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Abstract

Cardiovascular diseases remain to be the first cause of mortality in the world. In order

to detect and quantify lesions in coronary arteries, a conservative approach is commonly

followed, beginning with the localization of coronary starting points (ostia) and the

extraction of the vessel centerline. This data is usually required to perform the lumen

segmentation and helps lesion detection and stenosis quantification tasks. Due to its

social, medical, and academic interest, this thesis presents some contributions to the

study of coronary arteries in computed tomography angiography images, specially in

the centerline extraction and lumen segmentation steps.

First, we describe an axis extraction method developed in our team and we propose an

algorithm to correct vessel centerlines in orthogonal planes to the vessel direction. New

axes seemed to be better centered specially in healthy sections, but still having problems

close to calcified plaques and bifurcations. Then, we present six lumen segmentation

methods falling in two groups: classical and classification approaches. Best qualitative

results were obtained by methods based on region-growing and 2D active contours. The

study shows some difficulties to make a correct validation with the reference data, being

one of the main reasons to obtain a low Dice score using k-means clustering (66.48%)

which is comparable to the result obtained by a classic thresholding (65.20%). This is

caused by the presence of some regions that make part of the vascular lumen ,e.g. a part

near the aorta near the ostia, which are wrongly labelled as non-lumen sections. These

regions are thus recognized as false positives.

Additionally, all the techniques present important drawbacks due to the difficulty in

expressing an explicit geometrical model and a generic intensity profile of coronary ar-

teries, specially in bifurcations and lesions. Trying to avoid this explicit modeling, we

used Support Vector Machines, considered as a powerful generic classification method,

but we obtained poor segmentation results with Dice scores under 50% and a consider-

able increase in computational costs during training phases. This is probably caused by

a feature selection unsuited to describe the lumen. Finally, additional future efforts must

be made in order to define a complete evaluation framework that permits the method’s

comparison and the complete analysis in coronary arteries.



Résumé

Les maladies cardiovasculaires demeurent la première cause de mortalité dans le monde.

Pour détecter et quantifier les lésions dans les artères coronaires, l’approche classique

est de commencer par localiser de points de départ des artères (ostia) et d’extraire la

ligne centrale (axe) du vaisseau. Ces données sont nécessaires pour exécuter la segmen-

tation du lumen vasculaire et elles aident à la réalisation des tâches suivantes comme la

détection de lésions et la quantification de sténoses. En raison de l’intérêt social, médical

et académique de ce sujet, ce mémoire présente quelques contributions à l’étude d’artères

coronaires dans des images d’angiographie par tomodensitométrique, particulièrement

dans l’extraction des axes et la segmentation du lumen.

Dans un premier temps, nous décrivons une méthode d’extraction des axes développée

dans notre groupe et nous proposons un algorithme pour le recentrage des axes dans les

plans orthogonaux à leurs directions principales. Après ce traitement, les nouveaux axes

ont semblé être mieux centrés notamment dans le cas des sections saines, avec néanmoins

des problèmes lorsque les axes présentent des plaques calcifiées ou des bifurcations. Suite

à cela, nous présentons six méthodes de segmentation du lumen catégorisées dans deux

groupes principaux: techniques classiques et techniques de classification. Les meilleurs

résultats qualitatifs ont été obtenus par des méthodes basées sur des contours actifs et

de la croissance de région. L’étude montre quelques difficultés pour faire une validation

adéquate avec les données de référence, ce qui est une des raisons majeures qui fait que

l’on obtient un score de Dice très bas en utilisant un algorithme des k-moyennes (66.48

%) score comparable aux résultats obtenus par un seuillage classique (65.20 %), Ceci est

causé par la présence des régions faisant partie du lumen vasculaire e.g. une partie de

l’aorte près de l’ostium, mais n’étant pas annotées comme telles. Ces régions sont donc

reconnues comme des faux positifs.



Toutes les techniques de segmentation testées présentent des inconvénients importants en

raison de la difficulté à exprimer un modèle géométrique explicite et un profil d’intensité

générique des artères coronaires, particulièrement dans le cas de bifurcations et de

lésions. Afin d’éviter cette modélisation explicite, nous avons utilisé la méthode de

séparateurs à vaste marge, considérée comme une technique de classification puissante,

mais nous avons obtenu des résultats faibles de segmentation avec un score Dice en

dessous de 50% et une augmentation considérable de coûts informatiques pendant les

phases d’entrainement. Ceci est probablement dû à une sélection de descripteurs in-

adaptée pour décrire le lumen. Finalement, des efforts supplémentaires doivent être

faits pour définir un cadre d’évaluation complet qui permettrait la comparaison des

méthodes et l’analyse des artères coronaires.



Acknowledgements

Firstly, I would like to thank my supervisors Marcela Hernández and Maciej Orkisz for

their support, their patience, for all their advices, and specially for their continuous

confidence in my work throughout these years of labor. I would also like to say a big

“Thank you!” to Maria Alejandra Zuluaga for all her support, she makes part of the

persons that I admire the most, including also Marcela and Maciej.
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Résumé iii

Acknowledgements v

List of Figures viii

1 Introduction 1

1.1 Medical Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Arterial Anatomy and Vascular Diseases . . . . . . . . . . . . . . . 2

1.1.2 Arteriography Vs. Computed Tomography Angiography . . . . . 3

1.2 Main Challenges and Workflow . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Institutional Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 7

2.1 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Coronary Lumen Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Materials and Methods 10

3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Segmentation Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Lumen Radius Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Axis Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4.1 Tek-Dijkstra Extraction Method . . . . . . . . . . . . . . . . . . . 12

3.4.2 Axis Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5 Coronary Lumen Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5.1 Classical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5.1.1 Local Region Growing . . . . . . . . . . . . . . . . . . . . 14

3.5.1.2 Variational Region Growing . . . . . . . . . . . . . . . . . 15

3.5.1.3 Active contours . . . . . . . . . . . . . . . . . . . . . . . 15

3.5.2 Classification Approaches . . . . . . . . . . . . . . . . . . . . . . . 16

3.5.2.1 Geometric and Image Features . . . . . . . . . . . . . . . 17

3.5.2.2 K-means Clustering . . . . . . . . . . . . . . . . . . . . . 17

3.5.2.3 Support Vector Machines . . . . . . . . . . . . . . . . . . 17

vi



Contents vii

4 Results 19

4.1 Axis Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Lumen Radius Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Classical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 Classification Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Conclusions 27

