indeed, there already exists open access
ultrasound simulators among which the most famous is FieldII software. However, this solution
is not open-source, coded in matlab and needs a long time to simulate a single image (from
several firings). Based on an initiative of my colleague Dr. Garcia, we plan to develop an open
access and open-source ultrasound physical simulator which will be efficiently coded in the
more appropriated C++ programming langage to generate realistic ultrasound sequences in a
reasonnable time.

In terms of applications, I first plan to develop a deep learning solution dedicated to the
estimation of tissue motion in cardiac imaging, with a particular interest in the estimation of
myocardial strain. Indeed, many studies have been carried out so far to investigate the possibility
of estimating accurate myocardial strain information from echocardiographic imaging [193]. It
comes out from these studies that strain quantification has high potential for risk stratification
in various cardiac disease but strongly suffers from a lack of reproducibility between vendors,
modalities and software version. Based on my recent work on vendor-specific simulation of
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realistic synthetic ultrasound data [4], I plan to integrate the image variability between vendors
into the design of our synthetic benchmark dataset. An additional key aspect will be the ability of
my deep learning solution to provide uncertainty measurements on the estimated motion realized
on each pixel. Indeed, a particularity of ultrasound images is that depending on the patients,
the acquisition conditions and the experience of cardiologists, the quality of the acquired image
varies considerably, which generally leads to a partial lack of information on different regions
of the acquired image. For instance, it is traditionally difficult to visualize the anterior wall
of the myocardium during an apical two-chamber acquisition due to a loss of signal from the
lungs. These missing areas are usually characterized by noise or reconstruction artifacts such
as reverberation, clutter or acoustic shadowing. It is therefore essential to be able to locate
those regions in order to disregard the corresponding motion estimates when calculating the
cardiac strain. I plan to integrate the recent advances in Bayesian deep learning to solve this
issue. Indeed, this formalism typically estimates uncertainty by either modeling distributions
over weights of the netword, or by learning a direct mapping to probabilistic outputs. Recent
works have shown the possibility to apply such formalism in medical imaging [234]. However,
these are still pilot studies and nothing has been done so far on motion estimation in the field of
cardiac imaging. I just started to work on that topic with one PhD student financed by Philips
Medisys society through the French CIFRE doctoral scholarships.

A second application I intend to explore is flow estimation in echocardiographic imaging.
Indeed, recent studies have investigated the strong link between the myocardium deformation
and the underlying flow in the left ventricle [84]. It is obvious that taking these two phenomena
into account in an individual and relational way will lead to a better characterization of the
type and degree of cardiac pathology of patients and therefore to a better diagnosis. The
current limitations of flow estimation in echocardiography is the access to limited size window
to perform accurate measurements. Indeed, current clinical applications are based on flow
measurements either along straight segments via pulsed Doppler or in small windows via color
Doppler (e.g. at the mitral ring). Recent advances in high frame rate imaging in ultrasound
are opening the door to flow imaging throughout the heart cavity [15]. Nethertheless, the main
drawback of these methods concerns the low signal-to-noise ratio which characterizes this type
of imaging. The underlying measurements must therefore be strongly regularized to provide
meaningful interpretation, to the detriment of the quality and accuracy of the extracted indices.
I therefore plan to simulate such low signal-to-noise ratio images obtained from high frame rate
reconstruction techniques with appropiate noise sources to design a dedicated deep learning
architecture capable of estimating the relevant motion on such ultrasound sequences. In par-
ticular, based on a physical simulator, I will generate a synthetic benckmark dataset composed
by both b-mode images and color Dopplers. Indeed, I consider that these two kinds of information
are complementary and can allow a deep learning algorithm to learn more relevant features for
a better estimation of intra-ventricular flow. I just started to work on that topic with one PhD
student financed by the LABEX PRIMES.

Long term research perspectives

From a long term research point of view, my objective is to investigate the capacity of
deep learning solutions in generating controlled latent space for dedicated medical applications.
The interest of building such latent spaces lies in their ability to : i) introduce constraints
more efficiently into the solution space ; ii) model more complex tasks than simply estimating
motion/segmentation. Recent advances in deep learning have shown their efficiency in learning
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partially-controled spaces that integrate the complex variability of the studied population.
Among the most advanced methods, Variational auto-encoders (VAEs) [128] and adversarial
Variational auto-encoders (aVAEs) [156] currently provide the most promising results. Standard
auto-encoders encode input data as vectors which allows the derivation of a latent and compressed
representation (space) of the data. These methods are useful in dimensionality reduction. Auto-
encoders are generally paired with a so-called decoder, which allows to reconstruct input data
based on its hidden representation. VAE is a type of auto-encoder with added constraints on
latent space. More precisely, instead of letting the auto-encoder learn an arbitrary latent space,
VAE imposes a Gaussian distribution a priori centered at zero and of variance one for the
latent vector. Thus, a vector sampled from the latent manifold will generate new ouput data
samples, so that VAEs correspond to generative models. One of the main interests of VAEs is
therefore their capacity to generate partially-controled latent spaces defined by the corresponding
Gaussian probability distribution. In the aVAEs formalism, the latent space of the VAE is
further constrained by an adversarial network that matches the latent vector of the VAE to an
arbitrary prior. Thus, by adjusting the a priori probability distribution used by the VAE and
the adversarial network involved in the aVAE, it is possible to build partially-controled latent
space which can be tuned for dedicated applications.

