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Abstract

We apply innovative mathematical tools coming from optimal control theory to improve theoretical and
experimental techniques in Magnetic Resonance Imaging (MRI). This approach allows us to explore and to
experimentally reach the physical limits of the corresponding spin dynamics in the presence of typical experimental
imperfections and limitations. We study in this paper two important goals, namely the optimization of image contrast
and the maximization of the signal to noise per unit time. We anticipate that the proposed techniques will find
practical applications in medical imaging in a near future to help the medical diagnosis.
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1 Introduction
Optimality with respect to a given criterion is vital in
many applications, but it presents a complexity that
requires a lot of ingenuity to provide a solution. In this
context, optimal control tackles the question of bringing
a dynamical system from one state to another with min-
imum expenditure of time and resources [50]. Optimal
control theory was born in its modern version with the
Pontryagin Maximum Principle (PMP) in the late 1950’s.
Its development was originally inspired by problems of
space dynamics, but it is now a key tool to study a large
spectrum of applications extending from robotics to eco-
nomics and biology [5, 12, 14, 15, 18, 19, 23, 27, 29].
Optimal control problems can be solved by two different
types of approaches, geometric [5, 14, 29] and numeri-
cal methods [16, 27, 36] for dynamical systems of low
and high dimension, respectively. The geometric tech-
niques lead to a complete mathematical and qualitative
understanding of the control problem, from which we can
deduce the structure of the optimal solution and the phys-
ical limits of a dynamical process, such as the minimum
time to achieve a given task [2, 5, 13, 14, 26, 29–31]. The
advantages of the numerical approach are complementary
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to the ones of the geometric method. The relative
simplicity of the application of the numerical algorithms
makes it possible to adapt them straightforwardly to new
classes of control problems. Generally, it is also possi-
ble to include constraints in the algorithms to account
for experimental imperfections or requirements related
to a specific material or device. This point is essential
in view of experimental applications and helps to bridge
the gap between control theory and control experiments
[16, 21, 27, 32, 36, 46, 51, 58].
Since its discovery in the forties, Magnetic Resonance

has become a powerful physical tool to study molecules
and matter in a variety of domains in chemistry, biology
and solid state physics [3, 25, 45]. The efficiency of Mag-
netic Resonance techniques is maybe best illustrated by
medical imaging, where it is now possible to build up a
three-dimensional picture of the human brain. Even the
mental processes of the brain activity, which modify the
oxygenation and the flow of the blood can be detected by
this tool. This information is not accessible by any other
current method [3]. It is this imaging aspect of the con-
trol of spin dynamics which will be at the core of this
paper. In Magnetic Resonance Imaging (MRI), the major
challenges are based on the maximization of the con-
trast between volume elements with different physical or
chemical properties in order to clearly detect anatomical
features and to distinguish healthy tissue e.g. from tumors.
It is also crucial to improve sensitivity by compensating
instrumental imperfections such as the non-uniformity
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of signal excitation magnetic pulses. Such goals can be
achieved by applying specific magnetic fields to the sam-
ple. The development of theoretical techniques, such as
composite and shaped pulses in MRI has so far relied
on a relatively small number of concepts and numerical
tools that have led to many practical improvements in
the last decades [45]. However, these improvements were
largely incremental, none of those approaches was able to
establish physical limits of the best possible performance
in terms of energy deposition, sensitivity, robustness and
contrast. The revolutionary aspect of optimal control the-
ory in this domain is in its ability to achieve and oper-
ate at the physical performance limit, resulting in more
detailed information, better sensitivity, and better imag-
ing contrast. Measurement time per patient could also
be decreased, making the technique more patient-friendly
and also more economical. A crucial issue for pulse design
is the implementation of control operations under sig-
nificant uncertainties stemming from the non-uniform
nature of the sample, such as the human body, and of
the applied magnetic fields. Recent advances in numerical
optimization techniques have made it possible to design
high quality control sequences that are robust against the
various experimental uncertainties [20, 27, 32, 49, 52].
This requirement of robustness in general is one of the
key factors for the development of new technologies.
Recently it has been shown that thousands of individual
spins with different experimental features can be simulta-
neously optimized, resulting in an improved experimental
performance [28, 33–35, 40, 43, 54–57, 62]. More gener-
ally, the flexibility of the optimal control approach allows
us to include complex physical and instrumental effects,
such as relaxation, radiation damping and power limits in
order to find highly robust experimental settings suitable
for practical applications under realistic conditions.
The idea of using optimal control techniques in MRI