Bibliography 29



List of Figures

1.1 Coronary arteries anatomy and diseases . . . . . . . . . . . . . . . . . . . 2

1.2 Visualization techniques for coronary arteries analysis. . . . . . . . . . . . 3

1.3 Workflow for coronary arteries analysis. . . . . . . . . . . . . . . . . . . . 5

3.1 Reference lumen segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Non-centered reference axis . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Recentering results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Radius Vs Distance from ostium . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Local Region Growing results . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Frangi and Sato vesselness response . . . . . . . . . . . . . . . . . . . . . . 22

4.5 VRG result in proximal region . . . . . . . . . . . . . . . . . . . . . . . . 23

4.6 VRG result in RCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.7 Good result using active contour method . . . . . . . . . . . . . . . . . . . 24

4.8 More segmentation results using active contours . . . . . . . . . . . . . . . 24

4.9 K-means clustering compared to thresholding . . . . . . . . . . . . . . . . 25

4.10 SVM segmentation result . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

viii



Chapter 1

Introduction

This document presents some contributions in two active research topics that helps to

understand and quantify cardiovascular diseases (CVD): artery lumen segmentation and

plaque detection. This study was mainly focused in coronary arteries due to the social,

medical, and academic interest around the world in this subject due to a very high

morbidity and mortality related to the coronary heart disease.

The following subsections introduce the relevant medical context about arteries and their

illnesses, the image acquisition techniques used for diagnosis, and the main challenges

to extract relevant data. In Chapter 2, a revision of the most recent methods in these

topics is presented. Chapter 3 and 4 summarize the methods used and their results.

Finally, the conclusions of this work are collected in Chapter 5.

1.1 Medical Context

Cardiovascular diseases remain as the leading cause of death in the world. The World

Health Organization (WHO) classifies them as the highest health problem with an alarm-

ing level (39%) of deaths (17 millions in 2008) caused by non-communicable diseases

among people under age of 70, followed by respiratory and digestive diseases (30%),

cancers (27%), and others (World Health Organization, 2011). The most common rea-

son of heart attacks and cerebrovascular problems is the blockage of the main arteries

caused by the development of the atherosclerotic plaque, which begins by an accumu-

lation of fatty materials in the inner arterial wall layer, reducing the blood flow to

myocardium or to the brain.

1



Introduction 2

In order to have a reliable and efficient diagnosis, new imaging techniques have been

developed to help radiologists and physicians in early detection and treatment monitor-

ing of CVDs. Nevertheless, these tasks can be tedious, time-consuming and error-prone,

even for experienced specialists, requiring the use of robust methods to extract the most

important information about diseases and anatomical characteristics. Recent studies

have demonstrated that the use of advanced vessel analysis software improves the as-

sessment of vascular diseases and reduces the inter-observer variability (Di Carli and

Hachamovitch, 2007, Biermann et al., 2012).

1.1.1 Arterial Anatomy and Vascular Diseases

Artery and vein wall has a layer structure composed by the tunica adventitia (outermost

layer), the tunica media and the tunica intima (innermost layer). The interior of the

vessel enclosed by the tunica intima is called the vessel lumen.

Coronary arteries supply the cardiac muscle (myocardium) with oxygenated blood. Two

main coronary trees cover the left and right part of this muscle and they start at two

locations called ostia (Figure 1.1). The right coronary tree has a principal branch which

is usually referred to as the right coronary artery (RCA). On the other side, the left

coronary tree begins with a thicker branch called the left coronary artery (LCA), but not

too far it divides into the left anterior descending artery (LAD) and the left circumflex

artery (LCX). This second tree has an important influence in the correct work of the

left ventricle that is responsible for providing all the rest of the body with oxygenated

blood. The diameter of coronary arteries varies between 6 mm at ostia locations and

0.5 mm at 20 cm from the starting point.

Figure 1.1: Left, heart and main coronary arteries anatomy (source: Jefferson Uni-
versity Hospitals). Right, schematic illustration of a vascular disease from (Schaap,

2010).

http://www.jeffersonhospital.org/ Tests-and-Treatments/coronary-artery-bypass-grafting.aspx
http://www.jeffersonhospital.org/ Tests-and-Treatments/coronary-artery-bypass-grafting.aspx
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Commonly, CVDs are due to atherosclerosis characterized by the development and accu-

mulation of plaques of different materials (i.e. cholesterol, calcium, fibro-fatty deposits)

in artery walls reducing the blood flow. These plaques can be classified in three types: 1)

non-calcified plaques, having a lower density compared with the vessel lumen, 2) calcified

plaques, presenting high density scores, and 3) mixed plaques that have non-calcified

and calcified elements within a single plaque (Pundziute et al., 2007).

1.1.2 Arteriography Vs. Computed Tomography Angiography

Conventional invasive coronary angiography (arteriography) is still the standard proce-

dure to diagnose CVDs. This method consists in the insertion of a catheter in a principal

artery (usually in the leg or the forearm) until it arrives near the zone to be captured.

At this point, a contrast agent is injected into the vessel and the zone is imaged using

X-ray based techniques. The result is a projected image (angiogram) of arterial trees in

the region of interest, obtained with a high refreshment rate. Looking at these images,

physicians can detect possible diseases because of the reduction of lumen and blood

flow. However, this method is very invasive requiring a high expertise to avoid compli-

cations (damages to internal arteries, alterations in pulse, etc.), it requires a continuous

flow of radiation and contrast agent injection, and sometimes the 2D projection hides

narrowings that could be easily seen from another point of view.

Figure 1.2: Left image presents 2D slices (axial, sagital, and coronal), center image
is a volume rendering of the CTA, and right image presents CPR image with three

orthogonal planes extracted at yellow, blue, and red locations.
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Computed tomography angiography (CTA) is a non-invasive technique that consists of

3D acquisitions of the area of study, enhancing arteries by using a contrast medium.

The high resolution of modern scanners (64-slice CT scanner can achieve a resolution of

0.3× 0.3× 0.4 mm3 per voxel) permits not only to make an approximation of the lumen

volume, but also to locate and quantify soft and calcified plaques. Calcified lesions can be

spotted as small, bright regions while soft plaques are usually lesions with lower intensity

values than the artery lumen. The most common methods to study and visualize these

images are multi-planar reformation (MPR), curved planar reformation (CPR), and 3D

rendering techniques such as volume rendering or maximum intensity projections. Both

MPR and CPR correspond to a set of 2D slices extracted from the original image: sagital,

coronal, and axial views in the case of MPR, and a set of continuous slices, orthogonal

to the axis tangent at each point, in the case of CPR (Figure 1.2 1). A more detailed

revision about these techniques, their advantages and disadvantages can be found in

(Wang, 2011).