Toward deep manifold learning

Based on the previous described formalism, the latent space of the aVAE can be seen as a
space approaching a manifold whose properties are directly influenced by the chosen a priori
distribution and the adversarial network. It is therefore possible to consider creating manifolds
dedicated to tasks that can be too complex to be modelled using conventional approaches. As a
proof of concepts, I am currently working in a collaboration with the university of Sherbrooke
(Canada) on the exploitation of such a paradigm for an efficient introduction of shape constraints
into deep learning framework. However, I am deeply convinced that this formalism is generic
enough to be used in much more ambitious medical applications such as : i) real-time guidance
of the ultrasound probe for better imaging and thus better robustness and reproducibility of
the underlying measurements ; ii) automatic risk assessement of patients with regards to some
pathologies based on relevant information extracted from the image or the image itself. Because
of their very rich intellectual and application potential, there is no doublt that these prospects
will be able to provide my future research with fertile ground in the long term.
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French summary

Au cours de mon doctorat, j’ai eu l’occasion de travailler sur la segmentation des images
échocardiographiques avec un intérêt particulier pour les statistiques du signal ultrasonore afin
d’améliorer l’efficacité du terme d’attache aux données utilisé dans un modèle de contour actif
dédié. Ainsi, les principales innovations développées au cours de mon doctorat concernent à la
fois une étude complète des statistiques du signal radiofréquence ultrasonore et la dérivation
d’une méthode de colocalisation basée sur des fonctions radiales afin de modéliser efficacement
l’évolution des ensembles de niveaux lors de la segmentation d’images. Ce travail a été valorisé
par la publication de 4 articles (2 comme premier auteur) dans des revues internationales et 6
articles (5 comme premier auteur) dans des conférences internationales.

Les activités de recherche que j’ai menées depuis sont décrites dans les parties ci-dessous.
Mon travail concerne le traitement du signal et de l’image appliqué à l’imagerie médicale.
En particulier, je me suis concentré sur trois sujets principaux : la segmentation cardiaque,
l’estimation du mouvement cardiaque et la reconstruction d’images ultrasonores, le tout pour
un meilleur diagnostic des maladies cardiaques. En termes de développements méthodologiques,
j’ai travaillé sur i) les approches variationnelles au travers du formalisme de surface active
explicite B-spline (BEAS) ; ii) l’apprentissage statistique au travers des techniques par forêts
aléatoires et par apprentissage profond ; iii) la modélisation du signal basée sur la théorie du
signal monogénique ; iv) des problèmes inverses en exploitant le théorème de Fourier ; v) des
problèmes d’optimisation au travers de régularisation anatomique personnalisée. D’un point de
vu applicatif, j’ai consacré mes recherches à l’imagerie cardiaque (principalement l’échographie
et l’IRM), à la fois en termes de reconstruction et d’analyse d’images. L’objectif clinique de mes
recherches concerne un meilleur diagnostic des maladies cardiaques grâce à des mesures fiables
et robustes d’indices cliniques à partir de l’image tels que les volumes ventriculaires, la fraction
d’éjection et la déformation myocardique.

J’ai financé mes travaux de recherche via quatre sources principales :
— financements nationaux grâce à des bourses ministérielles (co-encadrement d’un doctorant),

au travers du LABEX PRIMES (co-encadrement de deux doctorants et d’un post-doc)
et de projets ANR (co-encadrement d’un post-doc via le projet ANR du professeur Hervé
Liebgott) ;

— financements européens (co-encadrement de 2 doctorants via la bourse ERC du professeur
Jan D’hooge) ;

— financements internationaux (co-encadrement d’un doctorant via une bourse CSC - China
Scholarship Council) ;

— financements industriels grâce aux bourses doctorales CIFRE (2 doctorants co-encadrés
avec la société Philips Medisys).
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1 Résumé de mes travaux de recherche

L’analyse de la fonction cardiaque joue un rôle important en routine clinique pour mesurer
la morphologie et la fonction cardiaque et pour établir un diagnostic. Cette analyse est basée
sur l’interprétation d’indices cliniques extraits de traitements d’images de bas niveau tels que la
segmentation et le suivi. Par exemple, l’extraction de la fraction d’éjection du ventricule gauche
nécessite une délimitation précise de la paroi endocardique du ventricule gauche en fin de phase
diastolique et en fin de phase systolique. En routine clinique, l’annotation semi-automatique
ou manuelle reste un travail quotidien en raison du manque de précision et de reproductibilité
des méthodes de segmentation cardiaque entièrement automatisées. Cela conduit à des tâches
qui prennent beaucoup de temps et qui sont sujettes à des problèmes de variabilité intra- et
inter-experts. Dans ce contexte, mes travaux de recherche se sont concentrés sur la fiablisation
des mesures cliniques en imagerie cardiaque. Je me suis particulèrement intéressé à l’estimation
d’indices volumétriques et à l’estimation de la déformation du muscle myocardique. Enfin, j’ai
effectué des travaux sur de nouvelles techniques d’imagerie en ultrason afin de créer des systèmes
d’imagerie visant une meilleure estimation de mouvement des structures imagées.