was initially proposed in the eighties [17], but the recent
advent of analytical and numerical tools hasmade possible
impressive progresses in this domain, leading to the opti-
mization of the control of complex spin dynamics in MRI
[1, 10, 43, 47, 53, 60, 61]. The aim of this paper is to present
two examples of recent results obtained in this direc-
tion both from the geometric and numerical approaches.
These examples will allow us to describe and discuss the
efficiency and the limitations of this method in order to
solve applied and concrete issues in MRI.
The paper is organized as follows. Section 2 deals with

the optimization of the signal to noise per unit time (SNR)
by geometric control techniques. The unbounded case
is investigated, showing that the Ernst angle solution is
the optimal solution of the control problem. This result
is an essential prerequisite for the extension of this anal-
ysis to realistic situations, which are numerically much
more intricate. Section 3 focuses on the optimization of

the contrast in in vivo MRI. We numerically maximize the
contrast of the brain of a rat. The experimental results
show the efficiency of the applied magnetic fields. Con-
clusion and prospective views are given in Section 4.

2 Optimal control of the signal to noise ratio per
unit time

This paragraph deals with an application of geometric
optimal control theory to MRI. Recently, this method has
been successfully applied to a question of fundamental
and practical interest in MRI, the maximization of the
achievable signal-to-noise ratio per unit time (SNR) of
a spin 1/2 particle [3, 25, 45]. The SNR is practically
enhanced in spin systems by using a multitude of identical
cycles. In this periodic regime, the SNR increases as the
square root of the number of scans. Each elementary block
is composed of a detection time and of a control period
where the spin is subjected to a radio-frequency magnetic
pulse, this latter being mandatory to guarantee the peri-
odic character of the overall process. A first solution to
this problem was established in the sixties by R. Ernst
and his co-workers [24]. In this proposition, the control
law is made of a δ- pulse, featured by a specific rotation
angle, and known as the Ernst angle solution. This pulse
sequence is routinely used in magnetic resonance spec-
troscopic andmedical applications. Note also that optimal
control theory was not used in Ref. [24]. We have revis-
ited recently this question by applying the powerful tools
of geometric control theory. In [38], we have shown in the
case of unbounded controls that the Ernst angle solution is
the optimal solution of this control problem. This analysis
was generalized in [39] to spin dynamics in the presence
of radiation damping effects and crusher gradients. We
present in this section a brief review of these results.

2.1 The model system
We describe in this paragraph the model system used
in the theoretical analysis. We consider an ensemble of
spin 1/2 particles subjected to a radio-frequency magnetic
field, which is assumed to be homogeneous across the
sample. The system is described by amagnetization vector
�M of coordinates (Mx,My,Mz), whose dynamics is gov-
erned, in a given rotating frame, by the standard Bloch
equations [3, 25, 45]:

⎧
⎨

⎩

Ṁx = −2πMx/T2 + ωyMz
Ṁy = −2πMy/T2 − ωxMz
Ṁz = 2π(M0 − Mz)/T1 − ωyMx + ωxMy

(1)

where T1 and T2 are respectively the longitudinal and
transverse relaxation constants. M0 is the thermal equi-
librium of the magnetization and (ωx,ωy) are the two
control amplitudes of the radio-frequency magnetic field.
Normalizing the time with respect to the detection time
Td (see below for a description of this parameter), τ =
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t/Td, and the amplitude of the magnetization vector with
respect to M0, (x, y, z) = (Mx/M0,My/M0,Mz/M0), we
get:

⎧
⎨

⎩

ẋ = −�x + uyz
ẏ = −�y − uxz
ż = γ (1 − z) − uyx + uxy

(2)

where γ = 2πTd/T1, � = 2πTd/T2 and ux,y = Tdωx,y.
In the relevant physical case where 0 ≤ T2 ≤ 2T1, it can
be shown that x2 + y2 + z2 ≤ 1 at any time, which defines
the Bloch ball [37]. In the new coordinates, the dynamics
only depends on two parameters γ and � and the detec-
tion time is fixed to 1. The system admits a symmetry of
revolution around the z- axis which allows us to consider
by setting uy = 0 only a planar projection onto the (y, z)-
plane [7, 11]. The final equations used in this paper are
then given by:

{
ẏ = −�y − uz
ż = γ (1 − z) + uy (3)

where u stands for ux.
In this ideal dynamical system, we introduce a simple

scenario to describe the optimization of the SNR per unit
time (see the schematic description in Fig. 1. The point
reached at the end of the pulse sequence is the measure-
ment point M of coordinates (ym, zm). The system has a
free evolution from this point to the steady state S of coor-
dinates (ys, zs), where the pulse sequence starts. The times
Td and Tc denote the detection time (fixed by the experi-
mental setup) and the control time, respectively. The total
time T during which a series of identical experiments are
made is fixed. The total number N of experiments is then
given by: T = N(Tc + Td).
Following Refs. [38, 39], the optimization problem is

defined through the introduction of the following cost
functionalR:

Fig. 1 Schematic representation of the cyclic process used in the
maximization of the SNR

R = Nym√
N

, (4)

ym being the strength of the signal at the beginning of the
detection period (only the transverse magnetization can
be measured). A white noise is assumed, which explains
the

√
N factor in the denominator of R. Simple algebra

leads to:

R =
√

T
Td + Tc

ym =
√

T
Td

ym√
1 + Tc/Td

. (5)

Since the total time T and the detection time Td are
fixed,we can introduce a normalized SNR Q with respect
to the measurement time Td :

Q(ym, zm) = ym
√
1 + Tc(ym, zm)/Td

, (6)

which only depends on the position of the M point. The
factor of quality Q is the figure of merit to maximize.

2.2 How tomove in the Bloch ball
Before entering into the details of the optimization of
the SNR, the first question to solve is the optimal con-
trol of the magnetization vector in the Bloch ball. Here,
we only summarize the main results, which have been
recently established in a series of papers [7, 37, 41, 42, 48].
We recall that the dynamics of the system is governed by
Eq. (3), with no constraint on the control field, u(t). At this
stage, it is illuminating to introduce the polar coordinates
(R, θ) such that y = R sin θ and z = R cos θ . Equation (3)
can then be written as follows:

{
Ṙ = −�R cos2 θ + γ (sin θ − R sin2 θ)

θ̇ = γ cos θ
( 1
R − sin θ

) + � sin θ cos θ + u. (7)

We immediately note that the angular speed θ̇ can be
directly control by u, while the radial one, Ṙ, does not
explicitly depend on the field. The radial coordinate can
only be controlled in a two-step process by a judicious
choice of θ . In the unbounded case, we have therefore a
complete control over the angular degree of freedom, but
we still have to understand how to manipulate the system
along the radial direction. For that purpose, we have plot-
ted in Fig. 2 the evolution of the speed Ṙ as a function
of the angle θ . The characteristic points of this dynamics,
maximum, minimum and zero points, are underlined and
reported in the (y, z)- plane. Such specific points allow us
to determine the optimal solution to manipulate in mini-
mum time the system along the radial direction [37]. From
a control point of view, this analysis allows to recover the
singular trajectories, which are the paths where the con-
trol field is not equal, in absolute value, to the maximum
bound [41]. We obtain here two types of singular controls:
the horizontal one along the plane of equation z = z0 =

