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UNIVERSITÉ JEAN MONNET SAINT-ÉTIENNE

Résumé
École Doctorale 488 Sciences Ingénierie Santé

Laboratoire CREATIS

Contributions aux approches multi-atlas et d’apprentissage profond pour la segmentation
des muscles : application à l’étude longitudinale multi-paramétrique quantitative en IRM

par Hoai-Thu NGUYEN

Parmi les techniques d’imagerie, l’imagerie par résonance magnétique (IRM) est l’une des techniques
d’imagerie les plus versatiles, capable de produire des données morphologiques mais également quanti-
tatives et fonctionnelles. De par son caractère non-irradiant, elle permet en particulier les études tempo-
relles et longitudinales. L’exploitation optimale de toutes ces potentialités requiert néanmoins la construc-
tion et l’optimisation de séquences de processus automatiques de traitements et d’analyses des images.
L’étage de segmentation des images est une étape fondamentale garantissant la précision de l’exploitation
des données, en permettant la séparation des structures anatomiques en différentes régions. La produc-
tion massive des données image disponibles et la multiplication et complexité des structures anatomiques
à contourer, rend caduque une segmentation manuelle en raison de la durée requise et la démotivation
au regard de la tâche. Dès lors, il est nécessaire de mettre en place des méthodes de segmentation auto-
matique adaptées.

Ce travail de thèse s’est nourri des problématiques du projet de recherche MUST dont l’objectif a
été d’aider à comprendre l’effet de l’ultra-endurance sur l’organisme et son impact au niveau notam-
ment musculaire. L’équipe de chercheurs du laboratoire CREATIS a choisi de mener cette étude sur l’Ul-
tramarathon de Montagne longtemps considérée comme l’épreuve la plus extrême au monde : le Tor
des Géants. Cette étude a notamment utilisé une IRM mobile dotées de techniques d’imagerie avancées
pour étudier les variations longitudinales survenant lors d’un effort supra-physiologique. Afin d’étudier
l’évolution de l’inflammation et de paramètres fonctionnels musculaires au niveau des quadriceps, notre
thèse étudie et améliore les méthodes de segmentation automatique basées sur des approches super-
visées. Notre objectif est de fournir une méthode cliniquement applicable permettant de segmenter les
chefs musculaires des quadriceps aussi précisément que possible en longitudinal, et nécessitant le moins
possible de segmentations manuelles pour la phase d’apprentissage.

A cet effet, nous explorons et appliquons dans un premier temps les approches multi-atlas pour
la segmentation des quadriceps. Nos contributions permettent d’obtenir des segmentations de qualité
sur une grande partie de la base de données. Cependant, afin de disposer d’une approche plus rapide
et plus robuste, nous avons secondairement orienté nos travaux vers les approches de deep learning.
Dans ce contexte méthodologique, nos deux contributions principales sont i) la proposition d’une étape
de correction des segmentations basée sur un apprentissage machine, et ii) la proposition de stratégies
d’augmentation de données pour optimiser l’apprentissage de réseaux de type U-Net, notamment une
stratégie basée sur la ressemblance morphologique qui est évaluée grâce à une mesure originale. Cette
mesure de la morphologie s’est aussi révélée très efficace pour sélectionner les atlas pour l’approche de
segmentation multi-atlas. Enfin, nous montrons que les approches proposées se généralisent à d’autres
problématiques de segmentation musculaires en IRM et permettent aussi des études statistiques longitu-
dinales et localisées.

Notre travail met en évidence que, même si la quantité de données annotées est essentielle dans
l’apprentissage supervisé, nous devons également prêter attention à la diversité morphologique de notre
base de données, ce qui permet de réduire le temps de calcul et d’augmenter la précision ainsi que la
robustesse des méthodes de segmentation.

HTTPS://WWW.UNIV-ST-ETIENNE.FR
https://edsis.universite-lyon.fr
https://www.creatis.insa-lyon.fr/site7/en
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Abstract
École Doctorale 488 Sciences Ingénierie Santé

Laboratoire CREATIS

Contributions to multi-atlas and deep learning approaches for muscle
segmentation in multi-parametric quantitative MRI longitudinal studies

by Hoai-Thu NGUYEN

Among imaging techniques, magnetic resonance imaging (MRI) is one of the most versatile,
capable of producing not only morphological but also quantitative and functional data. Due
to its non-irradiative nature, it allows in particular temporal and longitudinal studies. The
optimal exploitation of all these potentialities nevertheless requires constructing and opti-
mizing an automatic framework for image processing and analysis. The image segmenta-
tion is a fundamental step providing the separation of anatomical structures into individual
regions. The massive production of the available image data and the multiplication and
complexity of the anatomical structures to be by-passed makes manual segmentation obso-
lete due to the time required and the lack of motivation concerning the task. It is, therefore,
necessary to implement suitable automatic segmentation methods.

This thesis work was based on the questions of the MUST research project, whose ob-
jective was to help understand the effect of ultra-endurance on the body and its impact on
the muscular level in particular. The researchers at the CREATIS laboratory chose to conduct
this study on the mountain ultra-marathon, long considered the most extreme event in the
world: the Tor des Géants. This study notably used a mobile MRI equipped with advanced
imaging techniques to study the longitudinal variations during a supra-physiological effort.
In order to study the evolution of inflammation and muscle functional parameters at the
quadriceps level, our thesis studies and improves automatic segmentation methods based
on supervised approaches. Our objective is to provide a clinically applicable method to seg-
ment the quadriceps muscle heads as precisely as possible in longitudinal and requiring as
little manual segmentation as possible for the learning phase.

With this objective, we first explore and apply multi-atlas approaches for quadriceps
segmentation. Our contributions allow us to obtain quality segmentations on a large part of
our dataset. However, in order to have a faster and more robust approach, we then oriented
our work towards deep learning approaches. In this methodological context, our two main
contributions are i) the proposal of a segmentation correction step based on machine learning
and ii) the proposal of data augmentation strategies to optimize the learning of U-Net type
networks, in particular, a strategy based on morphological resemblance evaluated thanks to
an original measurement. This morphology measurement also proved to be very efficient
for selecting atlases for the multi-atlas segmentation approach. Finally, we show that the
proposed approaches can be generalized to other muscle segmentation problems in MRI
and allow longitudinal and localized statistical studies.

Our work shows that, even if the quantity of annotated data is crucial in supervised
learning, we must also pay attention to our database’s morphological diversity, which even-
tually reduces computation time and increases the precision and robustness of the segmen-
tation methods.

HTTPS://WWW.UNIV-ST-ETIENNE.FR
https://edsis.universite-lyon.fr
https://www.creatis.insa-lyon.fr/site7/en
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This introduction is written in french as requested by the doctoral school EDSIS. It
serves as a summary of the dissertation and does not include any information that would not
be detailed later.

L’imagerie médicale permet, par l’image, l’observation des caractéristiques in-
ternes d’un corps à des fins d’analyse clinique et d’interventions médicales.

Ce domaine connaît un développement rapide qui se traduit par une amélio-
ration de la qualité des images ainsi que de la quantité des caractéristiques obser-
vées. De plus, sa démocratisation conduit à une large disponibilité des données
d’images médicales et l’observation de quasi toutes les pathologies. Cependant, il
reste primordial d’être capable d’extraire l’information utile pour l’analyse médi-
cale ciblée. Devant cet afflux de données, ces traitements permettant l’extraction se
doivent d’être les plus automatiques possibles, robustes et en accord avec les besoins
des médecins afin d’améliorer leur efficacité sur l’analyse médicale.

Dans le cadre de ce travail de thèse à CREATIS, nous contribuons à l’étude
de l’évolution fonctionnelle des muscles squelettiques. Cette étude s’appuie sur les
données issues du projet MUST qui mène une étude longitudinale sans précédent
sur l’effort supra-physiologique des athlètes de l’ultra-marathon de montagne en
utilisant notamment des techniques avancées d’imagerie par résonance magnétique
(IRM).

L’ultra-marathon connaît une popularité croissante depuis quelques années et
de nombreuses manifestations sont organisées chaque année. La course d’ultra-en-
durance en montagne sur plusieurs jours (MUM) est le format le plus intense de ce
sport. Elle met les athlètes dans de nombreuses conditions extrêmes et les pousse à
leurs limites. Cependant, les effets de ces conditions sur le corps humain restent pour
la plupart inexplorés. Les développements récents et innovants en matière d’IRM
quantitative permettent une exploration approfondie et non invasive des altérations
fonctionnelles des muscles squelettiques. Pour le projet de thèse, l’un des objectifs
est de permettre de quantifier la principale réponse inflammatoire des muscles dans
les conditions extrêmes de MUM qui, chez certains sujets, correspond étroitement
à celle observée chez les patients en unité de soins intensifs après un polytrauma-
tisme et/ou un infarctus du myocarde. Pour les muscles squelettiques, l’imagerie
des cuisses réalisées dans le cadre de MUST est parfaitement adaptée à cette étude.

Ainsi, il va falloir traiter automatiquement ces IRM de jambes afin d’extraire
des caractéristiques de l’image permettant d’étudier les réponses inflammatoires de
chaque chef musculaire dans le temps. Parmi les traitements d’images à appliquer,
celui qui est le plus critique ici est la segmentation d’images. Il s’agit de réaliser la
délimitation de chaque chef musculaire dans les images IRM 3D. Ce travail, sou-
vent réalisé à la main, est très long et demande aux radiologues experts attention et
minutie éprouvantes.

Notre but sera donc de proposer une approche de segmentation automatique
des quadriceps. Elle se devra d’être efficace sur l’ensemble de la base de données à
analyser et reproductible dans le temps pour permettre le suivi des coureurs. Dans
la suite de ce manuscrit, nous verrons aussi que les approches supervisées sont les
seules alternatives permettant une segmentation suffisamment précise pour l’en-
semble des coureurs. Nous en développerons deux : une méthode de segmentation
basée sur du recalage multi-atlas et une méthode de segmentation utilisant l’appren-
tissage profond. Or, ces approches demandent un grand nombre d’images annotées
manuellement (ou atlas) afin d’apprendre, automatiquement, la tâche à accomplir.
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Nous veillerons à proposer des méthodes permettant de limiter ce nombre d’images
annotées.

Pour réaliser cette étude, bien que capitale, la segmentation ne sera pas le seul
traitement exploité ici. Il faudra notamment s’appuyer sur des prétraitements des
images adaptés aux problématiques de l’IRM (correction de biais, recalage entre sé-
quences, extraction de chacune des jambes). Il s’agira aussi de guider les experts
médicaux dans la réalisation des annotations manuelles pour qu’elles soient justes
suffisantes pour obtenir une segmentation manuelle de qualité en 3D. Puis, après
la segmentation, il faudra appliquer plusieurs méthodes de post-traitements de ma-
nière séquentielle pour d’une part corriger automatiquement les petites erreurs de
segmentation puis surtout extraire des données d’IRM des indices quantitatifs qui
seront ensuite corrélés longitudinalement et avec d’autres marqueurs. Cependant,
pour des raisons d’efficacité, ce manuscrit de thèse ne détaillera pas profondément
ces approches. Pour obtenir ces éléments, le lecteur pourra lire nos contributions
Nguyen et al. (2019b) et Nguyen et al. (2021a).

Dans cette thèse nous nous focalisons donc sur nos contributions aux méthodes
de segmentation de muscles en IRM à partir d’un faible nombre d’atlas et permettant
une analyse longitudinale de marqueurs issus de l’image et leur corrélation avec des
biomarqueurs.

La thèse est organisée en 4 parties avec 11 chapitres.

La première partie dressera le contexte de cette thèse, en commençant par pré-
ciser comment l’IRM permet la quantification fonctionnelle et par rappeler l’impor-
tance de la segmentation d’images. Le second chapitre présentera le projet MUST
dans son ensemble puis plus spécifiquement les données que nous traiterons.

La deuxième partie dresse les états de l’art. Pour le chapitre 3, il s’agit des cri-
tères de validation pour les méthodes de segmentation d’images, y compris les mé-
triques de validation, la stratégie de validation croisée et l’évaluation du temps de
calcul. Le chapitre 4 dresse l’état de l’art des méthodes de segmentation avec peu
de données annotées. Enfin, les difficultés de la segmentation de muscles à partir
des images IRM et les méthodes existantes pour la segmentation des quadriceps hu-
mains sont présentées dans Chapitre 5.

La troisième partie est dédiée à nos contributions à la segmentation des muscles
quadriceps à partir d’images IRM. Le chapitre 6 donnera les prétraitements à ap-
pliquer spécifiquement aux images IRM et rappellera les donner dont on dispose.
Le chapitre 7 présentera notre application et optimisation de la méthode de seg-
mentation multi-atlas avec fusion d’étiquettes et apprentissage correctif sur la base
de données MUST. Ensuite, le chapitre 8 présentera notre approche d’apprentissage
profond faiblement supervisé et basé sur le réseau UNet comme alternative à la seg-
mentation multi-atlas. Le chapitre 9 présentera notre proposition de descripteurs
morphologiques permettant de mieux appréhender une base de données et ainsi de
mieux définir les stratégies d’augmentation ou choix de données pour les méthodes
de segmentation supervisées.

Enfin, la quatrième partie est consacrée aux applications et discussion de nos
contributions. Le chapitre 10 montrera les résultats et améliorations obtenues avec
nos approches sur l’ensemble des images MUST ainsi que leurs généralisations et
limites de nos approches sur deux autres jeux de données nécessitant une segmen-
tation de muscles. Quant au chapitre 11, il reviendra sur la problématique initiale

part:background
chap:MUST
part:soa
part:contributions
part:applications


Introduction 5

d’étude longitudinale de l’inflammation des muscles quadriceps sur la base de don-
nées MUST.

Ce manuscrit se termine par une conclusion générale et les perspectives envisa-
geables issues de ces travaux de thèse. Chaque partie comporte un résumé rédigé en
français, à la demande de l’école doctorale.

part:conclusion
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Résumé

Cette partie présente le contexte de ce travail de thèse : l’IRM et le projet MUST

Le chapitre 1 donne une brève introduction à l’imagerie par résonance magné-
tique (IRM) qui sera la modalité d’imagerie utilisée dans cette thèse. Cette technique
d’imagerie est non irradiante et non invasive, et a des applications potentielles dans
l’étude des variations fonctionnelles. Pour explorer efficacement ces potentiels, il
faut construire et optimiser une série de processus automatiques, tels que la segmen-
tation des images, puis l’extraction des caractéristiques des images et enfin l’analyse
ces caractéristiques extraites.

Le chapitre 2 présente le projet MUST, un projet de recherche important conduit
par des membres du laboratoire CREATIS, qui vise à étudier l’effet de l’un des ultra-
marathons de montagne les plus extrêmes au monde, le Tors des Géants, sur le corps
des athlètes. Des prélèvements sanguins, des IRM et des examens par ultrasons ont
été effectués sur les participants à différents moments de la course. Dans le cadre de
ce projet de doctorat qui se focalise sur l’étude des muscles squelettiques, nous nous
sommes intéressés aux images IRM du haut des jambes, en particulier les quadri-
ceps, le groupe de muscles squelettiques le plus affecté par l’effort excentrique lors
de la course de descente. Ce chapitre sera aussi le lieu de présentation des quadri-
ceps et du lien entre cette étude MUST et des enjeux cliniques.
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Introduction

This part presents the context of this thesis work: the MRI and the MUST project.

Chapter 1 gives a brief introduction of Magnetic Resonance Imaging (MRI) which
will be the imaging modality used throughout this thesis. This imaging technique is
non-irradiating and non-invasive and has potential applications in functional vari-
ation study. To effectively explore these potentials, a sequence of automatic pro-
cesses, such as image segmentation, extraction of image features and features anal-
ysis, needs to be constructed and optimized.

Chapter 2 presents the MUST project, a major research project led by the mem-
bers of CREATIS laboratory, which aims to study the effect of one of the most ex-
treme mountain ultra-marathons in the world, Tors des Géants, on the corps of ath-
letes. Blood sampling, MRI, and ultrasound examination were performed on the
participants at multiple time points. In the context of this Ph.D. project, we are pri-
marily interested in the upper legs’ MRI data, specifically the quadriceps, the most
affected skeletal muscle due to the eccentric effort during downhill running. This
chapter will also present the quadriceps and how their studies can relate to clinical
problems.
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CHAPTER 1

Medical imaging for longitudinal functional
variation studies

Medical imaging aims at providing morphological or parametric maps of internal
characteristics of the human body to drive clinical decisions and monitor treatments.
Among the most popular medical imaging methods, there are Magnetic resonance
imaging (MRI), ultrasound, positron emission tomography (PET), and computed
tomography (CT). These techniques have been experiencing rapid development,
which leads to improved quality and wide availability of medical image data. While
the expertise of medical doctors is still irreplaceable, image analysis algorithms for
medical applications are becoming more and more popular as a tool, helping them
perform their tasks more efficiently and possibly with higher quality. Image analysis
algorithms may provide automatic detection of anatomic structure or lesions in pa-
tients and, while focusing on selected structures, can also provide quantitative anal-
ysis at a specific time or at multiple time points during patient follow-up or during
a longitudinal study design (e.g., functional evolution of organ or sub-regions struc-
tures). These applications motivate one of the most popular sub-domains in image
analysis: image segmentation.

In this work, we mainly focus on MRI data analysis. MRI principles are shortly
reminded in the next section (Sec. 1.1) with some muscle MR imaging specificities.
Section 1.2 discusses the importance of image segmentation.

1.1 MRI and its ability for functional quantification

Magnetic Resonance Imaging (MRI) is a reliable, non-irradiating, and non-invasive
imaging technique for tissue characterization and quantitative assessment of tissue
integrity through its magnetic properties. An MRI pulse sequence is like an orches-
tral score describing a series of radiofrequency pulses, gradient manipulation, and
signal measurements that result in a set of images with a particular appearance (Fig.
1.1). Each sequence has its own set of operator-selectable parameters that affect tis-
sue contrast and spatial resolution. In general, the image pixel value depends on a
host of intrinsic parameters, including the proton density, the T1 and T2 relaxation
times, the field heterogeneity, and the physiological motion. The effects of these
parameters can be suppressed or enhanced by the external magnetic fields and the
operator-selectable parameters, such as repetition time (TR), echo time (TE), and flip
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angle (Liang et al., 2000). Therefore, by altering these extrinsic parameters, one can
get a quasi-infinitive number of different image contrast.

FIGURE 1.1: A simple pulse sequence illustration. A pulse sequence is similar to an or-
chestral score, with time increasing from left to right, and each type of manipulation is
displayed one above another. The first line illustrates the radiofrequency excitation pulses
(RF) with flip angle α. GS, GP, and GR denote the magnetic field gradients in slice-select,
phase-encoding, and frequency-encoding directions. ADC is the analog-to-digital converter

that is turned on during the data acquisition period.

Since different types of tissues have different T1 and T2, one can play on any of
these parameters to maximize the contrast between tissues and weight the resulting
MR signal in T1 and/or T2 by changing the combination of TR and TE (Fig. 1.2). T1
and T2 relaxation times and their corresponding rates R1 (=1/T1) and R2 (=1/T2) de-
note the characteristic time constants of the recovery back toward equilibrium of the
z (longitudinal) and xy (transverse) components, respectively, of the nuclear mag-
netization. After being disturbed, the MR signal source, i.e., nuclear magnetization,
does recover depending on physical laws that rely entirely on hydrogen nuclei in-
teractions with the surrounding tissue environment to re-equilibrate (Haacke et al.,
1999). R1 is called the spin-lattice relaxation rate. The "lattice" denotes the molecu-
lar environment surrounding a hydrogen nucleus and includes the remainder of the
host molecule and other solute and solvent molecules. Spin–lattice relaxation occurs
because of magnetic interactions between nuclear spin dipoles and the local, ran-
domly fluctuating magnetic fields that exist on an atomic scale inside any medium.
These originate mainly from neighboring magnetic nuclei, such as other hydrogen
protons (e.g., within a water molecule, each hydrogen affects the neighbor) and are
modulated by the motion of other surrounding dipoles in the lattice, which have
components fluctuating with the same frequency as the resonance frequency (Conn,
2009).

Whereas T1 is sensitive to radiofrequency components of the local field, T2 is
sensitive to low-frequency components. R2 (=1/T2) is called the spin-spin relax-
ation rate. In a time of 50 ms, water molecules diffuse distances of 20 cm to sample
many different environments on the cellular level within the timescale of relaxation.
A very rapid exchange may occur between bulk water, bound water, and interfacial
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FIGURE 1.2: Example of T1-weighted and T2-weighted axial images of human thigh ob-
tained by using different combinations of TR and TE.

water in biological systems in many situations, which is believed to be the origin
for many increases in T1 or T2 in various pathologies, such as edematous changes
following insults to tissue or in rapidly dividing cells with higher water fractions.
Changes in tissue water and protein content, in general, will affect relaxation. More-
over, the existence of water in separate compartments that are only slowly exchang-
ing gives rise to more complex behavior that is not described adequately by a single
relaxation rate (Saab et al., 1999). The average water proton relaxation rate measured
will depend on how effectively and at what rate these effects are spread through the
rest of the water population.

T1 and T2 values are likely to evolve with time in pathologies. T1 and T2 maps
are cartographying T1 and T2 directly in each pixel. Such quantitative maps are
helpful to monitor the variation of these indexes in diseases before and after medical
interventions or treatment since these parameters, once estimated, are independent
of hardware changes and externalities to only reflect tissue changes. For example,
elevated quantitative values in edematous areas in the heart are reported in acute
ischemia, appearing bright in T2-weighted images. T1 and T2 values have also been
shown to be influenced by treatments as pre-, post-, or remote ischemic condition-
ing (Thuny et al., 2012). T2* is the "effective" T2 resulting from inhomogeneities in
the main magnetic field or susceptibility-induced field distortions produced in the
tissue, related to the presence of chemical or paramagnetic substances such as fat or
hemorrhage (Welsch et al., 2014). However, the first step in decoding the various
effects of stress on the body using quantitative MRI (qMRI) markers is to develop
systematic and comprehensive non-invasive exploration strategies to consistently
extract the changes in each MR biomarker to identify which ones reflect the under-
lying physiological consequences.

When focusing on skeletal muscles, many studies witness that edematous ar-
eas appear bright in T2-weighted images because the T2 relaxation time becomes
longer. Corresponding T1 and T2 maps show elevated quantitative values in match-
ing areas (Ababneh et al., 2008; Ploutz-Snyder et al., 1997). From that perspective,
MRI appears to be a unique imaging modality for extracting relevant anatomical
and structural features of muscle tissue (Froeling et al., 2015; Maeo et al., 2017). Re-
cently, quantitative imaging methods such as chemical shift-encoded MRI (Leporq
et al., 2013, 2017) and MR relaxometry mapping (Patten et al., 2003; Tawara et al.,
2011) have allowed users to understand chemical alterations noninvasively at the
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imaged pixel size. Several postprocessing methods need to be sequentially applied
to extract a quantitative index from MRI data. These methods include the segmenta-
tion of muscle heads on multiple large 3D images, the extraction of image features in
each area of interest, and statistical analysis. Each of these steps is an area of research
in its own right. Although various alternatives have been proposed to target each of
these challenges (Froeling et al., 2015; Maeo et al., 2017), they are rarely applied to
cohorts or longitudinal studies.

In the following section, we further focus on the crucial role of image segmen-
tation.

1.2 Importance of image segmentation

Image segmentation is the process of dividing an image into different regions cor-
responding to different structures and assigning them unique labels. Segmentation
has an enormous number of applications in many different fields, among which is
medical imaging.

In many medical imaging applications, such as disease diagnosis, patient mon-
itoring, and treatment planning, an accurate delineation is critical to isolate then
study each anatomical component locally. As mentioned above, to fully explore the
potential of qMRI in a longitudinal study, a robust segmentation method is crucial.
The term robust, in the case of medical image segmentation, refers to a method that is
i) as anatomically coherent as possible with a tolerable quantity of errors compared
to a manual expert segmentation (dependent on the clinical application) and, ii) in
case of errors, the quantity and the nature of errors should be predictable.

Image segmentation can be obtained by delineating the component borders
manually or with computer-aided methods. Manual segmentation requires medi-
cal expertise of the anatomical regions in question, but it is very time-consuming
and mentally exhausting. State-of-the-art 3D high-resolution isotropic imaging pro-
duces a huge number of images to be analyzed and makes manual segmentation in
clinical uses irrelevant.

For simplicity, from this point onward, except when specified as manual, the
term image segmentation in this dissertation is referred to computer-aided, also called
automatic, image segmentation. Many works have been done to overcome medical
image segmentation problems, yet there is still a need for more. Since there is no
universal method, a method needs to be carefully chosen for each specific problem
based on the imaging modality, the type of the body part, and the final clinical pur-
pose. Modern approaches, such as deep learning methods, required an enormous
number of annotated data to obtain an efficient model while, in our main case study
(see chapter 2), the number of manual segmentations is limited.
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CHAPTER 2

Longitudinal study case: MUST

Ultra-marathon has been growing rapidly in popularity in recent years, with nu-
merous events being organized each year. Multi-day mountain ultra-endurance race
(MUM) is the most intense format of this sport, which puts athletes in many extreme
conditions and pushes them to their limits. However, the effects of such conditions
on the human body remain mostly unexplored. Notably, microstructural and func-
tional modifications and inflammation induced by these events at the skeletal mus-
cles and myocardium level have never been explored using MRI.

This Ph.D. project is a part of a major research project of the laboratory CRE-
ATIS, the MUST study, which aimed to set an unprecedented longitudinal study on a
supra- physiological effort of the mountain ultra-marathon athletes using advanced
technology MRI techniques.

After reminding the interest of our study (Sec. 2.1), information about the MUM
where the volunteers are recruited for our study is provided (Sec. 2.2). The data
collection procedure is detailed in Section 2.3.

2.1 Motivation

The recent and innovative developments in quantitative Magnetic Resonance Imag-
ing (qMRI) support a thorough and non-invasive exploration of multiple organs
such as skeletal muscles, providing new perspectives to monitor functional alter-
ations that typically occur during disease progression course and/or following any
therapeutic interventions. The extreme conditions of MUM are known to lead to a
sudden and significant inflammatory response of the body, including skeletal mus-
cles, and as such, are considered as providing a unique experimental accelerated
model of injury in humans, closely matching conditions such as those found in in-
tensive care units (ICU) in patients following sudden events (polytrauma, myocar-
dial infarction, ...). (Millet and Millet, 2012; Knechtle and Nikolaidis, 2018).

Therefore, this study was set to explore the capabilities of qMRI to demonstrate
changes occurring during and after the MUM challenge on the body. It was also
expected to provide new insights into the physiological mechanism of severe mus-
cle damage and the recovery process, its dynamics, helping to identify new non-
invasive biomarkers that could contribute to the monitoring of conditions leading to
inflammation and skeletal muscle changes observed in clinical settings. There are in-
deed multiple scenarios met in clinical practice, leading to skeletal muscle changes,
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such as disabilities secondary to stroke, cancer, or chronic obstructive pulmonary
disease.

The following subsections present the studied skeletal muscles and damages
that can be observed. Then, we present the MUM where the dataset was collected.

2.1.1 Skeletal muscle damage

Muscle injury is defined as the loss of muscle function caused by the physical dis-
ruption of muscle structures involved in producing or transmitting force (Tiidus,
2008). In this study, we concentrate on skeletal muscles and exercise-induced injury.
The type of contractions required in an exercise plays an essential role in the amount
of damage caused to the muscles. Some studies have concluded that eccentric con-
tractions are particularly more injurious for skeletal muscles than isometric or con-
centric contractions (McCully and Faulkner, 1985; Pizza et al., 2002). Early events
in eccentric contraction-induced injury include disruption of sarcomeres1, damage
to force-bearing cytoskeleton2, loss of cell membrane integrity (Fig. 2.1). Loss of
calcium homeostasis3 may contribute to both the initial injury and the progression
of the injury. The inflammatory process promotes muscle repair, regeneration, and
growth, but it has been shown that the inflammatory cells may also exacerbate the
injury (Tidball, 2005).

FIGURE 2.1: Schematic of skeletal muscle injury following eccentric contractions. Early
responses include disruption of sarcomeres, force-bearing cytoskeletal elements, and the cell
membrane. Loss of calcium homeostasis may contribute to both the initial injury and the
progression of the injury. The inflammatory process may also exacerbate the initial injury.
Both the initial injury and later events contributing to its progression may cause impaired

muscle force production.

MRI has been used to observe muscular changes after eccentric exercises. The
signal intensity of T2-weighted magnetic resonance (MR) image is dependent on the
amount of water in the tissue and seems to be able to detect intracellular edema
(Nurenberg et al., 1992). On the one hand, MRI was shown to be quite helpful in
identifying local muscle damage during eccentric contractions (Nosaka and Clark-
son, 1996; Takahashi et al., 1994). On the other hand, MRI is more sensitive than
most conventional methods and can detect muscle damage many days after exercise

1Sarcomere is the basic unit of skeletal muscle and is composed of thick and thin bundles of proteins
as filaments that slide past each other to create muscle contractions.

2Cytoskeleton is made up of protein filaments and motor proteins and helps eukaryotic cells main-
tain its shape and internal organization.

3Calcium homeostasis is the regulation of the extracellular concentration of calcium ions.
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(Nosaka and Clarkson, 1996; Sayers et al., 1999; Sayers and Clarkson, 2001; Harrison
et al., 2001).

In this longitudinal study, which involves MUM runners, the quadriceps are the
most affected skeletal muscle due to eccentric effort during downhill running.

2.1.2 Quadriceps

The quadriceps femoris, also called quadriceps, is a large muscle group located on
the front of the thigh which connects the hip and the knee joint. It consists of 4 mus-
cles or also called ’heads’: rectus femoris (RF), vastus lateralis (VL), vastus medialis
(VM) and vastus intermedius (VI) (Fig. 2.2).

FIGURE 2.2: The different muscles in the quadriceps. The vastus intermedius is not visible
from the front view. On the left: Original image is extracted from Gray and Lewis (1918).

On the right: T1W MRI of a right leg from MUST dataset.

The quadriceps are the crucial extensor of the knee joint. It provides the human
body with the abilities of walking, running, jumping, and squatting. Quadriceps
damage will cause the loss or reduction of all these abilities and the decline in pos-
tural control.

