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Abstract

High-frequency 3D ultrasound imaging is an informative tool for diagnosis, surgery planning
and skin lesions examination. The purpose of this article is to present a semi-automated
segmentation tool, giving easy access to the extents, shape and volume of a lesion. We
propose an adaptive log-likelihood level-set segmentation procedure using nonparametric
estimates of the intensity distribution. The algorithm has a single parameter to control the
smoothness of the contour, and we show that a fixed value yields satisfactory segmentation
results with an average Dice coefficient of D = 0.76. The algorithm is implemented on
a grid, which increases the speed by a factor of 100 compared with a standard pixel-wise
segmentation. We compare the method with parametric methods making the hypothesis of
Rayleigh or Nakagami distributed signals, and show that our method has greater robustness
with similar computational speed. Benchmarks are made on realistic synthetic ultrasound
images and a dataset of 9 clinical 3D images acquired with a 50 MHz imaging system. The
proposed algorithm is suitable for use in a clinical context as a post-processing tool.
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Introduction

High-frequency 3D ultrasound is a non-
destructive, fast, readily available and afford-
able means to determine the size, structure
and echoic properties of skin lesions. This
imaging modality is useful to assist in the
diagnosis, surgery planning and monitoring
of benign or malignant tumors of the skin,
such as naevus, melanoma and basal cell car-
cinoma (Schmid-Wendtner and Dill-Müller
(2008); Machet et al. (2010)).

High-frequency ultrasound imaging sys-
tems are undergoing continuous development
and have broader applications in derma-
tology, cosmetics and small-animal imaging
(Vogt and Ermert (2013); Maev (2014)). In
dermatology applications, there is a need for
dedicated algorithms to perform automatic
segmentation of a lesion, in a 3D ultrasound
image, in order for the physician to quickly
apprehend the extent of a lesion. Previous
works related to dermatology applications in-
clude the segmentation of the epidermis tis-
sues in histological images (Xu and Mandal
(2015)) and of breast skin in conventional
ultrasound (Gao et al. (2013)). A texture-
based method to segment skin tumors in
high-frequency ultrasound images has been
proposed (Olivier and Paulhac (2011)), but
has not been validated on clinical data, and
the method has a significant computational
load. In the following we propose an ap-
proach based on the intensity distribution
only. The segmentation is performed in less
than one minute, which is short enough for
convenient use in clinical routine.

In ultrasound images, many efficient seg-

mentation methods are based on the in-
tensity distribution of the envelope, or the
log-compressed envelope, to discriminate be-
tween the different regions of interest. Com-
monly used methods are based on a paramet-
ric estimate of the intensity distribution, as-
suming either a Rayleigh distribution (Sarti
et al. (2005); Slabaugh et al. (2006); Pereyra
et al. (2012, 2015)), or other distributions
such as exponential and Gamma distributions
(Anquez et al. (2013); Dahdouh et al. (2015)),
2-parameters Gamma distributions (Rahmati
et al. (2012)) and log-compressed Gaussian
distributions (Pons et al. (2011)).

However, in the context of high-frequency
ultrasound, the high resolution implies a low
number of scatterers within the typical re-
solved volume. As a result, complex distri-
butions like the K-distributions (Destrempes
and Cloutier (2010)) or mixtures of distribu-
tions are required. Yet it is technically dif-
ficult to introduce complex distributions in
the level-set framework. To circumvent this
problem, we propose using a non-parametric
estimate of intensity distributions, making no
assumption on the speckle pattern distribu-
tion.

Due to the variability of shapes in skin tu-
mors, herein we consider only level-set seg-
mentation methods for their powerful capac-
ity to represent arbitrary smooth shapes. Ad-
ditionally, the boundary of tissues must be
regularized to remove structures due only to
the speckle patterns, which level-set segmen-
tation does well. On the other hand, the size
of the images is of 300 × 300 × 832 voxels,
or 74.88 million voxels. A standard level-set
segmentation may take up to half an hour
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with such images; therefore we would like to
propose a method to reduce the processing
time.

To handle these different problems, we pro-
pose an Adaptive Log-Likelihood (AdLL) 3D
level-set segmentation algorithm, which max-
imizes the log-likelihood of a contour. Our
goal is to make a postprocessing tool to be
used on a standard computer. To increase
the speed of segmentation, we use a coarse-
grid level-set implementation.

In a previous conference proceedings (Sci-
olla et al. (2015a)), we have presented early
results on a non-parametric log-likelihood
method. The method proposed here is dif-
ferent, because of the new adaptive level-set
solver. Unlike the previous study, this article
includes the Nakagami parametric segmenta-
tion, contains a systematic and a quantitative
discussion on realistic synthetic images, and
validates the segmentation on a dataset of 9
clinical lesions.