−γ
2(�−γ )

, denoted Sh and the vertical one along the z- axis
denoted Sv>0 and Sv<0, for z > z0 and z < z0, respectively.
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Fig. 2 (Color online) Contour plot of the trajectories Ṙ(θ) for two different sets of relaxation parameters. The red line is the line for which Ṙ = 0. The
blue and green lines are the set of points where ṙ is minimum, while the points of the yellow one correspond to a maximum. The small inserts
display in the (y, z)- plane the trace of the corresponding sets of points. Circles of different radii are also plotted to help the reading

Note that the plane of equation z = z0 intersects the Bloch
ball if

T2
2|T2 − T1| ≤ 1.

In the standard case where T1 ≥ T2, this leads to
the condition 2T1 ≥ 3T2. The time-optimal solution is
thus the concatenation of bang arcs, denoted B where
the intensity of the field is maximum (here infinite) and
of singular arcs. We refer the reader to previous works
for a thorough mathematical and physical analysis of
this control process [7, 37, 41, 42], but according to the
constraint given below, the horizontal singular arcs can
only be used if the condition 2T1 ≥ 3T2 is satisfied.
An example is given in Fig. 3 for the saturation pro-
cess where the goal is to reach as fast as possible the
center of the Bloch ball. According to the values of the
relaxation parameters T1 and T2, we observe that two
different control sequences are used. In the first situa-
tion, the optimal control law is composed of a bang pulse
followed by two singular arcs, a horizontal and a verti-
cal one. In the second case, an inversion pulse is used to

reach the south pole before the application of a zero con-
trol along the z- axis. It can be shown that the analytical
expression of the corresponding minimum times are
given by:

Tmin = T2
2

ln
(

1 − 2
αT2

)

+ T1 ln
(

2T1 − T2
2(T1 − T2)

)

,

where α = T2(T2−2T1)
2T1(T1−T2)2

and

Tmin = T1 ln 2

in the first and second cases, respectively.
A straightforward generalization of this study allows us

to design the optimal field bringing in minimum time
the system from any initial point to any target state of
the Bloch ball, leading to a complete description and
understanding of this optimal control problem. Such a
classification of all the optimal trajectories is called an
optimal synthesis [14]. In each case, we recall that the
time-optimal solution can only be the concatenation of
different bang arcs and of singular paths along the z- axis
or along the line z = z0.
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Fig. 3 (Color online) Time-optimal trajectory to reach the center of
the Bloch ball (y, z) = (0, 0) from the north pole

2.3 Optimization of the SNR in the unbounded case
We have now all the tools in hand to optimize the SNR.
This optimization is a non-standard and difficult control
problem for which a cost functional Q has to be maxi-
mized, together with the determination of the initial S and
final M points of the control period. Only the position of
one of the two points needs to be computed since the S
and the M points are connected by a free evolution. Fol-
lowing Refs. [38, 39], we adopt a brute-force strategy to
solve this problem, which consists in replacing this global
optimization by a two-step procedure. For any M point
of coordinates (ym, zm) of the Bloch ball, we first deter-
mine as explained in Section 2.2 the time-optimal path
going from S to M and we compute the corresponding
value of the figure of merit Q. Only five types of control
sequences can be optimal. According to the values of the

relaxation parameters, only three different optimal syn-
theses are obtained, as displayed in Fig. 4. We observe the
occurring of the Ernst ellipsoid, which is the set of points
where Rm = Rs (the radii of the M and S points), i.e. the
control sequence where only a δ- pulse is used to bring the
system from S toM.
In this unbounded situation, the functional Q can also

be determined analytically as a function of the coordinates
ofM [38, 39]. Mathematically,Q is a non-smooth but con-
tinuous surface. This surface is represented in Fig. 5 for
the four cases of Fig. 4.
A gradient method gives the maximum of this surface,