2.2 The mountain ultra-marathon Tor des Géants

An ultra-marathon is an event that involves running for a distance longer than the
traditional marathon length of 42.195 kilometers. There are many types of ultra-
marathon events distinguished by the distance covered, the time limit, and the na-
ture of the track. Mountain ultra-marathon (MUM), also called ultra-trail, is the most
challenging form of this sport. It consists of running and hiking in mountain terrain
for many days. Athletes face many severe obstacles, such as inclement weather,
elevation change, sleep deprivation, or rugged terrain. Ultra-marathon events are
organized globally every year, but only a few are ultra-trail events due to their high
difficulty level and a relatively short history of being an organized sport.

MUM has been described as an outstanding model for investigating the phys-
iological responses to extreme load and stress (Millet and Millet, 2012). MUM is a
prolonged whole-body exercise with repeated eccentric contractions, which makes
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it highly injurious. Many previous studies have established evidence of acute conse-
quences of MUM, such as a decline in pulmonary function (Vernillo et al., 2015) and
postural control (Degache et al., 2014), cardiac and neuromuscular fatigue (Maufrais
et al., 2016; Saugy et al., 2013), muscle damage and inflammation (Saugy et al., 2013;
Hoffman et al., 2012).

To reproduce a model of extreme human tissue stress, the MUST project studies
the ultra-racers who participated in the most extreme mountain trail in Europe and
one of the most extreme races in the world, the Tor des Géants. This is an annual event
that takes place in Aosta Valley, Italy, in September, with the start and finishing line
in Courmayeur. The route is around 330km with 24000m of total elevation gain (Fig.
2.3), which must be completed in 150 hours (6.25 days).

FIGURE 2.3: The route of the Tor des Géants in the portable roadbook of the competition.
The participants have to run in the mountain terrain around the Aosta Valley. They cross
34 municipalities, 25 over-2000-meters mountains, 30 alpine lakes, and 2 natural parks.

Around 700 people can participate, with only approximately 60% of them who
completed the race. In 2014, the best performance was 71 h 49 min among 740
starters and 446 finishers. There is no money prize at stake, so all racers are there
to test their limits. Most of the racers are experienced ultra-marathon runners that
have taken part in other ultra-marathon races. Well-trained racers like them usu-
ally have leg and hip musculature that is relatively resistant to injury (Tiidus, 2008).
Participants of the race must also have the ability to adapt to encountered or ex-
pected problems, such as change of weather, physical problems, and sleep depri-
vation. They can only shower, sleep, or get medical care at the official refreshment
points; otherwise, they are autonomous. The Tor des Géants is no doubt one of the
most demanding races in the world.

http://www.tordesgeants.it/
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2.3 MUST data collection

The MUST project followed the Tor de Géants 2014 that took place from September
7th to September 14th, 2014. This study was approved by the local ethical committee
(Aosta Valley, Azienda USL 101/946), and the experimental plan was conducted in
accordance with the Helsinki Declaration (2001). Subjects were recruited through
mailing and public announcements to registered runners by race organizers. Exclu-
sion criteria were smoking, substance abuse, regular intake of medications, medical
or psychiatric illness, and any contraindication to MRI (e.g., claustrophobia, nonre-
movable metal devices) or abnormalities detected upon laboratory screening. As it
was impossible to collect data from all 740 participants and as many runners are so
highly motivated that they do not want to miss any moment of the race, a limited
number of runners were recruited to be the subjects of the study. In the end, we
had 51 runners that volunteered and provided written consent to participate in this
study. Only 27 among them finished the race, which is coherent with the percentage
of finishing runners of the race overall. Demographic information of the participants
is listed in the table A.1

The experiment design was longitudinal, which involved following the runners
at four time points during the race. Blood samples were taken at each time point,
while, due to time restriction, MRI and ultrasound examinations were performed
only at three time points. The MRI is principally focused on upper leg muscles,
heart, and brain. In the context of this Ph.D. project, we are interested mostly in
the MRI data of the upper legs, more specifically, the quadriceps muscles, and the
biological data:

• The first point (pre-race: Pre) was at the start location. The data collection was
performed within 4 days before the race and consisted of MRI acquisition and
biological sampling.

• The second point was located halfway through the race (middle: Mid). Only
biological sampling was performed.

• The third one was at the arrival of the race (arrival: Post): athletes who finished
the race were transported by car to the laboratory and were evaluated (MRI
and biological sampling) within one hour after finishing the race.

• The last point (recovery: Post+3) was 48-72 h after arrival time. Both MRI and
biological sampling were acquired.

The flowchart of the study is shown in the figure 2.4. While the image feature
extraction and analysis is also a part of this project, our main interest here is to search
for a robust segmentation method that will allow us to study, with precision, each
muscle head in the quadriceps locally.

2.3.1 MRI acquisitions

At Pre, Post, and Post+3, MRI acquisitions were performed on-site using a mobile
1.5 T MR scanner system (MAGNETOM Avanto, Siemens Healthcare, Erlangen, Ger-
many installed in a truck from Alliance Medical, England). A standard coil configu-
ration was used: a 4-channels body-array surface coil combined with 4 elements of
the spine coil, resulting in an 8-channels coil in total. Three MRI acquisitions of the
legs were sequentially performed:
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FIGURE 2.4: Flowchart summarizing the main steps of the study of the functional vari-
ation in the quadriceps. MRI was performed at three time points: before (Pre), and for
participants who finished the race, immediately after (Post), and 48-72 h after the race
(Post+3). Meanwhile, biological sampling was performed at four time points (an additional

sample was performed at half-race (Mid)).

• A three-dimensional (3D) isotropic gradient dual-echo sequence: The coro-
nal acquisition included the entire upper leg (from the tibial tuberosity to the
anterior superior iliac spine) with a total scan time of 3 minutes. The voxel
size was 0.781 25 × 0.781 24 × 1.3 mm3, the number of slices was 176 resulting
in a total coverage in the z-direction of 20.8 mm and an explored 3D volume of
437.5× 500× 208 mm3, i.e. an in-plane field of view (FOV) of 437.5× 500 mm2.
The pixel-wise volume size is 560 × 640 × 176. The reconstruction of the water
and fat images from the acquired multi-echo data sets was performed inline
using a Dixon approach (Leyendecker et al., 2010) enabling four 3D isotropic
in-phase, out-of-phase, fat-only and water-only coronal images to be calcu-
lated on the MR scanner, hereafter denoted in-phase (IN), out-of-phase (OUT),
water (W), and fat (F) images, respectively (Fig. 2.5).

FIGURE 2.5: Coronal view of the four T1-weighted images obtained with the Dixon ap-
proach: in-phase (IN), out-phase (OUT), water (W), and fat (F)

• A 3D spoiled gradient echo sequence (3D GRE): acquired in axial plane with
the voxel size of 1.5625 × 1.5625 × 5 mm3, and with a total coverage in the z-
direction of 240 mm and 140 mm prior and after aliasing elimination in the
slice direction, 3D volume of 400 × 280 × 140 mm3 i.e. an in-plane FOV of
400 × 280 mm2. The pixel-wise volume size is 256 × 160 × 28. Eight echoes
were acquired in the transverse plane with a flyback readout gradient (first
echo: 1.58 ms and echo spacing: 2.52 ms). TR and flip angle were adjusted
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to minimize the T1-related bias. Phase and magnitude images were systemati-
cally reconstructed. Prescription of localization was performed using anatomic
images from an isotropic 3D gradient-echo acquisition. For standardization
purposes, the central partition in the z-direction was planned at a 15 cm dis-
tance from the upper part of the patella using the sagittal multiplanar recon-
struction of the first acquired 3D gradient isotropic sequence.

Using this sequence, a set of quantitative indexes and maps can be calculated,
including the magnetic susceptibility (χ) map, the T2* relaxation time (T2*)
map, and the proton density fat fraction (PDFF) map (Leporq et al., 2017).
These maps were computed using an in-house program in MATLAB (MAT-
LAB, 2017) and the process encompassed two main steps: fat-water separation
and magnetic susceptibility quantification (Fig. 2.6).

FIGURE 2.6: Quantitative map reconstruction from 3D multi-echo GRE sequences. Phase
images were unwrapped beforehand to compute the B0 field inhomogeneities (∆B0) map
and the ∆B0-demodulated real part images from which fat-water separation was performed.
The fat-water separation step provided parametric T2* and PDFF maps. From the ∆B0
map, the external (Bout) and internal fields (Bint) were separated using the projection onto
the dipole field. From Bint, performed with a single orientation Bayesian regularization
including spatial priors derived from magnitude images for the boundary conditions, error

and smoothness weighting to compute the susceptibility map (Viallon et al., 2019).

• A 2D multi-echos T2 weighted spin-echo sequence with 16 echo times (TEs)
ranging from 10 to 178 ms: the voxel size is of 1.25× 1.25× 10 mm3, the FOV is
of 400× 250 mm2 with a z-direction coverage of 70 mm. The pixel-wise volume
size is 320 × 200 × 7. The central slice was also planned at the same location
as previously described for the 3D GRE sequences. The T2 relaxation time
(T2) maps were calculated using an in-house written program in MATLAB
considering a mono-component T2 relaxation and thus implementing a single-
parameter least square fit (Levenberg-Marquardt)(Gavin, 2013). The first non-
stimulated echo was removed as recommended to account for the presence of
stimulated echoes as indicated in (Azzabou et al., 2015; Kan et al., 2009) (Fig.
2.7).
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FIGURE 2.7: Quantitative T2 color maps obtained after 2-parameter fit of the multiecho
spin-echo (meSE) T2-weighted images acquired with different echo times (TEs) in one ath-

lete after arrival, showing clearly increased T2 in the vastus intermedius (VI) regions.

As we can see, each sequence had a different resolution and field of view (in-
dividually optimized in terms of SNR, coverage, and MR properties). The area ex-
plored by each technique is summarized in the figure 2.8a, and the main MR param-
eters are listed in the table A.2. An automatic segmentation based on shape matching
(Gilles et al., 2016) was performed on the W images.

FIGURE 2.8: MRI Input Sequences and result of Gilles et al.’s segmentation. 3D GRE
and T2 Spin Echo sequences superposed on the 3D GRE Double Echo water image (a), the
coronal (b) and axial (c) views of the manual segmentation the right leg displayed with the

isotropic water image as background.

2.3.2 Manual segmentations

An automatic segmentation method needs to be validated by applying to an im-
age dataset whose segmentation has been done manually or verified by medical
experts. Such a dataset for quadriceps muscles does not exist publicly. Our medi-
cal experts at CHU Saint-Étienne have been manually segmenting MRI images from
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MUST dataset, more precisely, the images T1-Water (Figure 2.8b,c). Since our high-
resolution T1 images cover the entire upper legs of the athletes, which take a lot of
time to segment, only the right legs in 7 images at Pre are fully segmented.

Additionally, to validate the segmentation methods on left legs and other time-
points, partial manual segmentations are available for 5 left legs and then 4 right
legs at all of the 3 time points. The detail on the manual segmentation dataset is
presented in the table 2.1. A total of 4 medical experts were involved in the manual
segmentation of right leg volumes, while for left leg partial segmentation, each sub-
ject among the 5 segmented was segmented by two medical experts simultaneously.
The manual segmentation and slice selection (for partial manual segmentation) will
be described in Chapter 6.

Right legs Left legs

Subject Pre (all slices) Post (17 slices) Post+3 (17 slices) Pre (50 slices)

ALB-2725 ① ③ ③ ③ ④

ALF-4529 ① ③ ③

ANG-2014 ②

ANS-3229 ②

ARS-4026 ② ③ ③

BRG-1924 ③ ④

CAL-4223 ③ ③ ④

MAV-526 ③ ④

OUK-2927 ④ ③ ③

YAG-47 ③ ④

TABLE 2.1: Available manual segmentations per subject. Subjects are presented by their
monograms. Each medical expert is represented by a number. Pre, Post, and Post+3 are
the three MRI acquisition time points. Image slices are axial slices. There are, in total, 640

axial slices per image volume.

2.3.3 Biological sampling and analysis

The usage of the biological data is not considered in this Ph.D. thesis but was inten-
sively used in our work Nguyen et al. (2021b). Introduction on these biomarkers can
be found in Appendice A.3.
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Conclusion

While extreme ultra-endurance races are growing in popularity, their effects on skele-
tal muscles remain mostly unexplored, although some subjects display inflamma-
tory symptoms matching those found in ICU patients after polytrauma or in pa-
tients with muscle disorders. The MUST longitudinal study was built to, among
multiple objectives, explore physiological changes in mountain ultramarathon ath-
letes’ quadriceps using quantitative magnetic resonance imaging (qMRI) coupled
with biological markers. This Ph.D. project resulted from an urgent demand for a ro-
bust automatic segmentation method for muscle in MR images, specifically quadri-
ceps images. Automatic image segmentation is a rapidly growing domain, but few
studies involved quadriceps segmentation, especially ones of professional athletes.
Meanwhile, one of our main difficulties is the limited number of available manual
segmentation. In the next part, we will present the state-of-the-art of medical image
segmentation, and more specifically, methods that used a small number of manual
annotations.
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PART II

Segmentation Methods &
Validation





33

Contents

Résumé 35

Introduction 37

3 Segmentation method validation 39

3.1 Metrics for segmentation evaluation . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Sørensen–Dice coefficient . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2 Jaccard coefficient or IoU . . . . . . . . . . . . . . . . . . . . . . 40

3.1.3 Hausdorff distance . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.4 Mean absolute distance . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.5 Volume similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Computation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Segmentation methods dealing with few annotations 45

4.1 Atlas-based segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1.1 The primitives used . . . . . . . . . . . . . . . . . . . . 47

4.1.1.2 The nature of transformation . . . . . . . . . . . . . . . 47

4.1.1.3 Similarity criterion . . . . . . . . . . . . . . . . . . . . . 48

4.1.1.4 The optimization method . . . . . . . . . . . . . . . . . 48

4.1.2 Mono-atlas segmentation . . . . . . . . . . . . . . . . . . . . . . 48

4.1.3 Multi-atlas segmentation . . . . . . . . . . . . . . . . . . . . . . 49

4.1.4 Multi-atlas segmentation with joint label fusion and corrective
learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.4.1 Joint label fusion . . . . . . . . . . . . . . . . . . . . . . 50

4.1.4.2 Corrective learning . . . . . . . . . . . . . . . . . . . . 53

4.1.4.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Deep learning for image segmentation . . . . . . . . . . . . . . . . . . . 54

4.2.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . 54

4.2.1.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1.2 Activation function . . . . . . . . . . . . . . . . . . . . 55

4.2.1.3 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1.4 Loss function . . . . . . . . . . . . . . . . . . . . . . . . 57



34 Contents

4.2.1.5 Optimization of parameters . . . . . . . . . . . . . . . 57

4.2.1.6 Regularization . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2 UNet architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Muscle segmentation from MR Images 63

5.1 Segmentation challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Human quadriceps segmentation . . . . . . . . . . . . . . . . . . . . . . 64

Conclusion 67



35

Résumé

Dans cette partie, nous explorons les techniques de segmentation adaptées à notre
problématique que nous commençons par décrire.

La segmentation de l’image consiste à créer une partition d’une image en groupes
de pixels ou en régions non chevauchantes ayant des propriétés communes qui les
différencient des autres groupes. Un label est ensuite attribué pour identifier les
pixels d’une même région. Ces régions sont associées à différents objets, en particu-
lier en imagerie médicale, à des pathologies ou des structures anatomiques. Ce pro-
cessus de délimitation peut être effectué manuellement. Cependant, selon le nombre
de structures à délimiter, la taille de l’image et la modalité d’imagerie, la complexité
de l’annotation manuelle peut exiger un temps considérable d’expert pour cette
tâche. D’autres facteurs externes, tels que la fatigue ophtalmologique et mentale due
à la répétitivité et à l’exigence d’une forte concentration pour cette tâche, peuvent
affecter la qualité de la segmentation et éventuellement le diagnostic voire le traite-
ment du patient.

Un problème commun de la segmentation automatique des images médicales
est le manque de données annotées manuellement. En fait, il existe un nombre limité
de bases de données d’images médicales publiques, dont la plupart concernent soit
le cerveau, soit le cœur. À notre connaissance, il n’existe pas de base de données
publiques portant sur les cuisses humaines.

La segmentation des muscles à partir d’IRM a toujours été un défi en raison
de l’absence de limites musculaires définies, de l’inhomogénéité de l’intensité du
champ ou des artefacts d’acquisition (Prescott et al., 2011). Dans le cas des cou-
reurs MUM qui ont participé au projet MUST, des athlètes professionnels ayant des
muscles quadriceps très développés et une quantité minimale de graisse corporelle,
la plupart du temps, la détermination des limites musculaires n’est pas évidente,
même pour les experts médicaux. Ces problèmes rendent inopérantes les méthodes
de segmentation automatiques standards telles que le seuillage ou la croissance de
région.

Cette partie présente d’abord, au chapitre 3, les mesures d’évaluation quanti-
tatives des méthodes de segmentation, puis elle donne un aperçu des méthodes de
segmentation existante pour l’imagerie médicales (Chapitre 4) et puis des détails de
deux méthodes que nous avons jugées adaptées à notre tâche spécifique : la segmen-
tation par recalage multi-atlas et la segmentation par réseau de neurones UNet. Les
deux approches seront ensuite appliquées à notre jeu de données puis seront la base
de nos contributions (Partie III). La partie se termine avec un rapport de l’état de
l’art sur la segmentation automatique des quadriceps humains et les difficultés spé-
cifiques à notre jeu de données qu’il faudra prendre en compte pour l’interprétation
des résultats de nos contributions (Chapitre 5).





37

Introduction

Image segmentation consists of partitioning an image into non-overlapping groups
of pixels or regions with common properties that differentiate them from the other
groups. A label is then assigned to identify the pixels in a region. These regions are
associated with different objects, specifically in medical imaging, anatomical struc-
tures. This delineation process can be performed manually; however, depending on
the number of structures to be delimited, the image size, and the imaging modality,
the complexity of the annotation may increase to the point of requiring a trained ex-
pert with several years of study and practice, as is the case for a radiologist. Other
external factors, such as ophthalmological and mental fatigue due to the repetitive-
ness and the demand for a high concentration of the task, can affect the quality of
the segmentation and possibly the diagnosis or treatment of the patient.

A general problem in medical image segmentation is the lack of annotated data.
As a matter of fact, there is a limited number of public medical image datasets, with
most of them either involving brains or hearts. To our knowledge, there is no size-
able public dataset for human thighs.

In this part, we first present, in Chapter 3, essential elements of the evalua-
tion procedure of a segmentation method. Chapter 4 offers an overview of existing
segmentation methods for medical imaging and details of methods that we judged
suitable for our specific task. Finally, we present the difficulties of muscle segmen-
tation from MRI data and the existing automatic segmentation methods for human
quadriceps (Chapter 5).
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CHAPTER 3

Segmentation method validation

The validation of a segmentation method is the primary step in understanding its
strengths and weaknesses. In addition to the quality of the segmentation, which
can be quantified by specific metrics (Sec. 3.1), the computational time (Sec. 3.3)
is also a crucial factor in evaluating the usability in clinical practice of the method.
Furthermore, in this chapter, we present the cross-validation procedure (Sec. 3.2) for
generalization capability evaluation.

3.1 Metrics for segmentation evaluation

There are many metrics for assessing the quality of segmentation (Taha and Han-
bury, 2015). These measures are often described for a segmentation into two classes
of an image (or binary): an object and the background. In general, they are well
generalized to the multi-class case where several objects and a background are seg-
mented.

3.1.1 Sørensen–Dice coefficient

The DICE coefficient (Dice, 1945) is the most common measure comparing two bi-
nary sets R (reference) and T (test).

FIGURE 3.1: Illustration of the DICE Similarity Coefficient.
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DICE(R, T) =
2|R⋂ T|
|R|+ |T| =

2|R⋂ T|
|R⋃ T|+ |R⋂ T| (3.1)

or
DICE =

2TP
2TP + FP + FN

(3.2)

where:

• TP is True Positive: number of pixels where T and R both have the object value

• TN is True Negative: number of pixels where T and R both have the background
value

• FP is False Positive: number of pixels where T has the background value and R
has the object value

• FN is False Negative: number of pixels where T has the object value and R has
the background value

DICE is equivalent to the F1 score. The higher the DICE coefficient, the more
similar the 2 segmentations.

In the multi-class case, the global DICE score, here denoted DSC (Dice Similarity
Coefficient), is the average value of individual DICE scores of all the classes. There is
also a weighted version of DSC, here denoted DCSw:

DSCw = 2 ∑N
c=1 |Rc ∩ Tc|

∑N
c=1 |Rc|+ |Tc|

(3.3)

where N is the number of classes in the segmentation.

The main difference between DSC and DSCw is the impact of small regions
on the overall score: DSC is more sensitive to small region error than DSCw that
weights all regions DICE proportionally to their size.

3.1.2 Jaccard coefficient or IoU

The Jaccard coefficient (JC) or IoU (Intersection over Union) measures the ratio be-
tween the intersection and the union of two sets.

Its formula is as follows:

JC(R, T) =
|R⋂ T|
|R⋃ T| (3.4)

This metrics is very similar to the DICE coefficient but is formulated differently.
The relationship between the Jaccard and DICE coefficients is:

JC(R, T) =
DICE(R, T)

2 − DICE(R, T)
and DICE(R, T) =

2JC(R, T)
1 + JC(R, T)

(3.5)

The higher the Jaccard coefficient, the more similar the 2 segmentations.
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FIGURE 3.2: Illustration of the Jaccard coefficient (also called IoU score)

3.1.3 Hausdorff distance

The Hausdorff distance, denoted HD, is based on the distance between the segmen-
tation surfaces (see figure 3.3).

FIGURE 3.3: Illustration of Hausdorff Distance.

The Hausdorff pseudo-distance δ̂HD, non-symmetrical, is defined as follows:

δ̂HD(R, T) = max
r∈R

min
t∈T

||r − t|| (3.6)

and the Hausdorff distance (with the symmetry property) δHD is defined as:

δHD(R, T) = δHD(T, R) = max (δ̂HD(R, T), δ̂HD(T, R)) (3.7)

The smaller the HD, the smaller the maximum errors between the two segmen-
tations. For multi-class, it is recommended to compute the HD for each class and
then to keep the maximum of all these distances as the global HD, which is the way
the global HD is computed in this thesis.

3.1.4 Mean absolute distance

The mean absolute distance, denoted MAD or dm, between two sets R and T is de-
fined as :
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dm(R, T) = MAD(R, T) =
1
2

(
d(R, T) + d(T, R)

)
(3.8)

with

d(R, T) =
1
|R| ∑r∈R

min
t∈T

∥r − t∥ (3.9)

The illustration of this metric is shown in figure 3.4.

.

FIGURE 3.4: Illustration of the Mean Absolute Distance. On each of the hatched regions,
the minimum distance to the other region is accumulated for the calculation of the d

Meanwhile, it should be noted that this metrics is not equivalent to the error
area (|R⋃ T − R

⋂
T|) since, for each point, it is the minimum distance to the other

set that is searched and then accumulated.

For multi-class cases, similar to HD, the global MAD is the maximum of all the
individual MAD of classes.

3.1.5 Volume similarity

The volume similarity, denoted VS, between two sets R and T is defined as :

VS(R, T) = 2
|T| − |R|
|T|+ |R| (3.10)

The VS metric ignores all the spatial information; therefore, while VS should
correlate with DICE score, two segmentation with DICE score equal to 0 can have a
perfect VS (VS = 0) if they have the same volume. A high VS is only in favor if the
corresponding DICE score is also relatively high.

In the case of multi-class segmentation, the global VS is defined as:

VS(R, T) =
2
N

N

∑
c=1

||Tc| − |Rc||
|Tc|+ |Rc|

(3.11)

where N is the number of classes in the segmentation.

3.2 Cross-validation

Cross-validation (Hastie et al., 2009) is a resampling procedure used to evaluate the
performance of a given method on a data sample, specifically in the case of image
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segmentation on a limited amount of annotated data. To estimate the generalization
capability of a method, one needs to test that method on unseen data. By splitting
the N available annotated data into k groups (k-fold cross-validation), we can test the
method on each of these k groups using the other k − 1 groups as reference or train-
ing data.

In the case of a very small N, which is our case (N = 7), we can use the N-fold
strategy or also called Leave-One-Out (LOO) consisting of taking each subject as a
test and all the others as references. The LOO strategy is employed in most of our
experiments presented in this dissertation.

3.3 Computation time

In clinical practice, the computation time of a method is a non-negligible factor. For
many applications, the computation time must be relatively short to be transferred to
everyday practice. While working with methods involving machine learning, there
are two types of computation time:

• Training time: The amount of time needed to train a certain model, i.e., the
time it took for our computer to learn a given pattern.

• Inference time: The amount of time taken to apply the trained model on a test
subject

The training time directly affects the duration of the research and development
phase of a method, but once a proper model is established, the inference time is the
more critical factor in the evaluation phase.
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CHAPTER 4

Segmentation methods dealing with few
annotations

There are many different approaches to the problem of image segmentation based
on different perspectives, such as the similarity between objects and boundaries of
regions of interest. Below is a non-exhaustive list of common segmentation methods
frequently employed in medical image processing:

• Thresholding: The image pixels are classified by comparing their gray level
(or intensity) to one or many threshold values. Many threshold-derived meth-
ods have been developed for medical imaging applications (Ng et al., 2008; Li
et al., 2006; Khare and Tiwary, 2005).

• Region growing: From initial seed points selected manually or automatically,
regions of interest are expanded to adjacent points depending on predefined
criteria. These criteria could be pixel intensity grayscale texture, color and/or
gradients (Grenier et al., 2006). This method is frequently used in tumor or
abnormality segmentation (Haider et al., 2011; Deng et al., 2010; Siddique et al.,
2006).

• Deformable models: Deformable models (Metaxas, 1996; Hegadi et al., 2010)
are also called active contours as they deformed the objects’ boundaries based
on the shape of objects, smoothness of contours, internal forces, and external
forces on the objects.

• Atlas-based segmentation: The segmentation is carried out by mapping a ref-
erence image that has verified segmentation on a new image that needs to be
segmented. This is one of the most popular methods in medical image seg-
mentation as it can handle from very large to very small anatomical changes
(Rohlfing et al., 2005; BachCuadra et al., 2015; Wang et al., 2013).

• Classification: Supervised learning methods are trained using manual seg-
mentations of training images to derive a classification model that can be ap-
plied to images of the same modality and the same body part. Each pixel in
an image is treated as an individual characterized by its intensity, position,
neighborhood, or the local features around it. Two of the most common clas-
sification techniques used in medical image segmentation are Decision Tree
(Safavian and Landgrebe, 1991) and Artificial Neural Networks (Litjens et al.,
2017).
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• Clustering: While classification methods use training data and are considered
as supervised learning, the clustering approach is unsupervised. It divides
an image into different regions based on the statistics of the dataset. The two
most common clustering methods used for medical image segmentation are K-
Means (Lee et al., 2008; Muda and Salam, 2011) and Fuzzy C-Means (Li et al.,
2008; Balafar et al., 2008).

With the increasing complexity of medical imaging problems, the interest of the
research community has shifted from atlas-based or deformable models to methods
of the machine learning family (Clarke et al., 1995; Pham et al., 2000; Sharma and Ag-
garwal, 2010). The swift emergence of deep learning, a branch of machine learning,
has been gaining much attention, if not almost all of the attention (Qayyum et al.,
2018; Cai et al., 2020) for its efficiency and potential in solving not only image seg-
mentation problems but also many other medical image analysis problems (Litjens
et al., 2017).

As mentioned above, for our particular muscle segmentation problem with few
annotations, non-supervised methods such as threshold, deformable model, or clus-
tering are not suitable. In this work, our focus is on atlas-based segmentation and
deep learning methods.

4.1 Atlas-based segmentation

Atlas-based segmentation (Rohlfing et al., 2005; BachCuadra et al., 2015) is a widely
used method in medical image analysis that involves using an atlas to help separate
the anatomic structures in a medical image. An atlas is a labeled reference, which here
we considered as two images: a reference MRI image and a label image that contains
the segmentation information of the reference image done by medical experts. The
reference image is registered to a new image that needs to be segmented; the trans-
formation found by the registration process is then applied to the label image of the
reference to obtain a new label image that contains the segmentation information
of the image considered. The segmentation problem now turns into a registration
problem.

4.1.1 Registration

In image processing, registration is a process of finding a correct transformation that
can bring an image into spatial correspondence with another image. A registration
problem between 2 images (F: fixed image, M: moving image) can be formulated
as an optimization problem that maximize a similarity measure S with a spatial
transformation T∗ of type T :

T∗ = arg max
T∈T

S(F, M; T) (4.1)

A registration system is defined based on the main criteria: the primitives used,
the nature of the transformation, the similarity criterion, and the optimization method.
These criteria are not independent of each other and depend on the type of images,
the imaging modalities, and the specific registration problem (2D/3D, mono/multi-
modal, intra/inter-patient ...).
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4.1.1.1 The primitives used

There are two types of primitives: extrinsic and intrinsic. The extrinsic primitives are
the stereotactic framework, the markers or the calibration of the acquisition systems.
Intrinsic primitives (the content of the image) are the most used. A method can be
based on one of the characteristics extracted from the image (points of reference,
anatomical structures, local descriptors, ...) or the intensities of the pixels.

4.1.1.2 The nature of transformation

The transformations used in the registration are divided into four categories. A rigid
transformation contains only translations and rotations. An affine transformation in-
cludes, in addition to rigid transformation, scaling, homothety, and shear mapping.
It retains the parallelism between the lines. A projective transformation has more
degrees of freedom than an affine transformation as it does not preserve parallelism
but only the projective structure. The three previous transformation types are all
linear. On the other hand, a transformation can also be non-linear.

The nature of the transformation T has to be defined according to the prob-
lem. In our case, a linear transformation would not be able to find the small local
changes in the muscles, so we aimed for a deformable registration method. There
are two types of models to represent such transformation: parametric and non-
parametric. A preliminary test on two popular approaches that represent these
two types: B-spline deformation (Rueckert et al., 1999) for parametric model and
Demons (Thirion, 1998) for non-parametric model has yielded a result in favor of
the B-spline deformation method on which we will concentrate from now on.

The application of B-splines in non-rigid image registration of MR images was
introduced by Rueckert et al. (Rueckert et al., 1999). The global deformations of
images needed to be modeled first by a rigid or affine transformation, while the local
changes would be modeled by a free-form deformation (FFD) based on B-splines.