There are several non-parametric meth-
ods which have been proposed. One exam-
ple is the Bhattacharyya distance, recently
used in ventricle segmentation in brain ul-
trasound images (Qiu et al. (2015)). The
method proposed here is based on the max-
imum log-likelihood estimate, in light of a
previous study (Sciolla et al. (2015b)) which
indicates a greater robustness of the log-
likelihood method compared with the Bhat-
tacharyya coefficient or the Hellinger dis-
tance.

The article is structured as follows. We
first describe the statistics of high-frequency
skin images and explain the choice of the
nonparametric method. Then, we describe

the proposed (AdLL) method, the non-
parametric log-likelihood optimization prob-
lem and the level-set algorithm. In the Re-
sults section, the impact on speed and accu-
racy of using coarse grids is evaluated. The
parametric and non-parametric methods are
then compared on realistic synthetic images.
Finally, the performance of the different al-
gorithms are evaluated on the clinical data.

Segmentation method

Intensity distribution in high-frequency ultra-
sound images

Fig. 1(a) shows slices of a high-frequency
ultrasound 3D image of the skin and a le-
sion. The epidermis, dermis and subcuta-
neous tissues are visible, as well as a hy-
poechoic tumor. Under the hypothesis of a
homogeneous medium with a large density
of scatterers, the envelope signal is expected
to follow a Rayleigh distribution (Destrem-
pes and Cloutier (2010)). This is the case of
the subcutaneous tissue distribution shown in
Fig. 1(b). However, this hypothesis is often
not met in high-frequency images of the skin,
as shown in Fig. 1(c). As a whole, the back-
ground region surrounding the lesion is com-
posed of several tissues, including the dermis,
epidermis and subcutaneous tissues. The
global distribution of these regions, shown
in Fig. 1(d), can be bimodal, and is there-
fore not well-fitted by any standard para-
metric distributions such as Rice, Nakagami
or K-distributions (Destrempes and Cloutier
(2010)).

In order to circumvent this problem, we
propose to use a method based on non-
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Figure 1: (a) 3D image of dermis with a tumor lesion,
with vertical and diagonal slices. (b-d) Distribution
P (E) of the envelope E in different tissues surround-
ing a tumor. (b) In subcutaneous tissues. Dashed
line: fit to a Rayleigh distribution. (c) In the dermis.
Dashed line: fit to a Rayleigh distribution, showing
large deviations from a Rayleigh law. (d) Mixture of
the two regions: the distribution is bimodal and can-
not be fitted to traditional parametric distributions
proposed in ultrasound (Cardinal et al. (2006)).

parametric intensity estimates, which over-
comes this problem with little additional cost.
Since no hypothesis has been made on the
distribution of the tissue, the method is well-
founded to segment inhomogeneous tissues
with arbitrary distributions, which is suitable
for our application.

Processing chain

The segmentation procedure takes as input
the log-compressed envelope of the radiofre-
quency signal, as provided by standard ul-
trasound acquisition systems. In this study,
the raw radiofrequency signal is also avail-
able, allowing us to compare the proposed
method with parametric segmentation meth-
ods which rely on the envelope signal. The
processing chain is sketched in Fig. 2. The
segmentation is semi-automatic, since it re-
quires the user to specify a volume of inter-
est and a contour initialization with a box
shape. The user is requested to enter 3 non-
aligned points or more, and the smallest en-
closing box is chosen as initialization. The
next step is the segmentation itself, it is not
performed at the level of individual voxels but
rather on a coarser grid, allowing significant
speedup of the process. Finally the segmen-
tation is obtained at the original resolution
after interpolation and smoothing.

Segmentation method

The image is split into two regions ΩA

and ΩB, with boundary surface S. In the
level-set formalism (Chan and Shen (2005)),
the region ΩA is delimited by the zeros of
a level-set function φx = φ(x), such that
ΩA = {x|φx ≥ 0} and ΩB = {x|φx < 0}
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Figure 2: Processing chain for the tumor segmenta-
tion. A volume of interest is first selected by the user,
and points of initialization (red spheres) are specified
by the user. The segmentation is initialized as the
smallest box enclosing all points (yellow frame box).
Then segmentation is performed on a coarse grid. Fi-
nally, the contour is interpolated on the original im-
age resolution and smoothed.

where x spans the 3D image coordinates. The
segmentation problem is reduced to an opti-
mization problem, minimizing the cost func-
tion:

E[φ] = αEreg[φ] + βEDA[φ] (1)

The cost function contains a data attachment
term with coefficient β and a regularization
term with coefficient α ensuring the smooth-
ness of the contour and guaranteeing that the
minimization is a well-posed problem. Only
the ratio β/α is relevant for minimizing E[φ]
but we keep the parameter α for future con-
venience. We choose a regularization term
Ereg[φ] equal to the area of the boundary sur-
face Surf(S) =

∫
S d2x.

