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Background:  
Unlike anatomical imaging where MRI encodes only tissue contrast, phase-contrast MRI 

(PC-MRI) takes advantage of the fact that moving spins accumulate a phase shift that is 
proportional to their velocity. By carefully designing velocity-encoding gradients, one can extract 
quantitative maps of blood flow throughout the cardiac cycle. The velocity encoding is tuned 
through a parameter called VENC, which sets the maximum velocity measurable without phase 
wrapping. Noise of the measured velocity is directly proportional to VENC. Consequently, use of a 
high VENC reduces sensitivity to slow flows, which become buried in noise. Conversely, use of a 
low VENC leads to velocity aliasing for fast flows. Simultaneous acquisitions using a low and a 
high VENC value (dual-VENC) enable a high dynamic range for fast flow and good sensitivity for 
slow flow. However, these acquisitions require a nearly doubled acquisition time compared to 
standard single-VENC. High data under-sampling significantly reduces acquisition time and allows 
dual and multi-VENC measurements to be performed in a time comparable to single-VENC 
measurements [[1], [2]]. 

Conventional reconstruction in PC-MRI relies on a two-step pipeline: first, complex 
images are reconstructed independently for each velocity encoding, and then the velocity maps 
are derived from the phase differences. This separation makes the method sensitive to noise and 
artifacts, since errors in the image reconstruction stage propagate into the velocity estimation. It 
also becomes increasingly challenging when trying to accelerate acquisitions, because 
undersampling introduces phase wraps and ghosting that degrade the accuracy of the velocity 
maps. 

Model-based reconstruction provides an alternative: instead of reconstructing complex 
images first and then extracting velocity, it directly estimates both the underlying anatomy and 
the velocity field from the k-space data. A forward model describes the full acquisition process, 
including coil sensitivities, Fourier encoding, undersampling, and the velocity-encoding gradients 
that introduce phase shifts proportional to velocity. The reconstruction then becomes a joint 
inverse problem, where the task is to find the anatomy and flow that best explain the acquired 
data, while allowing the introduction of additional constraints or prior knowledge. This approach 
has proven highly advantageous. By estimating velocity and anatomy simultaneously, it improves 
SNR, reduces phase errors, and suppresses artifacts such as wraps and ghosting. It also naturally 
accommodates undersampled data, enabling the use of compressed sensing, parallel imaging, 
and non-Cartesian trajectories. For example, state-of-the-art studies have shown that combining 
model-based reconstruction with radial sampling allows real-time 2D phase-contrast MRI, 
offering higher temporal resolution and more accurate flow measurements than the standard 
pipeline [3], [4]. 

Very recent deep learning approaches can also be used for comparison with these 
model-based reconstruction methods and they can be useful to improve them. The principle of 
these approaches based on autoencoders is to build a regularization term for the velocity field 
that is learned with some velocity data set. It constrains the reconstructed velocity on some 
velocity manifolds parametrized by a low dimensional latent variable [5]. 
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Objectives:  

The goal of this PhD project is to build on these advances and extend them to more 
complex but clinically relevant scenarios. The first objective is to generalize model-based 
reconstruction from 2D real-time radial acquisitions to full 3D radial sampling with velocity 
encoding in multiple directions. This will make it possible to capture volumetric flow information 
with higher spatial and temporal resolution, but also requires new reconstruction strategies to 
cope with the larger datasets and the coupling between multiple encoding directions. 

The second objective is to develop model-based reconstructions for dual- and multi-
VENC acquisitions. In conventional single-VENC imaging, there is always a compromise: a high 
VENC is needed to capture fast jets without phase wrapping, but this makes slower velocities 
difficult to detect; conversely, a low VENC improves sensitivity to slow flow but causes aliasing for 
fast velocities. Multi-VENC acquisition strategies solve this at the data level, but integrating them 
into a model-based framework allows joint exploitation of the redundancies across encodings. 
This could provide more accurate velocity estimation across the entire dynamic range and 
improve robustness to noise and artifacts.  