Segmentation cardiaque : vers une estimation robuste des indices volumétriques

Afin d’avoir la possibilité d’évaluer le potentiel des méthodes de l’état de l’art en matière
de segmentation d’images cardiaques et d’extraction d’indices cliniques pertinents, je me suis
tout d’abord consacré à la conception de plusieurs bases de données en accès libre avec des
annotations manuelles d’experts (cardiologues et radiologue). J’ai notamment mis en place les
bases de données avec les plates-formes d’évaluation en ligne suivantes :

— la base de données CAMUS contenant des séquences échocardiographiques 2D de 500
patients qui ont été acquises lors d’examens cliniques dans le même centre médical avec
le même équipement ;

— la base de données CETUS contenant des séquences échocardiographiques 3D de 45
patients qui ont été acquises lors d’examens cliniques dans trois centres différents avec
trois équipements différents (GE, Siemens et Philips).

— la base de données ACDC contenant des séquences IRM de 150 patients qui ont été
acquises lors d’examens cliniques dans le même centre médical avec deux scanners IRM
de forces magnétiques différentes (1.5T et 3.0T). La population cible est composée de
patients répartis uniformément en 5 classes avec des caractéristiques bien définies en
fonction de paramètres physiologiques.

Grâce à ces bases de données, les innovations et les perspectives suivantes ont été soulignées :

1. CAMUS

— Les réseaux encodeur-décodeur produisent des résultats de segmentation très précis
en échocardiographie 2D ;

— Parmi les différentes architectures testées, l’architecture U-Net s’est avérée être la
méthode la plus efficace en termes de compromis entre le nombre de paramètres
appris et les performances atteintes ;

— L’architecture U-Net a fait preuve d’une robustesse impressionnante vis-à-vis de la
variabilité des images ultrasonores. Compte tenu de la grande variété de qualité
d’image en imagerie échocardiographique, ce résultat révèle que ce réseau est une
solution de choix pour résoudre le problème de segmentation d’images échocardio-

226



1. Résumé de mes travaux de recherche

graphiques en 2D ;
— La segmentation et les résultats cliniques des réseaux encodeur-décodeur sont tous

compétitifs vis-à-vis des scores inter-observateurs ;
— La segmentation et les résultats cliniques des réseaux encodeur-décodeur sont proches

des scores intra-observateurs, mais légèrement moins bons. Même si ces réseaux produisent
des résultats remarquables, il y a encore des posibilitiés d’amélioration afin de reproduire
fidèlement l’annotation manuelle d’un expert donné.

2. CETUS

— La méthode développée et présentée en section Sec. 4 (BEASM) produit les meilleurs
scores actuels pour la segmentation de la paroi endocardique en imagerie échocardio-
graphie 3D ;

— Les plus grandes erreurs produites par la méthode BEASM se produisent au niveau
de la région apicale et la paroi antérieure du ventricule gauche ;

— Une méthode d’apprentissage profond avec régularisation anatomique de forme [183]
donne des résultats assez proches de ceux obtenus avec notre méthode. L’accès à
seulement 15 patients pendant la phase d’entrainement illustre le fort potentiel des
techniques d’apprentissage pour l’analyse des images échocardiographiques 3D ;

— les méthodes les plus performantes obtiennent des scores de corrélation précis sur les
mesures cliniques avec un biais faible et un écart-type sur les indices LVEDV, LVESV et
LVEF, le LVEF restant les plus difficiles à estimer ;

— La segmentation et les résultats cliniques des méthodes les plus performantes sont
tous légèrement inférieurs aux scores inter-observateurs. Ceci révèle qu’il y a encore un
besoin d’amélioration de ces méthodes pour la segmentation de la paroi endocardique
du ventricule gauche et l’estimation des indices cliniques correspondants en échocardio-
graphie 3D.