which belongs to the Ernst ellipsoid. This point can be
characterized by the well-known Ernst angle solution:

cos θ = e−γ + e−�

1 + e−�−γ
, (8)

which was first derived in the original paper by Ernst and
his co-workers [24]. The angle θ denotes here the angle
characterizing the δ- pulse of the Ernst sequence.
This first result of optimality on the SNR per unit time

paves the way in a near future to a systematic analysis
of the optimization of this parameter in spin systems.
This method can be generalized to the case of bounded
control amplitudes, the use of crusher gradient pulses,
to an inhomogeneous ensemble of spins with magnetic
field broadening, or to any other experimental constraint.
Other aspects will be discussed in the conclusion of the
paper.

3 Numerical optimal control of the contrast inMRI
In this section, a numerical solution of the contrast opti-
mization problem is presented. Contrast in MRI is a key
parameter to visualize and interpret the anatomy and
bio-chemical properties of potentially malign tissues. In
clinical practice, contrast is usually empirically handled
by tuning few acquisition parameters. This approach is
however strongly radiologist dependent, only provides
limited contrast combinations and offers no guarantee
about the optimal nature of the created contrast. The
objective of this study is to compute the radio-frequency
(RF) magnetic pulse which optimally combines the effect
of excitation and relaxation of the spins to produce the
maximal signal difference between 2 tissues with different
relaxation times. We recall that signal in MRI is directly
linked to the norm of the transverse magnetization vec-
tor �M, denoted �M⊥ = (Mx,My, 0). Geometric approaches
have been proposed to solve this problem for different tis-
sues for spins precessing at the nominal Larmor frequency
[6, 10, 43]. For the application on a realistic MRI sys-
tem, it is essential to account for magnet imperfec-
tions which induce various resonance frequency offsets.
In this case, each isochromat is characterized by a
magnetization vector �M(ω) = (Mx(ω),My(ω),Mz(ω))
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Fig. 4 (Color online) (Color online) Plot in the top-left and bottom panels of three possible steady-state syntheses. The synthesis in the top right is
the transition from the top-left to the right-left cases. The parameters (�, γ ) are respectively taken to be (1.90,0.5), (1.80,1), and (1.69,1.5), from top to
bottom and left to right. The color code and the small insert indicate the control law used according to the position of theM point in the Bloch ball.
The Bloch limit represents the circle of equation y2 + z2 = 1. The times 0 and T correspond respectively to the initial and final times of the control
field. The different quantities are unitless. The different quantities are unitless

whose dynamics is governed by the following differential
system:
⎧
⎨

⎩

Ṁx(ω) = −ωMy(ω) − 2πMx(ω)/T2 + ωyMz(ω)

Ṁy(ω) = ωMx(ω) − 2πMy(ω)/T2 − ωxMz(ω)

Ṁz(ω) = 2π(M0 − Mz)/T1 − ωyMx(ω) + ωxMy(ω),
(9)

where the offset term ω belongs to a given interval
[ωmin,ωmax]. From a numerical point of view, this con-
trol problem is solved by digitizing the distribution of
the isochromats. However, the resulting dimensionality
increase (several thousands of spins) makes the geometric
solution inapplicable, and requires the use of numerical
approaches to solve the problem. We also mention that a
similar robustness approach can be applied for T1 and T2
deviations as well as control field inhomogeneities. This
section details an example of a contrast experiment, from
the optimal control formulation to the in vivo acquisition
of a rat brain image.