Even if these new technologies improve the quality of the diagnosis and reduce the risks of

invasive procedures, the amount of radiation used to obtain these images is considerably

higher compared to the conventional methods. Moreover, the elevated quantity of data

to evaluate due to 3D captures leads to other on-going challenges to detect clinically

relevant problems.

1.2 Main Challenges and Workflow

Despite the possibility to improve the study of arteries thanks to high 3D resolution

obtained by CTA, new difficulties appear from the image processing point of view. The

following list proposed by Lesage (Lesage, 2009) summarizes the main problems in this

research area:

• Size of data and resolution: CTA images typically reach sizes of 512 × 512 × 512

voxels. In the case of coronaries, the radius varies between 1 to 10 voxels.

• Acquisition issues: noise, partial volume effect, and artifacts influence the results.

• Arteries complexity and variability: location, curvatures, sizes, and geometries are

different in each patient.

• Pathologies and altering objects: presence of plaques, stents and bypasses affect

the geometry and appearance.

1This visualization results make part of the creaCoro project (http://www.creatis.insa-
lyon.fr/site/en/CreaCoro).

http://www.creatis.insa-lyon.fr/site/en/CreaCoro
http://www.creatis.insa-lyon.fr/site/en/CreaCoro
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• Surrounding structures: in the case of coronary trees, vein networks and heart

chambers can be mistaken for arteries because of their similar appearance or shape.

Figure 1.3: Workflow for coronary arteries analysis.

Considering these issues, the analysis of arteries and their pathologies is usually pursued

by following a workflow that begins with the localization of some starting seed (generally

at ostia locations) in order to initialize an axis extraction algorithm to identify the path

of the main arteries. Additionally, the lumen segmentation can also be a result of this

step or, depending on the approach used, it can give a first approach to the volume

of interest to be processed. After these first steps, both lesion detection and stenosis

quantification can be achieved in order to present specific and objective data about

diseases to physicians (Figure 1.3).

1.3 Institutional Context

This project is involved in a scientific collaboration between CREATIS (Lyon, France)

research laboratory and two universities in Bogota, Colombia: Universidad de los Andes

and Universidad Javeriana. The three teams work together in a main project focused on

the modeling of the coronary vascular tree in CTA + t images for lesions detection and

stenosis quantification. This project is partly supported by the following institutions:

Comité ECOS Nord (C11S01), Colciencias (1204-519-28996) and UniAndes Interfac-

ultades (06-2010). Additionally, this thesis is the result of a recent agreement for a
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Master’s conjoint degree between the Universidad de los Andes (Bogota, Colombia) and

Université Claude Bernard – Lyon 1 (Lyon, France).

Moreover, this study is partly motivated by the “Stenoses Detection, Quantification and

Lumen Segmentation” challenge that will be held during the 15th International Con-

ference on Medical Image Computing and Computer Assisted Intervention (MICCAI),

Nice, France, 1-6 October 2012. This challenge makes part of an initiative2 to create

standard evaluation frameworks that permit research groups to explore, test, and com-

pare their methods in standard datasets. Our group has participated and has obtained

good results in the challenges held in 2008 for the coronary artery centerline extraction

and the one in 2009 for the carotid lumen segmentation and lesions grading. Results

of both challenges were already published and they are available online (Hameeteman

et al., 2011, Schaap et al., 2009).

2Challenges objectives, rules, and results can be visited in http://www.grand-challenge.org.

http://www.grand-challenge.org


Chapter 2

Related Work

2.1 General Overview

In image processing field and computer vision, segmentation consists in partitioning an

image by means of the differences between an object of interest and the background. It

is still considered a challenging task that depends on the image properties and its spe-

cific context. Vessel segmentation is mainly composed by the extraction of the vascular

lumen which conserves a tubular shape (linear in 2D images) in normal cases and its an

important step for posterior visualization techniques and pathology quantification. How-

ever, numerous complications appear caused by changes in vessels sizes and curvatures,

inter- and intra-patient variability, proximity to similar surrounding structures, motion

and acquisition artifacts, and presence of pathologies. Due to these difficulties, simple

segmentation methods does not obtain an explicit and generic solution that covers the

most part of the cases.

Many recent advanced studies has focused on this problematic, specially in coronary

arteries (Schaap, 2010, Wang, 2011, Lesage, 2009, Zuluaga, 2011). Additionally, im-

age processing challenges and reviews try to establish a general framework to compare

methods and results obtained by different research groups. While some surveys pre-

sented classifications focusing on the algorithmic details, which do not facilitate the

comparisons (Kirbas and Quek, 2004), a more recent survey in 3D vessel segmenta-

tion (Lesage et al., 2009) proposed a synthetic categorization based on three different

criteria: 1) a priori knowledge about vessel geometry and appearance models, 2) defi-

nition and use of features that describe vascular lumen, and 3) schemes that have been

proposed to perform lumen segmentation. The latter category can be roughly separated

in two groups: 3a)algorithms requiring a previously extracted centerline (axis) and 3b)

methods running in one pass (Schaap et al., 2011).

7
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This chapter will be mainly focused on the most recent works in coronaries, specially

the ones falling in the 3a group. Various axis extraction methods have been evaluated

in (Metz et al., 2008) and demonstrated a high accuracy compared to reference axes. For

this reason, even if it is still a hard task in terms of image processing, the results confirm

the current feasibility of the assumption and the availability of a correct centerline for

posterior processing tasks. In most of the cases, centerlines are also needed for posterior

processing task such as stenosis detection and quantification.

2.2 Preprocessing

Some techniques require initial preprocessing steps not only for lumen segmentation, but

also for axis extraction and stenosis detection. In order to enhance vessels and to have

an starting point to segment, some functions have been proposed based on geometrical

a priori and statistical regression methods.

One of the most common methods to enhance vessels was developed by Frangi et al.