Let the image volume be denoted as Ω = {(x, y, z) | 0 ≤ x < X, 0 ≤ y < Y, 0 ≤
z < Z}. The basic idea of FFD is to manipulate a mesh Φ of nx × ny × nz control
points ϕi,j,k of Ω. the FFD can be written as the 3-D tensor product of the familiar
1-D cubic B-splines (Rueckert et al., 1999):

Tlocal(x, y, z) =
3

∑
l=0

3

∑
m=0

3

∑
n=0

Bl(u)Bm(v)Bn(w)ϕi+l,j+m,k+n (4.2)

where i = ⌊x/nx⌋, j = ⌊y/ny⌋, k = ⌊z/nz⌋, u = x/nx − ⌊x/nx⌋, v = y/ny⌊y/ny⌋,
w = z/nz − ⌊z/nz⌋ and Bl represents the lth basis function of B-spline:

B0(u) = (1 − u)3/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u + 1)/6

B3(u) = u3/6

The B-splines are locally controlled, so they are very computationally efficient
even for a large number of control points. Thus, it is possible to use this transfor-
mation in a multi-resolution approach where the local transformation is calculated
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at different levels defined with different resolutions of the control mesh. The final
transformation will be the sum of the transformation computed at all levels.

4.1.1.3 Similarity criterion

The criterion of similarity depends mainly on the primitives used. If the method is
based on features extracted from the image, the similarity criterion will be the dis-
tance between the corresponding primitives (points, lines, or pieces), which will be
minimized. In intensity-based registration, the most common criterion is based on
the quadratic error for images acquired with the same modality and on correlation
ratios or measures from information theory (and mainly: mutual information) for
images from different modalities (Maes et al., 2015). We use the measure of mutual
information in the following, even if the modalities of the images are the same be-
cause we have observed that it allows us to obtain satisfactory registration for our
different projects.

The mutual information can be defined with the following formula:

MI(A, B) = H(A)− H(B)− H(A, B) (4.3)

where H(A) and H(B) are marginal entropies of images A and B respectively and
H(A, B) is their joint entropy. The entropies are defined as:

H(A) = −
∫

pA(a) log pA(a)da (4.4)

H(B) = −
∫

pB(b) log pB(b)db (4.5)

H(A, B) = −
∫

pAB(a, b) log pAB(a, b)dadb (4.6)

where pA, pB and pAB are respectively marginal probability density functions for
A and B and their joint probability density function. The larger the MI, the more
similar the two images.

4.1.1.4 The optimization method

The optimization method depends mainly on the choices of the previous criteria.
For methods based on geometric primitives (landmarks, local descriptors, etc.), the
optimal transformation can be found with the least squares algorithm. In the case of
intensity-based methods, gradient descent methods are very often used.

4.1.2 Mono-atlas segmentation

The figure 4.1 summarizes the principle of mono-atlas segmentation. An atlas A will
be the grouping of the intensity image and the manual segmentation A = (AF, AS).

The optimized transformations are then applied to the manual segmentation
using, for the interpolation step, a method that does not create new labels like the
k nearest neighbors. With a single atlas, relevant multi-organ segmentation can be
obtained, as in the case of bones in X-ray imaging (Moreau et al., 2016).

Nevertheless, segmentation by atlas registration is very dependent on the regis-
tration process: segmentation errors will mainly come from errors related to the fact
that the registration of the atlas image on the target image has partially or entirely
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FIGURE 4.1: Principle of segmentation by image registration. The atlas image (left) is
registered on the image to be segmented (right); the resulting deformation field is applied to

the atlas segmentation to obtain a segmentation of the target image.

failed. In order to improve the capability of this method, one approach consists in
using several atlases to represent more anatomical diversity and intensity variability.

4.1.3 Multi-atlas segmentation

Multi-atlas segmentation (MAS) is one of the most recent segmentation methods
introduced for medical imaging applications (Rohlfing et al., 2004). The two main
strategies to take into consideration different atlases are: either to find and use only
the atlas that is most representative of the image to be segmented or to merge the
segmentations obtained with the different atlases.

In the case that involves merging segmentations produced with different at-
lases, for each atlas, we apply the procedure as in the mono-atlas method to acquire
a segmentation of the target image (referred as an candidate segmentation). After this
step, we have a number of candidate segmentations equal to the number of atlases.
These segmentations should be merged to produce one final segmentation.

Label fusion is the core step in MAS which can define the accuracy of the method.
The simplest fusion method is major voting, which chooses, for each pixel, the most
frequent label suggested by the candidate segmentations. This method is likely to
have low accuracy when the target image is very different from the atlases as it ig-
nores the image intensity information in voting.

An extension of major voting is weighted voting. Global or local weights can be
distributed to favorite the candidate segmentation derived from the training images
the most similar to the test image. In general, global weighting (Artaechevarria et al.,
2008) is not adapted to the spatial anatomical variations in medical image registra-
tion. There are many label fusion methods based on local or semi-local weighted
voting that make use of local intensity (local cross-correlation (Artaechevarria et al.,
2009), local mutual information (Nie and Shen, 2013), local intensity difference (Išgum
et al., 2009)), local features (Kasiri et al., 2014) and many other different metrics (Ra-
mus et al., 2010; Tamez-Peña et al., 2012; Depa et al., 2010). However, optimal weight
metrics remain unclear.
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In most cases, weights are distributed independently for each atlas, not consid-
ering errors produced by correlated atlases. Wang et al. (2013) has developed the
joint label fusion method that took into consideration the structural correlation be-
tween the atlases to minimize expected error. We have adopted this approach of
Wang et al. that includes a posterior correction algorithm (Wang and Yushkevich,
2013) based on an automatic learning process. This approach has been used in par-
ticular to segment regions of the brain and leg muscles of dogs in MRI scans.

4.1.4 Multi-atlas segmentation with joint label fusion and corrective learn-
ing

This approach involves two consecutive steps: joint label fusion (JLF) Wang et al.
(2013) and an optional step of correction by automatic learning (CL) Wang et al.
(2011). These two steps are described below and are illustrated in Figure 4.2.

FIGURE 4.2: Principle of the multi-atlas segmentation method with JLF+CL Wang and
Yushkevich (2013). This approach has two parts: the joint label fusion (JLF) then a correc-

tive learning (CL) part. For the latter, a training step is necessary.

4.1.4.1 Joint label fusion

To remedy the problem of label fusion in muli-atlas segmentation, Wang et al. (2013)
proposed a strategy derived from weighted voting where the problem is the opti-
mization of weights to minimize the error made on the segmentation of the target
image. However, since this error is unknown, Wang et al. (2013) propose to estimate
it using the similarity of intensities in the proximate neighborhood of pixels, which
addresses the problem of noisy segmentation results.

This method, which merges labels using both spatial domain and grayscale sim-
ilarity, is named Joint Label Fusion and abbreviated to JLF. The JLF algorithm pro-
duces, for each label and at each pixel, a probability that will allow a consensus
vote to be taken. In the end, the algorithm determines for each pixel the label that
received the highest probability. The main difference between JLF and other label
fusion methods is that it considers the correlation between atlases when calculat-
ing weight maps. Thus, in the extreme case where an atlas is included twice, this
approach will lead to the same result as if it had been included only once.

Let TF be an image to be segmented and A1 = (A1
F, A1

S), ... , An = (An
F, An

S) the
n mono-atlas segmentation results of TF based on n available atlases, Ai

F is the ith
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warped atlas image registered on TF and Ai
S the corresponding candidate segmen-

tation.

For each pixel x, it is possible to model the segmentation error for the label l
(where l ∈ [1, L] and L is the number of labels) by:

δi
l(x) = I [TS(x) = l]− I [Ai

S(x) = l] (4.7)

where I [.] represents the indicator function (which is 1 if the condition is true, 0
otherwise) and thus δi(x) can take only three values δi(x) ∈ {−1; 0; 1} and TS(x)
represents the unknown segmentation to be obtained. The distribution of this error
for n atlas can be written:

qi
l(x) = p(|δi

l(x)|=1 | TF, A1
F, . . . , An

F) (4.8)

To produce the consensus segmentation S , the weighted voting strategy is used.
In the binary case, this weighting is formulated as :

S(x) =
n

∑
i=1

wi(x)Ai
S(x) with

n

∑
i=1

wi(x) = 1. (4.9)

The goal is to determine the weights wi that minimize the mean error between
the proposed segmentation S and the reference segmentation TS:

Eδ1(x),...,δn(x)

[(
TS(x)− S(x)

)2
∣∣∣ TF, A1

F, ..., An
F

]
= Eδ1(x),...,δn(x)

( n

∑
i=1

wi(x)δi(x)

)2
∣∣∣∣∣∣ TF, A1

F, ..., An
F

 (4.10)

=
n

∑
i=1

wi(x)
n

∑
j=1

wj(x)Eδi(x),δj(x)

[
δi(x)δj(x)

∣∣∣ TF, A1
F, ..., An

F

]
= wT

x Mxwx

where wx is the vector
[
w1(x); . . . ; wn(x)

]
and Mx is the matching matrix of atlases i

and j.

From the known Mx, the optimal weights w∗
x are determined by the minimiza-

tion :

w∗
x = argmin

wx

wT
x Mxwx + α∥wx∥2 (4.11)

where α is a coefficient of the regularization term that constrains the w dynamic,
whose value is generally set at 0.1 (Wang and Yushkevich, 2013).

Wang proposed to compute the elements of Mx using the local similarity of the
warped atlas images i and j with the image to be segmented TF. That means:

Mx(i, j) = Eδi(x),δj(x)

[
δi(x)δj(x)

∣∣∣ TF, A1
F, ..., An

F

]
= p

(
δi(x)δj(x)=1

∣∣∣ TF, A1
F, ..., An

F

)
(4.12)
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can be formulated with Ai
F and Aj

F and be assumed independent to the other atlases:

Mx(i, j) = p
(

δi(x)δj(x)=1
∣∣∣ TF, Ai

F, Aj
F

)
(4.13)

Now assuming that pixels far from x have no influence on this probability, then
the Mx element (i, j) can be expressed only on N (x), the neighborhood. We have
then:

Mx(i, j) = p
(

δi(x)δj(x)=1
∣∣∣ {TF, Ai

F, Aj
F|y ∈ N (x)

})
(4.14)

∝

[
∑

y∈N (x)
|TF(y)− Ai

F(y)|.|TF(y)− Aj
F(y)|

]β

with β, a parameter of the model which will be classically set to 2, larger β will put
more weight on the most similar patch.

In the multi-class case, the average error is generalized as:

Eδ1(x),...,δn(x)

(I [TS(x) = l]−
n

∑
i=1

wi(x)I [Ai
S(x) = l]

)2
∣∣∣∣∣∣TF, A1

F, ..., An
F

 (4.15)

= wt
xMxwx

and Mx becomes:

Mx(i, j) ∼
[
⟨|Ai

F(N (x))− TF(N (x))|, |Aj
F(N (x))− TF(N (x))|⟩

]β
(4.16)

with ⟨., .⟩ the scalar product and |Ai
F(N (x))− TF(N (x))| the vector of the absolute

deviations, on the patch N centered in x, of the intensities between the image to be
segmented TF and the warped atlas images Ai

F and Aj
F.

The context around x in the image to be segmented may not correspond per-
fectly to those in the resized atlases. In order to improve the estimation of Mx, sev-
eral patches N (x + ϵ) centered at different positions ϵ around x will be tested. The
one that minimizes the error between Ai

F(N (x + ϵ)) and TF(N (x)) will be kept for
the calculation of M and Ai

S(N (x + ϵ)) for the weighted voting. The largest value
of ϵ for testing is defined by the radius of the search neighborhood that we note Nr.

To make the algorithm more robust in the case of images with different inten-
sity dynamics, which is common in MRI, the patches are normalized before being
compared. The size of the patches N and of the research neighborhood Nr depend
on the size of the structures to be segmented. In our case, we set the size of the im-
age patches N to 5x5x5 pixels and the size of the search neighborhood Nr to 8x8x8
pixels.

The probability of having the label l at the position x for the image to be seg-
mented TF is:

p(l|x, TF) =
n

∑
i=1

wi
xI(Ai

S(x) = l) (4.17)

To obtain a segmentation, all that remains to be done is to determine the most
likely label for each x.
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4.1.4.2 Corrective learning

The algorithm of Corrective Learning (CL) aims to detect and then correct segmenta-
tion errors systematically committed by an automatic segmentation algorithm. Un-
like random errors, which are due to noise or random anatomical variations, system-
atic errors are predictable given a set of conditions (e.g., shape, location, organ, and
intensity in the image). The source varies: small variations in anatomical definitions,
discontinuities in manual segmentations, or biases between a priori knowledge in-
cluded in automatic methods and the data to be segmented.

A correction approach, based on machine learning, is proposed in Wang et al.
(2011). Applied to MRI imaging, a 20% to 70% decrease in the number of poorly
segmented pixels is observed on four automatic segmentation algorithms, including
JLF. In the following, this correction algorithm for JLF is explained, starting with the
learning phase.

Each atlas will be segmented by JLF as if it were an image to be segmented.
However, the JLF will only rely on the other available atlases to perform this seg-
mentation. Since the expert segmentation is available for this atlas under test, it will
be possible to determine the errors made by JLF. Applying this for all atlases (Leave-
One-Out protocol) makes it possible to build a database to learn systematic errors
made by JLF and establish a correction model for each label.

To consider only the areas that potentially need to be corrected, a working re-
gion is created for each label. This region is associated with the label of interest
morphologically dilated with a structural element of radius rd.

For each pixel x in this working region, a feature vector F (x) is extracted,
which covers the relative spatial position, characteristics of appearance (intensity
value) and segmentation context in a neighborhood X of size N f . The relative
spatial position is the relative coordinate of x to the barycenter of the working re-
gion. The appearance and contextual characteristics are also reduced by each of
the spatial components in order to increase the spatial correlation. Wang proposed
a neighborhood of size 5 × 5 × 5 and thus obtains a feature vector F (x) in x of
3 + 125 + 125 + 3 × 125 = 1003 dimensions.

All pixels in this region are used for training, and the training dataset will be
constructed by the pairs F (x, xl) where xl corresponds to the label of the pixel x. The
learning algorithm used by Wang is the AdaBoost binary classification algorithm
(Freund and Schapire, 1996), a precise description of which is given in Zhou (2012)
and explained in the appendix C. It will produce, for each label and each pixel, a
correction model.

When correcting a new image, each pixel, previously labeled by the JLF, will be
tested using the same working region definition and characteristics. The pixel will
be reassigned to the label whose correction model has given the highest confidence.

4.1.4.3 Perspectives

An assessment of the adaptation capability of this method on our dataset will be pre-
sented in Chapter 7. Briefly, the method gives highly accurate segmentations with an
average DSC of 0.918 on 7 subjects with manual segmentation. However, since our
image volume is much larger than images in the brain dataset, for which this method
was initially built, the computational time is exceptionally high, with inference time
around 50 hours for an image. Moreover, the large morphological variation in our
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dataset also causes an unbalance in the results with the lowest DSC only at 0.859. To
address these limitations, we opt to study another family of methods that have been
received much attention from the research community: Deep Learning.

4.2 Deep learning for image segmentation

In recent years, the domain of image processing has witnessed an explosion of deep
learning approaches, or also called Artificial Neural Networks (ANN), the result of the
confluence of the big data and computer vision communities with the democratized
utilization of GPU-type computing resources.

Traditional machine learning classifiers regroups the problem of features engi-
neering and decision model optimization, which are two separate complicated steps
with, at the same time, a complicated relationship. The ANNs have simplified this
problematic by fusing these two steps into one model, which learned automatically
and iteratively image features using back-propagation of the prediction error. Con-
cerning the segmentation of medical images by ANNs, the different approaches and
difficulties are widely discussed in the works of Rizwan I Haque and Neubert (2020)
and Tajbakhsh et al. (2020).

4.2.1 Convolutional Neural Networks

Since the breakthrough of Lecun et al. (1998), Convolutional Neural Networks (CNNs)
strived through as the most popular type of ANNs in image processing with numer-
ous applications, among which is the record-breaking result on the ImageNet dataset
(Krizhevsky et al., 2012). The classical CNN architecture is presented in Figure 4.3.
A CNN usually consists of three main type of layers, the convolution followed by
an activation function, then a subsampling (or pooling) of feature maps.

FIGURE 4.3: CNN architecture by Lecun et al.

4.2.1.1 Convolution

The convolution layer uses kernels of type K, also called filters, that perform con-
volution operations as it is scanning the input I with respect to its dimensions. In
two-dimensional case (2D), it can be formulated as:

(I ∗ K)(i, j) = ∑
a

∑
b
I(a, b)K(i − a, j − b) (4.18)

A simple illustration of a 2D convolution operation is presented in Figure 4.4.
The output is called a feature map. Along each axis, the size of the feature map
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is slightly smaller than the input size. Since the kernel has its width and height
greater than one and the operation can only be computed where the kernel fits
wholly within the input, the size wF × hF of the feature map F = I ∗ K are given
by:

wF × hF = (wI − wK + 1)× (hI − hK + 1) (4.19)

FIGURE 4.4: Two-dimensional convolution operation with a kernel of size 3 × 3. The
output is called a feature map. The elements used to compute the first output element (in

red) are shaded in blue.

To make the size unchanged, a conservative padding can be applied to the input
image by adding zeros around its boundary so that there is enough space to fit the
kernel when the center of the kernel overlaps the first element of the original input.

It is possible to stack multiple convolution layers by repeating the convolution
operation on the resulted feature maps to obtain deeper feature maps. Since each filter
scans the input in parallel and independently, the number of filters used corresponds
to the number of feature maps, i.e., the number of output channels. With the same
number of filters, for multi-channel input, the number of output channels remains
the same as filters usually mix information from all the input channels. The number
of learnable parameters of a convolution layer would be:

|w| = (wK × hK × |I|+ 1)× |K| (4.20)

where |I| is the number of kernels of the input image and |K| is the number of
kernels used in this convolution layer. The number 1 added corresponds to the bias
term for each filter.

4.2.1.2 Activation function

Activation function is used to determine the mapping between the input and the
output of a layer or of the entire neural network. Traditionally, the value given is
either 1 or 0 corresponding to the neuron being activated or not, hence the name
activation function. To adapt to the complexity of ANNs and the variability of train-
ing data, nonlinear functions are used for most problems. The three most popular
nonliear activation function are sigmoid, hyperbolic tangent and Rectified Linear Unit
(ReLU) (Nair and Hinton, 2010). These functions are illustrated in Figure 4.5 and
formulated as in Equation 4.21, 4.22, and 4.23 respectively.

σ(x) =
1

1 + e−x (4.21)
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FIGURE 4.5: Function curves of sigmoid, hyperbolic tangent and ReLU.

tanh(x) =
e2x − 1
e2x + 1

(4.22)

ReLU(x) = max(0; x) (4.23)

Since hyperbolic tangent can be reformulated from the sigmoid function, their
performance is similar. Both functions are mainly used for binary classification prob-
lems. The disadvantage of these functions is that they tend to saturate, which causes
a phenomenon called vanishing gradient where the gradient becomes vanishingly
small, preventing the weights from changing and making the model stuck at the
training time. ReLU function was built to resolve this problem (Nair and Hinton,
2010) and, at the same time, accelerate the convergence. Despite the possibility of
activating exploding gradient problem, where, because of the inappropriate mapping
of negative values, the model cannot fit or train from the data properly, ReLU in
combination with Adam optimizer (Ruder, 2016) (Sec. 4.2.1.5) is used in almost all
the recent CNNs.

For multiclass classification, an activation function called softmax is often ap-
pended to the last layer of the network. It is formulated as follow:

softmax(xi) =
exi

∑L
j exj

(4.24)

where L is the number of classes/labels. This returns, for each pixel of the input
image, a vector of values between 0 and 1 whose sum is equal to 1. Each value can
be interpreted as the probability that a pixel belongs to a label; we then distribute
the label with the highest probability to that pixel.

4.2.1.3 Pooling

The pooling layer, also called downsampling or subsampling, is usually the last layer
of a convolution block. It transforms the output of the activation function by scan-
ning the feature maps patch by patch and distributing a single statistical value for
each patch, often maximal, minimal, or average value of all the values in the patch.
This operation progressively reduces the spatial resolution of feature maps, thus
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reducing computation time and memory consumption, keeping compact represen-
tative information, and providing invariance to translation. The most common pool-
ing operation is MaxPooling which extracts the largest value of a given image patch
to represent it.

4.2.1.4 Loss function

A network needs to be optimized accordingly to a loss function (also called cost func-
tion) so that its parameters are updated iteratively to search for the minimal value of
this function. The most frequent loss functions for multiclass segmentation are cat-
egorical cross-entropy (CCE) and derivable multiclass DICE loss (DDL) (Milletari et al.,
2016). While the CCE evaluates directly each pixel in multiple-class manner, the
DDL separates the problem into multiple binary classifications. The two loss func-
tions are formulated in Equation 4.25 and 4.26, respectively.

LCCE(ŷ, y) = −
L

∑
i

N

∑
j

y(i)j log p̂(i)j (4.25)

LDDL(ŷ, y) = 1 −
L

∑
i

N

∑
j

2p̂(i)j onehot(i)(yj)

( p̂(i)j )2 + onehot(i)(yj)
(4.26)

where L is number of labels, N is the size of the output, y is the ground truth, ŷ
is the prediction by model, p̂(i)j is the predicted probability that the jth element of
ŷ correspond to the label i. The one-hot encoding of yj based on label i consists of
transforming the value of this element into 1 if yj = i and into 0 otherwise.

4.2.1.5 Optimization of parameters

To improve the opitimisation of multi layers networks, the parameters w need to be
updated in respect to the error on the loss function L. The iterative evolution of w is
done by gradient descent:

wt+1 = wt − η∇wL(w) (4.27)

with η the learning rate, which determines how much the weights change after each
iteration t. This approach converges to a solution when the gradient becomes close
to zero.

Back-propagation Introduced in Rumelhart et al. (1995), the back-propagation al-
gorithm allows an efficient implementation of the calculation of the gradient, based
on the chain rule. The chain rule allows computing the gradient of each layer to
update the parameters of each layer independently. The step of updating the pa-
rameters is determined by an optimization algorithm (i.e., optimizer).

Stochastic gradient descent The stochastic gradient descent (SGD) (Ruder, 2016)
is a gradient descent optimization technique, adapted to the neuron networks for
supervised learning problems with a large database. The SGD hypothesizes that
the gradient can be approximated using only one data point to reduce computation
time enormously. It is also common to use a small number of data points (mini-
batches) instead of one to denoise the gradient. The algorithm proposes to sample
without replacement, at each iteration, a set of mini-batches. The larger the size
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of the mini-batches, the more the variance of the parameter updates are reduced
under the effect of averaging gradients. Including a momentum β to the process can
accelerate the convergence even more with the velocity adapted to the slope of the
landscape depicted by the loss of the training set. Another way of formulating the
standard gradient descent in Equation 4.27 is:

wt+1 = wt − vt+1 with vt+1 = η∇wL(w) (4.28)

when adding a momentum, vt+1 becomes:

vt+1 = βvt + η∇wL(w) (4.29)

Adaptive Moment Estimation Adaptive Moment Estimation (Adam) (Kingma and
Ba, 2015) is the most popular optimization method recently proposed. Adam intends
to improve the gradient momentum while adapting the learning rate to the magni-
tude of gradients. Considering the gradient of the cost function of a neural network
as random variable, its first moment is the mean:

mt = γ1mt−1 + (1 − γ1)
∂L
∂w

(4.30)

and its second moment is the uncentered variance:

vt = γ2vt−1 + (1 − γ2)
∂L2

∂w
(4.31)

where γ1 and γ2 are two newly introduced hyper-parameters of the algorithm. The
values of these moments are then corrected to avoid bias to zero:

m̂t =
mt

1 − γt
1

v̂t =
vt

1 − γt
2

(4.32)

The model weight update can be performed as follow:

wt = wt−1 −
η√

v̂t + ϵ
m̂t (4.33)

4.2.1.6 Regularization

In machine learning, one of the most common problems is overfitting, where the
model performs exceptionally well on training data but cannot predict expected re-
sults on test data. Assuming sufficient training data, the more complex the model,
the more prone it is to overfitting, hence addressing this problem in deep learning
with regularization methods.

Early stopping When training a supervised model, one usually looks at the evo-
lution of the values of the loss function on the training data and a set of validation
data. One can then observe the improvement in performance over iterations and
stop when a plateau is reached. Meanwhile, if the model starts to overfit, the loss
on the validation data will increase. The most straightforward method to avoid this
problem is to stop the training process after a certain number of iterations without
improvement on validation data and conserve the weights of the iterations with the
best performance on validation.
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Weight penalization Adding a constraint of the parameters is a classical approach
to limit the overfitting phenomenon of a supervised model. L1 and L2 norms on w
are the most common: They update the general cost function by adding a regular-
ization term on the network parameters. The term differs in L1 and L2, and it has
a specific effect on the evolution of the parameters, either in terms of parsimony or
amplitude.

Dropout The dropout layer (Srivastava et al., 2014) is a simple method of regular-
ization, which limits the overfitting by encouraging the activity of a random parti-
tion of the weights, rather than centralizing the influence of the prediction on the
same set of parameters. During the training phase, the dropout layer cancels a spe-
cific amount of neurons of its preceded layer to promote the creation or the develop-
ment of other features.

Data augmentation Another simple but effective way to prevent overfitting is to
increase the size and the variability of the training data. While adding annotated
data can be too costly, data augmentation generates new training data, either based
on the existing training data or a specific model. Depending on the problem to be
solved, the simulation may be more or less complicated.

Batch Normalization While mini-batch is indispensable when training large net-
works on a GPU with limited memory, the distribution of inputs to network layers
may change after weight updates (also called internal covariate shift), which makes
the training process unstable and slows down the convergence of the loss func-
tion. Batch normalization is applied to the activation of a mini-batch to standardize
the inputs to the next layer (Ioffe and Szegedy, 2015), making the training of that
layer less dependent on the previous one. Considering a mini-batch B of N values:
B = {xi, i = 1..N}, we first normalize all the values in B:

xi,norm =
xi − µB√

σ2
B + ϵ

(4.34)

with µB and σB mean and variance of B. The values are then scaled and shifted with
2 learnable parameters γ and β:

x̂i = γxi,norm + β (4.35)

Batch normalization stabilizes the training process, accelerates the loss conver-
gence, and improves the robustness to high learning rate and random initialization
(Santurkar et al., 2018).

4.2.2 UNet architecture

Since its introduction in 2015 by Ronneberger et al., UNet has become one of the most
popular CNN architecture for medical image segmentation. The network is based
on the encoder-decoder architecture, composed of two distinct parts, an encoder,
and a decoder. The former has the role of encoding the visual and semantic fea-
tures by compressing the representation while the latter progressively reconstructs
the feature maps up to the input resolution. UNet distinguishes itself by the use
of skip connection at each resolution (Fig. 4.6), which transmits the feature maps
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from the encoder block to the corresponding decoder block, in order to improve the
localization of high-level features.

FIGURE 4.6: Example of a 4-levels UNet architecture with 32 feature maps at the first
level.

Many variants have been proposed to improve the performance of UNet. They
often consist of a modification of the architecture and the proposal of a cost function
adapted to the learning of this new architecture. Four types of improvements can be
distinguished:

The original UNet is two-dimensional (2D); while it can be applied to 3D im-
ages by separating the volumes into stacks of 2D slices, the network has difficulties
integrating spatial contexts along the last axis. The first type of improvement con-
sists of reintegrating these contexts into the network. While 3D networks, such as 3D
UNet (Çiçek et al., 2016) and V-Net (Milletari et al., 2016), suffer from high compu-
tational costs, more practical approaches were proposed, among which are Li et al.
(2019)’s Z-Net (new patch division strategy and separation of 3D convolution into
2D then 1D convolutions), Li et al. (2019)’s H-DenseUNet (the intra-slice 2D repre-
sentations and inter-slice 3D features are jointly optimized through a hybrid feature
fusion layer), Alkadi et al. (2019)’s 2.5D UNet (upper and lower slices of each input
2D slice are added as supplemental channels), Haque et al. (2019)’s multi-directional
UNet (3 differents 2D UNets are trained with slices extracted from 3 different di-
rections then the final segmentation is voted with the winner takes it all principle),
and Perslev et al. (2019)’s novel weighted multi-directional UNet (similar to Haque
et al.’s. However, the weights of UNets are learned automatically).

The second one consists of improving the encoder in particular by taking inspi-
ration from classification network architectures. For example, ResUNet (Zhang et al.,
2018) is based on residual blocks (introduced in the classification network ResNet
(He et al., 2016)) for its encoder part and uses the mean square error as a cost func-
tion. The residual blocks facilitate training by allowing the layers to model the resid-
uals and not the complete model. The gradient propagation is also less attenuated
by these blocks, making it possible to create extremely deep networks (more than
100 layers) and thus increase the network’s capacity to acquire high-level concepts.
An extension of ResUNet, ResUNet++ (Jha et al., 2019) adds, among other things,
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the use of attention units to ResUNet. These units determine which part of the data
should have more attention and reduce the computing time.

The third type of improvement is to increase the frequency of skip connections.
Notably, UNet++ (Zhou et al., 2020) and UNet3+ (Huang et al., 2020) propose to
redesign skip connections for aggregating features at varying scales. UNet++ intro-
duces the focal loss and redesigns skip connections with dense connectivity to allow
better optimization and attain lower validation loss, while UNet3+ tries to explore
more information from full scales and via a hybrid loss function that captures both
fine and large scale structure with clear boundaries. Both UNet++ and UNet3+ take
advantage of deep supervision (Lee et al., 2015) to learn hierarchical representation
from aggregated full-scale features.

The last type is using a cascade of networks such as the Stacked Hourglass
Model (SHG) (Newell et al., 2016; Vigneault et al., 2018), which integrates a suc-
cession of several encoder-decoder networks, which could be UNet, in a single large
network. The first sub-networks are used as residual blocks, i.e., the input of a sub-
network is the concatenation of the previous segmentation and the previous input.
Each subnetwork output is associated with an intermediate objective segmentation
according to a deep supervision strategy, which, combined with the residual con-
nections, forces subnetworks to learn to refine the previous segmentation.
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CHAPTER 5

Muscle segmentation from MR Images

In this chapter, we remind the readers about the main difficulties of our task, which
is the segmentation of muscles from MR images, and review some of the existing
popular approaches in medical image segmentation.