Log-likelihood cost function

The data attachment term EDA[φ] is cho-
sen to maximize the likelihood that the im-

age is split into two regions with different dis-
tributions. The likelihood of the hypothesis
H1 = { the distribution of intensities Ix in
the two regions ΩA and ΩB are i.i.d. ran-
dom variables drawn from two distributions
PA and PB } is compared to the likelihood of
the null hypothesis H0 = { all image intensi-
ties Ix are i.i.d. variable drawn from a single
distribution PΩA∪ΩB(I) }.

The data attachment term in (1) reads
EDA[φ] = −LL[φ], minus the log-likelihood
ratio of the two hypothesis, such that mini-
mizing EDA[φ] maximizes the likelihood of a
given contour (Sarti et al. (2005); Kim et al.
(2005)):

LL = log

(∏
x∈ΩA

PA(Ix)
∏

x∈ΩB
PB(Ix)∏

x∈ΩA∪ΩB
PΩA∪ΩB(Ix)

)
.

(2)

=
∑
x∈ΩA

logPA(Ix) +
∑
x∈ΩB

logPB(Ix) + cst

(3)

= |ΩA|
∑
I

PA(I) logPA(I) + (· · · )A↔B + cst

(4)

|ΩA| is the volume of ΩA. The term in
PΩA∪ΩB(I) is constant (cst) with respect to
the contour and thus can be neglected in the
minimization. In the last line, the sum over
coordinates x is recast upon a sum over in-
tensity I.

We estimate the distributions P̂A(I) (and
P̂B(I)) of the log-compressed envelope I(x)
using a Parzen estimate (Kim et al. (2005);
Michailovich et al. (2007)):

P̂A(I) =
∫

ΩA
dx Kλ(Ix − I)/|ΩA| (5)
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where Kλ is a centered Gaussian kernel of
fixed width λ. In this context, Parzen es-
timates can be thought of as smoothed his-
tograms. Parzen estimates have a better be-
havior than histograms to undersampling in
the case where one region ΩA or ΩB is small.

Parametric methods
For a parametric method, it is assumed

that the envelope signal Ex follows a given
distribution, a Rayleigh distribution (Sarti
et al. (2005); Lecellier et al. (2010); Pereyra
et al. (2015)) or a Nakagami distribution:

P Rayleigh

σ (E) =
E

σ2
e−

E2

2σ2 (6)

P Nakagami

m,ω (E) =
2mmE2m−1

Γ(m) ωm
e−

mE2

ω (7)

where the parameters, σA or ωA and mA, are
estimated in each region, according to:

σ̂2
A =

1

2|ΩA|
∑
x∈ΩA

E2
x, ω̂A = 2σ̂2

A, (8)

m̂A =
ω̂2
A

1
|ΩA|

∑
x∈ΩA

E4
x − ω̂2

A

(9)

where |ΩA| is the volume of the region of
interest ΩA. The probability distribution is
then used as an input in the log-likelihood
data attachment as in (4), replacing the in-
tensity I with the envelope E. All details of
the algorithm can be found in (Sarti et al.
(2005)).

Non-adaptive gradient descent
For both the parametric and nonparamet-

ric methods, the energy is:

E[φ] = α

∫
S

d2x− β LL[φ] (10)

It is minimized via gradient descent using
standard techniques. A detailed derivation
is given in the Appendix A. Following (Vese
and Chan (2002)):

∂tφx = |∇φx|fx (11)

fx = ακx + β log

(
P̂A(Ix)

P̂B(Ix)

)
(12)

fx = αf reg
x + βfDA

x (13)

In the above expression, the “time”t is the
virtual parameter of the gradient descent,

and κx = div
(
∇φ
|∇φ|

)
is the curvature of the

contour. The term fx is split in two parts,
a data part fDA

x and a regularization part
f reg
x . The descent is performed in constant

steps t = k∆t with k = 0, 1, . . . and fixed
∆t. The gradient descent reads φk+1

x = φkx +
∆t|∇φx|fx. Since only α∆t and β∆t appear,
we set ∆t = 1 in the rest of the article. In
the non-adaptive algorithm, α, β are free pa-
rameters.