(1998) who proposed a multiscale method using a vesselness function based on Hes-

sian matrix eigenanalysis. Despite of the good results of this method detecting tubular

structures, it has elevated computational costs and presents problems in bifurcations

and pathologies. Zhou et al. (2012) proposed changes in the Hessian-based vesselness

function to obtain more accurate results and Zheng et al. (2011) defined a new learning-

based vesselness function with better detection rates and faster computation. Other work

preprocessed the image according to a prior knowledge of tissue densities expressed in

Hounsfield Units (HU), e.g.: to focus on the arterial lumen, Lesage (2009) proposed to

discard the densities beyond the range -24 HU to 576 HU, thus keeping voxels with a

higher intensity than lung CT numbers and lower than calcifications. This is a simple

method that can be useful to avoid the inclusion of calcified plaques, but can have differ-

ent results depending on the acquisition, e.g.: make holes in lumen, or eliminate distal

parts of the artery. A more image-dependent calculation of thresholding parameters is

presented in (Tessmann et al., 2011) with the analysis of the centerline histogram.

Furthermore, some studies extend preprocessing to obtain an initial rough estimation of

the vessel 3D geometry. This process helps to define a limited region to run more sophis-

ticated algorithms reducing false positives and computational time. Carrillo et al. (2007)

and Zhou et al. (2012) used spheres centered in the already extracted axis points with

radii deduced from an estimate of the artery size. Linear (Xu et al., 2012) and non-linear

approaches (Schaap et al., 2011, Kelm et al., 2011) have been also followed to approxi-

mate vessel diameters at a certain distance from the ostia. Another approach (Shahzad
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et al., 2010) created a probability density field of coronary arteries based on registration

of annotated CTA images.

2.3 Coronary Lumen Segmentation

Various solutions to vessel segmentation have been tested and reported in literature, from

the most basic image processing techniques to the most advanced algorithms. One of the

most classical approaches is region growing, which performs an iterative segmentation

based on an inclusion criterion between some seed points (manually or automatically

defined) and their vicinity. If neighboring voxels fulfill this condition, they are added as

new seed points to continue the process. Bouraoui et al. (2008) detected ostia location

to use them as seed points in a region-growing algorithm with a gray-level hit-or-miss

transform as inclusion criteria. Renard and Yang (2008) and Tek et al. (2011) used

points of a previously extracted axis as seed points to calculate thresholds and thus

define the growing condition. The main drawback of region-growing is the difficulty to

define an efficient stopping criterion and avoid leakages near to similar structures. Metz

et al. (2007) proposed an additional restriction in order to avoid leakages by detecting

a sudden large increase in the segmented volume.

Other restrictions can be set based on geometrical information and the adaptivity of the

segmented mask into the vessel contours. Nain et al. (2004) exposed some preliminary

results in CTA images of a segmentation method using an implicit deformable model

with a soft shape prior, but no quantitative results were presented.

According to authors’ validation tests and to the best of our knowledge, the two most

accurate coronary segmentation methods respectively use a coarse-to-fine method with

a robust combination of linear and non-linear regressions (Schaap et al., 2011), and a

minimum average-cost path model that extracts vessel axis and estimates a vessel radius

for each axis point (Zhu and Chung, 2011). However, the lack of standard validation

data for coronary arteries segmentation increases the difficulty to compare the methods.

Most of this work exposed qualitative results and some comparisons with the reference

centerlines of MICCAI Challenge 2008, but just a few give information about overlap

measures (e.g. Dice score) of segmented masks. The objective of the MICCAI Challenge

2012 is to bridge this gap.



Chapter 3

Materials and Methods

The methods of this study follow the conservative workflow that was presented in the

introductory chapter. Main contributions were focused on the lumen segmentation step,

but that required some additional work in the axis extraction methods and a review of the

problematic in the subsequent lesion detection. In this chapter, I begin by presenting

the materials used in the project, i.e. CTA images and reference data provided by

the challenge organizers. Then, I continue talking about the axis extraction method

developed in our group and an algorithm to center axes in the lumen. This first stage

gives a base to test the segmentation methods that will be presented in the sequel of

this chapter, and helps other developments to detect lesions that are being implemented

in the group.

3.1 Materials

Datasets from MICCAI 2008 and 2012 challenges were used in this study. The first

contest provided 32 CTA images from different machine vendors where eight of them

are for training purposes and the rest for testing or validation steps. Training data

has the reference centerlines of four main coronary arteries (RCA, LAD, LCX, and a

left diagonal branch) and an estimated radius at each axis point. Figure 3.1 shows a

3D rendering of a mask constructed with information of estimated radius. The second

challenge provides 48 datasets (18 for training) with a reference centerline extracted

with three methods presented in MICCAI 2008 challenge. Complete annotations about

plaques (plaque type, location and percentage of occlusion) are also given for each image.

Voxel resolution in both sets was on average close to 0.3 × 0.3 × 0.4 mm3 and image

dimensions of 512 x 512 x 400 voxels.

10
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Figure 3.1: Surface rendering of a reference LCA tree.

3.2 Segmentation Assessment

The performance of a segmentation method is usually presented in terms to the similarity

between the reference and the final result. Dice score makes this comparison based on

the quantity of true positives (TP), true negatives (TN), false positives (FP), and false

negatives (FN). According to these measures, Dice is defined as:

Dice =
2V P

(V P + FP ) + (V P + FN)
(3.1)

Other measures are usually used in order to calculate the percentage of well-classified

points (accuracy), or to detect the capacity to obtain VP (sensitivity), or VN (speci-

ficity). These three methods are defined as follows:

Accuracy =
V P + V N

(V P + FP ) + (V N + FN)
(3.2)

Sensitivity =
V P

V P + FN
(3.3)

Specificity =
V N

V N + FP
(3.4)

Due to the difficulty to obtain a general framework to valid the methods in datasets

from both challenges, these metrics were used in cases were a segmentation reference

existed. However, a qualitative validation studying orthogonal planes to the centerline

was used in the most of the cases, specially in methods with a high apparent accuracy.
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3.3 Lumen Radius Estimation

Medical data confirms that coronary arteries radius in healthy cases fall in a range

between 3 mm to 0.5 mm. Nevertheless, intra- and inter-patient shape variability and

the presence of pathologies make difficult to estimate a generic mathematical function

describing vessel at each point. For this reason, I analyzed the training data to evaluate

a possible approximation of the change of lumen according to the distance from the

ostium. Graphics of four datasets are shown in Section 4.2 (Fig. 4.2).