5.1 Segmentation challenges

Segmentation of the muscles from MR images has always been a challenge due to
the lack of defined muscle boundaries, intensity inhomogeneity, bias field, or ac-
quisition artifacts (Prescott et al., 2011) (Fig. 5.1). In the case of the MUM runners
who participated in the project MUST, professional athletes with highly developed
quadriceps muscles and a minimal amount of body fat, most of the time, the de-
termination of muscle boundaries is not apparent even for medical experts. These
problems make the use of standard automatic segmentation methods such as thresh-
olding or clustering impractical.

FIGURE 5.1: Image showing features which cause segmentation difficulties: lack of de-
lineating landmarks (vertical arrow), high contrast intramuscular adipose tissue (diagonal
arrow), flow artifacts (horizontal arrow), and bias fields (marks showing low and high in-
tensity subcutaneous fat regions, which should be same intensity). Image extracted from

Prescott et al. (2011)

Even in an apparently homogeneous population as the athletes of Tor des Géants,
there is a large morphological variation since the quadriceps is the largest muscle
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group in the human body. For instance, the ratio muscle/fat in women is very dif-
ferent from men. It has been shown that pelvis and femur structure is also very
different between men and women (Delavier, 2003). Women tend to have a wider
pelvis, therefore larger Q-angle (the angle that the femur makes between the hip and
the knee) (Fig. 5.2). These differences might need special attention in the next part
of our study.

FIGURE 5.2: (a) Difference between male and female pelvis - femur structure. Women
have wider pelvis, therefore larger Q-angle (Canbolat et al., 2018). (b) Images of a young
male (ALB-2725), an older male (ANG-2014), and a female (CAL-4223) runner in MUST

dataset, red circles point to the rectus femoris (RF) muscle head.

We can also see in Figure 5.2 that the older male (ANG-2014) and the female
(CAL-4223) have similar muscle distribution: the RF is more on the right compared
with the other runners. ANG-2014 is the oldest runner in the competition; at the
time of the race, other runners were around 30-40 years old, while ANG-2014 was 75
years old. He has a smaller muscle volume and is anatomically quite different from
the other male runners.

5.2 Human quadriceps segmentation

Some recent studies have addressed the automatic segmentation of quadriceps mus-
cles (Gilles et al., 2016; Prescott et al., 2011; Ahmad et al., 2014; Andrews and Hamarneh,
2015; Le Troter et al., 2016) but none has archived an accurate segmentation at the
boundaries of the muscles, which is very important in the quantification of volume
change in our longitudinal project.

As mentioned above, we have in hand the results of an automatic segmenta-
tion method for the entire dataset (Fig.5.3). The method is based on deformable
model and shape-matching with the necessity of a preliminary bone segmentation,
initial seed points, and sometimes manually set boundary constraints (Gilles and
Magnenat-Thalmann, 2010).

Briefly, an initial model was defined by manually segmenting all quadriceps
heads of interest (vastus medialis (VM), vastus lateralis (VL), vastus intermedius
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FIGURE 5.3: Visual comparaison between manual segmentation and a segmentation by
Gilles et al. of ALB-2725.

(VI) and rectus femoris (RF)) and bones (femur, patella and pelvis) from one sub-
ject. After conversion to a 3D triangle mesh, this model was considered as a refer-
ence template for the registration process. This template was iteratively deformed to
match contours in target images from other subjects. The deformation process was
driven by external forces to maximize the correlation between reference and target
images around the surface, and internal forces to maintain smooth surfaces. The
contribution of external forces was iteratively increased to perform a robust coarse-
to-fine alignment. For computing image correlation during registration, all four con-
trast water, fat, IN-phase and OUT-phase images were used. 3D volumes were then
computed using the final meshes obtained for each quadriceps head. This process
was repeated for all individual subjects enrolled in the study, at all time-points of the
race. For all quadriceps head of interest, the best automatic segmentation accuracy
was obtained when using the calculated Water image.

The segmentations are not totally accurate, especially at the circumference of
the muscles (Fig. 5.3). With some postprocessing, they can still be used as a basis
for a statistical study of the image dataset (Nguyen et al., 2021b). However, we are
still not satisfied with the overall accuracy of these segmentations as, for now, we
cannot quantify, with precision, the muscles volume. The quantitative evaluation of
these segmentations is presented in Table 5.1, the results may differ from Gilles et al.
(2016) since we have acquired two more manual segmentation since its publication.

Based on this study of Gilles et al. and the observation of our radiologists, the
most suitable MR images used for the segmentation task are the Dixon Water only
images (see Sec. 2.3.1), here denoted T1W.
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Subject DSC DSCw HD (mm) MAD (mm) VS

ALB-2725 .913 .914 15.72 1.48 .115

ALF-4529 .897 .898 48.06 1.74 .075

ANG-2014 .778 .792 32.84 4.74 .187

ANS-3229 .901 .903 25.23 1.75 .047

ARS-4026 .915 .917 25.00 1.47 .048

CAL-4223 .756 .772 26.26 4.28 .233

OUK-2927 .890 .895 39.93 2.23 .092

mean±sd .864 ± .067 .870 ± .061 30.43 ± 10.78 2.53 ± 1.39 .114 ± .071

TABLE 5.1: Quantitative evaluation of Gilles et al.’s segmentations on 7 subjects with full
segmentation of right leg.
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Conclusion

Medical image segmentation has been one of the fastest developing sections of med-
ical image analysis, with methods varying from the most straightforward, such as
threshold, to the most complex, such as neural networks. Based on our observation
on the state-of-the-art of muscle segmentation, we have decided to lean our next
steps on the Wang and Yushkevich (2013)’s multi-atlas segmentation with joint label
fusion and corrective learning and the most popular network for image segmenta-
tion - UNet (Ronneberger et al., 2015).

In Part III, we will present our evaluation of these segmentation methods on the
MUST dataset and our propositions of improvement based on their strengths and
weaknesses. Furthermore, in Part IV, the proposed methods are applied to different
muscle study projects with further statistical analysis for local functional variation.
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PART III

Contributions to MRI
muscle segmentation
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Résumé

Dans cette partie, nous présentons nos contributions à la segmentation des quadri-
ceps images par IRM, appliquée explicitement sur la base des données MUST des
jambes des athlètes d’ultra-marathon : l’analyse de la méthode de segmentation par
recalage multi-atlas, l’application du réseau UNet avec augmentation de données et
l’intégration des mesures morphologiques pour optimiser les méthodes de segmen-
tation automatique.

Le chapitre 6 décrit la procédure de prétraitement appliquée aux images avant
la segmentation automatique. Il s’agit de correction d’inhomogénéité des signaux
IRM, et d’adaptation des jambes gauches sur les jambes droites. On compare aussi
les performances de segmentation manuelle des experts afin de définir les objectifs
pour nos algorithmes et identifier les difficultés.

Au chapitre 7, on fournit une analyse complète de la méthode de Wang and
Yushkevich, une segmentation multi-atlas avec une méthode de vote basée sur la
similitude des patchs (fusion d’étiquettes communes - Joint Label Fusion), et une
étape d’apprentissage correction d’erreur par AdaBoost. On étudie les impacts des
paramètres de la méthode et du nombre d’atlas sur la qualité de la segmentation et
le temps de calcul afin de déterminer ses limites.

Nous proposons, dans le chapitre 8, de remplacer l’étape de segmentation multi-
atlas de Wang and Yushkevich par un réseau UNet 2D faiblement supervisée, qui est
entrainé avec des données annotées manuellement et d’autres générées artificielle-
ment à l’aide de déformation aléatoire. Les résultats sont légèrement meilleurs que
ceux obtenues précédemment mais nécessitent un temps de calcul bien inférieur.

Enfin, dans le chapitre 9, nous présentons nos descripteurs morphologiques dé-
diés à la segmentation des quadriceps. Les descripteurs morphologiques permettent
d’améliorer les résultats de la segmentation automatique obtenus par la segmenta-
tion multi-atlas avec une approche d’apprentissage correctif utilisant une sélection
d’atlas basée sur la similarité morphologique de l’image à traiter. En outre, une stra-
tégie d’augmentation de données basée sur la morphologie est proposée et permet
d’augmenter la capacité de généralisation de notre réseau.
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Introduction

In this part, we present our contributions to quadriceps muscle segmentation based
on MRI data, applied explicitly on the MUST dataset of ultra-marathon athletes’ up-
per legs: the analysis of the interested multi-atlas segmentation method, the applica-
tion of UNet with data augmentation, and finally, the integration of morphological
features to optimize the automatic segmentation methods.

Chapter 6 describes the preprocessing procedure applied to the data before the
automatic segmentation. Though it can be used as a reference, this procedure is
specific for the MUST data set and might vary when applying to a new dataset.

In chapter 7, we provide a complete analysis of Wang and Yushkevich’s method,
a multi-atlas segmentation with a patch-similarity-based voting method (joint label
fusion), and a step of corrective learning by AdaBoost. We study the impacts of its
parameters and the number of atlases on the segmentation quality and computation
time in order to identify its limitations.

We propose, in Chapter 8, to replace the multi-atlas segmentation step in the
framework of Wang and Yushkevich with a 2D weakly-supervised UNet, which is
trained with manually annotated and artificially generated data.

Finally, in Chapter 9, we introduce our morphological features dedicated to
quadriceps segmentation. The morphological features help improve the automatic
segmentation results obtained by multi-atlas segmentation with a corrective learn-
ing approach using a selection of atlases based on morphological similarity to the
image to process. Furthermore, a morphology-based data augmentation strategy is
proposed with the objective of increasing the generalization capability of our net-
work.
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CHAPTER 6

Preprocessing & Manual segmentation

Here we present the preprocessing procedure applied to MR images of the MUST
dataset (Sec. 6.1) and how manual segmentations were obtained (Sec. 6.2). The
preprocessing procedure is specific to the MUST dataset and needs to be revised
when applying to a new dataset.

6.1 Preprocessing

MR sequences were acquired with DICOM format then were converted to NIFTI
for faster and simplified manipulation. All the subjects were anonymized and were
assigned a subject code.

Each T1W image in the MUST dataset was halved in the middle in coronal view
to get 2 separated image volumes of right and left leg. The left leg images were
flipped along the coronal axis to resemble the right leg ones. The images were then
processed with N4 algorithm to correct bias field (Tustison et al., 2010) and then
rescaled to the same intensity range as the alphabetically first image (right leg image
of the subject ALB-2725 at time point Pre) (Fig. 6.1).

6.2 Manual segmentation

The first five manual segmentations were done by medical experts using Horos, a
specialized DICOM viewer for MacOs exclusively. To facilitate the manipulation
and visualization of the segmentation, we have established a manual segmentation
protocol using 3DSlicer (Kikinis et al., 2014). With the help of a designer tablet and
the built-in manual segmentation tool of 3DSlicer, the task can be done more effi-
ciently and precisely.

Figure 6.2 shows how the right and left legs mentioned in Table 2.1 were seg-
mented. The right leg images of 7 subjects were segmented manually with a step
of 10 slices since, with the high resolution of our images, the morphology does not
change much within 10 consecutive slices. Each segmentation was then interpolated
between slices followed by a precise manual correction by medical experts to obtain
a complete 3D segmentation of the image volume of size 280 × 640 × 160. As the
correction phase is exhausting, for the 5 left legs manually segmented, we use only
50 segmented slices per subject to validate our automatic segmentation methods.
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FIGURE 6.1: Image of a subject in our dataset before and after each step of preprocessing

FIGURE 6.2: Manual segmentation on right and left legs of MUST subjects

With the time limitation, the longer task, which is the 3D segmentation of the
right leg volumes, was assigned to 4 different medical experts, while for each left leg
segmented, we have two distinct segmentation by two different experts. The seg-
mentation evaluation metrics between the segmentations done by different medical
experts are presented in Table 6.1. Since the segmentation of the left legs is not com-
pleted in 3D, only DSC and VS are comparable with 3D segmentation. Furthermore,
VS are reported in absolute values as we do not have a fixed reference segmentation
in this case.

The difference in the manual segmentations by two medical experts illustrates
the complexity of the task (average DSC at 0.91) and the variability of the difficulty
level among the muscle heads (DSC varies from 0.87 to 0.94). It also allows us to
fix our objective regarding the segmentation quality quantified by the segmentation
validation metrics.
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ALB-2725 BRG-1924 CAL-4223 MAV-526 YAG-47 Mean

DSC .924 .877 .897 .921 .934 .910

VL .920 .874 .906 .918 .944 .912

RF .939 .916 .941 .940 .962 .940

VM .945 .892 .882 .942 .934 .919

VI .891 .825 .857 .882 .894 .870

VS .042 .057 .054 .074 .025 .051

VL .025 .100 .065 .049 .003 .049

RF .025 .061 .012 .073 .021 .038

VM .004 .023 .091 .022 .073 .043

VI .115 .043 .050 .155 .005 .074

TABLE 6.1: Segmentation evaluation metrics (DSC & Volume Similarity) between manual
segmentations done by 2 different medical experts for the left legs of 5 runners. Muscle head
abbreviations: VL – Vastus Lateralis, RF – Rectus Femoris, VM – Vastus Medialis, VI –

Vastus Intermedius.

The 7 right leg image volumes were used as references for automatic segmen-
tation methods, with the Leave-One-Out strategy (see Sec. 3.2). They were used
as atlases for the multi-atlas segmentation method and contributed to training and
validation sets for deep learning methods.

6.3 Conclusion

We present in this chapter the preprocessing of the MUST dataset, which involves
the correction of inhomogeneity of the MRI signals and the adaptation of the left
legs to the right legs. We also compare the medical experts’ manual segmentation
performances to define the objectives for our algorithms and identify the difficulties.

The processed images and the manual segmentations will be the materials for
our experiments, and the evaluation of the automatic segmentation methods is de-
tailed in the following chapters of this part.
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CHAPTER 7

Multi-atlas segmentation with joint label fusion
and corrective learning

As detailed in Section 4.1.3, Wang and Yushkevich’s multi-atlas segmentation method
introduced an intelligent way to combine segmentation results from multiple atlases
and to correct systematic segmentation errors, taking into account the neighboring
image patch around each pixel. Based on image registration, this method has im-
mense adaptation potential to datasets with large morphological variation while
benefiting to the maximum of intensity and spatial information in the image vol-
umes through joint label fusion (JLF) and corrective learning (CL).

This chapter provides a complete analysis of the method: the impacts of its
parameters and the number of atlases on the segmentation quality and computation
time.

The experiments were implemented using elastix (Klein et al., 2010) and C++/ITK

(Wang and Yushkevich, 2013; Yoo et al., 2002; Tustison et al., 2017) and were run on
16 CPUs for JLF step and 1 CPU for CL step. Since the computation time depends
heavily on the quality of the processors to which the task is assigned, for compar-
ison purposes, the time reported here is the average of tasks run on the cluster of
CREATIS (see Annex E).

7.1 Parameter optimization

The first study consists of studying the impact of the method’s parameters on the
segmentation results. Parameters that might have a significant influence are the
size of the patches N, the size of the research neighborhood Nr, the regularization
parameters α and β, then the radius rd of label dilation and patch size N f for features
extraction. Multiple values of each parameter were tested by fixing the others at a
reasonable value. The default value of N was fixed at 5 × 5 × 5 pixels, the size of the
smallest structure in the images. Nr was fixed at 8 × 8 × 8 pixels, around 50% larger
than N. We also used the default values of α (0.1) and β (2.0) suggested in Wang and
Yushkevich (2013). Based on the size of N and Nr, we fixed rd at 5 pixels and N f at
8 × 8 × 8 pixels.

All results are reported in average value after Leave-One-Out experiments (see
Sec. 3.2) with 7 right leg images with manual segmentation.
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7.1.1 Joint label fusion parameters

Regularization terms After the results of our experiments, the regularization terms
do not have much effect either on the segmentation quality or on the computation
time. We conserve the recommended value of 0.1 for α and 2.0 for β.

Image patch size N & Research neighborhood size Nr These two parameters have
a significant impact on the computation time of the JLF step. The computation time
increases rapidly with a small increase of each parameter, especially for N. The
computation time increases from 50 hours with N = 5 × 5 × 5 to 200 hours with
N = 8 × 8 × 8 and exceeds 500 hours of calculation with N = 12 × 12 × 12. Here,
we do not report the average segmentation results of our experiments with different
radius of N since some of the tests exceed the wall time limit of our computational
resources. In the meantime, the finished tests do not show any improvement, if not
declination, in segmentation quality.

In the case of the research neighborhood radius Nr, contrary to our expecta-
tion that a larger neighborhood would provide more candidates for the most similar
patch and result in better classification, the best segmentation quality is obtained
with the default value of 8 pixels (Fig. 7.1). Considering the similar image texture
in different muscle heads, one possible explanation is that enlarging the research
neighborhood size increases the chance of mistaking an image patch from a muscle
head with one from another muscle head. A larger neighborhood might necessitate
a larger image patch size. Since increasing both neighborhood size and patch size
will cause an exponential increase in computation time, we opt for a computation-
ally lighter solution - working with lower resolution (Sec. 7.4).

FIGURE 7.1: Influence of the size of the research neighborhood Nr on the segmentation
results and computation time. DSCs reported here are the mean value of 7 Leave-One-Out

tests.

7.1.2 Corrective learning parameters

The results of our experiments with corrective learning parameters are presented
in Figure 7.2. With the dilatation radius, the best result is obtained with rd = 15
pixels. The size of image patch for feature learning N f has more influence on the
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computation time than the dilatation radius rd while having almost no influence on
the segmentation quality. After testing rd = 15 with N f = 5 and N f = 8, we decide
to keep the value of N f at 8 pixels.

FIGURE 7.2: Influence of the dilatation radius rd and image patch radius N f for feature
learning on the segmentation results and computation time. DSCs reported here are the

mean value of 7 Leave-One-Out tests.

7.2 Number of atlases

The number of atlases is a critical factor in multi-atlas segmentation methods. The-
oretically, the more atlases we have, the better the segmentation results. The impact
of the number of atlases on the segmentation quality and the computation time is
presented in Figure 7.3. The atlases for each test were selected randomly, and the
reported time is for the JLF step only since the number of atlases does not affect the
inference time of the CL step.

FIGURE 7.3: Influence of the number of atlases on segmentation quality and computation
time. The computation time is reported for the joint label fusion (JLF) step only. DSCs

reported here are the mean value of 7 Leave-One-Out tests.

As expected, between 6 and 3 atlases, the computation time is reduced by half
with a decreased segmentation quality. We can also observe that from 4 to 5 atlases,
the result is slightly better with 4 atlases, which means that adding information ran-
domly is not necessarily in favor of our task. We hypothesize that, with a specific



84 Chapter 7. Multi-atlas segmentation with JLF and CL

atlas selection strategy, we might conserve the segmentation quality while reducing
the number of atlases (thus reducing the computation time). Meanwhile, the CL step
does not improve the results except for the case with 6 atlases, which might be due
to the lack of information when working with few atlases.

7.3 Segmentation results with 6 atlases

Table 7.1 shows the results of Wang and Yushkevich’s method with 6 atlases com-
pared to Gilles et al.’s and with deformable registration with one atlas (Nguyen et al.,
2018). The JLF + CL yields the best results for all metrics except HD, which is the
smallest for Gilles et al.’s. The DSC and VS of JLF + CL is in the same value range of
the inter-expert evaluation presented in Table 6.1. The segmentation by JLF is a lot
more precise at muscle boundary, compared to Gilles et al.. Most of the time, the CL
seems to identify the errors successfully but sometimes fails to correct them entirely
(circled in Fig. 7.4), creating some noisy and aberrant voxels, hence a larger HD.
Meanwhile, with a much smaller MAD, the larger HD of JLF + CL is not concerning
since it probably resulted from these aberrant errors that can be easily removed with
simple postprocessing.

Method DSC DSCw HD (mm) MAD (mm) VS

Deformable registration .821 .829 39.13 3.69 .139

Gilles et al.’s .864 .870 30.43 2.53 .114

Wang and Yushkevich’s JLF .914 .917 34.77 1.65 .080

Wang and Yushkevich’s JLF + CL .921 .923 33.44 1.46 .056

TABLE 7.1: Quantitative evaluation of Wang and Yushkevich’s method on 7 subjects of
the MUST dataset with full right leg segmentation (values are averaged over 7 Leave-One-
Out tests), compared with Gilles et al.’s segmentation and deformable registration with one

atlas.

The method presented in Wang and Yushkevich (2013) were initially devel-
oped for MICCAI 2012 challenge’s brain MR images with 207 regions in a vol-
ume of 128 × 128 × 60 voxels, while our images have 4 regions in a volume of
280 × 160 × 640 voxels. The regions to segment in brain images are much smaller
than the muscle regions in our images, with less morphological variation among the
subjects; the multi-atlas segmentation errors are smaller and only in a radius of sev-
eral pixels. Although still bringing improvement to the segmentation in our case, the
corrective learning method proposed is likely adapted for small errors, explaining
the seemingly incomplete corrections observed in our results.

Table 7.2 shows the details on the DSC of segmentations by Wang and Yushke-
vich’s method, by subject, and by muscle head, before and after CL.

We can observe a non-negligible difference among the subjects and the muscle
heads. One muscle, the rectus femoris, is less well-segmented than the other mus-
cles, with a significant disparity of results (0.737 to 0.950). Since the global DSC is
the average DSC of all the muscle heads, the smaller the head, the more significant
the impact an error in it made on the global DSC. Since all the muscle heads share
boundaries, one poorly segmented muscle head can cause a decrease in DSC for all
the others - a phenomenon we can observe in ANG-2014 and CAL-4223. Observing
the variation in the shape and position of RF, VM, and VL in the database (Fig. 7.5),
we can see a clear difference between these two subjects and the rest.
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FIGURE 7.4: Visual comparison between the segmentation of Gilles et al., the segmenta-
tion with the method of Wang and Yushkevich and the manual segmentation. Yellow circles
indicate the zone where CL successfully identified the errors but failed to correct them en-

tirely.

ALB-2725 ALF-4529 ANG-2014 ANS-3229 ARS-4026 CAL-4223 OUK-2927

VL

JLF .931 .914 .876 .951 .944 .883 .938

JLF+CL .931 .932 .896 .942 .943 .894 .939

RF

JLF .928 .926 .786 .946 .937 .737 .950

JLF+CL .936 .941 .824 .939 .948 .791 .951

VM

JLF .924 .953 .923 .954 .953 .880 .950

JLF+CL .937 .959 .930 .952 .956 .886 .945

VI

JLF .903 .917 .906 .932 .934 .890 .918

JLF+CL .899 .935 .901 .927 .937 .890 .920

Global

JLF .921 .927 .873 .945 .942 .848 .939

JLF+CL .926 .942 .888 .940 .946 .865 .939

TABLE 7.2: Details on the Dice Score Coefficients of the automatic segmentations by Wang
and Yushkevich’s method. Bold values signifies better DSC between before and after cor-
rective learning. Muscle head abbreviations: VL – Vastus Lateralis, RF – Rectus Femoris,

VM – Vastus Medialis, VI – Vastus Intermedius.

Since the variation is too large, the deformable registration cannot find a satis-
fying solution for our problems. For example, in Fig. 7.6, all atlases except for ANG-
2014, whose morphology is quite similar to the reference, are poorly registered on
CAL-4223, which leads to a mediocre multi-atlas segmentation result.
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FIGURE 7.5: Center axial slice of 7 subjects having their right leg manually segmented.

FIGURE 7.6: Segmentation obtained by deformable registration of 6 other atlases on CAL-
4223. Due to the large morphological difference, only one segmentation (issued from ANG-

2014) seems acceptable.

Furthermore, the corrective learning is also unstable as it does not always im-
prove the results (see Tab. 7.2, the DSC of ANS-3229 was reduced by CL). An exam-
ple of a segmentation error that was extended by the corrective learning is shown in
Fig. 7.7. The interested muscle head is located on the left of the yellow line in each
image. As we can see, the boundary of muscle here is not clear. Additionally, there is
a structure with lower intensity near the target boundary (red-circled zone); it could
be a blood vessel or other biological structure. Since the muscle boundary usually
has lower intensity than the muscle, it is understandable that the JLF chose to place
the muscle contour there. The corrective learning then made it worse as it extended
the contour to cover that zone completely, which visually seems reasonable.

7.4 Optimizing with lower resolution

Two main disadvantages of Wang and Yushkevich’s method are the high computa-
tion time and the lack of large-scale information in JLF. Resolving these problems is
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FIGURE 7.7: From left to right: zoom on image of ANS-3229 with the manual delineation,
with the result of JLF and with the result after correction with CL. The circle points out the
abnormal zone. The interested muscle head is located on the left side of the yellow line in

each image.

not easy since these two factors are closely related: to include large-scale informa-
tion, we have to increase the JLF parameters (image patch size and research neigh-
borhood size), which will lead to an undesirable increase in computation time. Our
idea here is to reduce the resolution of our image in order to, at the same time, re-
duce the computational time and improve the segmentation by including large-scale
information.

Our images were shrunk by factors of 2, 4, and 8 with a first Gaussian smooth-
ing. The JLF process was then computed at these lower resolutions. To visualize
and quantify the results, we resampled the segmentations to the original resolution.
Figure 7.8 shows the results of JLF and the average DSC for all resolutions. De-
spite having lower DSC, shrink factor 2 seems to have a more consistent anatomical
structure (no hole in the middle of a muscle head, no unrealistic curvature, ...). The
shrink factor of 4 and 8 seems too large and loses too much information at the mus-
cle boundary. While not suitable for our application, with the computation time
reduced from 50 hours to 1 hour and 10 minutes, respectively, the segmentation
at these resolutions can be helpful to detect rapidly muscular zones either for quick
analysis or to get a bounding box for a more precise segmentation method that needs
preliminary segmentation.

FIGURE 7.8: Joint Label Fusion results at different resolutions, in the parentheses is the
computation time. Reported DSC is the average value of 7 subjects.

We then applied the CL step to the segmentation with shrink factor 2 since they
are the most accurate among the lower resolutions. Our experiments included:

• correcting the segmentation at the lower resolution than at the original resolu-
tion.

• resampling the JLF segmentation result to the original resolution then correct-
ing them at the original resolution as proposed in Wang et al. (2017)
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Regardless of the promising results reported in Wang et al. (2017), the CL at
original resolution gives an average DSC value at 0.912, far lower than our previous
result (.921, Tab. 7.2). The only metric that trumps the segmentation done entirely
at original resolution is HD: 30.68 mm on average compared to 33.44 mm, which
confirms our above statement that the segmentation with shrink factor 2 has a more
coherent anatomical structure, meaning less aberrant errors. The second experiment
with successive CL at two different levels does not yield promising results, reducing
the DSC. While the segmentation at lower resolution provides some expected im-
provement (lower computation time, anatomically more coherent results), it seems
that we still need to figure out a more efficient way to incorporate the information
of this resolution into the final segmentation.

7.5 Conclusion

In this chapter, we have studied the approaches of segmentation by atlas registration
and, in particular, the approach of Wang and Yushkevich. The approach allows us
to obtain good segmentation of one or several organs from a small number of atlases
because they take advantage of all the anatomical knowledge correlated to the image
information contained in the atlases. It is to be favored to quickly provide high-
quality segmentation when few manually segmented data are available. When the
number of atlases becomes large, a very significant increase in computing time is
quickly observed and also a limit to the improvement of results.

A quick modification of the method (Wang et al., 2017) with joint label fusion
at a lower resolution can reduce the computation time significantly and aberrant
anatomical errors but does not improve the validation metrics.

Despite the use of joint label fusion and corrective learning such as those pro-
posed by Wang and Yushkevich, the quality of segmentation depends significantly
on the ability to register the atlases on the image to be segmented. Moreover, this
approach does not perform well when the anatomy is not consistent or simply if the
anatomical variability is high between the atlases and the image to be segmented.
Indeed, they use the atlases in their entirety and can hardly take into account a local
and specific modification (lesions, anatomical anomalies, hypo or hypertrophy). An
alternative to MAS that can reduce both the computation time and the sensibility to
registration is using deep learning networks such as UNet. However, for the training
stage, these approaches require a large amount of segmented data. The next chap-
ter presents this and a strategy to increase the amount of data without additional
manual segmentation.

Another way to reduce the computation time of MAS is to reduce the number
of atlases. Meanwhile, preserving the segmentation quality imposes an optimized
selection of atlases. From our previous observation, such selection should be based
on the morphological similarity with the data to be segmented. The development of
this perspective will be presented in Chapter 9.
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CHAPTER 8

UNet-based approach

The results of Wang and Yushkevich’s method were encouraging, but this method
is costly in terms of computational time, especially the joint label fusion (JLF) step.
Moreover, the method is not robust in the case of large morphological variations
among subjects. Here, we proposed to conserve the principal structure of Wang and
Yushkevich’s framework while replacing the multi-atlas segmentation with JLF step
with UNet (Ronneberger et al., 2015) (Sec. 8.1). The UNet is trained and validated
with both manually annotated and automatically generated data (Sec. 8.2.2) in order
to adapt to various morphologies.

We also expect that the CL step will replace all ad-hoc post-processing often
added after a UNet segmentation in removing aberrant segmentation errors.

8.1 Architecture to replace joint label fusion

We are conserving the idea behind Wang and Yushkevich’s algorithm that employed
a host automatic multi-atlas segmentation method to segment a test image and each
one of the reference images using all the other reference images as atlases (8.1). The
automatic segmentations of reference images were fed to the corrective learning (CL)
algorithm that learns and then corrects the typical errors made by the automatic
multi-atlas segmentation method (Nguyen et al., 2019b).

Here, the segmentation method by multi-atlas deformable registration and JLF
is replaced with UNet (Nguyen et al., 2019b). The original 2D UNet of (Ronneberger
et al., 2015) with 64 filters at the first level is used with a Batch Normalization layer
after each convolutional layer and ReLU activation function. Before ending with a
softmax layer, we add a dropout layer (Li et al., 2018). The learning rate, the batch
size, and the dropout coefficient are optimized for each experiment. The axial slices
are considered separately and are re-stacked at the end to get the full 3D volume.