Overall, the project aims to advance the methodology of model-based flow MRI, bringing 
it from successful demonstrations in 2D towards robust applications in 3D and in dual-/multi-
VENC imaging.  An extensive comparison with new deep learning methods based on 
autoencoders will be also developed. This will require innovations in inverse problem 
formulation, optimization algorithms, and the incorporation of regularization strategies — 
potentially including physics-informed priors such as incompressibility or smoothness of blood 
flow. Ultimately, the vision is to make model-based reconstruction a practical and powerful tool 
for high-resolution, accelerated 4D flow MRI with clinical impact. 
 
Methodology: 

The reconstruction strategy will build on state-of-the-art model-based methods with a 
specific focus on 3D radial (free-running) acquisitions, which are implemented by the team. It is 
important to emphasize that while several recent methods incorporate physics-informed 
constraints in phase-contrast MRI, not all of them are true model-based reconstructions. In most 
physics-informed approaches, the algorithms operate on pre-reconstructed velocity fields or 
phase images, enforcing physical laws such as incompressibility or Navier–Stokes consistency to 
denoise or refine the flow. In contrast, model-based reconstruction directly formulates an inverse 
problem from the raw k-space data, jointly estimating both the complex anatomy and the 
velocity fields using a forward model of the MRI acquisition, including coil sensitivities, Fourier 
encoding, and velocity-encoding gradients. 

In this project, we aim to combine the advantages of both strategies. We will start from a 
true model-based reconstruction framework for 3D radial free-running acquisitions and extend it 
by incorporating physics-informed regularization. This allows the reconstruction to remain fully 
consistent with the MRI signal while benefiting from prior knowledge about flow, such as 
smoothness, incompressibility, or CFD-derived constraints. By embedding these priors directly 
into the joint inverse problem, the method is expected to improve robustness against 
undersampling, phase wraps, and noise, particularly for dual- and multi-VENC acquisitions. 

To extend model-based reconstruction to dual- and multi-VENC acquisitions, the 
forward model will explicitly account for the phase dependence on each velocity encoding. For 
each VENC, the MR signal is modeled as the complex anatomy multiplied by a velocity-dependent 
phase term proportional to the underlying flow. By including all VENC encodings simultaneously 
in the forward operator, the reconstruction becomes a joint inverse problem, where a single 
velocity field is estimated consistently across low and high VENC data. This formulation naturally 
handles phase wrapping: low-VENC measurements provide high sensitivity to slow flows, while 
high-VENC measurements constrain fast flows, and the physics-informed regularization ensures 
smoothness, incompressibility, or CFD-derived flow patterns are respected across all encodings. 
Solving this joint problem directly from k-space allows full exploitation of the redundancy across 
VENCs, improves robustness to noise and undersampling, and avoids errors introduced by 
traditional post-hoc unwrapping methods. 



 

 

To explore and validate these reconstruction strategies, the project will combine both 
synthetic data and real MRI acquisitions. On the simulation side, we have computational fluid 
dynamics (CFD) data generated in an idealized vascular geometry designed to produce complex 
flow patterns similar to those encountered in vivo. This dataset provides a valuable ground truth: 
from the CFD velocity fields we can synthesize realistic MRI signals and generate k-space data, 
with different levels of undersampling, noise, and encoding strategies. In this way, new 
reconstruction algorithms can be systematically tested against a known reference, providing 
quantitative benchmarks of accuracy and robustness. 

Complementing this, we also have experimental flow phantom acquisitions performed 
in a physical model with the exact same geometry as the CFD simulations. These measurements 
bridge the gap between in-silico and in-vivo experiments: they allow us to assess reconstruction 
performance on real MR acquisitions, while still providing a controlled environment where the 
geometry and flow are well characterized. 

By combining synthetic k-space from CFD with phantom MRI data, the student will have a 
unique framework to iteratively design, test, and refine reconstruction methods. This dual 
strategy ensures that methodological advances are not only validated against perfect ground 
truth, but also shown to be robust when applied to real-world MRI acquisitions — an essential 
step before translation to clinical data. 
 
Profile 
Engineering or MSc degree in physics, applied mathematics, computer science or related 
disciplines. 
Experience in image processing and programming in Python are required. 
Experience in deep learning for image processing, programming and mathematics relevant to the 
problem strongly appreciated. 
Language: English required, French optional 
 Period: 3 years 
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