3.4 Axis Extraction

3.4.1 Tek-Dijkstra Extraction Method

Central axes are extracted using a strategy based on Dijkstra’s algorithm to compute

minimum spanning trees from graphs (Dijkstra, 1959). Such algorithm is useful in

situations where data can be modeled as a graph, and minimum cost paths contain

the solution of such problem. In the case of central axes extraction from CTA images,

the graph is constructed from the image voxels (i.e. graph nodes or vertices) and by

a medialness function associated to each image voxel. Such function should have small

values (costs) near the center of vessels and large values elsewhere. Similar strategies

have been used for quite a time in the literature, e.g.: Wink et al. (2002), Flórez Valencia

et al. (2004).

The principal challenge in the use of the Dijkstra’s algorithm resides in designing a good

medialness function. In our case, we use the function proposed in (Gülsün and Tek,

2008), where the image gradient norm is analyzed along concentric rays in order to find

the best radius that models the vessel as a cylinder.

Specifically, the algorithm we use starts with two user-given points; starting from these

points, two minimum spanning tree is computed using the medialness function described

before. The algorithm stops when both trees collide, thus extracting the central axis of

the vessel. This semi-automatic method has been implemented by one of the members

of our team. The resulting axis correctly follows the arterial pathway, but in some

cross-sections it is not very well centered within the lumen.

3.4.2 Axis Correction

The main idea of an axis extraction method is to obtain the path (in terms of world

coordinate points or voxel coordinates) that goes through the center of the lumen. This
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precondition is essentially important to calculate measures or features that can be used

to detect lesions, e.g. concentric rings (Zuluaga, 2011). However, even the reference axes

provided by the challenge organizers are not always well centered, sometimes passing

through plaques or close to the vessel wall (Figure 3.2). This is because manual tracing

of the axes in 3D is a difficult task. Moreover, some automatic methods extract samples

of the complete axis and an interpolation is performed to obtain the points in-between,

which can also cause problems such as points located out of the vessel. Therefore, I

propose a method to make a local correction of extracted centerline points, making the

assumption that these points have higher intensity values compared to soft plaques and

lower intensity than calcifications.

Figure 3.2: Examples of two non-centered slices. The green point represents the
intersection between the reference axis and the cross-sectional plane.

First, the intensity histogram of the centerline is calculated and the corresponding CPR

image is generated. Normally, intensity in vessel lumen decreases softly regarding the

distance from the ostia, hence the histogram should be a tight uni-modal distribution.

Outliers at minimum or maximum values or a bimodal distribution may be results of

a centerline that go through soft plaques (lower intensity than lumen) and/or calcified

plaques (higher intensity). Then, each orthogonal plane in the CPR image is processed

with an adaptive thresholding method using as parameters the minimum and maximum

values of the histogram. This step has as objective finding the region where the most

lumen voxels are located and correct central point by slice. According to the lumen

estimation explained in Section 3.3, leakages in lumen segmentation can be detected

because the segmented area (calculated by using the estimated radius and assuming

a circular area) exceeds the estimated area by a given factor. In that case, the lower

threshold is incremented by one, until an acceptable lumen area is achieved. After this

iterative process, the center of mass is calculated in the segmented region and it is

assigned as the new central point in the slice. The complete process is summarized in

Algorithm 1. This method could also be used to make a lumen segmentation, but the

final result tends to underestimate the lumen by excluding voxels near the walls, so it

will be not used for this purpose.
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Algorithm 1 Centerline correction

Require: CPR image, axis points
hist← histogram(axis)
minThreshold← min(hist)
maxThreshold← max(hist)
for i = 0→ number of planes do

estimatedArea← estimateArea(i)
segmentedArea← thresholding(minThreshold,maxThreshold)
while segmentedArea > estimatedArea do

minThreshold← minThreshold+ 1
segmentedArea← thresholding(minThreshold,maxThreshold)

end while
newCenter(i)← computeCenterOfMass(segmentedArea)

end for

3.5 Coronary Lumen Segmentation

This section corresponds to the focus of my project. I have investigated both a “classical”

approach using variants of region growing and active contour methods, and an approach

based on classification and machine learning techniques.

3.5.1 Classical Approach

3.5.1.1 Local Region Growing

Region growing algorithms assume that the extracted region fulfills a criterion in all

its points. However, establishing a global criterion in coronaries is difficult due to

the changes in intensity and sizes, and the result can finish with big leakages or non-

segmented sections. For this reason, our proposal bases on a local region growing ap-

proach limited by spheres and local statistic scores in enclosed axis points.

Using twice the value of the estimated radius in each centerline point, a sphere that

locally encloses the artery is analysed. For this purpose, intensity average and standard

deviation are calculated in artery centerline voxels inside the sphere. Some studies

confirm that coronary lumen profiles in healthy cases follows a Gaussian-like distribution

with higher intensities along the centerline and Gaussian attenuation toward the edges

(Lesage et al., 2009). In an ideal Gaussian case, twice the value of the standard deviation

around the average covers the 95% of whole distribution area. This factor was empirically

adjusted using 1, 2, 2.5, and 3 times the standard deviation.
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3.5.1.2 Variational Region Growing

Region growing methods are very frequently used due to their simplicity and possibility

to make a fast extraction of a particular zone. However, the possibility to add more

complex restrictions to achieve an optimal result is limited. Variational region growing

(VRG) overcome these problems with the inclusion of an evolution equation that drives

the segmentation to an optimal solution. Pacureanu et al. (2010) used VRG with an

energy based on Frangi’s vesselness function to detect lacuno-canalicular networks in

bones. The method proposes the following derivative of this evolution function:

∆J
(
φn+1

)
= (1− 2φn) [∆J1 (v) + ∆J2 (f, v)] (3.5)

∆J1 (v) = v
[
|v − µvin |

2 − |v − µvout |
2
]

(3.6)

∆J2 (f, v) = (1− v)
[
|f − µfin |

2 − |f − µfout |
2
]

(3.7)

where f and v are the intensity and vesselness values ( 0 ≤ v ≤ 1 ) in the image,

respectively; µfin , µfout , µvin , µvout are the average of internal and external regions

in both the original image and the vesselness measure. When a voxel is inside of a

tubular structure, vesselness values are near to 1, so Equation 3.6 will be used. This

means that information given by the vesselness measure is enough to describe a vessel.

Conversely, when voxels are in the background, intensity values will be used (Equation

3.7) to enhance the results obtained by Frangi in discontinuities and bifurcations.

We tried to use the same approach in coronaries using both Frangi’s (Frangi et al., 1998)

and Sato’s (Sato et al., 1998) vesselness measures due to the correspondence with the

shape prior. This method depends on intensity averages of lumen and non-lumen voxels.