The main steps of the algorithm are sum-
marized in Table 1. The gradient descent is
performed with a robust and efficient solver
based on Additive Operator Splitting (AOS)
(Weickert et al. (1998)). In step 3, the
level set function is reinitialized such that
|∇φx| = 1, preserving the boundary surface
S, to improve the stability of the algorithm.
It is performed with a fast-marching algo-
rithm (Sethian (1996)).
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1: User initializes φk=1

2: for k = 1, 2, . . . until convergence do
3: Reset |∇φk| = 1
4: if Adaptive then
5: Set βk according to (14)
6: end if
7: Let φkx ← φkx + βk ∆t|∇φk|fDA

x

8: Let φk+1
x ← φkx + α∆t|∇φk|f reg

x

9: end for

Table 1: Algorithm for the (AdLL) Gradient descent
solver.

Adaptive gradient descent

In the adaptive algorithm, the coefficient
β, instead of being fixed, is set in step 5:

βk =
T

∆t maxx∈γk |fDA
x |

(14)

γk =
{
x ∈ Ω such that |φx| < T

and sign(φxf
DA
x ) < 0

}
(15)

γk is a narrow-band region (Adalsteinsson
and Sethian (1995)) within a distance T of
the contour surface S (in addition, we con-
strain the region γk to contain only points
where sign(φxf

DA
x ) < 0).

In the following, the threshold is set to
T = 2. The parameter α is the only pa-
rameter of the adaptive method, which tunes
the smoothness of the contour. For all cases
considered in this article, α takes meaningful
values in the range [0.1, 1], changing between
a rough and a smooth contour. The segmen-
tation is stopped when the change in volume
between two steps is less than 0.001% of the
segmented volume (a few voxels for a tumor
of ∼ 20000 voxels). The algorithm is imple-
mented in Matlab. The C++ subroutine for

Figure 3: Slice of a 3D image with a superimposed
grid of size a = 5. The red contour is a slice of the
segmented 3D volume on the finest scale a = 1, the
yellow contour is a slice of the volume on the a = 4
grid.

step 3 and AOS splitting in step 8 are inspired
from (Zhang et al. (2008)).

Grid solver

In order to reduce computation times, a
crucial issue for practical use in a clinical con-
text, we implement the level set on a coarse
grid, as shown in Fig. 3. The details of the
equations of evolution of the contour on a grid
and their implementation can be found in Ap-
pendix B.

With the grid setup, a single segmentation
takes approximately 20 s of loading and com-
puting intensity histograms within the cells
and 20 s for the segmentation. This per-
formance is satisfactory for post-processing
analysis, especially since the code is not op-
timized.
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Data acquisition

We evaluate the performance of the seg-
mentation algorithm on 9 lesion cases, com-
paring the results with manual expert seg-
mentation. The skin tumor images have
been acquired at the Melanoma Skin Can-
cer Clinic (Hamilton Hill, Australia) on a
Dermcup 50MHz ultrasound imaging system
(Atys Medical, Soucieu-En-Jarrest, France).
The Dermcup 50 MHz imaging system from
the company Atys Medical has a mechani-
cal probe with a single transducer element.
The transducer position is controlled along
two orthogonal axis, so that a 3D field of
view is acquired, of size 16 × 16 mm and
4 mm in depth. It has an axial resolution of
25 µm and a lateral resolution of 50 µm. This
study is retrospective chart research on im-
ages for which written consent was obtained.
All images have been de-identified. In ac-
cordance with clause (5.1.22) of the National
Statement on Ethical Conduct in Human Re-
search, self-approval has been deemed appro-
priate at the Melanoma Skin Cancer Clinic.

For all cases, reference volumes are drawn,
based on an expert segmentation in vertical
slices in the x− z orientation (z is the verti-
cal axis). The contours are interpolated be-
tween slices, to produce a 3D volume Rm1. To
evaluate the dependency of this procedure on
the slice orientation, a manual segmentation
is also performed by the expert on vertical
y − z planes and volumes are reconstructed
in a similar fashion, giving a second reference
Rm2. A comparison of the Rm1 and Rm2 vol-
umes gives an estimate of the manual segmen-
tation errors related to the choice of the slice

Figure 4: 3D view of a synthetic image representing
an hypo-echoic tumor in a skin tissue.

orientation and of the intra-operator variabil-
ity.