We trained and validated a complete UNet with the entire training and validation
sets, which will be used to segment the test set. For the CL step, we trained multiple
UNets by removing each atlas and its derivations and using the rest of the training
and the validation sets. The segmentation was evaluated using qualification metrics
presented in section 3.1.
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FIGURE 8.1: Our segmentation framework based on Wang and Yushkevich’s with UNet
as host segmentation method and corrective learning (UNet + CL).

8.2 Experiments & Results

8.2.1 First result of UNet without data augmentation

With LOO strategy (Sec. 3.2), each subject among the 7 with full manual right leg
segmentation served as the test subject. Among the rest, four were selected ran-
domly and served as training data, while the other two served as validation data.
For each test, excluding the slices without interested anatomical structure, there are
around 2400 slices for training and 1200 slices for validation.

Quantification of segmentation quality gives very high HDs, with the average
value at 109.06 mm. This is comprehensible as we are working with 2D UNet: since
the network does not consider the information of the third axis, large spatial errors
appear frequently. The average DSC is at 0.854, while the individual scores vary
from 0.700 to 0.927. The worst segmentation is of CAL-4223 (Fig. 8.2), the same
as with JLF, with 0.2 of DSC difference with the second-worst. It is clear that the
network does not have enough training data to adapt to various morphologies.

FIGURE 8.2: Visualization and validation metrics of the CAL-4223’s segmentation with
UNet (without data augmentation), comparing with the manual segmentation by medical

expert and the segmentation with Wang et al.’s JLF.
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8.2.2 Weakly-supervised UNet

In order to enrich our annotated data with different types of morphology, we effectu-
ated a data augmentation step with the help of deformable registration and random
B-Spline warping, hence the name weakly-supervised UNet: our UNet is trained with
experts’ segmentations and also weak automatically generated ones.

8.2.2.1 Data augmentation

To obtain morphologically diverse training data, the registration was performed us-
ing the athletes without manual right leg segmentation in our dataset (41 subjects).
Each of our 7 annotated right leg image volumes was:

• registered to 5 other images (selected randomly without replacement). We
used an affine transform followed by a B-spline deformable one to perform
the registration. The results were smoothed using a mathematical morpholog-
ical opening operation to avoid unrealistic deformation.

• randomly B-splines-warped 5 times to produce 5 more image volumes with a
minor modification to the original image. The warped image must reduce at
least 30% of original mutual information metrics (see Annex B).

The data augmentation was done using elastix and C++/ITK. Figure 8.3 shows
the data derived from one of the atlases (ALB-2725).

FIGURE 8.3: ALB-2725 atlas and its derivations: 5 random-B-spline-warped images and
5 registrations to 5 different non-annotated images.

8.2.2.2 Experiments

We used the augmented datasets to train our UNets as described in Section 8.1. Since
we were working with 2D axial slices of very high-resolution images, the anatom-
ical difference among several consecutive slices was minimal. Therefore, only 20%
of each volume were used to train and validate our networks to avoid redundant
information and reduce the training time. LOO strategy was also employed here,
for each test image, all the automatically generated images originated from the test
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image were excluded from training and validation sets. We experimented with train-
ing and validation data involving data generated by either one or both deformable
registration and random B-spline warping.

• Only random B-spline warping: All original images were used as training data.
For each training image, three among five random-warped images were used
for training while the other two were used for validation. There were approx-
imately 1500 image slices in the training set and 750 in the validation set.

• Only deformable registration: All original images were used as training data.
Three among five registered images originated from each training image were
used for training while the other two were used for validation. There were
approximately 1500 image slices in the training set and 750 in the validation
set.

• Both random B-spline warping and deformable registration: All original images
were used as training data. Three random-warped images were used for train-
ing. Three among five registered images originating from each training image
were used for training, while the other two were used for validation. There
were approximately 2500 image slices in the training set and 750 in the valida-
tion set.

The UNet was implemented in Python language with Keras/Tensorflow (Chol-
let, 2015) and was run on an NVIDIA Tesla P100 PCIE 16GB.

8.2.2.3 Results

Compared to JLF, which took 48h to segment an image volume, the weakly-supervised
UNet considerably reduced the execution time. Our UNet took 1 hour 30 minutes
to 2 hours for training and 45 seconds for inference on a whole image volume. The
data augmentation step took around 5h with 36 CPUs. In our experiments, the data
augmentation was performed only once and the training was performed once for
each training set of the LOO scheme. The quantitative results of our experiments
are reported in Table 8.1, in comparison with the results of Wang and Yushkevich’s
method. We would like to remind that the inter-expert score is .910 in DSC and .051
in VS.

Method DA DSC HD (mm) MAD (mm) VS

JLF None .914 [.848, .945] 34.77 [18.67, 48.59] 1.65 [0.82, 3.27] .080 [.028, .141]

JLF + CL None .921 [.866, .946] 33.44 [20.73, 40.40] 1.46 [0.88, 2.74] .056 [.024, .104]

UNet W .892 [.774, .946] 98.73 [79.66, 141.49] 2.22 [0.87, 3.78] .097 [.047, .172]

UNet R .915 [.842, .947] 79.49 [32.97, 141.62] 1.77 [0.82, 3.72] .095 [.043, .190]

UNet W + R .921 [.874, .945] 85.32 [52.97, 132.57] 1.46 [0.95, 1.99] .064 [.034, .095]

UNet + CL W + R .917 [.842, .947] 48.83 [13.43, 89.84] 1.48 [0.84, 2.70] .061 [.022, .140]

TABLE 8.1: Quantitative evaluation of different automatic segmentation methods on
MUST dataset. UNet was tested with different data augmentation (DA) strategies: W
- random warping, R - registration, W + R - both random warping and registration. Re-

sults are reported as mean[min, max] over 7 subjects.

Among the three experiments with different data augmentation strategies, the
one with both random warping and deformable registration (W+R) yields the best
average results for almost all metrics. On the other hand, the average HD of the
experiment with registration-only data augmentation is the smallest, but the value
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range is the largest. Therefore, the W+R data augmentation is conserved for further
experiments. From this point onwards, except when specified otherwise, the 2D
UNet is always trained with W+R data augmentation.

In terms of DSC, the segmentation with 2D UNet gave similar results as Wang
and Yushkevich’s JLF + CL. The HD is exceptionally high since the method has cre-
ated some distanced structures, probably due to missing information of the third
axis. These structures are often removed with CL since they are too far from the
barycenter of the other voxels with the same label. However, the CL did not have an
overall positive impact on the segmentation of UNet as it reduced all metrics except
for HD and VS: While CL is efficient at correcting these aberrant distanced or small
boundary errors, it is not as efficient in the case of large morphological ones.

Figure 8.4 shows the visual results of the methods in the experiment for three
individuals: one with highly accurate automatic segmentation (ARS-4026), one with
average validation metrics (ALB-2725), and one with the lowest validation metrics
(CAL-4223). For ARS-4026, both JLF and UNet produced satisfying segmentations,
and CL worked well with both of these host segmentation methods and corrected
minor errors at muscle boundary. For ALB-2725, UNet created a distanced structure
outside of the quadriceps regions, which was removed by CL. However, the CL
in this case also removed some well-segmented voxels and lowered the validation
metrics. UNet seemed to work better for CAL-4223 than JLF, but the results are still
not up to par. The JLF could not adapt to the size and position of RF (blue) and VI
(rose) (cf. Fig. 5.2), and while UNet made smaller errors for RF, it failed to recognize
the VI. The CL also failed to correct the large errors entirely and even created more
errors in the case with UNet.

FIGURE 8.4: Results of 4 different automatic segmentation methods, compared with the
manual segmentations, of 3 subjects with visually different morphology.

8.2.3 UNet variants

As we have observed, although the corrective learning does have some positive im-
pacts on the segmentation quality, the host segmentation method must not make
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large errors in the first place. We have looked into different variants of UNet, includ-
ing ResUNet (Zhang et al., 2018) - UNet combined with a residual type architecture
and 2.5D UNet (Haque et al., 2019) - differents UNets trained with different image
slice directions followed by winner takes it all voting. The quantitative results are
reported in Table 8.2.

Method DSC HD (mm) MAD (mm) VS

2D UNet .921 [.874, .945] 85.32 [52.97, 132.57] 1.46 [0.95, 1.99] .064 [.034, .095]

2D ResUNet .920 [.854, .948] 94.00 [45.32, 151.29] 1.50 [0.83, 2.40] .070 [.036, .142]

2.5D UNet .915 [.873, .945] 59.24 [27.88, 103.87] 2.13 [0.82, 4.24] .077 [.047, .129]

TABLE 8.2: Quantitative evaluation of different architecture based on UNet tested on our
quadriceps dataset. Results are reported as mean[min, max] over 7 subjects.

While the 2.5D UNet did help eliminate aberrant distanced errors, which is re-
flected by much smaller HD, both ResUNet and 2.5D UNet did not improve the
segmentation accuracy compared to the classic UNet. Considering the best values
for all validation metrics are similar among different methods, we need to focus on
improving our network’s adaptation capability to a morphology that is less repre-
sented in the dataset. These networks will be re-investigated with another database
(Sec. 10.1).

8.3 Conclusion & Perspectives

In this chapter, we proposed to replace the Joint Label Fusion (JLF) segmentation
method in Wang and Yushkevich’s framework with 2D UNet. The UNet was trained
and validated with manually segmented data and automatically generated ones to
enhance the training and validation sets’ morphological diversity. The computation
time is reduced considerably compared with JLF, passing from 48h of inference time
to 45s with similar segmentation qualities, reflected by validation scores in the same
range as the inter-expert scores. Testing multiple data augmentation methods, the
best results were obtained with a network trained and validated by a dataset aug-
mented with both random B-spline warping and deformable registration to non-
annotated data.

While the segmentation errors made by JLF and UNet are not the same as
JLF works directly with 3D volume, and UNet works with separated 2D slices, the
largest errors are often made on some certain subjects whose morphological type
is the minority in the dataset. In the next chapter, we will focus on improving our
methods’ adaptation capability by paying more attention to the morphology of the
subjects used as training data or atlases.
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CHAPTER 9

Morphological features

Chapter 7 and Chapter 8 presented the results of Wang and Yushkevich’s multi-
atlas segmentation method and weakly-supervised 2D UNet. These automatic ap-
proaches produced segmentations with average Dice Score Coefficients (DSC) in the
same value range as inter-experts score (see Table 6.1). However, both methods
failed to produce satisfying results for some subjects with particular morphology.

In this chapter, we propose i) a morphology measurement in order to validate
our observation; ii) 3 strategies to improve automatic segmentation results. Thus, we
first introduce our morphological measurement dedicated to quadriceps segmenta-
tion. Then, we improve automatic segmentation results obtained by multi-atlas seg-
mentation with a corrective learning approach using a selection of atlases based on
morphological similarity to the image to process. Our results show that using few
atlases (3 in lieu of 6) based on our morphological measurement improves segmen-
tation quality and decreases computation time for multi-atlas segmentation with CL.
Based on the proposed measurements, we also defined a data augmentation strat-
egy for the weakly-supervised UNet, expecting better generalization capability, with
encouraging results.

9.1 Morphological measurement

We propose here a measurement dedicated to morphology (i.e. only take into ac-
count the region of interest, not the MR signals). Morphological features are com-
puted on the segmentation of a specific image slice. In our case, this slice is the
central axial slice of 3D GRE sequences located at 15 cm from the upper part of the
patella (Sec. 2.3.1). For each muscle head of the quadriceps, we measure 3 features:

• the muscle surface S, in mm2.

• the polar coordinates (θ, r) of the center of the muscle head with the center of
the femur (FM) as the pole and the vector between the center of the femur and
the center of the vectus intermedius muscle head (VI) as the polar axis (Fig.
9.1).

Each quadriceps group has 12 features in total: 3 features x 4 muscle heads.
The angle θ of VI is set to 0 for every leg and serves as a reference angle to let our
features be rotation invariant (the proposed features are also shift-invariant). Thus,
the feature vector for a leg X can be noted:
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FIGURE 9.1: Morphological features of the vectus medialis on the right leg of a runner.
Abbreviations: FM - femur, VM – vectus medialis, VL – vectus lateralis, VI – vectus

intermedius, RF – rectus femoris.

fX = [SVI
X , 0, rVI

X , SVM
X , θVM

X , rVM
X , SVL

X , θVL
X , rVL

X , SRF
X , θRF

X , rRF
X ] (9.1)

The measurement is based on the manual segmentation of the central axial slice
of 3D GRE sequences. In the case of our dataset, after excluding runners with low-
quality 3DGre acquisition, we have 48 subjects in total.

Next, all features were centered and scaled to calculate unbiased distances be-
tween subjects and be more robust to acquisition properties. The morphological
difference dAB between 2 legs A and B was computed with:

dAB = ∥ f ∗A − f ∗B∥2

where f ∗X the vector of standardized morphological features of the leg X, f ∗X ∈ R11.

Figure 9.2 shows the right leg’s features of 48 subjects projected on the plan
of the first two PCA axis, which represent 70.05% of the dataset’s variance) with
examples of T1w images and segmentations of 4 different subjects, among which
two are close in distance (in yellow and pink). The subjects (in blue and green)
distanced from the main cluster show indeed visually different morphology to the
others.

By including the center of one muscle head (VI) in the polar axis, our features
are image rotation invariant. We investigated the case of a biomechanical rotation
of a leg during an MRI acquisition. Images of the right leg of a control subject were
taken in 2 different positions: normal (relaxed) position and turned inward (9.2, on
the right). The morphological distance between the two positions of this subject
is the smallest compared to the distances from them to the other subjects, being
approximately .68 the distance to the closest and at .10 the distance to the furthest
subject. The distance is also the smallest in the distance matrix of all subjects’ right
legs, confirming our hypothesis that our features are invariant to a morphological
rotation that can occur during acquisition.

With this new measurements, we propose 3 strategies to optimize the atlas
choice for the previously proposed segmentation methods.
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FIGURE 9.2: Representation of subjects on the plan of the first two Principal Components
Analysis (PCA) axis of their right legs’ morphological features with examples of T1w im-
ages and their segmentations at the axial slice where morphological features were extracted.
In green, blue, pink, and yellow (at the bottom) are 4 different dataset subjects. In light and
dark orange (on the right) are images of a control subject (not originally in our database) in

two different positions.

9.2 Atlas selection for multi-atlas Segmentation

Two major drawbacks of JLF+CL are the computation time required when using 6
atlases and reduced performance when applied to subjects with morphology dif-
ferents from the most of atlases. Here, we propose to optimize the method with a
strategic choice of 3 atlases to reduce the computation time and improve the seg-
mentation quality. When introducing new image volume for segmentation, we only
need to define roughly the quadriceps muscle heads boundary at one axial slice to
employ this strategy.

9.2.1 Experiments

With 7 manual segmentations, we adopted the Leave-One-Out (LOO) scheme to
evaluate the segmentation method: each subject among the 7 subjects with manual
segmentations was used as test using the 6 others as atlases. Based on the mor-
phological features, we could sort the atlases from the closest to the furthest to the
test image and choose to use either all 6 atlases for the segmentation or only the 3-5
atlases the closest to the test subject.

The experiments were implemented using elastix (Klein et al., 2010) and C++/ITK

(Wang and Yushkevich, 2013; Yoo et al., 2002; Tustison et al., 2017).

9.2.2 Results & Discussion

As reported in Section 7.2, the computation time of Joint Label Fusion (JLF) step in-
creases rapidly with the increase in number of atlases, from around 24h with 3 atlases
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to around 50h with 6 atlases. Figure 9.3 shows the results in terms of DSC of Wang
and Yushkevich’s method with random and morphology-based atlas selection.

FIGURE 9.3: Results in terms of Dice Similar Coefficient of Wang and Yushkevich’s method
with random and morphology-based atlas selection. The results are reported for joint label
fusion (JLF), JLF and corrective learning (CL), and JLF and 6-atlases-based CL (CL6). Each
color represents a muscle head, with the color black representing the global score over the
entire quadriceps. Each muscle head is presented with the average value and a vertical bar

limited by the minimal and the maximal values over 7 subjects.

Compared with the random one, the morphology-based atlas selection has re-
duced the impact of a smaller number of atlases on the average quality, from .877
in average DSC with 3 random atlases to .912 with 3 morphologically closest atlases
(see Table 9.1). Corrective learning (CL) with 3 closest atlases did not improve the
segmentation, which confirmed the observation in previous studies Nguyen et al.
(2018, 2019b) that the CL in its current state is not suitable to correct large errors
caused by morphological variation in the quadriceps. Meanwhile, since increasing
the number of atlases in CL will only increase the training time (learning the correc-
tive model) but not the inference time, we applied the corrective model learned on
6 atlases (CL6) on the results of JLF with 3 closest atlases and obtained an average
DSC similar to JLF + CL entirely with 6 atlases. Moreover, when introducing a new
image volume to segment, correcting the automatic segmentation with a model pre-
trained on all of our available atlases is more convenient than re-train a corrective
model based on the 3 closest atlases.

Overall, the JLF + CL with 6 atlases has the best performance in terms of DSC
and VS, but not by far. In the meantime, the JLF with 3 closest atlases + CL based
on 6 atlases outperformed the JLF + CL with 6 atlases regarding the MAD metrics
and regarding the robustness (based on the smaller value range in all metrics, cf.
Table 9.1 and Figure 9.3). Smaller MAD means smaller errors in 3D physical space,
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Random Morphology-based

JLF JLF + CL JLF + CL6 JLF JLF + CL JLF + CL6

DSC
3 atlases .887 [.850, .921] .877 [.828, .932] .897 [.842, .937] .912 [.852, .942] .906 [.831, .941] .920 [.873, .941]
4 atlases .906 [.825, .938] .906 [.828, .934] .911 [.833, .940] .912 [.840, .942] .914 [.840, .945] .920 [.860, .942]
5 atlases .904 [.817, .943] .903 [.825, .943] .910 [.829, .943] .912 [.834, .945] .914 [.842, .944] .919 [.856, .946]
6 atlases .914 [.848, .945] .921 [.866, .946]

MAD (mm)
3 atlases 2.15 [1.32, 3.46] 2.50 [1.09, 3.75] 1.94 [1.01, 3.29] 1.62 [0.97, 2.90] 1.72 [1.03, 3.13] 1.43 [0.99, 2.66]
4 atlases 1.85 [1.14, 3.87] 1.91 [1.09, 3.82] 1.79 [1.06, 3.09] 1.67 [0.95, 3.21] 1.61 [0.88, 3.00] 1.48 [0.99, 2.69]
5 atlases 1.95 [0.90, 4.36] 1.93 [0.91, 4.05] 1.75 [0.91, 3.55] 1.72 [0.88, 3.57] 1.58 [0.90, 2.97] 1.53 [0.87, 3.01]
6 atlases 1.65 [0.84, 3.27] 1.45 [0.88, 2.74]

VS
3 atlases .104 [.069, .143] .117 [.046, .238] .085 [.044, .169] .076 [.030, .138] .079 [.035, .121] .064 [.037, .088]
4 atlases .080 [.045, .152] .079 [.051, .121] .062 [.019, .090] .079 [.032, .151] .076 [.036, .137] .060 [.033, .091]
5 atlases .087 [.025, .175] .082 [.031, .148] .066 [.028, .136] .083 [.025, .164] .077 [.029, .155] .062 [.030, .118]
6 atlases .080 [.028, .141] .056 [.024, .104]

TABLE 9.1: Validation metrics of segmentations with Wang and Yushkevich’s method,
with and without morphology-based atlas selection. The results are reported for joint label
fusion (JLF), JLF and corrective learning (CL), and JLF and 6-atlases-based CL (CL6). Each
metric is reported with the average, the minimal, and the maximal values over 7 subjects.

Bold values mark the best average value or the smallest value range.

and thus, even with similar DICE, these results suggested that the method has made
fewer errors related to morphological variation. Figure 9.4 shows the segmentation
results of CAL-4223, the subject always with a low-quality segmentation due to their
morphological difference with the other subjects (Sec. 7.3, Fig. 7.6): The Vectus
Intermedius (VI) muscle head is always the most difficult to segment, the errors
made on this muscle head is not corrected entirely but still noticeably smaller when
working with 3 closest atlases.

FIGURE 9.4: Segmentation results of CAL-4223 based on 3 closest atlases and on 6 atlases.
CAL-4223 is always the subject with the worst segmentation quality since their Vectus
Intermedius (VI) muscle head (blue color) is much smaller and is at a different position

compared with the other 6 subjects (cf., Fig. 7.5 & 7.6)
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This strategy reduces by half the execution time while conserving or even im-
proving the segmentation quality. Next, we will present our strategy for weakly-
supervised UNet.

9.3 Selective data augmentation for weakly-supervised UNet

As discussed in Section 8.2.1, training with 6 atlases is not enough for UNet since
even when in 2D with hundreds of axial slices in the training set, we have only 6
different morphologies, among which some are quite similar to each other. When
the redundant information is fed to UNet, it will be inefficient in treating new data:
data augmentation is indispensable in this case.

Initially, the images used as targets for data augmentation by registration were
selected randomly for each reference image (Sec.8.2.2). By introducing the morpho-
logical features, we suggested a specific data augmentation strategy selection to ex-
ploit as much as possible the morphological diversity in our dataset. Our objective
is to train only one model that can accurately segment different morphologies.

9.3.0.1 Experiments

We computed the morphological distances from each annotated image to all the
other 41 images in the data set (48 minuses 7 atlases already in the training set)
and sorted these morphological distances in ascending order (i.e., from the closest
to the furthest). Each reference image would have 41 candidates for registration: we
excluded the first 11 since they would be too similar to the reference image and then
divided the other 30 into five groups of 6 images in order of distance. We selected
randomly and consecutively, for each reference image, without replacement, one im-
age from the first, the third, and the last group for training and one from the second
and the fourth groups for validation.

LOO scheme along with presented segmentation validation metrics (Sec. 3.1)
was also applied here to evaluate the segmentation method. For each test, including
the original atlases and their randomly-warped images, there were 42 images vol-
umes in the training set and 12 in the validation set, which leads to a training set of
approximately 2700 slices and a validation set of 770 slices.

We also rerun the experiment with random data augmentation of Section 8.2.2
four more times to compare with the morphology-based method.

The data augmentation was done using elastix and C++/ITK. The UNet was
implemented in Python language with Keras/Tensorflow (Chollet, 2015) and was
run on an NVIDIA Tesla P100 PCIE 16GB.

9.3.0.2 Results & Discussion

The quantitative results of the random and selective data augmentation strategies for
UNet are reported in Table 9.2. Results are reported as mean[min, max] over 7 sub-
jects. Overall, the two strategies give similar results, which is comprehensible since,
for each experiment, we used 35 in 41 non-annotated subjects as targets for registra-
tion, so there is little difference among experiments. In the meantime, observing the
value ranges of all metrics shows inclination towards the morphology-based strat-
egy since its metric ranges are smaller, and its worst values are often better than of
random selection.
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Strategy DSC HD (mm) MAD (mm) VS

Random .918 [.822, .954] 76.19 [37.26, 139.96] 1.51 [0.84, 3.60] .076 [.036, .168]

Morphology-based .920 [.850, .951] 77.34 [47.62, 105.82] 1.37 [0.76, 2.68] .084 [.042, .151]

TABLE 9.2: Quantitative evaluation of different data augmentation strategies for UNet.
Results are reported as mean[min, max] over 7 subjects. The random data augmentation
was run five times, and for each time, the UNet was retrained entirely for each test image.

The lowest DSC at .850 is not satisfying as our objective is to train a network that
can produce accurate segmentation for all morphology. There is still not enough
information in the training set to improve the segmentation of the most challenging
case (CAL-4223): We might need to aim for a more specific training set for each target
image.

9.4 Target-driven UNet

Based on the conclusion above, where the training set did not have enough relevant
information to work with certain types of morphology, we propose two strategies to
train UNet based on the target image volume’s morphology.

9.4.1 Target-trained UNet

Our idea here is to overtrain UNet with data the most similar to the target image:

• Training set (10 volumes): The two closest atlases registered on the two clos-
est non-annotated volumes, respectively. The target volume was randomly
warped four times to produce 4 target volumes on which registered the two
closest atlases, thereby 2 per atlases.

• Validation set: The two closest atlases.

The term closest here refers to the morphological distance to the target image. The
relative distances from each atlas to the other subjects are illustrated in Figure 9.5.

9.4.2 Fine-tuned UNet

Another option is to fine-tune our pre-trained UNet from Sec. 9.3 for each target
image. Before being applied on the target image, the trained model is tuned with:

• Training set: The two closest atlases registered on the target image.

• Validation set: The third closest atlas registered on the target image.

Most of the fine-tuning processes are optimized before the 5th epochs and take
only 5 to 10 minutes.

9.4.2.1 Results

The quantitative results of our experiments are reported in Table 9.3.

Based on the validation scores, target-trained UNet has the weakest perfor-
mance among the four methods. However, it helps validate our hypothesis that
the information fed to UNet must be chosen carefully: While being trained with
only 8 image volumes instead of 42 as for generic UNet, the target-trained UNet did
not reduce much the average DSC in comparison with the latter (.916 compared to
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FIGURE 9.5: Top figure: The boxplot of relative morphological distance from each subject
in the dataset to the others. Bottom figure: The subjects’ position in the morphological
space projected on the plan of the first two Principal Components Analysis axis. The seven

atlases (image volumes with manual segmentation) are colored in red.

ALB-2725 ALF-4529 ANG-2014 ANS-3229 ARS-4026 CAL-4223 OUK-2927 Mean

DSC

JLF+CL .917 .941 .900 .934 .941 .872 .933 .920

Generic UNet .927 .893 .924 .951 .949 .849 .943 .920

Target-trained UNet .913 .920 .902 .937 .931 .880 .934 .916

Fine-tuned UNet .929 .926 .925 .948 .947 .915 .945 .934

HD (mm)

JLF+CL 44.80 18.03 36.47 23.89 34.74 28.37 43.75 32.86

Generic UNet 100.00 63.33 96.01 70.55 47.62 105.82 58.02 77.34

Target-trained UNet 103.96 137.11 96.61 120.50 94.55 132.27 77.77 108.40

Fine-tuned UNet 42.48 102.89 100.64 56.60 46.81 57.77 58.73 66.56

MAD (mm)

JLF+CL 1.33 0.99 2.66 1.13 1.01 1.72 1.19 1.43

Generic UNet 1.23 1.91 1.01 0.76 0.85 2.68 1.11 1.37

Target-trained UNet 2.79 2.29 1.88 1.00 1.18 3.05 2.18 2.05

Fine-tuned UNet 1.14 1.20 1.08 0.81 0.96 0.89 1.00 1.01

VS

JLF+CL .088 .037 .078 .049 .045 .088 .065 .064

Generic UNet .106 .129 .073 .042 .045 .151 .042 .084

Target-trained UNet .115 .071 .121 .041 .055 .070 .020 .070

Fine-tuned UNet .095 .103 .088 .044 .035 .064 .026 .065

TABLE 9.3: Quantitative evaluation of Joint Label Fusion with 3 closest atlases + Correc-
tive Learning, generic 2D UNet with morphology-based data augmentation, target-trained
UNet and fine-tuned UNet. Values with gray background marks the best validation score

for each subject.



9.5. Conclusion 103

.920). Although for most subjects, adding information is profitable and helps boost
the precision of the model, for a subject considered outlier as CAL-4223 (the projec-
tion of the subject in the first 2 PCA plan is clearly at a relatively large distance from
the others, cf. Fig. 9.2), it only over-fits the model to the cluster that is far from the
test subject.

Figure 9.6 presents the visual results with generic UNet and fine-tuned UNet
for CAL-4223, whose DSC increased from .849 to .915. The result of generic UNet is
very noisy, with each muscle head separated into multiple parts, especially the rectus
femoris (colored blue in the figure). The result is much more smooth and coherent
after fine-tuning, morphology-wise, with less distanced errors.

FIGURE 9.6: Visual results of Generic UNet and Fine-tuned UNet, compared with the
manual segmentation of CAL-4223. The last column is the 3D views of the three segmenta-
tions. Red circle marks the most visible error made by fine-tuned UNet. Yellow cirles mark

the distanced errors that might be the source of a large HD.

In terms of Hausdorff Distance (HD), the JLF+CL demonstrated the advantage
of working fully in 3D, with a limited amount of distanced errors. However, the
lower MAD of fine-tuned UNet shows that these errors that amplified HD are aber-
rant and can be corrected with simple postprocessing (Fig. 9.6, yellow circles).

9.5 Conclusion

In this chapter, we have presented our contributions on morphological features: the
measurement and the strategies for both JLF and UNet. The features are computed
from the center slice of a large 3D MR image volume of quadriceps muscles rep-
resenting the subject’s morphology. These features can be integrated into multiple
automatic segmentation methods to either efficiently select atlases or artificially gen-
erate training data while conscious of morphological variance.

The morphological atlas selection helps reduce the number of atlases necessary
to achieve the same results as using all available atlases, which is crucial in multi-
atlas segmentation since the computation time is linearly proportional with the num-
ber of atlases. Meanwhile, a generic 2D UNet trained with data augmented based
on morphological variation gives segmentations with similar quality as multi-atlas
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segmentation upon reducing inference time from 24 hours to 45 seconds. In some
cases where the generic UNet fails to produce adequate results, an extra step of fine-
tuning that takes 5 to 10 extra minutes, based on morphological similarity, is advised
and was proven to give remarkably improvement.
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Conclusion

In this part, we have presented our contributions to the automatic segmentation of
quadriceps using the MUST dataset. The MR images are first preprocessed to correct
the signal inhomogeneity and adapt the left legs to the right legs. The processed
images and the manual segmentations by medical experts served as the materials
for our experiments.

First of all, we provided a complete analysis of Wang and Yushkevich’s muti-
atlas segmentation method with joint label fusion and corrective learning (JLF+CL).
With optimized parameters, the method gave high-quality segmentation for most
test subjects but necessitated a very high computation time. Meanwhile, this method
showed some limitations when applied to subjects with a morphology different from
those of the atlases.

Secondly, we proposed to replace the time-consuming JLF step in the frame-
work of Wang and Yushkevich with weakly-supervised 2D UNet. The UNet is
trained and validated with both manually annotated and automatically generated
data. The data augmentation using random B-spline warping and deformable reg-
istration enhanced the morphological diversity in the training and validation sets
and improved the segmentation quality. As a result, the weakly supervised UNet
provided similar validation metric values as JLF+CL while reducing the inference
time from 48h for JLF to 45s.