Voxels located very far from the vessels of interest are likely to have characteristics that

strongly differ from non-lumen voxels located near the vessels. For this reason, these

tests were performed in VOIs defined by the union of the spheres defined in the previous

subsection, to reduce the non-lumen region.

3.5.1.3 Active contours

Active contours is a powerful technique to delineate an object after the minimization of

an energy associated with the contour. It does not correspond exactly to a segmentation
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method, but it gives the contour(s) of the object to be segmented, thus a post-processing

step is usually required. The accuracy and performance of active contours depend on the

initialization curve, the selection of the energy function, and the optimization method

to achieve a global minimum. The energy function is generally described as the sum of

an internal energy associated with the elasticity and curvature of the contour, and an

external energy that includes restrictions that can be extracted from the specific problem

or the image properties, e.g. high gradients. Nonetheless, more advanced conditions can

be used to achieve a good detection.

E =

∮
C(s)

1

1 + ‖OI‖
ds (3.8)

E =

∫
x∈Ω

(I − µ)2dA+

∫
x∈Ω̄

(I − µ̄)2dA (3.9)

Lankton et al. (2007) proposed a hybrid functional energy that makes possible to in-

tegrate gradient constraints within a local optimum region. Geodesic active contours

by Caselles et al. (1997) are used and it is classically presented as in the Equation 3.8.

Similarly, region-based approaches are usually based in the minimization of the energy

function defined by Chan and Vese (2001) in Equation 3.9. Taking both ideas, the

suggested hybrid function is:

∮
C(s)

∫
x∈Ω

(I(x, s)− µl(s))2 +

∫
x∈Ω̄

(I(x, s)− µ̄l(s))2ds, (3.10)

where I corresponds to the intensity in the original image, and µl(s), µ̄l(s) are the

intensity average in the internal region Ω and external region Ω̄, respectively.

This method starts by a simple curve, then it deforms contour based on statistics of

interior and exterior regions until a convergence criterion is achieved. For our purpose,

the method was tested in cross-sectional planes and the initial curves were small enough

circles inside the lumen.

3.5.2 Classification Approaches

The following two methods were tested directly in the 3D space of the image. The

main purpose of both approaches is to separate lumen voxels in one class, and non-

lumen voxels in another one based on 3D image and geometrical features. In order to

evaluate the performance of these methods, some statistical measures were used, e.g.

Dice similarity score, accuracy, sensitivity, and specificity.
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3.5.2.1 Geometric and Image Features

Machine learning approach avoids explicit modeling of the objects to be detected/seg-

mented and aims at supervised or unsupervised training based on a set of features that

are expected to characterize these objects and distinguish them from the remaining

parts of the image. In order to learn the concept of arterial lumen, we selected a set of

image and geometric features previously used in various vessel enhancement and vessel

segmentation methods. This set was composed by intensity, gradient magnitude, and

eigenvalues of the Hessian matrix, all of them calculated at eleven scales (using recursive

Gaussian derivative filters) that correspond to the range of coronary radius. We start

by the hypothesis that intensity is considerably elevated in lumen voxels, compared to

their surroundings, and the gradient magnitude at the interior of the lumen should be

low. Additionally, Hessian eigenvalues include information about shape according to the

conditions expressed in table 3.1, where |λ1| ≤ |λ2| ≤ |λ3| (Frangi et al., 1998).

Table 3.1: Hessian eigenvalues values representing different structures.

Hessian eigenvalues Structures

λ3 ≈ λ2 � λ1 ≈ 0 tubular: vessels, bronchi
λ3 ≈ λ2 ≈ λ1 � 0 bright blobs
λ3 � λ2 ≈ λ1 ≈ 0 flat: bone boundaries, membranes

3.5.2.2 K-means Clustering

K-means clustering is one of the simplest and most commonly used semi-supervised

algorithms. It starts with a initial partition defined by the centroids of each cluster and

reassigns clusters based on the similarity between each data sample and the centers until

a convergence criterion is met. The most popular metric to compute similarity is the

Euclidean distance. In this case, K-means (k=2) is used to detect classes of lumen and

non-lumen voxels in each sphere, in the same way of the local region growing method

sphere method. The features used for this purpose were: minimum distance from a voxel

to the centerline, Hessian eigenvalues, and intensity at different scales.

3.5.2.3 Support Vector Machines

In this section, we explore a different approach with an automatic segmentation defined

as a problem of supervised classification using Support Vector Machines (SVM). SVM

is commonly used in classification and regression tasks and it is well known due to its

capacities to achieve good generalization and maintaining the maximum possible margin
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between classes. This is made by the use of a kernel function that projects data into

high-dimensional spaces where the class separability is possible.

Training and validation data for lumen segmentation was obtained from MICCAI 2008

challenge. The measures were obtained at each voxel in a restricted VOI defined by

twice the radius given by organizers. For training data we assure that the machine has

enough information about lumen and non-lumen classes to learn both concepts and their

possible variations. According to recommendations given by Chang and Lin (2011), we

use a radial basis function as kernel and optimization is achieved by a grid-search on the

kernel parameter γ and the regularization term C.
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Results

4.1 Axis Correction

At the beginning of this work, axis given by organizers were used to study the given

coronary arteries. However, CPR images created with those axes showed that some slices

were not centered in the vessel lumen, as in the example displayed before in Figure 3.2.

Due to the importance of this precondition in the following methods, our axis extraction

technique was used and it achieved a better centering closer to the expected center of

the lumen. Nevertheless, the problem persisted in some of the cases and recentering was

required.

Figure 4.1: The four slices in the left present the comparison between axis before
correction (A, C) and after correction (B, D). Images on the right present wrong cor-
rection in bifurcations (E,F), calcified plaques (G), and the result in a distal zone with

a little bifurcation (H).

Recentering showed good results in healthy slices, in both proximal and distal zones

(Figure 4.1). However, the current condition to define the new center as the centroid of
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the lumen voxels often fails at bifurcations. As long as the branches are connected in a

cross-sectional image and the total region size is under the maximum area threshold, the

centroid tends to fall in-between the branches instead of being centered within one of

them. The same situation occurs when weakly contrasted calcified plaques are included

in the segmentation. Generally, these specific problems tend to set centers in plaques or

outside the artery.