Synthetic images of the skin

In order to provide a quantitative compar-
ison of the parametric segmentation methods
with the log-likelihood nonparametric seg-
mentation method, we produce 3D synthetic
ultrasound images of the skin. The images
are obtained using a simple model of the
imaging system, assuming that the received
signal is a convolution by constant a point-
spread function of the map of scatterers in the
medium responsible for the back-scattering of
the ultrasound (Sciolla et al. (2015a)). This is
equivalent to a traditional simulation such as
Field II (Jensen (1996)) with the additional
assumption that the constant point spread
function is independent of the depth. The
scatterers map of the medium is generated
at random using realistic maps of the tumor,
epidermis and dermis shapes. Fig. 4 shows
an example of a synthetic image, measuring
252× 216× 168.
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We generate 13 different phantom volumes
with different scatterers density in the dermis
and subcutaneous tissue layers. In Fig. 5(a),
both have the same density, whereas in
Fig. 5(b), (c) the epidermis and subcutaneous
tissue are more contrasted with respect to the
dermis. In case (a), both the tumor and back-
ground region (epidermis, dermis and subcu-
taneous tissue, excluding the black air area)
fit a Rayleigh distribution, as shown in the
fit in Fig. 5(d). On the contrary, in case (b)
and (c) the distribution in the background
region deviates from a Rayleigh distribution,
see Fig. 5(e) and (f).

Results

Metrics

In the next sections, the accuracy of the
segmentation is measured with the Dice co-
efficient (Sørensen-Dice coefficient), an indi-
cator of the accuracy of a segmented volume
Ω with respect to a reference volume R, com-
puted as D(Ω, R) = 2|Ω ∩ R|/(|Ω|+ |R|).
We also compute the Mean Absolute Dis-
tance, MAD, which measures the accuracy of
the boundary. For any voxel x in the bound-
ary ∂Ω of Ω, we call dR(x) the distance of x
to the closest point in R. N∂Ω is the num-
ber of voxels in ∂Ω. The mean distance is
MAD = 1

N∂Ω

∑
x∈∂Ω d

R(x).

Accuracy of the grid solver

We evaluate the accuracy of the segmenta-
tion on a grid as a function of the grid size
a. The grid size is a× a× 2a (in pixels) with
a = {1, 2, 3, 4, 5}. For this test, we use one
image from the clinical dataset, and compare

the segmentation on the grid to two reference
contours drawn manually by the expert Rm1,
Rm2. As shown in Fig. 6(a), the accuracy of
the segmented volumes Ω with respect to the
two references is almost constant with respect
to a. The time of the segmentation decreases
rapidly with increasing grid size a ≥ 3; as
shown in Fig. 6(b). The segmentation in the
following is done with a grid of size a = 3.
This yields a speedup of a factor of 100 com-
pared with the finest grid of size a = 1, with
almost no loss in precision. The good visual
agreement between the segmentation on grid
size a = 3 is shown in Fig. 6(c).

Segmentation of synthetic images

We make a comparison of the proposed
adaptive nonparametric method (AdLL) with
a parametric Rayleigh segmentation (Ra)
widely used on ultrasound images and the
more advanced parametric Nakagami seg-
mentation (Na). The comparison is made on
the synthetic 3D ultrasound images described
above.

The results of (Ra) and (AdLL) segmen-
tation are shown in Fig. 5(a-c). The (Ra)
method diverges on case (c), the contour en-
closes the tumor, dermis and subcutaneous
area. This is explained by the nature of the
intensity distribution outside of the tumor,
which is very different from a Rayleigh dis-
tribution, see Fig. 5(d-f). In order to mea-
sure this effect quantitatively, we introduce
the Kolmogorov-Smirnov statistic to mea-
sure the difference between the distribution
PB(I) and a fit to a Rayleigh distribution
PR
B (I) (with σB computed from (7)), KS =

supI
∣∣CB(I)− CR

B (I)
∣∣. Here CB(I) (CR

B (I))
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Figure 5: (a,b,c) Slice of the synthetic tumor image. The Rayleigh (Ra) segmentation is illustrated by
the red dotted line, the (AdLL) segmentation by the blue dashed line. The (AdLL) segmentation correctly
identifies the tumor for all cases, whereas the (Ra) ‘leaks’ into the whole dermis area for case (c). (d,e,f)
Histograms P (E) of the envelope E outside of the tumor (excluding the black air area) and fit to a Rayleigh
distribution (dashed line). The KS index of the mismatch increases from (d) to (f).

Figure 6: Properties of the segmentation on different grids with size a = {1, 2, 3, 4, 5} on tumor 3. (a) Dice
coefficient D(Ω, Rm1) of the segmented volume with respect to reference contour Rm1 (crosses) and Rm2

(circles). (b) Time of segmentation in seconds versus a. (c) Slice of a tumor and segmented contours for a
grid size a = 3 and the reference contour Rm1.
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stands for the cumulative distribution func-
tion of PB(I) (PR

B (I)). Roughly speaking, in
the present context the fit to a Rayleigh dis-
tribution is satisfactory for KS ≤ 0.05.

The KS fit of the background region to
a Rayleigh distribution is measured for all 13
synthetic images, and plotted in Fig. 7(a), the
data is found in Table 2. The image Fig. 5(a)
is the first i = 1 and the image in Fig. 5(c)
is the last i = 13, all other synthetic images
are intermediate cases.