3.1 Numerical optimization
Several numerical schemes have been proposed to solve
optimal control problems, including shooting methods

[8, 9], Krotov methods [60] and gradient ascent (or
descent) based approaches [21, 32]. This work illustrates a
practical application of the gradient ascent pulse engineer-
ing (GRAPE) algorithm. The application of the algorithm
requires the temporal discretization of the control field,
where each time step represents an optimization variable.
In its simplest version, this algorithm updates each con-
trol field time step by minimizing the user-defined cost
function at each iteration, while fulfilling the constraints
imposed by the Pontryagin Maximum Principle (PMP).
The cost function minimization is performed by apply-
ing a step in the direction of the cost function gradient
with respect to the control field. The reader is referred to
[21, 32] for explicit details on the gradient computation.
Convergence is reached when the gradient and/or the
step norms are bellow a user-defined threshold. Note that
unlike the geometric methods, the global nature of the
minimum cannot be claimed and global or local minimum
is only reached within a certain tolerance. This tolerance
is set in accordance with the experimental requirements
so that additional improvements of the control field have
a negligible impact on the experimental result. The con-
trol field initialization also impacts the nature of the
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Fig. 5 (Color online) Figure of merit surface Q(ym , zm) associated with the steady-state syntheses of Fig. 4. The solid, dashed and dot-dashed lines
represent the boundaries between the different regions of the Bloch ball where the control law is not the same. The definition of these lines is given
in Fig. 4

minimum. Multiple trials or prior insights on the solution
can be used to find the global minimum and to improve
the convergence of the algorithm.
The cost function (C) that optimizes the contrast must

maximize the difference between the transverse magneti-
zation norms of 2 samples a and b, at the end of the control
time (t = tf ). The two species are characterized by dif-
ferent relaxation times T1 and T2. It is arbitrarily chosen
here that the signal of the samples a and b are respectively
maximized and minimized. Note that other definitions of
the contrast could be chosen. Static field inhomogeneities
lead to different resonance frequency offsets which in turn
result in different trajectories in the Bloch ball, that must
be accounted for in the definition of the cost function.
This can be done by sampling the frequency offset inter-
val inN samples, where each point corresponds to a given
trajectory. The cost function thus enforces all trajectories
in the considered interval to have similar behaviors:

C = 1
N

N∑

i=1

[∥
∥
∥
−→Mb

(i)
⊥ (tf )

∥
∥
∥ −

∥
∥
∥
−→Ma

(i)
⊥ (tf )

∥
∥
∥

]
(10)

3.2 Example of the rat muscle/brain contrast
To illustrate the impact of optimal contrast pulses,
a RF pulse is computed to optimize the contrast

between the rat brain (minimize) and surrounding mus-
cles (maximize). This example was chosen as a proof-
of-concept because it cannot be created with standard
contrast strategies, due to the short transverse relaxation
time (T2) of the muscle tissues [3]. The following exper-
iment is performed in agreement with the UCBL’s ethic
committee on animal experimentation, on a 4.7 T Bruker
MR system. Average relaxation times of both structures,
as well as the offset inhomogeneity range are estimated
by standard MR sequences [45]. Longitudinal (T1) and
transverse (T2) relaxation times are respectively estimated
to be [ 920, 60] ms for the brain and [ 1011, 30] ms for
the muscle. The resonance offset range is of the order of
1 kHz. In order to handle slice selectivity, i.e. the location
of the image section plane [3], standard MRI excitation
schemes are used [3, 59]. The optimal pulse is thus used
as a contrast preparation pulse, implying that the contrast
is prepared on the longitudinal axis (Mz). Only a slight
change in the cost function is required to apply this modi-
fication [59]. The prepared magnetization is subsequently
flipped into the transverse plane with a slice-selective π/2-
pulse. We recall that the MRI signal is proportional to
the amount of transverse magnetization, i.e. the tissue
with the highest |Mz| at the end of the preparation will
produce higher intensity in the MR image. The magni-
tude of the resulting optimized pulse is shown in Fig. 6,
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Fig. 6 (Color online) Left: Amplitude of the optimal RF pulse in a log scale graph. Right: Magnetization trajectories of the brain and muscle tissues.
Each trajectory represents a specific resonance frequency offset in the interval [-400 Hz, 400 Hz]. A sampling rate of 40 Hz is considered to discretize
this interval. Star markers represent the ending point (at time t = tf ) of each trajectory