3. ACDC dataset

— Les réseaux convolutionnels profonds produisent des résultats de segmentation très
précis en IRM cardiaque ;

— Les réseaux convolutifs profonds échouent encore à segmenter correctement la base et
l’apex, surtout si l’on considère la distance de Hausdorff ;

— Les meilleurs réseaux de neuronnes convolutionnels obtiennent des scores de corrélation
précis sur les mesures cliniques et de faibles biais et écarts-types sur les mesures
LVEDV et LVEF, deux des mesures physiologiques les plus utilisées ;

— Les réseaux convolutifs profonds ont encore des difficultés à estimer l’indice RVEF vis-
à-vis des autres indices testés ;

— Les résultats cliniques du meilleur réseau neuronal convolutionnel sont tous compétitifs
vis-à-vis des scores inter-observateurs ;

— La segmentation et les résultats cliniques du meilleur réseau neuronal convolutionnel
sont proches des scores intra-observateurs, mais légèrement moins bon (à l’exception
de la mesure de Dice). Ceci révèle que même si les réseaux de neurones convolutifs
profonds ont produit des résultats remarquables, il y a encore des possibilités d’amélioration
afin de reproduire fidèlement l’annotation manuelle d’un expert donné ;

— Bien que ces observations doivent être validées sur un plus grand nombre de patients,
il ressort de cette étude que des techniques d’apprentissage statistiques bien conçues
peuvent atteindre des scores de classification presque parfaits.
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D’après les résultats obtenus, il apparâıt clairement que les méthodes d’apprentissage profond
peuvent être considérées comme une solution de choix pour résoudre le problème de segmentation
d’images cardiaques et d’estimation d’indices cliniques, tant en échocardiographie 2D et 3D
qu’en IRM cardiaque. En effet, lorsque la taille de la base de données est suffisante (c’est-
à-dire supérieure à 100 patients dans le cas des études proposées), la segmentation et les
résultats cliniques obtenus par ces techniques d’apprentissage sont tous compétitifs vis-à-vis des
scores inter-observateurs. Cependant, dans toutes les études réalisées, les réseaux d’apprentissage
profond les plus performants n’ont pas réussi à produire des résultats dans la variabilité intra-
observateur. Ceci doit stimuler la communauté à améliorer le formalisme d’apprentissage profond
en imagerie médicale pour reproduire fidèlement l’annotation manuelle d’un expert sans aucune
défaillance anatomique.

Mes travaux de recherche en segmentation cardiaque ont été réalisés au travers de 4 doctorants
financés par le gouvernement français (1 bourse ministérielle et 1 bourse LABEX PRIMES) et
part l’Europe (2 doctorats financés par la bourse ERC du professeur Jan D’hooge). Les résultats
obtenus sur ce thème ont donné lieu à 17 articles dans des revues internationales et 31 articles
dans des conférences internationales. J’ai également co-organisé deux challenges sur ce sujet lors
de conférences MICCAI (2014 et 2017) et mis en place trois plates-formes en ligne dédiées qui sont
toujours ouvertes pour le téléchargement en accès libre des bases de données et à la soumission
de nouveaux résultats (https://www.creatis.insa-lyon.fr/EvaluationPlatform/CETUS/,
https://acdc.creatis.insa-lyon.fr/ et http://camus.creatis.insa-lyon.fr/challenge/)

Estimation du mouvement cardiaque : vers une estimation robuste de la déformation

Partant du constat qu’une validation bien établie de l’estimation de la déformation du muscle
myocardique à partir de l’imagerie était nécessaire dans notre communauté, nous avons développé
un nouveau pipeline spécialement conçu pour simuler des séquences synthétiques réalistes en
imagerie US et IRM à partir d’un même patient virtuel. Le pipeline proposé a été utilisé pour
créer un ensemble de données de 18 patients virtuels comprenant des sujets sains et divers
cas pathologiques (avec entre autre des cas ischémiques et de dyssynchronie). L’objectif de
cet ensemble de données de référence est de fournir à la communauté des outils afin d’établir
une comparaison équitable et reproductible des méthodes de l’état de l’art pour l’estimation
du mouvement et la quantification de la déformation du muscle myocardique. Les innovations
suivantes ont été introduites afin de générer des séquences cardiaques avec un haut degré de
réalisme :

— la combinaison d’un modèle électromécanique avec des simulateurs physiques US/IRM
afin d’introduire la possibilité d’interagir avec le processus physique de formation d’images ;

— l’utilisation de séquences multimodales réelles d’un même patient afin d’extraire les
informations les plus pertinentes pour chaque modalité ;

— l’introduction d’une nouvelle stratégie de déformation combinatoire, dans le but de réduire
les artéfacts de mouvement qui peuvent se produire dans les régions du myocarde ;

— l’apport du premier cadre unifié qui permet de générer des séquences synthétiques multi-
modales (US, IRM) réalistes pour un même patient virtuel ;

— l’utilisation d’une nouvelle stratégie basée sur une fonction de pondération gaussienne
pour générer une interface lisse entre le myocarde et les structures environnantes.
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1. Résumé de mes travaux de recherche

Nous avons également développé une nouvelle méthode, appelée modèle anatomique déformable
(ADM), intégrant les avantages de plusieurs stratégies décrites dans la littérature afin de quantifier
efficacement le champ de mouvement et la déformation du muscle myocardique en même temps.
La méthode ADM proposée est basée sur les aspects clés suivants :

— l’expression des déformations cardiaques dans le repère anatomique du muscle myocardique.
De cette façon, l’intégration de tout mouvement ou régularisation locale sera efficacement
adaptée à l’anatomie du coeur ;

— l’utilisation d’une méthode de régression pondérée localement par une approche de partition
d’unités afin de régulariser le mouvement et la déformation estimée avec une faible
complexité informatique ;

— le renforcement de l’incompressibilité myocardique par la correction des valeurs de défor-
mation dans la direction radiale uniquement.