In Fig. 7(b), the Dice coefficient for (AdLL)
method is shown, demonstrating the accu-
racy of the algorithm on all synthetic im-
ages. In Fig. 7(c-d), the Dice coefficient for
the (Ra) and (Na) segmentation is shown.
For very low KS, the (Ra) and (Na) seg-
mentation can be slightly more accurate than
the (AdLL) segmentation. This can be at-
tributed to the fact that a parametric law has
more predictive power than a non-parametric
estimate, provided the data actually follows
the assumed law. Yet, the (Ra) and (Na)
segmentation sometimes diverge for too large
KS. This instability is caused by a region of
high echogenicity, as the epidermis region in
clinical images, or regions of low echogenicity
as the subcutaneous tissues.

To summarize the results, we find that the
log-likelihood non-parametric method is able
to discriminate two tissues in a more robust
way than parametric methods. The para-
metric methods may fail whenever the tis-
sue distribution is too different from the as-
sumed parametric form, as expected. On the
other hand, the non-parametric method typ-
ically has a larger computational cost than
the simple parametric methods. Notice how-

ever that using more sophisticated paramet-
ric laws, such as statistical mixtures, would
make the parametric laws slower than the
non-parametric method. Finally, the non-
parametric method is applied on the log-
compressed image, naturally defined in a lim-
ited range of values such as [0, 255]. On
the contrary, the parametric methods consid-
ered here are based on the envelope signal,
which spans orders of magnitudes - typically
[10−2, 105] in our images, making the whole
processing chain more sensitive to outliers.

Results on the clinical dataset

The 9 lesions are segmented using the
(AdLL) method, the log-likelihood method
(LL) with a non-adaptive β, the Rayleigh
method (Ra) and the Nakagami method
(Na). For all methods, the parameter α, tun-
ing the smoothness of the contour, is sampled
over the range [0.2, 0.8] and the best segmen-
tation is kept. For the non-adaptive methods
(LL) and (Ra), the parameter β is also op-
timized in the range of values β ∈ [0.3, 1.5].
We also perform a segmentation with a fixed
set of parameters on the whole dataset. The
parameters are chosen to maximize the aver-
age (over lesions) Dice coefficient.

The segmented volumes and original data
for several lesions are depicted in Fig. 8. Fig-
ure 8(a) shows the result of the (Ra) segmen-
tation. This is an example of a diverging (Ra)
segmentation: the whole dermis region is seg-
mented instead of the tumor, which is cor-
rectly delimited using (AdLL). The result is
qualitatively similar to the divergence found
on synthetic images in Fig. 5(c). In Fig. 8(b)
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Figure 7: (a) KS divergence of the fit of the background region to a Rayleigh distribution, for all synthetic
images i = 1, . . . , 13. (b) Dice coefficient D for the (AdLL) segmentation as a function of the KS fit to
a Rayleigh (plot (a)), giving good agreement on all 13 synthetic images. (c) Dice coefficient D for the
Rayleigh segmentation (Ra), versus KS. (d) Dice coefficient D for the Nakagami segmentation (Na), versus
KS. (Ra) and (Na) segmentation fail for some synthetic images with a large KS, giving a very low Dice
coefficient.

i 1 2 3 4 5 6 7 8 9 10 11 12 13
KS 0.023 0.052 0.053 0.059 0.142 0.181 0.191 0.195 0.198 0.200 0.212 0.253 0.261
D(AdLL) 0.859 0.858 0.903 0.792 0.805 0.880 0.799 0.779 0.780 0.863 0.763 0.730 0.796
D(Ra) 0.880 0.840 0.902 0.907 0.060 0.888 0.906 0.060 0.061 0.859 0.059 0.060 0.000
D(Na) 0.901 0.858 0.917 0.917 0.060 0.908 0.919 0.095 0.095 0.838 0.059 0.094 0.094

Table 2: Data for Figure 7. Except for cases i = 4, 7, the AdLL segmentation is as good as the Rayleigh or
the Nakagami segmentation, and yields correct results (non-divergent) on a broader range of cases.

Figure 8: (a) (Ra) and (AdLL) segmented volumes on tumor 1. The (Ra) volume approximately covers
the dermis area, which is not the intended behavior. (b) (AdLL) segmented volume and manual expert
reference volume on tumor 4, made of two disconnected volumes. (c-i) (AdLL) segmented volumes on the
whole clinical dataset.
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the (AdLL) segmented volume is shown with
one reference contour on tumor 4, which has
two disconnected parts. Figure 8(c-i) depicts
the segmented volume using (AdLL).