Finally, we introduced a morphological measurement and its applications to op-
timize presented segmentation methods: an atlas selection strategy for JLF to reduce
computation time while conserving the segmentation quality, a data augmentation
strategy to maximize the morphological variation in training and validation sets for
UNet, a fine-tuning process added to UNet to improve the segmentation quality
further.

In the next part, we will evaluate our proposed methods on different applica-
tions based on the MUST dataset and two other datasets from two other muscle
studies.
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PART IV

Applications and further
analysis
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Résumé

Alors que la partie III a détaillé nos contributions à la segmentation des muscles,
dans cette partie, nous les appliquons à des problèmes proches nous permettant de
mieux appréhender les capacités et limites de nos approches.

Ainsi, dans le chapitre 10 nous étudions les questions suivantes :

• Est-ce que nos méthodes permettent d’améliorer la segmentation quand un
grand nombre d’atlas est disponible?

• Comment se généralisent nos approches à la segmentation de l’autre jambe?

• Nos segmentation sont elles assez reproductibles pour permettre une étude
longitudinale?

• Nos approches sont elles robustes à un changement dans la configuration d’ac-
quisition IRM?

Pour répondre à ces questions, nous utilisons, en plus des images de MUST,
deux autres jeux de données issus de projets connexes :

• HAMMER : Une étude des lésions du muscle ischio-jambier du Centre Hos-
pitalier Universitaire (CHU) de Saint-Étienne et le point central du projet de
doctorat du docteur Sylvain Grange, radiologue très impliqué dans le projet
MUST.

• SHOULDER : Segmentation des muscles de l’épaule. Un projet réalisé en tant
que stage de Malick Kandji, étudiant en Master de l’INSA Lyon, en collabora-
tion avec les Hospices Civils de Lyon et Hôpitaux universitaires de Genève.

Ce chapitre montre la pertinence de nos développements pour la segmentation
de différents groups musculaires en IRM. Il montre aussi que les erreurs de seg-
mentation obtenues en longitudinal, sur les images de MUST, sont plus faibles que
la segmentation par recalage d’un instant sur un autre instant, et que nos dévelop-
pements restent pertinents, même quand on dispose d’un grand nombre d’atlas en
termes de diminution de temps de calcul.

Enfin, le chapitre 11 résume l’étude longitudinale, sur la base MUST, de l’évo-
lution des caractéristiques musculaires observées à l’aide de l’IRM. D’abord en vé-
rifiant la pertinence de la mise en correspondances de caractéristiques radiomiques
extraites localement sur des séquences IRM différentes et donc potentiellement non
alignées. Puis en analysant muscle par muscle les corrélations observées au cours du
temps ainsi que leurs significativités statistiques. Ce dernier chapitre s’appuie sur 2
contributions personnelles dans des journaux internationaux.

http://www.chu-st-etienne.fr
http://www.chu-st-etienne.fr
https://www.chu-lyon.fr/fr
https://www.hug.ch/en/
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Introduction

In this part, we will apply our contributions proposed in Part III to related problems
that allow us to better understand the capacities and limitations of our proposition.
In Chapter 10, we study the following cases:

• How can our approaches improve segmentation when more atlases are avail-
able?

• How do our methods perform when dealing with both legs?

• Is our segmentation precise enough to allow longitudinal study?

• Can we segment, with few atlases, other muscles than quadriceps?

• Is our approaches robust to small MRI acquisition setting changes?

To answer these questions, we will evaluate the performance of our methods,
not only on the MUST dataset but also on the datasets of two other projects that
involved muscle study:

• HAMMER (Sec. 10.5): A study of hamstring muscle injury of Centre Hospital-
ier Universitaire (CHU) de Saint-Étienne and the focus of the Ph.D. project of
Sylvain Grange, M.D., a radiologist highly involved in the MUST project.

• Shoulder muscle segmentation (Sec. 10.1): a project carried out as an intern-
ship of Malick Kandji, a Master student of INSA Lyon, where I acted as co-
supervisor, in collaboration with Hospices Civils de Lyon and Hôpitaux uni-
versitaires de Genève.

The final chapter, Chapter 11, is a summary of 2 papers that analyze locally
the evolution of the quadriceps muscles during an ultra-marathon using the MUST
dataset.

http://www.chu-st-etienne.fr
http://www.chu-st-etienne.fr
https://www.chu-lyon.fr/fr
https://www.hug.ch/en/
https://www.hug.ch/en/
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CHAPTER 10

Muscle segmentation based on MRI data

This chapter presents different applications of the studied automatic segmentation
methods on different MRI datasets of human muscle groups.

First, we employed our approaches in an automatic segmentation study to as-
sess fat level in muscles of patients with lesions in the rotator cuff tendon (Sec. 10.1).
This application allows us to investigate the importance of the number of atlases on
the proposed methods and the generalization to other muscle groups.

Second, using few atlases, we evaluate the generalization capability of our ap-
proaches to the quadriceps segmentation on both legs (Sec. 10.2), then in longitudi-
nal context (Sec. 10.3), and to the segmentation of another upper leg muscle group
(hamstring, Sec. 10.4), all with the MUST dataset.

Finally, we tested our approaches on another dataset where the MRI acquisition
system was different from the MUST dataset (Sec. 10.5).

10.1 Dataset with more atlases: Rotator cuff segmentation

10.1.1 Context

Aging and repeated stresses can cause partial or complete rupture of the tendon of
one or more shoulder muscles, resulting in pain and sometimes severe functional
limitations. The treatment of these lesions can be medical or surgical, depending on
the age, the pains, the quality of the injured muscle, and the functional deficit. If it
is a surgery, it is proven that its success will largely depend on the muscle trophicity
and its fatty ratio.

A project was proposed with the objective of automatically quantifying mus-
cle/fat ratio and assessing muscle quality before taking charge of patients, based on
muscle segmentation. This project was carried out as an internship of Malick Kandji,
a Master student of INSA Lyon, in collaboration with Hospices Civils de Lyon and
Hôpitaux universitaires de Genève.

10.1.2 Data

A series of patients with lesions in the rotator cuff tendon was evaluated, before
treatment, using MRI Dixon sequences which allow intramuscular fat quantification.
The project’s dataset consists of 51 patients noted from P1 to P51. For each patient,

https://www.chu-lyon.fr/fr
https://www.hug.ch/en/
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we have eight types of 3D MRI sequences with their phases. P40 (patient N°40) was
removed since many of their sequences were missing. For now, we are interested
only in the Dixon e8 sequences, identified by our radiologist as the easiest to segment
muscles manually and covering the adequate volume to observe muscles of interest
in all patients. The images are of size 320 × 320 × 60 voxels with the voxel size of
0.6875 × 0.6875 × 2 mm3.

10.1.2.1 Manual segmentation

Manual segmentation were done based on these sequences for 27 patients among
the 50 (e.g., Figure 10.1). There are 5 muscle heads in the rotator cuff muscle group:
Subscapularis (SBC), Supraspinatus (SPR), Infraspinatus (IFR), Teres minor (TMN), and
Deltoid (DTD).

FIGURE 10.1: Manual segmentation of the rotator cuff muscle group of a patient in the
rotator cuff dataset. Abbreviation: SBC - Subscapularis, SPR - Supraspinatus, IFR - In-

fraspinatus, TMN - Teres minor, DTD - Deltoid.

10.1.2.2 Preprocessing

Compared to the MUST dataset, extra preprocessing steps were necessary for the
rotator cuff dataset as the images are much more heterogeneous (images acquired
from different angles, strong bias field, ...). Since each patient has only one side of
their shoulders examined depending on the position of the lesions, we have images
of both right and left shoulders in the dataset. Therefore, one preprocessing step is
to transform all images to right shoulder images to increase the size of the dataset.
The preprocessing pipeline consists of 5 steps and is presented in Figure 10.2.

1. Bias field correction with N4 algorithm (Tustison et al., 2010)

2. Normalization: All images were normalized to have the same data dynamics as
P12 (randomly chosen as reference). The normalization was done only on a
region of interest (ROI) defined by a simple process of threshold and mathe-
matical operations (see Fig. 10.2).

3. Resampling & Padding: To prepare for the registration step, the images were
resampled to isotropic resolution (0.6875 × 0.6875 × 0.6667 mm3) and padded
with large 0 border. This prevents the lost of information due to registration.

4. Rigid registration: Since images in the dataset were not acquired in the same di-
rection; registration is necessary to employ automatic segmentation approaches,
more particularly, deep learning methods which caught context information.
Right shoulder images were rigidly registered on a template patient (chosen
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FIGURE 10.2: Preprocessing pipeline for the rotator cuff dataset, with the size and the
resolution of images at each step.

randomly) - P15. Left shoulder images were first registered on P4 (also a left
shoulder image), then mirrored to resemble a right shoulder, and finally, reg-
istered on P15.

5. Cropping: After registration, images were cropped to eliminate the part where
locates no helpful information, thus accelerating the training process and re-
ducing memory usage.

10.1.3 Automatic segmentation

Since there are 27 manual segmentations, the LOO strategy and data augmentation
(see Sec. 3.2) is not necessary. We divided the dataset into two subsets: testing subset
with 10 patients and training subset with 17 patients.

One of the objectives here is to implement and analyze different deep learn-
ing networks’ performance on the dataset. The tested networks are 2D UNet (Ron-
neberger et al., 2015), 2.5D UNet (Haque et al., 2019), Mask R-CNN (He et al., 2020),
ResUNet (Zhang et al., 2018) and UNet 3+ (Huang et al., 2020). The detailed results
is not relevant to this dissertation. Briefly, despite the high expectation for UNet
3+, among the 2D networks applied on axial slices, the ResUNet with ResNet101
backbone and deep supervision (Lee et al., 2015) gave the best performance in term
of DSC (.892 ± .040) and MAD (3.22 ± 2.80 mm). Overall, the best result obtained
was with 2.5 UNet (2D UNets on 3 axes followed by majority voting), with DSC at
.893 ± .040and MAD at 2.12 ± 0.70 mm.

This dataset with a larger number of manual segmentations allowed us to fur-
ther analyze the impact of the number of atlases on Wang et al.’s multi-atlas segmen-
tation method, with and without the help of morphological measures. The morpho-
logical features were measured at the same axial slice after preprocessing, where 4
over 5 muscle heads are visible for all patients (the 5 muscle heads do not appear
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together at any axial slice). Among the 10 test subjects, there are 3 subjects that al-
ways have non-adequate results with JLF due to deformable registration failure. We
have not yet been able to identify the reason behind these failures, so we removed
these 3 patients from the test set for now. We observed the results of JLF with 3, 4, 5,
7, 9, and 11 atlases, selected randomly or based on our morphological distance. The
results are summarized in Figure 10.3.

FIGURE 10.3: Results of Wang et al.’s JLF segmentation method on rotator cuff dataset,
with and without morphology-based atlas selection. Each color represents a muscle head,
with the color black representing the global score over the entire muscle group. Each muscle
head is presented with the average value and a vertical bar limited by the minimal and the

maximal values over 7 subjects.

The evolution of DSC and MAD in function of the number of atlases shows that
the morphology-based atlas selection helps the results converge faster and reduces
the quality gap among the different numbers of atlases. With a random selection,
adding atlases does not always mean improving the result, while it is the case for
morphology-based selection. With 3 atlases, we can observe a clear improvement in
MAD when using morphology measure, meaning smaller spatial errors. The mor-
phological features have been once again proven to be pertinent in multi-atlas seg-
mentation of muscle groups with large morphological variance in the dataset.

10.2 Generalization to quadriceps segmentation on both legs
- MUST dataset

Our experiments in Part III exploited only right leg images of the MUST dataset since
the 7 volumes with manual segmentation of quadriceps are of right legs. This section
will evaluate automatic segmentation of quadriceps on both right and left legs us-
ing the manually segmented center slice of each image. From this section onwards,
JLF+CL is short for Wang and Yushkevich’s multi-atlas segmentation with joint label
fusion and corrective learning. Except for when specified differently, the multi-atlas
segmentation is based on three morphologically closest atlases, and corrective learn-
ing is based on the model learned on all atlases (see Sec. 9.2). Additionally, UNet
here refers to the fine-tuned UNet presented in Section 9.4.2.
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To extract the morphological features of 48 subjects in the MUST dataset for the
study presented in Chapter 9, a medical expert in our team has manually segmented
the quadriceps, the hamstrings, and the femurs on both legs at the center axial slice
of a 3D spoiled gradient echo (3D GRE) sequence, acquired at the time point Pre
(before the race, see Sec. 2.3). This center position is planned at a 15 cm distance
from the upper part of the patella (see Sec. 2.3). In total, we have 48 × 2 = 96 axial
slices with manual segmentation at 3D GRE sequences’ resolution. These manual
segmentations can now be used for quality control of the automatic segmentation
methods.

All of the atlases for JLF+CL and the training data for UNet are images of right
legs. For the multi-atlas approach, the atlases used to segment a left leg are chosen
independently from the right leg of the same subject since we cannot assume that
both legs have the same morphology. The projection of left and right legs of all
subjects on the plan of the first two PCA axis (Fig. 10.4) confirms that the two legs
of the same subjects are not always morphologically close during the MRI acquisition.
The validation metrics of the two automatic segmentation methods are reported in
Table 10.1.

FIGURE 10.4: Representation of both legs of the MUST dataset’s subjects on the plan of
the first two Principal Components Analysis (PCA) axis of morphological data. The two

legs of a subject are linked with a dash line.

Method DSC DSCw HD (mm) MAD (mm) VS

JLF + CL

Left legs .937 ± .027 .939 ± .023 10.43 ± 6.26 1.30 ± 0.79 .066 ± .046

Right legs .934 ± .021 .937 ± .019 11.62 ± 5.49 1.38 ± 0.69 .074 ± .036

Both .936 ± .024 .938 ± .021 10.98 ± 5.92 1.34 ± 0.74 .070 ± .041

UNet

Left legs .937 ± .024 .939 ± .024 10.39 ± 6.01 1.32 ± 0.69 .069 ± .044

Right legs .940 ± .024 .941 ± .022 12.33 ± 8.45 1.43 ± 1.27 .059 ± .039

Both .938 ± .024 .940 ± .023 11.28 ± 7.26 1.37 ± 0.99 .065 ± .042

TABLE 10.1: Quantitative evaluation of quadriceps segmentation at center axial slice for
all 48 subjects of MUST dataset with the training data consist only of right leg images.

Results are reported with mean ± sd.

The results are slightly superior to the results obtained in Chapter 9 (average
DSC at .934 for UNet and .920 for JLF+CL over 7 image volumes) since the center
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axial slice passes by the middle part of all muscle heads, where the boundary is
better defined than at the extremities. The average validation scores are very close
to the inter-expert scores reported in Section 6.2 (Average DSC at .910). With sim-
ple postprocessing, such as a morphological opening with a structuring element of
minimal size to remove aberrant errors, these automatic segmentations would be
accurate enough for image features extraction and statistical analysis (see Chapter
11).

10.3 Robustness study on segmentation of longitudinal im-
ages of quadriceps - MUST dataset

In order to evaluate the robustness of the automatic segmentation methods on longi-
tudinal data, we compared the segmentation validation metrics of the race finishers’
segmentation at three different time points (see Sec. 2.3): Pre (before the race), Post
(at the arrival) and Post+3 (48-72h after the race). There are 4 finishers among the 7
subjects with manual right quadriceps segmentation at the 3 time points. The seg-
mentation of a subject’s image at Post and Post+3 with UNet and JLF+CL is entirely
independent of their manual segmentation at Pre.

Since we have 17 manually segmented 2D slices for each volume at Post and
Post+3 (see Tab. 2.1), only DSC and VS are comparable as the other metrics are
computed in 3D. Moreover, for Post and Post+3, we also compared the segmentation
obtained by applying the automatic segmentation methods on the image volume at
the time point and the one obtained by registering the segmentation at Pre to the
time point in question. The results are reported in Table 10.2.

DSC VS

Time point/Method ALB ALF ARS OUK ALB ALF ARS OUK

Pre
JLF+CL .912 .950 .951 .938 .101 .036 .041 .072
UNet .918 .936 .950 .948 .112 .089 .043 .033

Post
Manual Pre registered .914 .929 .934 .921 .111 .070 .066 .039
JLF+CL Pre registered .926 .921 .933 .914 .022 .060 .077 .067
UNet Pre registered .939 .926 .940 .926 .026 .044 .028 .040
JLF+CL .924 .922 .939 .909 .077 .052 .070 .090
UNet .939 .903 .939 .927 .020 .103 .027 .062

Post+3
Manual Pre registered .919 .924 .934 .937 .085 .060 .058 .038
JLF+CL Pre registered .923 .917 .933 .933 .055 .070 .078 .062
UNet Pre registered .935 .925 .945 .942 .034 .041 .023 .044
JLF+CL .921 .918 .941 .937 .044 .072 .076 .050
UNet .935 .903 .946 .944 .037 .080 .016 .053

TABLE 10.2: Validation metrics on longitudinal data of 4 subjects (ALB-2715, ALF-4529,
ARS-4026, and OUK-2927). Only the first three letters of the subjects’ code names are
inscribed here to reduce the table’s size for the sake of readability. The metrics were computed
based on the same 17 slices for Pre, Post, and Post+3. Gray cell indicates the best automatic
segmentation result for a subject at a time point. Bold values indicate the metrics of the

manual segmentation at Pre registered to the time point in question.
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Overall, all the DSC scores are in the same value range (over .900). In all the
cases, either the segmentation at Pre of UNet registered to Post and Post+3 or the
segmentation of UNet directly at these two time points gives the best validation
scores. These scores are mostly close to or better than the manual segmentation at
Pre registered to the succeeding time points (bold values in Table 10.2).

These results confirm the applicability of the proposed automatic segmentation
methods to longitudinal data.

10.4 Application to hamstrings segmentation - MUST dataset

We have been focusing on quadriceps segmentation of the MUST dataset since the
quadriceps is known as the most affected muscle group due to eccentric effort during
downhill running (see Sec. 2.1.1). Meanwhile, another skeletal muscle group in the
upper thigh which is the hamstrings is also in the interest of the researchers at CHU
Saint-Étienne and CREATIS laboratory. To fully exploit the MUST dataset and to pre-
pare for another research project (see Sec. 10.5), the hamstrings in 7 left leg images
were manually segmented. To accelerate the process, we first estimated the segmen-
tations with an automatic segmentation method, such as deformable registration or
multi-atlas segmentation, then they were precisely corrected by the medical expert.

Hamstrings is an upper thigh muscle group consisted of 4 muscle heads: short
head of Biceps Femoris (SHBF), long head of Biceps Femoris (LHBF), Semitendinosus
(ST), and Semimembranosus (SM). Figure 10.5 shows an example of a manual seg-
mentation of hamstrings superposed on a T1W image.

FIGURE 10.5: Manual segmentation of hamstrings muscle group, superposed on T1W
image, of a patient in the HAMMER dataset (Sec. 10.5). Abbreviation: SHBF - short
head of Biceps Femoris, LHBF - long head of Biceps Femoris, ST - Semitendinosus, SM -

Semimembranosus.

With 7 manual segmentations from 7 left leg images, we employed the Leave-
One-Out strategy to evaluate the performance of the automatic segmentation meth-
ods on hamstrings. All the images used in this experiment, including atlases, targets
for data augmentation, and test images, are all images of left legs. The results are
reported in Table 10.3.

We achieved results of similar quality as in the case of quadriceps segmentation
with an average DSC of .949 and .926 for morphology-based fine-tuned UNet and
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ALB-2725 ALF-4529 ANG-2014 ANS-3229 BRG-1924 CAL-4223 YAG-47 Mean

JLF+CL

DSC .928 .933 .935 .940 .921 .919 .907 .926

HD (mm) 24.72 21.16 37.59 32.84 25.99 54.58 63.51 37.20

MAD (mm) 0.90 0.75 1.27 0.86 1.04 0.97 1.92 1.10

VS .018 .037 .049 .035 .046 .048 .077 .045

UNet

DSC .940 .955 .953 .955 .938 .950 .949 .949

HD (mm) 60.29 21.51 24.42 221.96 81.20 63.78 220.88 99.15

MAD (mm) 1.15 0.47 0.50 0.52 0.97 0.57 0.59 0.68

VS .015 .019 .033 .027 .043 .018 .033 .027

TABLE 10.3: Quantitative evaluation of Joint Label Fusion with 3 closest atlases + Correc-
tive Learning and fine-tuned UNet for hamstrings segmentation.

JLF+CL, respectively. While HD value is high for UNet, the observed small MAD
reassures the segmentation quality and suggests that the high HD is due to distanced
aberrant errors. Indeed, the SHBF is not present in the top one-third of the image
volume (see Fig. 10.5, coronal view), and as the UNet works in axial 2D, it sometimes
creates a small island of SHBF label in the slices where the SHBF must not be present.

A similar evaluation as in Section 10.2 was done with the hamstrings at the
center axial slice. The results are reported in Table 10.4. The average metrics at
the center slices are, on average, inferior to the ones evaluated for the 3D volumes
reported in Table 10.3. It is due to the fact that the center axial slice is very close
to the top of the SHBF where the muscle head’s axial surface is small, which makes
every mis-segmented pixels have a larger weight in the global evaluation metrics.
Moreover, from observation, the extremities of a muscle head are often where the
muscle boundary is unclear, complicating even the manual segmentation. Figure
10.6 shows the MRI images of a subject with the segmentation of hammer muscle
heads, both manual and automatic. The SHBF (colored orange) is much smaller
than the others, and its extremity zone (circled in red) with slightly lower intensity
is where the automatic segmentation methods made mistakes. The errors are small,
but due to the small surface of SHBF at this specific axial slice, the DICE score of this
muscle head is much lower than the global DSC (average of all muscle heads’ DICE
scores).

Method DSC DSCw HD (mm) MAD (mm) VS

JLF + CL

Left legs .864 ± .047 .891 ± .031 12.98 ± 5.38 2.16 ± 0.99 .148 ± .067

Right legs .857 ± .046 .882 ± .040 12.62 ± 5.15 2.29 ± 0.96 .155 ± .079

Both .860 ± .046 .886 ± .037 12.78 ± 5.23 2.23 ± 0.97 .152 ± .074

UNet

Left legs .880 ± .060 .902 ± .046 10.19 ± 4.98 1.83 ± 0.92 .116 ± .068

Right legs .873 ± .053 .899 ± .034 11.00 ± 6.07 2.02 ± 0.84 .131 ± .067

Both .876 ± .056 .900 ± .040 10.63 ± 5.58 1.94 ± 0.88 .124 ± .068

TABLE 10.4: Quantitative evaluation of hamstring segmentation at center axial slice for
all 48 subjects of MUST dataset. Results are reported with mean ± sd.
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FIGURE 10.6: Center slice of a subject with the hammers segmented with different methods.
Red circles mark the zone where the automatic segmentation methods often make mistakes.
Abbreviation: SHBF - short head of Biceps Femoris, LHBF - long head of Biceps Femoris,

ST - Semitendinosus, SM - Semimembranosus.

10.5 Generalization to new data with different acquisition
parameters: HAMMER dataset

This section’s experiment uses the atlases, the corrective models, and UNet models
trained with the MUST dataset to segment a new dataset called HAMMER, whose
subjects are also athletes but of different sports. The major difference here with the
previous sections is the change in the acquisition system from 1.5T to 3T.

10.5.1 HAMMER case study

HAMMER (HAMstring MEchanics and mRi) is a prospective, multi-centre, non-interventional
cohort study (Nguyen et al., 2019a). The main objective is to analyze the association
between hamstring injury location and injury mechanism, hence the necessity of
muscle segmentation.

The Comité de Protection des Personnes d’Ile de France V (CPP IDF 5: 17059)
approved the study protocol (No. ID-RBC: 2017-A03433-50). It consisted of per-
forming an MRI scan of the thighs in a patient with a clinical suspicion of hamstring
muscle injury and requesting the patient to fill a questionnaire describing their in-
jury’s circumstances and mechanisms.

Patients were recruited from two radiology centers: the Clinique Mutualiste and
the Centre Hospitalier Universitaire (CHU) de Saint-Étienne. Patients were referred
for an MRI scan of the thigh by their attending physician or by a sports physician fol-
lowing suspicion of a hamstring muscle injury during sports practice. The inclusion
criteria were as follows: leisure/amateur, high-level or professional athletes, aged 18
to 50 years old, referred by their attending physician, their sports physician or com-
ing of their own free will to a medical imaging facility to perform an MRI scan of
the thigh following the suspicion of an acute hamstring injury that occurred during
the practice of sports and that was less than 21 days old. The exclusion criteria were
as follows: female athletes (to limit bias related to potential differences in injury be-
tween male and female athletes (Edouard et al., 2016)), recurrences, patients who
had a history of anterior cruciate ligament surgery with hamstring tendon removal,
a hamstring injury occurring outside of sports practice, an inability to understand
the French language, and patients with no MRI abnormality and grade 0 of the mod-
ified Peetrons MRI classification (Peetrons, 2001).

https://www.mutualite-loire.com/index.php/nos-etablissements/chirurgie/la-clinique-mutualiste-chirurgicale
http://www.chu-st-etienne.fr
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The number of patients to date is 54, and the data collection is still in progress.

10.5.2 Data

MRI acquisition

The MRI examination takes place within a maximum of 21 days after the onset of
the lesion. For patients’ data to be included in the study, MRI imaging must have
been performed on MRI machines less than 5 years old and with a magnetic field of
at least 1.5 T.

For the MRI examination, axial and coronal slice sequences with T1, T2-weighting,
and fat saturation are used. The field of view covers the proximal musculotendinous
insertion at the ischial tuberosity and the distal insertion at the fibula’s head and the
proximal end of the tibia. Considering the coronal T1 Dixon Water-only images,
which must be at a similar resolution as the T1-Water (T1W) images of the MUST
dataset, the image volume dimension is 384 × 456 × 224 voxels with the voxel size
of 1.1 × 1.1 × 1.1 mm3. Figure 10.7 shows, as an example, a T1W image of the HAM-
MER dataset, acquired with the 3T MRI scanner of CHU de Saint-Étienne.

FIGURE 10.7: Three views of a coronal 3D T1 Dixon Water-only sequence of the HAM-
MER dataset, acquired with a 3T MRI machine.

Preprocessing

As the HAMMER dataset is very similar to the MUST dataset regarding the quality
of images and the acquisition position (upper thigh), we aim to segment the former’s
images based on the manual segmentations from the latter. The main difference is
that MUST images were acquired with a 1.5 T MRI machine instead of 3T as for the
HAMMER images.

A similar preprocessing procedure as the one described in Section 6.1, was ap-
plied, including left-right separation, flipping of left leg images, N4 bias field cor-
rection, and gray-scale standardization based on the right leg image of ALB-2725 of
the MUST dataset. An extra step of resampling was added to obtain images with the
same resolution as in the MUST dataset.

Manual segmentations

An automatically-obtained segmentation of an image in the HAMMER dataset was
manually corrected by a medical expert to evaluate our methods’ performance. The
segmentation includes both quadriceps and hamstrings muscle groups.
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10.5.3 Experiments & Results

We employed both Joint Label Fusion with three closest atlases and fine-tuned UNet,
using atlases from MUST dataset, to segment the quadriceps and the hamstrings of
a subject from the HAMMER dataset, whose segmentation was manually corrected
for qualitative evaluation. The results are presented in Figure 10.8.

FIGURE 10.8: Quadriceps and hamstrings automatic segmentation, using atlases from
MUST dataset for training, of a subject in HAMMER dataset, compared with medical

expert’s manual segmentation.

The automatic segmentation methods did not perform well on the target image:
the UNet failed to create coherent segmentation while the JLF+CL made some big
mistakes at the muscle boundary. To understand the results, we investigated the
projection of the target subject on the PCA plans (the plan of the 2 first axis and the
plan of the first axis and the third axis) of the MUST dataset’s morphological data
(Fig. 10.9): The HAMMER subject is close to the atlases in terms of quadriceps mor-
phology and is separated from the cluster of MUST subjects along the third axis in
terms of hamstring morphology. Subsequently, for this specific subject, it is coherent
that the JLF+CL had a more favorable outcome with the quadriceps than with the
hamstring. However, in the case of quadriceps segmentation, given the close dis-
tance of the target subject to the atlases, the results must have been of higher quality,
without such large morphological error. Furthermore, this analysis of the subject’s
morphological position among the MUST subjects does not justify the non-adequate
results of UNet.

To make sure that the preprocessing does not have a negative effect on the re-
sults, we rerun the methods on the image after each preprocessing step. The results
displayed in Figure 10.10 indicate that the failure of the segmentation methods does
not originate from the preprocessing.

It is important to keep in mind that the images of the target HAMMER subject
are acquired with a 3T MRI scanner, while the images of the MUST dataset came
from a 1.5T machine. One possible explanation here is that the underlying difference
in texture between 3T images and 1.5T images invalidated the UNet models trained
with the MUST dataset. This difference may also reduce the performance of the
registration process, which leads to less accurate results for JLF+CL.
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FIGURE 10.9: Projection of the target subject (blue point) on the PCA plans of the MUST
dataset’s morphological data. First row: cumulative projected inertia plots. Second row:
Projection on the plan of the first two PCA axis. Third row: Projection on the plain of the

first and the third PCA axis.

FIGURE 10.10: Quadriceps segmentation produced by fine-tuned UNet for the original
T1W image of the HAMMER subject and for the image resulted from each preprocessing

step

From the experiments, we understand that our approaches are sensitive to changes
in MRI acquisition and that our morphology measures cannot evaluate this differ-
ence as they are based on the segmentation regions of MR images and not on MR
images themselves. We can also assume that the morphology measure of quadriceps
is not generalizable to hamstring and should be computed in a specific manner to
adapt to hamstrings morphology.
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10.6 Conclusion

This chapter presents the results of our automatic segmentation methods based on
morphological features on multiple MRI muscle datasets. In general, the results
proved the robustness of the methods in a longitudinal setting and on different mus-
cle groups, as observed on shoulder and longitudinal segmentation of quadriceps.

The segmentation of a 3T MR image using atlases and models trained with the
1.5T images from the MUST dataset showed that the textural difference between 3T
and 1.5T prevents the transfer of our pre-trained model to the new dataset. A trans-
lation between these two different types of signal needed to be studied to avoid the
manual segmentation process each time there is a new dataset from an MRI scanner
of different magnetic field strength.
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CHAPTER 11

Longitudinal study on the MUST dataset

This chapter resumes two of our contributions: Nguyen et al. (2021a), and Nguyen
et al. (2021b), which involve the analytical studies based on the muscle segmenta-
tions. The study flowchart was previously presented in Chapter 2, Figure 2.4.