Grâce à la base de données virtuelles proposée, les innovations et les nouvelles perspectives
suivantes ont été soulignées :

— les algorithmes ADM et sparse demons fournissent une meilleure estimation du mouvement
et une meilleure quantification de la déformation du myocarde à partir des images IRM
marquées et des images US (en comparaison à l’imagerie IRM ciné) ;

— bien que les meilleurs résultats soient obtenus avec l’IRM marquée, les données ultra-
sonores permettent une estimation précise du mouvement et une quantification de la
déformation du myocarde lorsque la qualité de l’acquisition est suffisamment élevée ;

— le modèle ADM semble être la méthode la plus intéressante pour quantifier l’IRM marquée,
alors que l’algorithme sparse demons semble mieux convenir à l’imagerie IRM ciné et à
l’imagerie ultrasonore ;

— la stratégie de régularisation radiale développée dans l’approche ADM permet une meilleure
estimation de la déformation radiale à la fois en imagerie ultrasonore et en imagerie IRM
marquée.

Malgré les résultats obtenus encourageants, il apparait que l’estimation du mouvement à
partir d’images cardiaques produit des résultats qui ne sont pas encore suffisamment précis et
robuste pour être utilisé de façon automatique en routine clinique. En tenant compte des résultats
très positifs obtenus récemment en segmentation cardiaque, il semble naturel d’étudier l’efficacité
de l’application de solutions d’apprentissage statistique pour l’estimation du mouvement en
imagerie cardiaque et de voir si ces approches peuvent être de bons candidats pour résoudre ce
problème.

Mes travaux de recherche en estimation du mouvement cardiaque ont été réalisés par le biais
d’un doctorant financé par une bourse CIFRE (avec Philips Medisys) et d’un post-doctorant
financé par le gouvernement français (financé par le projet ANR du professeur Hervé Liebgott).
Les résultats obtenus sur ce thème ont donné lieu à 9 articles dans des revues internationales et
11 articles dans des conférences internationales.

Reconstruction d’images échographiques : vers de nouvelles techniques d’imagerie

Partant du constat que les approches exploitant le formalisme de Fourier sont plus efficaces
en termes de complexité informatique que les techniques conventionnelles de délais et sommes, je
me suis concentré sur ce type d’approches au cours de mes travaux de recherche. En particulier,

229



French summary

nous avons développé une nouvelle technique, appelée Ultrasound Fourier Slice Beamforming
- (USTB), où les échantillons acquis sont distribués radialement dans l’espace de Fourier. Ce
faisant, le théorème de Fourier classique peut être utilisé afin de reconstruire des images ultra-
sonores. Cette nouvelle technique a été validée par simulation et par acquisition in vivo. Les
résultats obtenus montrent que notre méthode produit des résultats très compétitifs en termes
de qualité d’image par rapport aux méthodes de pointe, mais avec une complexité de calcul
équivalente voire supérieure, ce qui rend notre solution moins attractive. Néanmoins, de mon
point de vue, la modélisation que nous avons proposée demeure conceptuellement interessante
puisque c’est la première fois que des liens forts entre la formation d’images échographiques et
d’autres modalités comme la tomodensitométrie sont établis.

Nous avons également développé une méthode innovante basée sur la théorie de Fourier et
applicable aux acquisitions par ondes divergentes. Les principaux aspects de cette approche sont
les suivants :

— établissement d’un isomorphisme en termes de temps de parcours entre un système
planaire à base d’ondes planes et un système sectoriel à base d’ondes divergentes ;

— dérivation d’une transformation spatiale explicite qui permet la reconstruction d’images
sectorielles à grand angle à partir de techniques classiques exploitant la théorie de Fourier
et initialement développées pour l’imagerie par ondes planes ;

— généralisation de la transformation spatiale explicite à partir de différentes positions de
sources virtuelles pour permettre l’utilisation d’un schéma de composition pour améliorer
la qualité des images reconstruites.

Notre méthode a été évaluée à la fois sur des simulations et des expériences in vitro/in vivo.
Les résultats ont révélé que l’extension proposée de la méthode de Lu produit des résultats
compétitifs avec une complexité de calcul plus faible vis-à-vis de la technique conventionnelle de
délais et sommes. Fait intéressant, notre solution a été appliquée avec succès pour la reconstruction
d’images cardiaques à haute fréquence (250 images/s avec un grand angle d’ouverture de 90◦) à
partir d’un sujet sain en bonne santé. Ceci illustre la capacité de notre formalisme à être utilisé
pour des applications cardiaques.