The Dice coefficient D(Ω, Rm1) is com-
puted for each segmented volume Ω with re-
spect to the first expert segmentation Rm1.
The Dice coefficients are shown in Fig. 9. For
the non-adaptive methods, (LL), (Ra) and
(Na), Fig. 9 shows the best Dice coefficent
maxβD and average Dice coefficent 〈D〉β for
all values of β sampled. Table 3 contains
the average over all tumors of the Dice co-
efficients from Fig. 9, for the optimized case
and for a fixed set of parameters, as well as
the computational time. Table 4 contains
the same quantities, computed with the MAD
criterion. Finally, the mutual Dice coefficient
D(Rm2, Rm1) is referred to as intra-operator
variability.

Discussion

Fig. 9 shows that some lesions are easier
to segment accurately than others. The ac-
curacy tends to be lower in tumors with low
contrast and/or complex shapes as in case 4.
As previously observed on the synthetic data,
the (AdLL) or (LL) method is much more
consistent across different cases, although the
(Ra) and (Na) methods may be slightly more
accurate in some cases. Fig. 9 also shows
the average Dice over several β parameters,
which illustrates how β impacts the accuracy
of the segmentation. Since in real world ap-
plications the parameters must be fixed by
the user, a large variability is not desirable.

In particular, the (Na) method has larger
variability than the (LL) method.

According to Table 3 and 4, for optimized
parameters, the proposed method (AdLL)
has a Dice coefficient of D = 0.79 and
MAD = 167µm (to be compared with the
lateral resolution of 50µm) on average over
all tumors, (with minimum D = 0.71 and
maximum D = 0.87, not shown in Table 3),
values indicating a satisfactory segmentation,
with accuracy similar to the non-adaptive
log-likelihood method D = 0.81. On the
other hand, the (Ra) and (Na) segmenta-
tion have lower average Dice, D = 0.621 and
D = 0.683, and higher MAD = 175 and
262µm. For fixed sets of parameters, which
would be the realistic clinical setting, the
same tendency is observed - except that the
adaptive method (AdLL) has better accuracy
than the log-likelihood method but slightly
higher MAD. In terms of computation times,
shown in Table 3, the methods rank as (Ra),
(AdLL), (Na), (LL) from fastest to slow-
est. The (AdLL) method actually has sim-
ilar speed to that of the fastest (Ra) method.
Compared with (LL), the speed of (AdLL)
can be attributed to the adaptive algorithm,
which increases the rate of convergence of the
gradient descent.

Summarizing the results shown above, the
adaptive algorithm (AdLL) reaches optimal
results (with respect to the other algorithms
tested) with one free parameter less.

The segmented volumes and the clinical
images can be visualized online using our web
demonstrator at: http://www.atyscrea.

insa-lyon.fr/en/demo_echo3D. It is based
on the desk library (Jacinto et al. (2012)).
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Figure 9: Dice coefficient D for the optimized α, β parameter on the 9 clinical images. The segmentation
methods are (AdLL) in blue, (LL) in green, (Ra) in red, (Na) in purple. For the (LL), (Ra) and (Na)
methods, the average Dice coefficient over all tested β is shown, as well as the overall best result. The thick
dashed line indicates D(Rm1, Rm2), giving an indication of the intra-operator variability.

(AdLL) (LL) (Ra) (Na) Intra-op.

Opt. Dice 0.793 0.808 0.621 0.683 0.861

Fixed Dice 0.756 0.732 0.586 0.535 0.861

Time (s) 13.0 18.5 12.1 14.7 300

Table 3: Average over all cases of the Dice index D(Ω, Rm1), for all methods. The row “Opt. Dice”
is a segmentation with all parameters α, β (when applicable) optimized on each single case. The row
“Fixed. Dice” is a segmentation with a fixed set of parameters applied to all cases (different depending on
the method). The average time of a single segmentation is indicated in the last row. The intra-operator
variability D(Rm2, Rm1) is indicated in the last column “Intra-op.”, and the corresponding time refers to
the average time for a manual segmentation.

(AdLL) (LL) (Ra) (Na) Intra-op.