First, a preprocessing framework is built based on the quality of the segmen-
tation (Sec. 11.1). The radiomic features are then extracted from each muscle head
based on the segmentation. Finally, a longitudinal statistical analysis based on these
features was done to explore the link between image information and physiological
change in the subjects (Sec. 11.3).

11.1 Data preparation & Feature extraction

Radiomics is a process that involves extracting and analyzing a large number of fea-
tures from medical images. The features can be first-order statistics (distribution of
voxel intensities), shape-based, or textural (Hatt et al., 2018). While all features can
be analyzed with a standardized framework, an exhaustive interpretation of a tex-
tural feature requires a specific analytical problem for optimizing feature extraction
parameters. In MUST dataset, radiomic features were extracted from quantitative
MRI (qMRI) maps (T2, T2*, PDFF and χ) for each runner at each time point.

This section provides the data preparation steps that we judge necessary to ex-
tract image features accurately.

11.1.1 Distorsion among image sequences

A localized longitudinal analysis requires accurate segmentations. While radiomic
features need to be extracted from many different image sequences, the segmenta-
tion is generally best performed on a given contrast. The correction of MRI distortion
is a well-known challenge in MRI analysis (Walker et al., 2014; Rizzo et al., 2018),
which makes feature extraction by superposing automatic segmentation obtained
on one sequence on the other sequences questionable. Moreover, given the errors
that could occur during the automatic segmentation, preprocessing the automatic
segmentations is necessary to extract accurate image features.

In Nguyen et al. (2021a), we investigated the impact of the MRI distortion that
appears between 3D T1 Dixon Water-only images and both spoiled gradient echo
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and multi-echos T2 weighted spin-echo images when sequentially acquired (Fig.
11.1).

FIGURE 11.1: T2 and T2* maps (a) and T1W image (on the right) of the left leg of a
runner. By superposing T1W image on the quantitative maps, we can observe the original
distortions between T1w and T2 maps (b), distortions after rigid registration (c), and after
deformable registration (d). The arrows guides to the visually noticeable distortions. The
distortions between T1w and T2* map are not as visible. T2 and T2* maps are displayed in

colors for better visualization. Figure extracted from Nguyen et al. (2021a).

The results suggest that classically used rigid registration is not optimal and that
deformable registration should be preferred and should limit significant error in ra-
diomic feature extraction. However, from the experiments on the MUST dataset, no
significant change in radiomic statistic is observed whatever segmentation correc-
tion approach was applied; which indicates that radiomic features are not sensitive
to segmentation refinement when considering large 3D regions.

11.1.2 Postprocessing of automatic segmentations

Proper segmentation of each muscle head is a crucial step of the analysis since it
directly constrains the quality of the extraction of the quantitative data, on which
further statistical analysis would be done. Thus, the segmentation must be accurate
for all the data sets and all the muscles. Depending on the accuracy of the automatic
segmentation method, more or less complicating of postprocessing procedure must
be applied to obtain statistically accurate data for later analysis. Figure 11.2 shows an
example of a segmentation refinement framework for Gilles et al.’s segmentations.

The framework consists of 4 steps: i) thresholding, ii) mathematical morphology
application, iii) spatial resolution adaptation of the labels, and iv) histogram-based
noise removal. These operations were applied to Gilles et al.’s automatic segmenta-
tion of each runner quadriceps at each time point to produce the final refined and
more conservative segmentation to be used to retrieve statistical data from quantita-
tive maps:

• Thresholding: Co-registration of the PDFF maps, derived from the me-3DGRE
sequence, allows one to re-assigned all corresponding labels, erroneously clas-
sified in the fat tissue by the automatic segmentation, to a null value (same
label as background mask) by simple thresholding if the corresponding PDFF
was higher than 0.60.
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FIGURE 11.2: Segmentation refinement framework for Gilles et al.’s segmentations. A seg-
mentation is first cleaned from residual contamination by fatty tissues using thresholding.
Mis-segmented pixels are further removed with a mathematical morphology step. The cor-
rected labels are adapted to fit to the resolution of the studied quantitative map prior to the
final step consisting of histogram-based noise removal. Figure extracted from Nguyen et al.

(2021b).

• Mathematical morphology application: The final segmentation map contained 8
label objects corresponding to the 8 studied muscles in the left and right quadri-
ceps. We used a morphological erosion followed by a morphological opening
with the smallest spherical structuring element possible (radius of 1 pixel) to
smooth the label objects’ contours, remove aberrant pixels, and separate the
objects from each other.

• Resolution adaptation: Originally, the segmented label dimensions were these
of the isotropic water image, calculated from the first anatomical isotropic 3D
GRE. All quantitative maps from which we aim at extracting the information
have 2 different and lower resolutions. Thus, it is necessary to create 2 other
sets of labels with the same resolutions as the corresponding quantitative maps
to correctly decipher the information from each pixel classified in each muscle
head. The adaption is done by using the physical coordinates of each voxel in
the quantitative maps and finding the label of the same coordinates in the label
images.

• Noise removal: We noticed the random appearance of noisy pixels in our images
and quantitative maps. Based on the histograms computed on the labeled pix-
els, we remove the labels of the 1% of pixels the less representative (which can
be considered aberrant) from the two extremities of the histograms. The his-
tograms of different labels are processed separately. The example of histogram
before and after noise removal is in Figure 11.3.

This framework is specific to post-process Gilles et al.’s segmentations. For
other automatic segmentation methods, one or more steps can be removed or added
depending on the desired segmentation accuracy.

The processed automatic segmentations were then used for local radiomic fea-
ture extraction. The feature extraction can be done using either Vallières et al.’s MAT-
LAB toolkit or Van Griethuysen et al.’s python package. The analyse presented in
this thesis is based on the feature extracted using Vallières et al.’s MATLAB toolkit.
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FIGURE 11.3: Histogram of pixels labeled as right Vastus Lateralis in a T2*-maps before
(right) and after (left) noise removal. The red part in the before histogram is conserved and

resampled to compute the after histogram.

11.2 Difference among muscle heads

The first step was to explore differences among all quadriceps muscle heads. Figure
11.4 shows a matrix of the t-test results when comparing quantitative MRI (qMRI)
metrics (χ, PDFF, T2, T2*) between all muscle heads at the three MR acquisition time
points (Pre, Post, Post+3).

FIGURE 11.4: t-test matrix with color-coded P-values for multiple comparisons of qMRI
metrics (χ, PDFF, T2, T2*) between muscle heads at all three acquisition time points (Pre,
Post, Post+3). Abbreviations: VL – Vastus Lateralis, RF – Rectus Femoris, VM – Vastus
Medialis, VI – Vastus Intermedius, r – right, l – left. For easy viewing, dotted diagonals
highlight inter-leg (right/left) comparisons of the same muscle heads at each time point,
while all other boxes are intra-leg and/or inter-head comparisons. A P-value less than .05

indicates a significant difference between two muscle heads.

When focusing only on right/left differences of the corresponding muscle heads,
χ, T2* and PDFF showed similar tendency. At the same time, there was no signifi-
cant difference between right and left muscle heads for χ and T2* at any time point,
and PDFF exhibited a significant difference between vastus lateralis (VL) heads only
at a single time point (Post+3). On the other hand, the T2 metric showed a different
pattern with a significant difference between the rectus femoris (RF) heads of the two
legs at the three time points (Pre, Post, Post+3) and a significant difference between
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the left and right vastus medialis (VM) at time point Pre. Different muscle heads also
had different qMRI values, especially the RF, which showed significant differences
compared to all the other muscle heads most of the time. These results highlight the
need to consider individual muscle behavior separately and that pooling quadriceps
muscle heads may result in a loss of information.

11.3 Longitudinal analysis

The longitudinal statistical analysis is inspired by the procedure of Froeling et al.
(2015).

We used a statistical analysis of repeated measures with adaptation to the data
normality, as the normal distribution could not be assumed. For each qMRI calcu-
lated index of each of the 9 muscle volumes (4 quadriceps muscle heads per leg and
the total quadriceps volume), we tested the normality of the data at 3 time points
with the Shapiro-Wilk test. For the global effect test, one-way ANOVA designed for
repeated measures was conducted for all data normally distributed at all the time
points; otherwise, the Friedman test was employed. While performing ANOVA, the
sphericity of the data was verified by using Mauchly’s test. If the sphericity assump-
tion was violated, the Greenhouse-Geisser correction method was used on the P-value
of ANOVA. After the global effect test, a post hoc test was performed to compare
each time point pair. The type of post hoc test depended on the normality of differ-
ences between two time points: dependent t-test for normally distributed differences
and Wilcoxon signed rank test otherwise. The obtained P-values were adjusted with
the Bonferroni adjustment method for multiple comparisons. A similar strategy was
applied to the biological marker data with 58 variables at 4 time points (Appendix
A.3.3).

When analyzing temporal changes on the repeated measures of qMRI metrics,
we observed a significant time effect (i.e., race effect) on T2* and T2 mean values
(Fig. 11.5 & 11.6).

Both T2* and T2 were significantly longer at arrival for most of the muscle
heads. They significantly decreased after recovery for the VM and the vastus in-
termedius (VI) while not returning to baseline values at that time of measurement.
PDFF and χ showed only a small time effect (details in Nguyen et al. (2021b)). Pool-
ing all muscles, PDFF had a tendency to decrease after the race (2.88 ± 0.53) com-
pared to baseline (3.16 ± 0.45) while increased to higher values than baseline (3.17 ±
0.46) after 48 h of recovery. When considering each muscle, the time effect reached
significance for VI, right VM, and left VL muscle heads. Despite a similar trend as
the PDFF, time-effect changes in χ did not reach significance for most muscle heads,
except for left VL and left VM. When focusing on T2* and T2 findings, the vastus
group exhibited more substantial variations than the RF. The VM and VI had more
extensive changes than the VL or the average of all muscles. T2* values appeared
less sensitive to muscle changes than T2, as illustrated in Figure 11.4, but most of the
statistical tests were significant except for some muscle heads on both legs between
time points Post and Post+3.

We propose below, in Figure 11.7, the histograms of T2* metric for the subject
used as illustration in Figure 11.5, where the reader should have the impression that
the lesion is very focal. The histograms are generated on the right Vastus Inter-
medius (VI) T2* images where we observed a large inflammation area (also in Fig.
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FIGURE 11.5: Variation of T2* mean in the individual muscle heads of all finishers with an
example of T2* maps at the three MR acquisition time points relative to the race of the same
subject. A P-value less than .05 indicates a significant change between two time points.
Abbreviations: VL – Vastus Lateralis, RF – Rectus Femoris, VM – Vastus Medialis, VI –

Vastus Intermedius.

FIGURE 11.6: Variation of T2 mean in the individual muscle heads of all finishers with an
example of T2* maps at the three MR acquisition time points relative to the race of the same
subject. A P-value less than .05 indicates a significant change between two time points.
Abbreviations: VL – Vastus Lateralis, RF – Rectus Femoris, VM – Vastus Medialis, VI –

Vastus Intermedius.
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11.5). We can see that while the mode did not change much (always around 30), the
shape and the histogram range changed drastically: from a nearly symmetric and
normal distribution in Pre, the histogram changed to a log-normal like distribution
(right-tailed distribution) in Post and Post+3.

FIGURE 11.7: Histogram of T2* metrics of a subject’s vastus intermedius at 3 different
time points of the race.

We then separate the right VI into 2 regions depending on the T2* intensity
at Post: a hyper-intensity region and the apparently unchanging region (Fig. 11.7).
Table 11.1 gives the mean intensities of these two regions at the 3 time-points.

FIGURE 11.8: T2* map of a right leg at the time point Post with the vastus intermedius
separated into 2 regions depending on the intensity: a hyper-intensity region and the ap-

parently unchanging region compared to the images at Pre.
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Sub-regions in VI muscle (based on T2* behavior at Post) Pre Post Post+3

hyper-intensity region 29.86 50.80 41.68

unchanging region 29.69 35.49 30.22

TABLE 11.1: Intensity mean of the 2 regions of vastus intermedius (illustrated in Fig.
11.8) at the three time points.

We can see that, at Pre (baseline), the mean intensity is almost the same for both
regions. At Post, both regions show an increase in mean intensity. While the hyper-
intensity region demonstrates the largest change that indicates severe inflammation,
the remaining of the muscle is also showing a smaller but not negligible change.
As expected, both regions have a decrease in mean intensity at Post+3 compared to
Post, which indicates the occurrence of the recovery process.

In addition to this individual case analysis, we have also studied the histogram
evolution of each subject and analyzed globally four histogram features (mean, me-
dian, kurtosis, and skewness) in order to evaluate the homogeneity vs. the het-
erogeneity. We provide in Figure 11.9 the median, kurtosis and skewness boxplots
computed from T2* maps. We can observe that all the histogram features increase
for most of the muscle heads (except RF), meaning that the trend observed in the
individual above (going from a symmetric distribution to a more right-tailed distri-
bution) is observed in all finishers. If focal areas first draw attention in the T2* maps,
there is also an overall inflammation of the tissue that statistical analysis undoubt-
edly helps to establish.

Intensity mean, median, histogram kurtosis, and skewness are first-order ra-
diomic features. Similar analysis can be done on the higher-order features extracted
from the qMRI maps. An example of the results obtained with T2* maps is presented
in Figure 11.10. All the textural features (GLCM, GLRLM, GLSZM and NGTDM
groups in the figure) are extracted with default parameters.

Finally, the potential associations between image markers and biological mark-
ers were evaluated by calculating the repeated measure correlation coefficient (Bak-
dash and Marusich, 2017) between each image marker and each biological marker.
The correlation heatmap between the radiomic features extracted from T2* maps and
the biological markers are shown in Figure 11.11.

Further discussion on the first-order image features and the biological mark-
ers for the MUST dataset, in particular their physiological aspects, can be found in
Nguyen et al. (2021b). This longitudinal analysis procedure can also be applied to
other anatomical structures, such as the femur bone marrow (Nguyen et al., 2019c).

11.4 Conclusion

In this chapter, we have presented the analytical application of automatic segmenta-
tion by resuming two of our contributions Nguyen et al. (2021a) and Nguyen et al.
(2021b). The segmentation allows the study of local changes in subjects based on
longitudinal quantitative MR data. The analysis framework is the same for manual,
semi-automatic, or automatic segmentation. As mentioned above, considering the
time-consuming and mentally exhausting nature of the manual segmentation task,
a robust automatic segmentation method is indispensable. The more precise the



11.4. Conclusion 137

FIGURE 11.9: Variation of T2* median and its histogram kurtosis and skewness in the in-
dividual muscle heads of all finishers. A P-value less than .05 indicates a significant change
between two time points. Abbreviations: VL – Vastus Lateralis, RF – Rectus Femoris, VM

– Vastus Medialis, VI – Vastus Intermedius.

segmentation, the fewer postprocessing operations need to be applied for accurate
analytical results.
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FIGURE 11.10: Results of statistical tests in our longitudinal analysis of T2* on the entire
set of radiomic features. A P-value inferior to .05 indicates a siginificant change between
two time points. Abbreviations: VL - Vastus Lateralis, RF - Rectus Femoris, VM - Vastus

Medialis, VI - Vastus Intermedius, r – right, l – left.

FIGURE 11.11: Correlation between biologic markers and radiomic features extracted from
the entire quadriceps volume in T2* maps.
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Conclusion

In this part, we have presented the applications of our segmentation methods on
different muscle datasets and the longitudinal analysis of quadriceps muscles during
an ultra-marathon based on automatic segmentation.

We applied our automatic segmentation methods optimized with morphologi-
cal features on multiple MRI muscle datasets, which involve the studies of quadri-
ceps, hamstrings, and rotator cuff. Overall, the methods remained robust for all the
muscle groups and in longitudinal settings. However, our experiments of segmen-
tation of a 3T MR image using atlases and pre-trained models from a 1.5T dataset
showed that the textural difference due to different acquisition settings prevents pre-
trained models’ transfer to new datasets. A two-way translation between these two
different types of signals needed to be studied to avoid repeating the manual seg-
mentation process each time there is a new dataset.

Finally, we presented our longitudinal analysis of ultra-marathoners’ quadri-
ceps during and after an ultra-marathon based on the MUST dataset, which is the
principal clinical application of our contributions. The detailed analysis can be
found in Nguyen et al. (2021b), Nguyen et al. (2021a) and Nguyen et al. (2019c).
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General conclusion
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CHAPTER 12

Conclusion

This last chapter summarizes our key contributions (Sec. 12.1) and the conclusions
(Sec. 12.2) drawn from our experiment results and our methodological and clinical
applications. Section 12.3 offers our perspectives on the method improvement and a
further investigation of the clinical study.

12.1 Key contributions

Our key contributions presented in this thesis are:

• We provided a complete analysis of Wang and Yushkevich’s muti-atlas seg-
mentation method with joint label fusion and corrective learning (JLF+CL)
with a proposition of replacing the JLF step with 2D UNet coupling with data
augmentation to tackle the method’s limitations (Nguyen et al., 2018, 2019b).

• We introduced a morphological measurement and its applications to optimize
presented segmentation methods: an atlas selection strategy for JLF to reduce
computation time while conserving the segmentation quality, a data augmen-
tation strategy to maximize the morphological variation in training and valida-
tion sets for UNet, and finally, a fine-tuning process added to UNet to improve
the segmentation quality further.

• We proposed a robust longitudinal analysis procedure to study the effect of an
ultra-marathon on the quadriceps, which involved pretreatments for the MRI
data and their segmentations and longitudinal statistical analysis (Nguyen
et al., 2019c, 2021a,b).

12.2 Conclusions

Based on the MUST dataset of upper leg MRI of ultra-marathon runners, the objec-
tive of this thesis is to propose a robust method that necessitates few annotated data
for MRI quadriceps automatic segmentation, which will be the base for longitudinal
muscle inflammation analysis.

Firstly, we have studied the multi-atlas segmentation approach (MAS) of Wang
and Yushkevich with joint label fusion by patch-based weighting (JLF) and correc-
tive learning by AdaBoost (CL) (Nguyen et al., 2018). The approach can provide
high-quality segmentation even with a minimal number of manual segmentation as
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atlases, making it the go-to method to quickly obtain an automatic segmentation
to identify problematic difficulties. Since the approach is based on comparing the
image patches in the target image with those in the atlases, naturally, the compu-
tation time is proportional to the image size and the number of atlases. However,
the performance of this method depends mainly on the capability to register the at-
lases to the target image. Moreover, when the morphological difference between
two subjects is too large, it is impossible to completely register their muscles with-
out creating unrealistic deformation to the other anatomical parts and disturbing the
image texture. A modification of the method at a lower resolution (Wang et al., 2017)
can significantly reduce the computation time and remove aberrant anatomical er-
rors but does not improve the validation metrics since it lacks precision around the
muscle boundary.

An alternative to MAS that can reduce both the computation time and the sen-
sibility to registration is deep learning. We proposed to replace the JLF step of Wang
and Yushkevich’s framework with 2D UNet (Nguyen et al., 2019b). To enhance the
morphological diversity in the training and validation sets of the network, a data
augmentation step was effectuated using random B-spline warping and deforma-
tion registration to non-annotated data. The network is called weakly supervised U-
Net since it was trained and validated using both manually annotated data and au-
tomatically generated data. The main advantage of this approach is that it reduces
the inference time from 24-48 hours to 45 seconds while conserving and, in some
cases, improving the segmentation precision.

In both cases of JLF and UNet, the CL step was executed in the same manner.
Most of the time, CL performs well in removing aberrant distanced errors and refin-
ing the precision at the muscle boundary. However, the correction is done voxel by
voxel, so the final result is often noisy around the border. Furthermore, this method
assumes that the segmentation to refine is very close to the target accuracy; therefore,
it does not work with large errors.

For a large anatomical group such as the quadriceps, the morphological differ-
ence among subjects are the main challenge in the automatic segmentation process.
Our last contribution for the automatic segmentation methods in this thesis is in-
troducing morphological measures that help optimize the atlas selection for MAS
and the data augmentation for UNet. With a strategic atlas selection, the number of
atlases needed to achieve the same performance was reduced by half, along with
the computation time. The 2D UNet trained with morphological-measure-based
augmented data gives similar segmentation validation metrics as MAS. In the cases
where the UNet fails to produce adequate results, an extra step of fine-tuning, also
based on morphological similarity, is recommended to get remarkable improvement
in segmentation quality. The optimized MAS and UNet remain robust when being
applied on different muscle datasets and in longitudinal settings. However, when
using atlases and trained networks of a 1.5T MRI dataset to segment a 3T image,
the textural difference between images from different acquisition settings prevent a
smooth transfer.

Finally, we presented the principal clinical applications of our above contribu-
tions, which is a longitudinal analysis of Tors de Géants 2014 ultra-marathoners’
quadriceps. Based on the automatic segmentation of quadriceps, we extracted and
analyzed the radiomic features of each muscle head from quantitative MR images
(T2, T2*, PDFF and χ). The results were published in Nguyen et al. (2021a) and
Nguyen et al. (2021b).
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12.3 Perspectives

Based on the identified limitations of the methods proposed in this thesis, this sec-
tion offers our perspectives on the possible improvements upon the segmentation
methods for better generalization and the possibility of further investigation of the
clinical study.

12.3.1 Segmentation methods

Several aspects of the segmentation algorithms can be further investigated and ex-
perimented with in the follow-up studies:

• Deep learning networks: Deep learning is currently at the center of the image
processing research area, with a significant number of new networks or im-
provements of existing networks introduced each year. Therefore, a regular
update of the literature and testing of new networks can be done to improve
the segmentation quality. This was also an objective of the internship of Mal-
ick Kandji, which revolved around a new MRI dataset of shoulder muscles
presented in Section 10.1.

• Corrective learning: Corrective learning of Wang and Yushkevich is based on
the image features computed at each pixel, including the physical position,
the gray level of the pixel and its neighbors, the texture of the image patch
centered at the pixel. Technically, we can incorporate any type of image fea-
tures; one of the most common is SIFT (Scale Invariant Feature Transform,
Lowe (2004)). A more novel approach is getting the image encoded into patch-
based image features by CNN-based networks as in Simo-Serra et al. (2015)
and Ono et al. (2018). In both papers, SIFT-like 128 dimensional features of
a keypoint are generated from the image patch centered at the keypoint using
3 convolutional layers. Another possibility is to replace the current correc-
tive learning algorithm entirely with another segmentation refinement method
such as ErrorNet (Tajbakhsh et al., 2020), which used UNet to learn the system-
atic segmentation errors injected by a variational autoencoder and generated,
for the to-be-corrected automatic segmentation, the pixel-wised cards of the
error probability. Finally, an end-to-end solution is to create an architecture
based on Generative Adversarial Networks (Goodfellow et al., 2014), for which
UNet-GAN (Dong et al., 2019) could be a reference.

• Morphological features: More descriptors of the size and shape of each segmen-
tation label can be included for a more complex morphological representation
of the images while keeping it gray-level-independent. Numerous morpho-
logical features were presented in Zwanenburg et al. (2020), which are de-
rived from the approximated shape defined by the circumference mesh gen-
erated using an adapted version of marching cubes algorithm of Lorensen and
Cline. However, with our limited number of subjects, introducing many fea-
tures could make the distribution of the subjects in the feature spaces sparse
and noisy, which might necessitate a weighted distance for morphological sim-
ilarity measure instead of euclidean distance as used in our experiments. Fur-
thermore, the morphological features can be used for failure prediction of our
segmentation methods as the morphological-distanced subjects were observed
with lower segmentation accuracy in our experiments and for the active build-
ing of our dataset (see Sec. 12.3.2 below).
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• Transfer to different acquisition settings: To transfer our pre-trained models and
atlases from a 1.5T dataset to a 3T dataset, a translation between these two
types of signals needed to be studied to avoid the repetition of the manual seg-
mentation process. We can start with some existing image synthesis methods
such as in Jog et al. (2013) and Qu et al. (2020), which synthesized an MRI se-
quence of a specific modality from a sequence of a different modality: Jog et al.
synthesized T2-weighted images from T1-weighted ones and 3T T1-weighted
images from 1.5T MPRAGEs while Qu et al. synthesized 7T T1-weighted im-
ages from their 3T counterparts. The application of these methods might not
be direct as in both cases, data of lower field were translated into higher field,
which is the reverse of our application - using a model trained with lower-
field images to segment a higher-field image. Moreover, another possibility is
to transform all the data to a common space, which open a new direction in
domain adaptation.

12.3.2 Clinical application

There are two aspects in the clinical application that can profit from further research:
the extension of the annotated data set and the longitudinal analysis.

• Active building of the dataset: As the importance of morphological variation
in the annotated dataset has been proven, adding an atlas with a significant
morphological difference from the existing dataset will be extremely valuable.
When a new image is presented and in the case where our proposed segmenta-
tion methods cannot provide a satisfying segmentation, it is recommended to
study the morphological measure of the new image and its position compared
to the existing atlases. If the lack of similar morphology in the training data
is the reason for segmentation failure, manual segmentation of this new image
should be done and added to the dataset for future application.

• Radiomic feature analysis: Section 11.3 proved that the muscle inflammation is
not only focal but appears in the entire muscle head. However, it is undeni-
able that some regions in a muscle head are more affected than others. At the
same time, the radiomic features are averaged over all pixels when computed
on a large volume, which could be the cause of the non-significant statistical
test results on the longitudinal effect of the race, especially for the textural fea-
tures. A further study on the more affected regions might be a direction worth
exploring.
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CHAPTER 13

Conclusion en Français (Conclusion in French)

Ce dernier chapitre résume nos principales contributions (Sec. 13.1) et les conclu-
sions (Sec. 13.2) déduites de nos résultats expérimentaux et de nos applications mé-
thodologiques et cliniques. La section 13.3 présente nos perspectives sur l’améliora-
tion des méthodes, et des approfondissements de l’étude clinique.

13.1 Contributions clés

Nos principales contributions présentées dans cette thèse sont :

• Nous avons fourni une analyse complète de la méthode de segmentation muti-
atlas de Wang and Yushkevich avec la fusion conjointe d’étiquettes et l’appren-
tissage correctif (JLF+CL) avec une proposition de remplacement de l’étape JLF
par un couplage UNet 2D incluant une augmentation des données pour remé-
dier aux besoins d’entraînement de la méthode (Nguyen et al., 2018, 2019b).

• Nous avons proposé une mesure morphologique et ses applications pour op-
timiser les méthodes de segmentation présentées : une stratégie de sélection
d’atlas pour JLF afin de réduire le temps de calcul tout en conservant la qualité
de la segmentation, une stratégie d’augmentation des données pour maximi-
ser la variabilité morphologique dans les bases de données d’entraînement et
de validation pour UNet, et finalement, un processus de réglage fin ajouté à
UNet pour améliorer encore la qualité de la segmentation.

• Nous avons proposé une procédure d’analyse longitudinale robuste pour étu-
dier l’effet d’un ultra-marathon sur le quadriceps, qui implique des prétrai-
tements pour les données IRM et leurs segmentations ainsi qu’une analyse
statistique longitudinale (Nguyen et al., 2019c, 2021a,b).

13.2 Conclusions

En s’appuyant sur le jeu de données MUST d’IRM de la partie supérieure de la jambe
de coureurs d’ultra-marathon, l’objectif de cette thèse est de proposer une méthode
robuste de segmentation automatique du quadriceps par IRM qui nécessite peu de
données annotées, qui sera la base de l’analyse longitudinale de l’inflammation mus-
culaire.
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Nous avons étudié l’approche de segmentation multi-atlas (MAS) de Wang and
Yushkevich avec une fusion conjointe des étiquettes par pondération basée sur les
patchs d’image (JLF) et un apprentissage correctif par AdaBoost (CL). L’approche
peut fournir une segmentation de haute qualité, même avec un nombre minimal de
segmentations manuelles, ce qui en fait la méthode de référence pour obtenir rapi-
dement une segmentation automatique afin d’identifier les difficultés de segmenta-
tion. Puisque l’approche est basée sur la comparaison des patchs de l’image cible
avec ceux des atlas, le temps de calcul est naturellement proportionnel à la taille
de l’image et au nombre d’atlas. La performance de cette méthode dépend princi-
palement de la capacité à recaler les atlas sur l’image cible. Lorsque la différence
morphologique entre deux sujets est trop importante, il est impossible de recaler
complètement leurs muscles sans créer une déformation irréaliste de l’autre partie
des structures anatomiques et sans perturber la texture de l’image. Une modifica-
tion de la méthode JLF+CL utilisant une résolution inférieure (Wang et al., 2017)
peut réduire considérablement le temps de calcul et supprimer les erreurs anato-
miques aberrantes mais n’améliore pas les métriques de validation car elle manque
de précision autour du contour du muscle.

L’apprentissage profond est une alternative au MAS qui peut réduire à la fois
le temps de calcul et la sensibilité au recalage. Nous avons proposé de remplacer
l’étape JLF de la procédure de Wang and Yushkevich par un UNet 2D. Pour amé-
liorer la diversité morphologique dans les jeux de données d’apprentissage et de
validation du réseau, une étape d’augmentation de données a été effectuée en utili-
sant une déformation B-spline aléatoire et un recalage déformable sur des données
non annotées. Cette approche est appelée weakly supervised UNet car le réseau a été
entrainé et validé en utilisant à la fois des données annotées manuellement et des
annotations générées automatiquement. Le principal avantage de cette approche est
qu’elle réduit le temps d’inférence de 24-48 heures à 45 secondes tout en conservant
et, dans certains cas, en améliorant la précision de la segmentation.

Dans les deux cas de JLF et UNet, l’étape CL a été exécutée de la même ma-
nière. La plupart du temps, CL donne de bons résultats en supprimant les erreurs
de distance aberrantes et en affinant la précision au contour du muscle. Cependant,
la correction est effectuée voxel par voxel, de sorte que le résultat final est souvent
bruité autour de la frontière. De plus, cette méthode assume que la segmentation à
affiner est très proche de la solution, elle ne fonctionne donc pas avec des erreurs
importantes.