together with the magnetization trajectories of the con-
trasted tissues. Magnetization trajectories are represented
in a plane formed by the normalized transverse (M⊥) and
longitudinal (Mz) magnetization.
In this figure, different trajectories represent a specific

frequency offset. Notice how all trajectories of a given tis-
sue start from the thermal equilibrium (−→M0 = (0, 0, 1))
and reach the same final magnetization state despite
important trajectory disparities. This validates the pulse
robustness against resonance offset variations. It can be
observed that the brain is saturated at the end of the pulse,
i.e. that trajectories reach the center of the Bloch sphere,
while a significant amount of longitudinal magnetization
is left for the muscle tissues. This implies that unlike mus-
cle tissues, brain tissues will have a very low contribution
to the acquired MRI signal. The corresponding acquired
MR image is shown in Fig. 7. As expected, the average
tissue intensity within the brain is much lower than the
surrounding muscles.
Interestingly, some internal brain structures can be dis-

tinguished. It corresponds to structures whose relaxation
times slightly differ from the major brain components
which are mostly gray matter. In particular, the corpus cal-
losum, the largest white matter structure in the brain, can
be observed as an hypersignal element. As white matter
has a lower T2 than gray matter [22], this validate the abil-
ity of the optimal pulse to enhance short T2 tissues. This
particular contrast opens interesting perspectives in both
pre-clinical and clinical neuro-imaging applications since
white matter usually appears in hyposignal due to its short
T2. Such a contrast, keeping in mind its optimal nature,
could help to improve the visualization of white matter
in the human brain, which is a key factor in actual clin-
ical challenges such as the effect of aging or Alzheimer

disease [4]. This approach could also be used to highlight
the differences between the structures of the brain.

4 Conclusion
In MRI, there exists an immense potential for improve-
ment as well as for reduction of the energy deposit and
time a patient has to spend in a scanner during an exam-
ination. In this work, we have presented two benchmark
examples showing the efficiency of this technique. In
the ideal case of a homogeneous ensemble of spin sys-
tems, we have demonstrated the optimality in the limit of
unbounded controls of the Ernst angle solution, derived
in the sixties, to enhance the SNR. Numerical optimiza-
tion techniques were used to illustrate the possibility of

Fig. 7 Transverse section of a rat brain showing the result of the
optimal pulse. The aim of the control is to saturate the brain while
maximizing the intensity of the surrounding muscle tissues
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maximizing the contrast of the image in MRI by using
a particular pulse sequence. This approach was applied
with success theoretically and experimentally on the brain
of a rat. We emphasize that one of the main advan-
tages of this contrast enhancement is its general character
since the optimal control magnetic fields can be computed
with standard routines published in the literature and
implemented on aMRI scanner without requiring specific
materials and process techniques. An important issue is
the use of this method in clinics to optimize the contrast
of human body imaging. We anticipate that this technique
could be a complementary tool to contrast agents whose
successful application has been an important aspect of the
development ofMRI in recent years. The joint use of these
two methods could therefore limit the concentration of
contrast agents needed for the imaging, which could be
beneficial to the patient.
These two examples validate the potential of optimal

control as an accurate pulse design tool to solve non-
trivial practical problems in MRI. This ability can be
extended to other contexts in MRI, as shown very recently
in [44] with the introduction of optimal control pulses
for magnetization phase control in MRI. There is a huge
interest for accurate phase control in many important
applications in MRI, such as diffusion imaging, thermom-
etry and elastography, to improve the signal sensitivity to
specific bio-markers.
The use of optimal control for these applications relies

on further developments in robust optimal control ana-
lytic and numerical tools, accurate modeling of the MR
physics and tailored acquisition sequences, that will fur-
ther improve existing MR methods and approach the
system’s physical limits.
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