Mes travaux de recherche en reconstruction d’images échographiques ont été réalisés par
le biais d’un doctorant financé par le gouvernement chinois (subvention du China Scholarship
Council). Les résultats obtenus sur ce thème ont donné lieu à 4 articles dans des revues inter-
nationales et 11 articles dans des conférences internationales.

2 Perspectives de recherche

Perspectives de recherche à moyen terme

Segmentation cardiaque : En ce qui concerne l’estimation d’indices volumétriques robustes
par segmentation cardiaque, mon but est de finir de résoudre ce problème en développant des
solutions dédiées basées sur les techniques d’apprentissage profond qui produiront des résultats
compétitifs vis-à-vis des scores intra-observateurs avec des formes cardiaques anatomiquement
plausible quelque soit les cas de figure. En effet, les résultats que nous avons récemment obtenus
en IRM ont montré que la méthode d’apprentissage profond la plus performante fournit en
moyenne 1,6 coupes (sur 12 segmentées par volume) avec des formes anatomiques fausses pour
41 patients sur 50 de la base de données des tests. Concernant la précision de segmentation,
des travaux récents que nous avons réalisés ont montré que la localisation précise du ventricule
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gauche permet d’obtenir des scores de segmentation compétitifs vis-à-vis de la variabilité intra-
observateur. Ceci nous incite à travailler sur des architectures d’apprentissage profond qui
optimisent à la fois la localisation et la segmentation en parallèle. Ce travail est actuellement
à l’étude avec un de mes doctorants financé par les LABEX PRIMES. En ce qui concerne les
erreurs anatomiques, il existe déjà dans la littérature des travaux qui proposent des solutions
pour résoudre ce problème. Parmi les techniques existantes, le travail d’Oktay et al. , récemment
proposé dans [183], semble être le plus avancé. Dans cette étude, les auteurs ont utilisé des réseaux
convolutionnels pour segmenter les structures cardiaques. Le coeur de leur réseau est basé sur
une architecture similaire à celle de U-Net, mais dont la sortie de segmentation est contrainte
par une représentation compacte non linéaire de l’anatomie sous-jacente dérivée d’un réseau
auto-encodeur. L’utilisation d’un auto-encodeur pour créer un espace dédié compact afin de
représenter efficacement les structures cardiaques semble être une excellente idée. Malheureusement,
l’utilisation actuelle d’un tel espace ne garantit pas que la sortie de segmentation sera anato-
miquement plausible dans tous les cas. J’envisage donc de travailler sur de telles approches
encodeur-décodeur pour générer un espace compact afin de coder efficacement les formes cardiaques
mais avec la contrainte d’imposer des formes anatomiques plausibles à la sortie du modèle de
segmentation. Ainsi, la combinaison des deux approches mentionnées ci-dessus assurera que ma
solution finale obtiendra des résultats de segmentation compétitifs vis-à-vis des scores inter- et
intra-observateurs avec des formes anatomiques qui seront pertinentes dans tous les cas.

Estimation du mouvement cardiaque : En ce qui concerne les différents indices dyna-
miques qui peuvent être extraits des séquences cardiaques, mon objectif est tout d’abord d’améliorer
la qualité de l’estimation du mouvement qui peut être extrait des images, avec une attention
particulière en imagerie ultrasonore. En effet, l’imagerie par ultrasons semble être une modalité
de choix pour l’estimation du mouvement puisqu’il s’agit d’une imagerie en temps réel, avec la
possibilité de faire des acquisitions à des fréquence très élevées (> 500 fps) et avec des propriétés
de speckle intrinsèque à cette imagerie permettant de suivre des modèles de mouvement dans le
muscle et le sang. Sur la base des très bons résultats que nous avons obtenus en segmentation,
j’ai l’intention d’étendre mes travaux en apprentissage profond à l’estimation du mouvement en
imagerie cardiaque. Les méthodes d’apprentissage profond les plus performantes actuellement
en imagerie médicale sont principalement basées sur l’apprentissage supervisé [147]. De telles
approches impliquent la mise en place d’ensembles de données de référence à partir desquels
l’algorithme apprend à reproduire les références associées. La création de tels ensembles de
données pour des applications telles que la classification des vues ou la segmentation des struc-
tures anatomiques est ”facilement”réalisable. C’est pourquoi la majorité des solutions en appren-
tissage profond se concentrent actuellement sur la résolution de ces problèmes, en particulier en
imagerie cardiaque [131]. En ce qui concerne l’estimation du mouvement, l’établissement de bases
de données de référence est beaucoup plus difficile à mettre en place, ce qui explique le nombre
réduit d’études sur ce sujet. La plupart des méthodes d’apprentissage profond existantes qui
abordent le problème de l’estimation du mouvement proviennent de la vision par ordinateur
et sont basées sur des séquences synthétiques réalistes pour former la base d’apprentissage
[110]. Ainsi, l’application de ces techniques en imagerie cardiaque nécessitera inévitablement,
comme première étape clé, la création d’ensembles de données synthétiques réalistes en termes
de mouvement et de propriétés d’image. Évidemment, j’ai l’intention d’utiliser mes travaux en
simulation pour générer de tels ensembles de données de référence. En particulier, j’envisage
de développer un algorithme générique d’apprentissage profond pour estimer tout type de
mouvement en imagerie échocardiographique. Cette architecture sera alimentée par un nombre
important de données synthétiques générées par un simulateur physique. L’un des intérêts
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d’utiliser des simulateurs physiques est d’intégrer le phénomène de décorrélation du speckle dans
les séquences simulées. En effet, ce phénomène est en partie responsable de l’efficacité limitée
des méthodes actuelles dans l’estimation du mouvement en échocardiographie puisqu’il implique
des différences entre le mouvement réel du tissu et le mouvement apparent sur l’image. Un tel
schéma donnera donc la possibilité à notre solution d’apprentissage profond de se spécialiser
sur la particularité de la décorrélation du speckle et ainsi faire un pas en avant vis-à-vis des
méthodes les plus modernes. Il est à noter que la conception d’un tel simulateur physique est
déjà en cours grâce au financement par le LABEX PRIMES d’un projet postdoctoral. En effet,
il existe déjà des simulateurs d’échographie à accès libre dont le plus célèbre est le logiciel
FieldII. Cependant, cette solution n’est pas open-source, codée en matlab et nécessite beaucoup
de temps pour simuler une seule image (à partir de plusieurs tirs en émission). A l’initiative de
mon collègue Dr Garcia, nous sommes entrain de développer un simulateur physique d’ultrasons,
codé efficacement dans le langage de programmation C++ approprié pour générer des séquences
d’ultrasons réalistes dans un temps raisonnable. De plus, le code source de ce simulateur sera
libre.