4.2 Lumen Radius Estimation

Training data gives some information about the lumen radius variation according to

the distance from the ostia. Plotting main arteries by dataset shows high variations

of radius due to possible plaques that reduce artery lumen (Figure 4.2). Nevertheless,

in the most of the cases a soft monotonous decreasing behavior applies and could be

approximated by a constant decreasing factor. For this reason, the average of the linear

regressions describes the general behavior of the coronary arteries. In the case presented,

the regression was expressed by the equation: y = 0.01x+2.49 in mm. Additionally, the

methods evaluated require generally an estimation that encloses the artery. Using the

result of this study, it is sufficient to use a linear approximation of radius values with

the prior knowledge that coronary arteries won’t be thicker than 4 mm in the ostia and

1 mm at 200 mm from the ostia. This was very recently confirmed by Xu et al. (2012)

who made the same linear approximation for the diameter estimation.

4.3 Classical Approaches

All the tested methods have shown some advantages, as well as problems specially in

distal zones and lesion locations. Even if all these techniques achieve a partial segmen-

tation of lumen, not all of them are suitable or exploitable due to elevated computation

times and dependence on many parameters.

Results for local adaptive region growing technique show good results for healthy cases.

Fifteen arteries were evaluated using this method (using the mean± 3 times the standard

deviation as stopping criterion) and the results can be divided into three categories:

acceptable (9), poor (4), and bad (2) segmentation. Examples of these results are

presented in Figure 4.3.

The problems appear specially in distal zones and regions with lesions. In most of the

cases this problem is caused by axis not centered in the vessel lumen causing the inclusion

of voxels with very different intensity values in each sphere, thus the standard deviation
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Figure 4.2: Variation of radius (mm) according to the distance (mm) in RCA over 4
datasets of MICCAI 2008 challenge.

Figure 4.3: Left, an acceptable segmented artery that includes also detected bifurca-
tions. Center, a poor result with local leakages enclosing plaques. Right, a bad result

over all the artery, mainly caused by non-centered axis.
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is considerably high reducing lower threshold (soft plaques included) and increasing the

higher threshold in the region-growing inclusion criteria. This happens also in distal

artery zone where lumen intensities are similar to background intensities. Additional

restrictions to avoid leakages as the one used in axis correction could improve results in

wrong cases.

Figure 4.4: Left, Frangi response. Right, Sato response.

VRG adds geometrical constraints to achieve a good segmentation using a seed that in

this case is located in an ostium. However, as a region-based approach, it depends on

the correct definition of the external and internal areas to calculate statistical values.

To evaluate the accuracy in regions, the method was tested in proximal and distal

artery zones using Frangi’s and Sato’s vesselness functions. The constant parameters

that require both functions were set as previous authors recommendations (for Frangi,

a = 0.5, b = 0.5, and c = 400; for Sato, a = 0.5, b = 0.5). A depiction of both vesselness

values in a proximal zone of the artery is presented in Figure 4.4.

A recurrent problem in this and the following tests when comparing with reference data

of the challenge is the inclusion of some lumen voxels, such as in bifurcations, that

don’t exist in the validation mask. These cases should be considered as true positives

because they are inside the lumen, but similarity and statistical measures will always

include them as errors in the segmentation. A clear example of this situation is presented

in the proximal region where the Dice value of VRG using Sato measure was 79.98%.

Nevertheless, the 3D rendering of the result (Figure 4.5) confirms that the score could

be higher if the bifurcation had been included as lumen.

Despite the good results of the proximal segmentation, distal regions presented a different

behavior, even changing the vesselness function. After these results, the method was

tested in a complete artery using two different VOIs to limit the quantity of non-lumen

voxels: 1) a VOI produced with twice the reference radius, 2) a cylinder with a constant

radius big enough (6.36mm radius) to enclose the artery at all the points (Figure 4.6).

The tests show that the method is not well adjusted for this segmentation task. In this
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Figure 4.5: Left, reference mask. Center, VRG result using Sato vesselness. Right,
XOR between both binary masks. Reference mask doesn’t include lumen voxels that

may appear in segmentation methods.

case (that is considered as a simple one), processing take a considerable amount of time

and it doesn’t achieve better results than the ones obtained by a simple thresholding.

Figure 4.6: A, B and C respectively correspond to the reference mask, a VOI with
twice the radius of the reference, and a VOI with a large constant radius. Results using
VRG with Frangi’s vesselness within B and C are presented in D and E respectively.

Finally, one of the best segmentation results was obtained with the active contours

approach that use a region- and gradient-based energy function. This method was

tested in the 2D planes of the CPR image, so the lumen detection was based on the

detection of high contrasts between lumen and background or plaques. The algorithm

implementation in Matlab was obtained from the website of the authors (Lankton et al.,

2007). It receives as parameters the initial contour (a little region in the center of the

lumen), a smoothness parameter (0.2), and the maximum number of iterations (120),
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all of them were set empirically. A good result in a calcified orthogonal slice is presented

in Figure 4.7.

Figure 4.7: From left to right, orthogonal slice from the original image, initial contour,
deformed contour after 100 iterations, and final segmentation.

Despite its good qualitative results over all the artery (no leakages due to curvature

restrictions), slices with soft plaques or smooth calcified plaques that have not a good

contrast with lumen, are missed or finish in a subsegment. A few cases showed a sub-

segmented result near to calcifications, probably caused by a local minimum when the

contour touches the calcification and the vessel wall. Some additional examples are pre-

sented in Figure 4.8. Also, some complications were seen in considerably big bifurcations

where the active contour didn’t increase its radius but it collapsed into the central point.

Figure 4.8: All the slices have its correspondent segmentation overlaid in orange.
A and B are slices in calcified plaques, the first one presents a sub-segmentation, the
second is correct. C avoids a soft plaque. D includes a little calcification with smooth

contrast. E and F are the results obtained in distal slices.

4.4 Classification Approaches

The last two methods follow a different approach that tries to describe two classes:

lumen and non-lumen. The features described in the Methods section were used for this

purpose. In the case of k-means clustering (k = 2), a subset of those features was used

according to an evaluation made by visualizing the sparseness of data created by the

selected features. The conclusions of that revision showed that the two highest Hessian

eigenvalues give more information about vessel lumen, compared to the values assigned

to the background. The set made by these features and the intensity calculated at 3

scales (1.5, 2.0 and 3.0 mm) expanded by the additional feature of Euclidean distance

from a voxel to the axis centerline, were the base of the k-means classification within

spheres.
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Figure 4.9: Left, reference segmentation. Center, k-means clustering result. Green
areas correspond to correct results that do not appear in reference. Red means errors
that increase false positives rate. No color, means a good segmentation but some

generally overpass the lumen. Right, thresholding result.