Opt. MAD 167 113 175 262 82

Fixed MAD 184 177 203 347 82

Table 4: Same as Table 3 with the Mean Absolute Distance (unit: µm). The intra-operator variability
MAD(Rm2, Rm1) is indicated in the last column “Intra-op.”.
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Conclusions

We propose a flexible, robust and fast seg-
mentation algorithm for 3D ultrasound skin
tumor images based on nonparametric esti-
mates of the intensity distributions in tumors.
We have shown that this algorithm performs
well on a clinical dataset of 9 patients, with
an average Dice coefficient of D = 0.79. The
method outperforms two parametric meth-
ods with Rayleigh or Nakagami distributions,
while having similar computational time. Us-
ing a coarse grid, the speed of segmentation
is increased by a factor of 100. As a result, a
segmentation takes less than a minute, mak-
ing it a suitable candidate for use in clini-
cal routine. The results also show that the
intra-operator variability is high, which in-
dicates that automated segmentation tools
are of interest. Indeed, assessing the tumor
shape and volumes from slices is an ardu-
ous task, whereas automated algorithms can
make direct use of the 3D data and include
multi-directional information. Moreover, the
result of the automatic segmentation is not
very sensitive to the initialization, granting
good reproducibility and weak operator de-
pendency, an issue often encountered in ultra-
sound. In future works, an interesting ques-
tion is to assert the performance of the pro-
posed segmentation on phantoms appropriate
for high-frequency ultrasound (Jacquet et al.
(2015)).
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Appendix A. Derivation of the gradient flow

The total energy (1) is minimized by gradient descent on the discrete variables φx. To
derive Eq. (A.7), we rewrite (5) with the Heaviside distribution θ as:

P̂A(I) =
∫

dx θ(φx)Kλ(I(x)− I)/(
∫

dx θ(φx)) (A.1)

P̂B(I) =
∫

dx θ(−φx)Kλ(I(x)− I)/(
∫

dx θ(−φx)) (A.2)

The derivative of LL in Eq. (4) yields:

δ
(
|ΩA|

∑
I P̂A(I) log P̂A(I)

)
δφx

= δ(φx)
∑
I

P̂A(I) log P̂A(I) . . . (A.3)

+ |ΩA|
∑
I

δ(φx)

(
Kλ(I − Ix)− P̂A(I)

)
|ΩA|

×
[
log P̂A(I) + 1

]
(A.4)

In the above, δ is the Dirac delta function.
We now use the approximation:
Kλ(I − Ix)→ δ(I − Ix) in the sum over I to obtain:

δ
(
|ΩA|

∑
I P̂A(I) log P̂A(I)

)
δφx

' δ(φx) log P̂A(Ix) (A.5)

In contrast to (Kim et al. (2005)), we have used the approximation Kλ(I−Ix)→ δ(I−Ix) in
the sum over intensity appearing in the computation of (A.7). The computational cost of the
algorithm is reduced, with minor numerical difference, since the Gaussian kernel Kλ(I − Ix)
is narrow. A similar calculation holds for the second region ΩB. Following (Vese and Chan
(2002)) for the regularization term, the gradient descent reads ∂tφx = −δE/δφx, with:

δE/δφx = −δ(φx)fx (A.6)

fx = κx + β log

(
P̂A(Ix)

P̂B(Ix)

)
(A.7)

This equation is then recast onto (A.7), changing the Dirac term δ(φx) into a |∇φx| following
(Vese and Chan (2002)).
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Appendix B. Grid solver

Let us now derive the equations of evolution of the contour on a grid. Let x be the
coordinates of a grid cell. We define the cell volume Ωx = {x ∈ x} and P̂x(I) the Parzen
estimate of the distribution on the volume Ωx, defined in Eq. (5) with Ωx instead of ΩA.
For the derivation we assume that the curvature κx and φx vary weakly in the whole cell
x. Essentially, this means that the underlying contour can be represented with a reasonable
precision on the coarse grid. The gradient descent in discrete time k reads:

φk+1
x = φkx −∆t δE/δφx (B.1)

δE/δφx =
∑
x∈x

δE/δφx = −δ(φx)|Ωx|fx (B.2)

fx = ακx + β
∑
I

P̂x(I) log

(
P̂A(I)

P̂B(I)

)
(B.3)

= αf reg
x + βfDA

x (B.4)

To derive Eq.(B.3), one must change the sum over x into a sum over intensity I:

∑
x∈x

log

(
P̂A(Ix)

P̂B(Ix)

)
'
∑
I

|Ωx|P̂x(I) log

(
P̂A(I)

P̂B(I)

)
(B.5)

Using the fact that |Ωx|P̂x(I) is (an estimate of) the number of points x ∈ x where the
intensity is equal to I.

One can see that the map fx is similar (with a multiplicative factor |Ωx|) to the map on
the finer scale (A.7) averaged over the cell x. The evolution contains two parts f reg and
fDA to describe the discretized solver. It is important to note that the full information
from the original image in region ΩA, ΩB and in the cell Ωx is contained into P̂A(I), P̂B(I)
and P̂x(I). As a consequence, this grid solver allows the contour to move on the grid with
large steps, while retaining all the information from the original image. The improvement
in computational time is high for a minimal loss in precision, as shown in the section on the
accuracy of the grid solver.
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