Pour un groupe anatomique tel que le quadriceps, les différences morpholo-
giques entre les sujets constituent le principal défi du processus de segmentation
automatique. Notre dernière contribution aux méthodes de segmentation automa-
tique dans cette thèse est l’introduction de descripteurs morphologiques qui aident
à optimiser la sélection d’atlas pour MAS et l’augmentation de données pour UNet.
Avec une stratégie de sélection des atlas, le nombre d’atlas nécessaires pour atteindre
la même performance a été réduit de moitié, ainsi que le temps de calcul. UNet 2D
entraîné avec des données augmentées basées sur la mesure morphologique donne
des métriques de validation de segmentation similaires à celles du MAS. Dans les
cas où UNet ne produit pas de résultats adéquats, une étape supplémentaire de fine
tuning, également basée sur la similarité morphologique, est recommandée pour ob-
tenir une amélioration remarquable de la qualité de la segmentation. Le MAS et
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UNet optimisés restent robustes lorsqu’ils sont appliqués à différents jeux de don-
nées musculaires et dans des configurations longitudinales. Cependant, lors de l’uti-
lisation d’atlas et de réseaux entraînés sur un jeu de données IRM 1,5T pour segmen-
ter des images 3T, la différence de texture entre les images provenant de différents
paramètres d’acquisition, empêche un transfert efficace.

Finalement, nous avons présenté les principales applications cliniques de nos
contributions ci-dessus, à savoir une analyse longitudinale des quadriceps des ultra-
marathoniens du Tors de Géants 2014. Sur la base de la segmentation automatique
du quadriceps, nous avons extrait et analysé les relations des caractéristiques ra-
diomiques de chaque chef musculaire à partir d’images RM quantitatives (T2, T2*,
PDFF et χ). Les résultats ont été publiés dans Nguyen et al. (2021a) et Nguyen et al.
(2021b).

13.3 Perspectives

Sur la base des limites identifiées des méthodes proposées dans cette thèse, cette
section présente nos perspectives d’améliorations possibles des méthodes de seg-
mentation pour obtenir une meilleure généralisation et la possibilité d’approfondir
les études cliniques.

13.3.1 Méthodes de segmentation

Plusieurs aspects des algorithmes de segmentation peuvent être étudiés et expéri-
mentés dans les études de suivi :

• Réseaux d’apprentissage profond : L’apprentissage profond est actuellement au
centre de la recherche en traitement d’images, avec un nombre important de
nouveaux réseaux ou d’améliorations de réseaux existants introduits chaque
année. Par conséquent, une mise à jour régulière sur la littérature et le test de
nouveaux réseaux sont nécessaires afin de voir si une amélioration peut être
observée. C’était également l’un des objectifs du stage de Malick Kandji, qui
portait sur un nouveau jeu de données IRM des muscles de l’épaule présenté
dans la section 10.1.

• Apprentissage correctif : L’apprentissage correctif de Wang and Yushkevich est
basé sur les descripteurs de l’image calculées à chaque pixel, y compris la po-
sition physique, le niveau de gris du pixel et de ses voisins, la texture du patch
d’image centré sur le pixel. Techniquement, nous pouvons incorporer n’im-
porte quel type de descripteurs d’images, l’une des plus courantes étant SIFT
(Scale Invariant Feature Transform, Lowe (2004)). Une approche plus récente
consiste à coder l’image en descripteurs d’images basés sur les patchs à l’aide
de réseaux CNN, comme dans Simo-Serra et al. (2015) et Ono et al. (2018).
Dans ces deux articles, les caractéristiques de 128 dimensions sont similaires
aux SIFT d’un point clé et sont générées à partir du patch d’image centré sur le
point clé à l’aide de 3 couches convolutionelles. Une autre possibilité consiste
à remplacer entièrement l’algorithme d’apprentissage correctif actuel par une
autre méthode de raffinement de la segmentation, comme ErrorNet (Tajbakhsh
et al., 2020), qui a utilisé UNet pour apprendre les erreurs systématiques de
segmentation injectées par un auto-codeur variationnel (VAE) et a généré, pour
la segmentation automatique à corriger, les cartes pixellisées de la probabilité
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d’erreur. Finalement, une solution de type end-to-end consiste à créer une ar-
chitecture basée sur les Generative Adversarial Networks (Goodfellow et al.,
2014), pour laquelle UNet-GAN (Dong et al., 2019) pourrait être une référence.

• Descripteurs morphologiques : Il est possible d’inclure davantage de descripteurs
de la taille et de la forme de chaque étiquette de segmentation pour obtenir
une représentation morphologique plus complexe des images tout en la main-
tenant indépendante du niveau de gris. De nombreux descripteurs morpholo-
giques ont été présentés dans Zwanenburg et al. (2020), qui sont dérivés de la
forme approximative définie par le maillage de la circonférence généré à l’aide
d’une version adaptée de l’algorithme marching cube de Lorensen and Cline.
Cependant, avec notre nombre limité de sujets, l’introduction de nombreux
descripteurs pourrait rendre la distribution des sujets dans les espaces de des-
cripteurs clairsemée et bruitée, ce qui pourrait nécessiter l’introduction d’une
distance pondérée pour la mesure de similarité morphologique au lieu de la
distance euclidienne utilisée dans nos expériences. En outre, les descripteurs
morphologiques peuvent être utilisés pour la prédiction de l’échec de nos mé-
thodes de segmentation, car pour les sujets morphologiquement éloignés des
autres, nous avons observés une précision de segmentation inférieure dans nos
expériences. Les descripteurs pourraient aussi permettre la construction active
de notre jeu de données (voir Sec. 13.3.2 ci-dessous).

• Transfert de jeux de données avec différents paramètres d’acquisition : Pour transférer
nos modèles pré-entraînées sur un jeu de données 1,5T à un jeu de données
3T, une traduction entre ces deux types de signaux devrait être étudiée pour
éviter la répétition du processus de segmentation manuelle. Nous pouvons
commencer par certaines méthodes de synthèse d’images existantes, comme
dans Jog et al. (2013) et Qu et al. (2020), qui ont synthétisé une séquence IRM
spécifique à partir d’une séquence différente. Jog et al. a synthétisé des images
pondérées en T2 à partir de celles pondérées en T1 et des images pondérées
en T1 à 3T à partir de MPRAGEs à 1,5T, tandis que Qu et al. a synthétisé des
images pondérées en T1 à 7T à partir de leurs homologues à 3T. L’application
de ces méthodes n’est peut-être pas directe car, dans les deux cas, les données
de champ inférieur ont été traduites en champ supérieur, ce qui est l’inverse
de notre application : utiliser un modèle entraîné avec des images de champ
inférieur pour segmenter une image de champ supérieur. En outre, une autre
possibilité consiste à transformer toutes les données dans un espace commun
comme ce que peut être fait en domain adaptation.

13.3.2 Application clinique

Deux aspects de l’application clinique peuvent bénéficier de recherches supplémen-
taires : l’extension du jeu de données annotées et l’analyse longitudinale.

• Construction active du jeu de données : L’importance de la variation morpho-
logique dans le jeu de données annotées ayant été prouvée, l’ajout d’un at-
las présentant une différence morphologique significative par rapport à l’en-
semble de données existant sera extrêmement précieux. Ainsi, lorsqu’une nou-
velle image est présentée et dans le cas où nos méthodes de segmentation ne
peuvent fournir une segmentation satisfaisante, il est recommandé d’étudier
la mesure morphologique de la nouvelle image et sa position par rapport aux
atlas existants. Si l’absence de morphologie similaire dans les données d’entraî-
nement est la raison de l’échec de la segmentation, une segmentation manuelle
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de cette nouvelle image devrait être effectuée et ajoutée au jeu de données pour
les prochaines applications.

• Analyse des descripteurs radiomiques : La section 11.3 a prouvé que l’inflamma-
tion musculaire n’est pas seulement focale mais apparaît dans tout le chef mus-
culaire. Cependant, il est indéniable que certaines régions du chef musculaire
sont plus touchées que d’autres. En même temps, les descripteurs radiomiques
sont moyennés sur tous les pixels. Lorsqu’ils sont calculés sur un grand vo-
lume, ce moyennage pourrait être la cause des résultats non significatifs des
tests statistiques sur l’effet longitudinal de la course, en particulier pour les
descripteurs texturaux. Une étude plus approfondie sur les régions les plus
touchées pourrait être une direction à explorer.
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APPENDIX A

Supplemental information about the MUST
dataset

A.1 Demographic data

Time point Sex (M/F) Age (years) Height (meters) Weight (kg) BMI (kg m−2) Limb dominance (R/L)

Pre (n = 50) 46/4 43 ± 9.1 1.75 ± 0.62 72.2 ± 8.0 23.6 ± 2.0 43/7

Post (n = 31) 30/1 43 ± 8.6 1.75 ± 0.64 71.7 ± 8.2 23.4 ± 2.0 27/4

Post+3 (n = 27) 27/0 43 ± 8.6 1.75 ± 0.56 70.8 ± 7.3 23.1 ± 2.0 23/4

TABLE A.1: Demographic data of ultra-marathoners population

A.2 MRI acquisition parameters

Parameters Anatomical isotropic Quantitative 3D GRE Quantitative T2

3D GRE dual-Echo multiecho spin-echo multiecho

Sequence 3D gradient echo 3D gradient echo spin echo

K-space specificity 3D, cartesian 3D, cartesian 2D, cartesian

FOV (ms2) 437 × 500 256 × 160 400 × 250

Slice thickness (ms2) 1.3 5 10

Acq. pixel size (ms2) 1.56 × 1.56 1.56 × 1.56 1.25 × 1.25

Interp. pixel size (ms2) 0.78 × 0.78 1.56 × 1.56 1.25 × 1.25

Voxel size (ms3) 0.79 12.17 12.17

Matrix size 320 × 280 256 × 160 320 × 200

Bandwidth (Hz/pixel) 372 1395 1395

Water-fat shift (pixel) 0.59 0.15 0.15

Repetition time (ms) 11.1 22 1580

Echo time (ms) 2.38/4.76 182-20.6 10.9-174.4

Echo spacing (ms) 2.38 2.52 10.9

Average 1 1 1

Flip angle (°) 10 5 90

Number of partitions/slices 16 48 7

3D volume explored (x, y, z) 437.5 × 208 × 500 400 × 280 × 240 400 × 250 × 70

Fat suppression Dixon None None

GRAPPA factor 2 2 -

TABLE A.2: MRI acquisition parameters. Abbreviations: SE - Spin Eche, GRE - Gradient
Echo, Interp - Interpolated, Acq - Accquired
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A.3 Biological data

A.3.1 Data collecting

Blood and urinary samples were collected at each of the four sessions (Pre, Mid,
Post, Post+3) within 10 min after arrival at each key point. Blood samples were
drawn from an antecubital vein into a dry, heparinized, or EDTA tube according to
the analysis to be performed and immediately centrifuged. Since it was not possi-
ble to carry out all the investigations on the same day by point-of-care technologies,
plasma and serum were frozen at −80°C within 20 min after blood collection for later
analysis of muscle injury markers and biochemical variables. The hematology pa-
rameters (hemoglobin, red blood cells, white blood cells) were directly analyzed by
a pocH-100iTM automated hematology analyzer (Sysmex, Villepinte, France). Cobas
8000 (RocheDiagnostics, Manheim, Germany) was used to perform serial determi-
nations for C-reactive protein (CRP), urinary creatinine, creatinine, calcium, chlo-
rine, potassium, sodium, and cholesterol. The osmolality and urinary osmolality
were measured on an Arkray Osmo Station OM-6050 (Menarini, Florence, Italy). All
blood biomarkers analyzed in this study are listed in table A.3.

Biological markers (units) Abbreviation

Hematocrit (%) HTC

Red blood cells (106/µL) RBC

Hemoglobin (g/dL) HGB

Mean corpuscular volume (fL) MCV

Mean corpuscular hemoglobin (pg) MCH

Mean corpuscular hemoglobin concentration (g/dL) MCHC

Platelets (103/µL) PLT

White blood cells (103/µL) WBC

Lymphocytes (103/µL) LYM

Lymphocytes fraction (%) LYM.pct

Mixed cell fraction (%) MXD.pct

Mixed cell count (103/µL) MXD

Neutrophil granulocytes (103/µL) NEUT

Neutrophil granulocytes fraction (%) NEUT.pct

Lactate (mmol/L) Lact

Troponin T high sensitive (ng/L) TnThs

Creatine kinase (UI/L) CK

Creatine kinase MB isoenzyme (µg/L) CKMB

CKMB / CK total ratio (µg/100UI) CKMB.CK

Copeptine (pmol/L) Copeptine

Suppression Tumorogenicity 2 (ng/mL) ST2

Galectine-3 (ng/mL) Gal3

N-Terminal natriuretic peptide (ng/L) NtptoNBP

Myoglobin (µg/L) Myo

Heart fatty acid binding globulin hFABP

C-reactive protein (mg/L) CRP
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Myeloperoxydase (ng/mL) MPO

Gluthathione reduced (µmol/L) GRD

Gluthathione oxidase (µmol/L) GOX

Lipid peroxidase (µmol/L) POLX

Oxidized LDL (U/L) OLDL

Conjugated bilirubin (mg/dL) CBIL

Total bilirubin (mg/dL) TBIL

Gamma-glutamyl transaminase (U/L) GGT

Glutamic-oxaloacetic transaminase (U/L) GOT

Glutamate pyruvate transaminase (U/L) TGP

Lactate dehydrogenase (U/L) LDH

Alkaline phosphatase (U/L) ALP

Uric acid (mg/dL) A.uric

Urinary creatinine (g/L) CRU

Urinary neutrophil gelatinase-associated lipocaline (ng/mL) NGAL

NGAL/ creatinine urinary ratio NGALUCR

Creatinine (mg/dL) Creatinine

Plasma urea (mg/dL) Urea.pl

Cholesterol (mg/dL) Cholest

High density lipoprotein (mg/dL) HDL

High density lipoprotein / Cholesterol HDL.Ch

Low density lipoprotein (mg/dL) LDL

Non-HDL cholesterol (mg/dL) Ch.non.HDL

Triglycerides (mg/dL) TG

Calcium (mmol/dL) Ca

Chloride (mmol/dL) Cl

Potassium (mmol/dL) K

Sodium (mmol/dL) Na

Phosphate (mmol/dL) Ph

Blood osmolality (mosm/kg) Osm

Urinary osmolality (mosm/kg) OsmU

Total proteins (g/L) Pr.tot

TABLE A.3: List of 58 biological markers analyzed in the study with their abbreviation
used in R

A.3.2 Preprocessing for missing data

Kernel density estimation method was used to handle missing individual biologi-
cal values for correlation analysis of 55 qMRI-extracted features and the 58 blood
biomarkers (n = 72)/ total 4640). A missing value x(m,n) of a variable (biomarker)
X of the subject m at the time point n, with n ∈ {Pre, Mid, Post, Post + 3}, was esti-
mated using the presented values of X of the subject m at the others time points and
the observed values of X of the other subjects at all the time points.
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x(m,n) =
∑i=1..N,i ̸=m xi,n × g

(√
∑j=Pre..Post+3,j ̸=n(xm,j − xi,j)2

)
∑i=1..N,i ̸=m g

(√
∑j=Pre..Post+3,j ̸=n(xm,j − xi,j)2

) (A.1)

where N is the number of subjects and g is a kernel function. To minimize estima-
tion error according to the asymptotic mean integrated squared error, we used the
function Epanechnikov as kernel:

g(u) = 1 − u2 for |u| < 1, 0 otherwise (A.2)

Values were standardized before estimation and revert to original scale after
processing.

A.3.3 Longitudinal analysis

The detailed longitudinal variations in biological markers throughout the race can
be found in Nguyen et al. (2021b). As main blood biomarkers of muscle damage,
serum creatine kinase (CK) and myoglobin levels peaked at +6598% and +4159% at
Mid, while serum lactate dehydrogenase (LDH) levels peaked at +240% at Post and
were elevated at Mid at +197% (all P-values of post hoc test against Pre are less than
0.01, see Figure A.1). For most of the biomarkers, the biomarker values at Pre were
significantly different from those at the other time points (Mid, Post, Post+3), while
the difference between Mid and Post was nonsignificant.

FIGURE A.1: P-values of statistical tests in our longitudinal analysis on the blood and
urinary biomarker data. A P-value less than .05 indicates a significant change between two

time points.
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Evaluation of registration methods

In addition to the B-spline registration presented in Section 4.1.1, Thirion’s demons
algorithm (Thirion, 1998) is a very popular non-parametric registration method. The
deformation field is optimized using local image forces which were computed in-
dependently for each voxel. The displacement estimated is then regularized using
Gaussian smoothing. This algorithm is implemented in the Variational Registration
Framework in ITK (Handels et al., 2014) (VRF). The VRF is a flexible framework
for non-parametric variational image registration. The framework provides many
choices of force terms and regularizers and is an open-source framework that can be
modified to integrate more options. We can also restrain the transformation to the
space of diffeomorphisms by using a stationary velocity field in place of a dense dis-
placement field. The diffeomorphic registration does not allow folding to compute
an invertible transformation to preserve the topology in images.

For our tests, we will only use the VRF to run the classic demons algorithm with
Normalized Sum of Squared Differences-based force term and Gaussian regulariza-
tion and take advantage of the diffeomorphic registration option.

B.1 Methods

B.1.1 Preliminary test

For the premilinary test, we programmed a function in C++ with ITK which applied
random local B-spline deformations to an image and used the two methods above to
register the original image to the deformed image to retrieve the same deformations.
To preserve the anatomic structures in our image, the displacements need to satisfy
the one-to-one property (Lee et al., 1996): Let ∆ϕijk = ϕijk − ϕ0

ijk be the displacement
of the ijkth control point from its initial position, | δ |inf= max(| δ |1, | δ |2, | δ |3)
where δ = (δ1, δ2, δ3). The total transformation is one-to-one if | ∆ϕijk |inf≤ 0.48 for
all i, j, k.

B.1.2 Registration test

We carried out a registration test with T1W image of a runner at 2 time points Pre and
Post. We chose a runner with visually accurate segmentation by Gilles et al.Gilles
et al. (2016) at the two time points. The images at time point Pre and Post acted
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as the moving image and the fixed image, respectively. The test followed the steps
below:

1. Rigidly register the moving image to the fixed image with elastix(Klein et al.,
2010) and apply the computed deformation field to the label image corre-
sponding to the moving image.

2. Register the result image of step (1) to the fixed image with Bspline deforma-
tion model using elastix and apply the computed deformation field to the
label image obtained from step (1).

3. Register the result image of step (1) to the fixed image with demons algorithm
using the VRF and apply the computed deformation field to the label image
obtained from step (1).

4. Register the moving image to the fixed image with demons algorithm using
the VRF and apply the computed deformation field to the label image corre-
sponding to the moving image.

We ended up with 3 different registration results from 3 different procedures:
Rigid then Bspline registration, Rigid then Demons registration and Demons regis-
tration only.

B.1.3 Methods comparison

To compare the different methods, we computed for each method:

• a checkboard and an image of differences (subtraction of 2 images) of the re-
sulted image and the fixed image

• a checkboard of the resulted label image and the label image corresponding to
the fixed image

• different similarity metrics (Mutual Information, Normalized Mutual Informa-
tion, Sum of Squared Differences and Normalized Cross Correlation). The for-
mulas of the similarity metrics can be found below.

Notations: These notations are used for all the formulas in this section

F: fixed image

M: moving image

T: a transformation (displacement)

ΩF: domain of fixed image

| ΩF |: number of voxels in fixed image

Mutual Information (MI): MI between two images A and B is defined as:

MI(A, B) = H(A) + H(B)− H(A, B)

where H(A) and H(B) are marginal entropies of images A and B respectively and
H(A, B) is their joint entropy. The entropies are defined as:

H(A) = −
∫

pA(a) log pA(a)da
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H(B) = −
∫

pB(b) log pB(b)db

H(A, B) = −
∫

pAB(a, b) log pAB(a, b)dadb

where pA, pB and pAB are respectively marginal probability density functions for
A and B and their joint probability density function. The larger the MI, the more
similar the two images.

Normalized Mutual Information (NMI): We computed two type of NMI (noted
NMI1 and NMI2):

NMI1(A, B) =
2MI(A, B)

H(A) + H(B)

NMI2(A, B) =
H(A) + H(B)

H(A, B)

Sum of Squared Differences(SSD): The SSD is defined as:

SSD(T, F, M) = ∑
x∈ΩF

(F(x)− M(T(x)))2

Normalized Cross-Correlation(NCC): The NCC is defined as:

NCC(T, F, M) =
∑x∈ΩF

(F(x)− F̄)(M(T(x))− M̄)√
∑x∈ΩF

(F(x)− F̄)2 ∑x∈ΩF
(M(T(x))− M̄)2

Minimizing this metric will also minimize the Normalized Sum of Squared Dif-
ferences (NSSD, used as metric in Demons algorithm):

NSSD(T, F, M) = ∑
x∈ΩF

 F(x)− F̄√
∑x∈ΩF

(F(x)− F̄)2
− M(T(x))− M̄√

∑x∈ΩF
(M(T(x))− M̄)2



B.2 Results & Discussion

B.2.1 Preliminary test

The figure B.1 show the random deformation field that we applied to our image
and the two deformation field obtained by registering the original image to the de-
formed image with B-spline and demons methods. The Demons method was sen-
sitive to smaller changes when the B-spline method detected larger deformations.
Given the fact that the displacements that we applied to our image were quite small,
the demons method gave a slightly better results (Tab. B.1).

B.2.2 Registration test

The results of our test are presented in the figures B.2, B.3 and the table B.2. It is obvi-
ous that when we used only rigid registration or demons registration, we could not



180 Appendix B. Evaluation of registration methods

FIGURE B.1: Deformation fields: (A) applied to the original image and obtained by regis-
tering the original image to the deformed image with (B) B-spline registration method and

(C) demons registration method

Method MI NMI1 NMI2 SSD NCC

B-spline 1.50538 0.50049 1.33377 34.3851 -0.96634

Demons 1.91519 0.64697 1.47816 4.51989 -0.99514

TABLE B.1: Similarity metrics computed between the fixed image and the final results of
B-spline and Demons

obtain a satisfying results. As we observed the checkboard images, we can see that
rigid & demons registration gave the smoothest result while the rigid & Bspline reg-
istration still could not correct some intensity differences. The table B.2 also shows
that the similarity metrics were in favor of the rigid & demons registration.

Method MI NMI1 NMI2 SSD NCC

Original 0.906125 0.221014 1.12424 1873.89 -0.883636

Rigid 1.3774 0.321789 1.19174 683.436 -0.958544

Demons 1.50538 0.469704 1.30694 125.543 -0.991795

Rigid + Demons 2.20382 0.527451 1.35819 68.2195 -0.995512

Rigid + B-spline 1.91462 0.463898 1.302 141.023 -0.991956

TABLE B.2: Similarity metrics computed between the fixed image and the final results of
different registration methods

However, our ultimate objective is to find an accurate segmentation. Thus, we
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FIGURE B.2: Checkboard image between the fixed image and (a) the moving image, (b) the
result of rigid registration, (c) the result of demons registration, (d) the result of rigid &

demons registration and (e) the result of rigid & B-spline registration.

FIGURE B.3: Subtraction image between the fixed image and (a) the moving image, (b) the
result of rigid registration, (c) the result of demons registration, (d) the result of rigid &

demons registration and (e) the result of rigid & B-spline registration.

superposed the transformed label images issued from the registration methods on
our fixed image and the result was not at all in favor of the demons method (Fig B.4).
We could see that the label of the B-spline method was visually more accurate with
smoother borders. The B-spline method conserved the smoothness of the original
label image since it seemed to apply larger deformations. The demons method ap-
plied smaller deformations thus destroyed the topology of the label images, made it
even less accurate than the one issued from the rigid registration. When we looked
back at the figure B.3, we noticed that the subtraction of the B-spline method was
more homogeneous while the one of the demons method had some small visible
differences.

B.3 Perspectives

Both demons and B-spline methods (accompanied by a rigid registration) seem re-
ally efficient in the registration of MR images of the quadriceps. While the similarity
metrics were in favor of the demons method, the visualization of the label images
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FIGURE B.4: Label images superposed on the fixed image. The label images displayed
are of (a) the moving image, (b) the result of rigid registration, (c) the result of demons
registration, (d) the result of rigid & demons registration and (e) the result of rigid & B-

spline registration, respectively.

indicated that the B-spline method might be more suitable for our purpose which
was to accurately segment the quadriceps muscles using atlas.
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APPENDIX C

AdaBoost

AdaBoost (Adaptive Boosting) Freund and Schapire (1996) is one of the most famous
ensemble learning techniques. It belongs to a family of methods called boosting which
works with multiple weak learners and try to boost their performance from weak to
strong. A weak learner is just slightly better than random guess (error rate is a little
smaller than 50%) while a strong learner has a nearly perfect performance.

At each t iteration, a weak ht learner is chosen to best rank (smallest ϵt error
rate) the m samples, where each sample is weighted by Dt. The distribution of the
weights Dt of the m samples is updated by increasing the weights for poorly ranked
samples (and vice versa for highly ranked samples). This algorithm stops after a
given number of T iterations. The strong learner is formed from all the weak ht
learners obtained during the iterations. They are weighted by a function almost
inversely proportional to the error rate ϵt.

The AdaBoost algorithm is detailed in Algorithm 1. Weak learners are often a
threshold in one of the dimensions, which is simple enough to avoid adapting too
much to the training data (over-fitting).
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Algorithm 1: AdaBoost algorithm Zhou (2012)
Input: Dataset D = {(X1, y1), (X2, y2), ..., (Xm, ym)}

Base learning algorithm L
Number of learning rounds T

1 D1(x) = 1/m; /* Initialize the weight distribution */
2 for t = 1, ..., T do
3 ht = L(D,Dt); /* Train classifier ht from D under distribution Dt */
4 ϵt = Px∼Dt(ht(x) ̸= f (x)); /* Evaluate the error of ht */
5 if ϵt > 0.5 then break;

6 αt =
1
2

ln
(

1 − ϵt

ϵt

)
; /* Determine the weight of ht */

7

Dt+1(x) =
Dt(x)

Zt

{
exp(−αt), if ht(x) = f (x)
exp(αt), if ht(x) ̸= f (x)

=
Dt(x)
exp

(−αt f (x)ht(x))Zt

/* Update the distribution, where Zt is a normalization factor which
enables Dt+1tobeadistribution */

8 end

1010 Output: H(x) = sign
(

∑T
t=1 αtht(x)

)
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APPENDIX D

elastix parameters

D.1 Affine registration for MUST dataset

(FixedInternalImagePixelType "float")

(FixedImageDimension 3)

(MovingInternalImagePixelType "float")

(MovingImageDimension 3)

// **************** Main Components **************************

(Registration "MultiResolutionRegistration")

(FixedImagePyramid "FixedSmoothingImagePyramid")

(MovingImagePyramid "MovingSmoothingImagePyramid")

(Interpolator "BSplineInterpolator")

(Metric "AdvancedMattesMutualInformation")

(Optimizer "StandardGradientDescent")

(ResampleInterpolator "FinalBSplineInterpolator")

(Resampler "DefaultResampler")

(Transform "AffineTransform")

// ***************** Transformation **************************

(AutomaticTransformInitialization "true")

(AutomaticScalesEstimation "true")

(HowToCombineTransforms "Compose")

(HowToCombineTransforms "Compose")

// ******************* Similarity measure *********************

(NumberOfHistogramBins 64)

(FixedLimitRangeRatio 0.0)

(MovingLimitRangeRatio 0.0)

(FixedKernelBSplineOrder 1)

(MovingKernelBSplineOrder 3)

// ******************** Multiresolution **********************

(NumberOfResolutions 4)
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// ******************* Optimizer ****************************

(MaximumNumberOfIterations 1000)

(WriteTransformParametersEachIteration "false")

(WriteTransformParametersEachResolution "false")

(WriteResultImage "true")

(ShowExactMetricValue "false")

(ErodeFixedMask "false")

(ErodeMovingMask "false")

(UseDifferentiableOverlap "false")

// **************** Image sampling **********************

(NumberOfSpatialSamples 2048 2048 5000 5000)

(NewSamplesEveryIteration "true")

(ImageSampler "RandomCoordinate"

// ************* Interpolation and Resampling ****************

(BSplineInterpolationOrder 3)

(FinalBSplineInterpolationOrder 3)

(DefaultPixelValue 0)

(WriteResultImage "true")

(ResultImagePixelType "float")

(ResultImageFormat "nii")

D.2 Bspline registration for MUST dataset

(FixedInternalImagePixelType "float")

(MovingInternalImagePixelType "float")

(UseDirectionCosines "true")

// **************** Main Components **************************

(Registration "MultiResolutionRegistration")

(Interpolator "BSplineInterpolator")

(ResampleInterpolator "FinalBSplineInterpolator")

(Resampler "DefaultResampler")

(FixedImagePyramid "FixedRecursiveImagePyramid")

(MovingImagePyramid "MovingRecursiveImagePyramid")

(Optimizer "AdaptiveStochasticGradientDescent")

(Transform "BSplineTransform")

(Metric "AdvancedMattesMutualInformation")

// ***************** Transformation **************************

(FinalGridSpacingInVoxels 25)

(HowToCombineTransforms "Compose")

// ******************* Similarity measure *********************

(NumberOfHistogramBins 32)

(ErodeMask "false")
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// ******************** Multiresolution **********************

(NumberOfResolutions 4)

// ******************* Optimizer ****************************

(MaximumNumberOfIterations 1000)

// **************** Image sampling **********************

(NumberOfSpatialSamples 5000 5000 10000 10000)

(NewSamplesEveryIteration "true")

(ImageSampler "Random")

// ************* Interpolation and Resampling ****************

(BSplineInterpolationOrder 3)

(FinalBSplineInterpolationOrder 3)

(DefaultPixelValue 0)

(WriteResultImage "true")

(ResultImagePixelType "float")

(ResultImageFormat "nii")
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APPENDIX E

Computational ressources

saki is the DELL machine equipped with 2 GPUs GTX 1080, each with a RAM of
16 GB. Saki also includes 2 CPUs Xeon E5, each of 10 cores with 2 threads to access
a RAM of 512 GB.

CREATIS Cluster: computation center reserved for researcher of CREATIS Lab-
oratory that includes 36 heterogeneous computers with 4 GPUs Tesla V100 32GB,
number of cores varying from 8 to 32 and RAM from 16 to 128GB.

IN2P3 Computing Center: CNRS (Centre National de Recherche Scientifique) clus-
ter involving 387 machines with 17808 cores and 8 GPUs Tesla V100 32GB
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