As it was presented in the classical approaches, statistical measures can have an er-

roneous response because reference masks do not include all the lumen information.

K-means clustering presented a Dice score of 66.48% that is apparently slightly better

than a thresholding technique (65.20%). Nevertheless, looking in detail at the results of

the segmentation (Figure 4.9), lumen portions that do not appear in reference mask were

marked as errors. The problem of this method is the initialization of cluster centroids,

specially for non-lumen class. This centroid was calculated at the border of the sphere

assuming that non-lumen voxels were present, but that drives to the second problem:

the number of classes in the sphere could be more than two, specially in plaque locations

and near the lungs in the distal part of the arteries.

Table 4.1: Variation of parameters C and γ for SVM training.

Parameter Values

C 2−3, 2−1, 23, 25, 27

γ 2−10, 2−7, 2−5, 2−3, 2−1

The second test with classification techniques was using SVM following a supervised

approach. Reference data from different coronary arteries was used to extract lumen

training and testing data, and some manually selected regions in non-lumen tissues

conformed data for the non-lumen class. Some tests were previously conducted in carotid

arteries taking 650.000 samples to train and 1’500.000 to validate and test the method.

The grid-search for SVM optimum parameters was performed using the training dataset

and the values in Table 4.1. Best performance was found with γ = 2−5 and C = 2−3.

In the coronary arteries study, a considerable quantity of lumen data (96.987 samples)

was randomly selected from the reference masks of the 3 main arteries (RCA, LAD,

LCX). Conversely, non-lumen data (596.610 samples) was extracted from the region

between reference vessel surface and the cylindrical VOI wall. However, samples with

less than 5 voxels of distance from the vessel were removed to avoid confusions between

lumen and non-lumen classes. This precondition is also used in (Zheng et al., 2011).



Conclusions 26

Figure 4.10: Left, axial slices in the original image. Center, labeled test data (non-
lumen voxels in red, lumen in green). Right, segmentation using SVM produces many

false positives (in red).

The obtained partial results were very poor and discouraging, compared to the other

techniques. The best Dice similarity score was close to 45%. Sensitivity and specificity

scores were higher (over 60%) because of the unbalanced quantity of data for each class.

This is a big problem in this segmentation approach because the quantity of lumen data

is considerably lower compared to the high number of different non-lumen voxels. Figure

4.10 presents one example of a SVM segmentation using the best selected parameters.

Generally, the technique reduces the number of non-lumen voxels, but many false positive

samples remain in the final segmentation.
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Conclusions

This work exposed six methods to achieve the coronary lumen segmentation in CTA

images. Additionally, it presented a method for centerline extraction and an algorithm

to recenter these axes. These two steps are considered essential to perform a correct

analysis in coronary arteries and for an accurate lesion detection.

According to these needs, our study showed that existing axis extraction methods and

challenge reference data can have erroneous axis points, specially when the centerline

goes through plaques or passes very close to the vessel wall. The recentering process

helped to correct some of these problems, but it was sensitive to bifurcations and cal-

cified plaques. Nevertheless, this information could be used for an initial detection of

these cases that affect segmentation (e.g. selecting seeds for region-growing and cluster-

ing schemes), and lesion detection results (e.g. calculation of 2D concentric features).

Additionally, a centerline located in the arterial lumen helps to understand the variation

of lumen intensity due to attenuation of the contrast-medium. Prior knowledge about lu-

men intensity should be helpful to adjust parameters for each patient, reducing problems

due to inter-patient variability. For example, it was expected that lumen intensities fall

when increasing the distance from the ostium, but some cases were found where lumen

intensity increased in the middle of the artery, even with higher values than calcified

plaques. A similar situation happens with lumen radius that can have sudden increase

in distal regions. All these particularities confirm that the explicit modeling of coronary

arteries and intensity profiles is a very challenging task, requiring the combination of

different methods to include most of the possible variations of the problem.

All the six tested segmentation methods had some advantages and disadvantages. In

our tests, region growing, active contours, and clustering techniques had good results

in healthy vessels. Additionally, the possibility to introduce shape restrictions (such

as in VRG or active contours) should increase accuracy, reduce leakages, and avoid

27
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problems in bifurcations. However, including lesions in segmented regions is a common

problem that need more information about context and continuity in the segmentation.

Additionally, the solutions proposed in order to learn and describe an explicit model

obtained poor results, specially for SVM. This can be possibly explained by three main

problems: redundancy in the reference data caused by bad reference segmentations, the

features selected to describe a vessel were not the correct, and selected lumen and non-

lumen data was not enough to cover all the cases in a voxel-by-voxel approach. However,

further tests are needed in order to find a correct feature set to describe the problem

and define a complete training and validation framework to avoid inconsistencies.

Moreover, standard validation data for coronary vessel analysis is required in order to

make an objective comparison of methods. Some synthetic frameworks would be useful,

however it is difficult to cover all the healthy and non-healthy cases, besides the difficulty

of modeling geometrical and anatomical conditions (heart cavities, myocardium, lungs,

vessel trees). Nevertheless, an integrated framework to work and to test methods with

the same images would be highly desirable. Generally, radiologist’s diagnosis is not

based only in the information given in the 2D orthogonal plane at a certain distance.

They also need to evaluate previous and posterior slices to understand changes in lumen

intensity and radius in a particular region. This kind of context knowledge should be

included (using automatic or interactive alternatives) in coronaries study in order to

make accurate estimations and confirm good or bad segmentations. These conditions

should be also added in learning processes, such as in classification methods. Future

work will be focused on visualization cues to help the analysis of coronary arteries and

the extraction of quantitative scores taking advantage of the best results obtained in

this experience towards the lesion detection and stenosis quantification.
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Luengo-Oroz, M. Orkisz, Ö. Smedby, M. Styner, A. Szymczak, H. Tek, C. Wang,

S. K. Warfield, Y. Zhang, S. Zambal, G. P. Krestin, and W. J. Niessen. Standardized

evaluation methodology and reference database for evaluating coronary artery cen-

terline extraction algorithms. Medical Image Analysis, 13(5):701 – 714, 2009. ISSN

1361-8415. doi: DOI:10.1016/j.media.2009.06.003.

Maria Alejandra Zuluaga. Methods for automation of vascular lesions detection in com-

puted tomography images. PhD thesis, Université Claude Bernard Lyon 1, France and
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