En termes d’applications, j’envisage tout d’abord de développer une solution d’apprentissage
profond dédiée à l’estimation du mouvement des tissus en imagerie cardiaque, avec un intérêt
particulier pour l’estimation de la déformation myocardique. En effet, de nombreuses travaux ont
été menées jusqu’à présent afin d’étudier la possibilité d’estimer des informations précises sur la
déformation myocardique à partir de l’imagerie échocardiographique [193]. Il ressort de ces études
que la quantification de la déformation myocardique présente un potentiel élevé d’évaluation du
risque dans diverses maladies cardiaques, mais souffre fortement d’un manque de reproductibilité
entre les constructeurs, les modalités et la version du logiciel. En me basant sur mes travaux
récents sur la simulation de données échographiques synthétique spécifiques aux constructeurs
[4], j’envisage d’intégrer la variabilité des images entre les constructeurs dans la conception de
notre ensemble de données de référence synthétique. Un autre aspect clé sera la capacité de ma
solution d’apprentissage profond à fournir des mesures d’incertitude sur le mouvement estimé
réalisé sur chaque pixel. En effet, une particularité des images échographiques est que selon
les patients, les conditions d’acquisition et l’expérience des cardiologues, la qualité de l’image
acquise varie considérablement, ce qui conduit généralement à un manque partiel d’information
sur différentes régions de l’image acquise. Par exemple, il est traditionnellement difficile de
visualiser la paroi antérieure du myocarde lors d’une acquisition apicale deux chambres en raison
d’une perte de signal dûe aux poumons. Ces zones manquantes sont habituellement caractérisées
par du bruit ou des artefacts de reconstruction comme la réverbération, ou l’ombre acoustique. Il
est donc essentiel de pouvoir localiser ces régions afin de ne pas tenir compte des estimations de
mouvement correspondantes lors du calcul de la déformation cardiaque. J’ai l’intention d’intégrer
les progrès récents de l’apprentissage profond bayésien pour résoudre ce problème. En effet, ce
formalism permet d’estimer une incertitude soit en modélisant des distributions sur les poids
du réseau, soit en apprenant une correspondance directe avec les résultats probabilistes. Des
travaux récents ont montré la possibilité d’appliquer ce formalisme à l’imagerie médicale [234].
Cependant, il s’agit encore d’études pilotes et rien n’a été fait jusqu’à présent sur l’estimation
du mouvement dans le domaine de l’imagerie cardiaque. Je viens de débuter des travaux sur ce
sujet avec un doctorant financé par la société Philips Medisys au travers d’une bourse doctorale
CIFRE.

Une deuxième application que j’ai l’intention d’explorer est l’estimation du flux en imagerie
échocardiographique. En effet, des travaux récents ont étudié le lien étroit entre la déformation
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du myocarde et l’écoulement sous-jacent dans le ventricule gauche [84]. Il est évident que la
prise en compte de ces deux phénomènes de manière individuelle et relationnelle conduira à une
meilleure caractérisation du type et du degré de pathologie cardiaque des patients et donc à
un meilleur diagnostic. Les limites actuelles de l’estimation du flux en échocardiographie sont
l’accès à une fenêtre de taille limitée pour effectuer des mesures précises. En effet, les applications
cliniques actuelles sont basées sur des mesures de flux soit le long de direction de tirs par Doppler
pulsé, soit dans de petites fenêtres par Doppler couleur (e.g. au niveau de l’anneau mitral).
Les progrès récents de l’imagerie à haute fréquence d’images en échographie ouvrent la porte à
l’imagerie de flux dans toute la cavité cardiaque [15]. Néanmoins, le principal inconvénient de ces
méthodes est le faible rapport signal/bruit qui caractérise ce type d’imagerie. Les mesures sous-
jacentes doivent donc être fortement régularisées pour fournir une interprétation significative,
au détriment de la qualité et de la précision des indices extraits. J’ai donc l’intention de simuler
des images à faible rapport signal/bruit obtenues à partir de techniques de reconstruction à
haute fréquence d’images avec des sources de bruit appropriées pour concevoir une architecture
d’apprentissage profond dédiée capable d’estimer le mouvement pertinent sur ces séquences
ultrasonores. En particulier, à partir d’un simulateur physique, je vais générer un ensemble de
données synthétique de référence composé à la fois d’images en mode B et de Doppler couleur. En
effet, je considère que ces deux types d’informations sont complémentaires et peuvent permettre
à un algorithme d’apprentissage profond d’apprendre des caractéristiques plus pertinentes pour
une meilleure estimation du flux intra-ventriculaire. Je viens de commencer à travailler sur ce
sujet avec une doctorante financée par le LABEX PRIMES.

Perspectives de recherche à long terme

D’un point de vue de recherche à long terme, mon objectif est d’étudier la capacité des
solutions d’apprentissage profond à générer un espace latent contrôlé pour des applications
médicales dédiées. L’intérêt de construire de tels espaces latents réside dans leur capacité à : i)
introduire plus efficacement des contraintes dans l’espace de solution ; ii) modéliser des tâches
plus complexes que la simple estimation du mouvement/segmentation. Les progrès récents en
apprentissage profond ont démontré leur efficacité dans l’apprentissage d’espaces partiellement
contrôlés qui intègrent la variabilité complexe de la population étudiée. Parmi les méthodes les
plus avancées, les auto-encodeurs variationnels (VAE) [128] et les auto-encodeurs contradictoires
(aVAEs) [156] fournissent actuellement les résultats les plus prometteurs. Les auto-encodeurs
standard codent les données d’entrée sous forme de vecteurs, ce qui permet de dériver une
représentation latente et comprimée (espace) des données. Ces méthodes sont utiles pour réduire
la dimensionnalité. Les auto-encodeurs sont généralement couplés à un décodeur, ce qui permet
de reconstruire les données d’entrée en fonction de leur représentation cachée. La méthode dite
VAE est un type d’auto-encodeurs avec des contraintes supplémentaires sur l’espace latent.
Plus précisément, au lieu de laisser l’auto-encodeurs apprendre un espace latent arbitraire, les
VAEs imposent une distribution gaussienne a priori centrée à zéro et de variance un pour le
vecteur latent. Ainsi, un vecteur échantillonné à partir du espace latent générera de nouveaux
échantillons de données de sortie, de sorte que les VAEs correspondent à un modèle générateur.
L’un des principaux intérêts des VAEs est donc leur capacité à générer des espaces latents
partiellement contrôlés définis par la distribution de probabilité gaussienne correspondante. Dans
le formalisme des aVAEs, l’espace latent des VAEs est contraint par un réseau contradictoire
qui fait cöıncider le vecteur latent correspondant à un priori arbitraire. Ainsi, en ajustant la
distribution de probabilité a priori utilisée par la VAE et le réseau contradictoire utilisé dans les
aVAEs, il est possible de construire un espace latent partiellement contrôlé qui peut être adapté
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pour des applications spécifiques.

Vers un apprentissage profond de manifolds dédiés : Sur la base du formalisme décrit
précédemment, l’espace latent des aVAEs peut être considéré comme un espace approchant un
manifold dont les propriétés sont directement influencées par la distribution a priori choisie et le
réseau contradictoire. Il est donc possible d’envisager la création de manifolds dédiés à des tâches
qui peuvent être trop complexes pour être modélisées par des approches conventionnelles. Comme
preuve de concepts, je travaille actuellement en collaboration avec l’université de Sherbrooke
(Canada) sur l’exploitation d’un tel paradigme pour une introduction efficace des contraintes
de forme dans un cadre d’apprentissage profond. Cependant, je suis profondément convaincu
que ce formalisme est suffisamment générique pour être utilisé dans des applications médicales
beaucoup plus ambitieuses telles que : i) le guidage en temps réel d’une sonde échographique pour
une meilleure imagerie et donc une meilleure robustesse et reproductibilité des mesures sous-
jacentes ; ii) l’évaluation automatique du risque des patients par rapport à certaines pathologies
basées sur l’image même. En raison de leur potentiel intellectuel et applicatif très riche, il n’y a
pas de doute que ces perspectives pourront fournir à mes travaux de recherche futurs un terrain
fertile sur du long terme.
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