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a b s t r a c t 

During the last two decades, MRI has been increasingly used for providing valuable quantitative informa- 

tion about spinal cord morphometry, such as quantification of the spinal cord atrophy in various diseases. 

However, despite the significant improvement of MR sequences adapted to the spinal cord, automatic im- 

age processing tools for spinal cord MRI data are not yet as developed as for the brain. There is nonethe- 

less great interest in fully automatic and fast processing methods to be able to propose quantitative anal- 

ysis pipelines on large datasets without user bias. The first step of most of these analysis pipelines is to 

detect the spinal cord, which is challenging to achieve automatically across the broad range of MRI con- 

trasts, field of view, resolutions and pathologies. In this paper, a fully automated, robust and fast method 

for detecting the spinal cord centerline on MRI volumes is introduced. 

The algorithm uses a global optimization scheme that attempts to strike a balance between a proba- 

bilistic localization map of the spinal cord center point and the overall spatial consistency of the spinal 

cord centerline (i.e. the rostro-caudal continuity of the spinal cord). Additionally, a new post-processing 

feature, which aims to automatically split brain and spine regions is introduced, to be able to detect a 

consistent spinal cord centerline, independently from the field of view. We present data on the valida- 

tion of the proposed algorithm, known as “OptiC”, from a large dataset involving 20 centers, 4 contrasts 

(T 2 -weighted n = 287, T 1 -weighted n = 120, T 2 
∗-weighted n = 307, diffusion-weighted n = 90), 501 subjects 

including 173 patients with a variety of neurologic diseases. Validation involved the gold-standard cen- 

terline coverage, the mean square error between the true and predicted centerlines and the ability to 

accurately separate brain and spine regions. 

Overall, OptiC was able to cover 98.77% of the gold-standard centerline, with a mean square error of 

1.02 mm. OptiC achieved superior results compared to a state-of-the-art spinal cord localization technique 

based on the Hough transform, especially on pathological cases with an averaged mean square error of 

Abbreviations: SC, Spinal Cord; PMJ, Pontomedullary junction; FOV, Field of 

View; (S-I) axis, Superior-Inferior axis; HOG, Histogram of Oriented Gradient; 

SVM, Support Vector Machine; MS, Multiple Sclerosis; DCM, Degenerative Cervical 

Myelopathy; NMO, Neuromyelitis Optica; SCI, Spinal Cord Injury; ALS, Amyotrophic 

Lateral Sclerosis; SYR, Syringomyelia; MSE, Mean Square Error; HC, Healthy Con- 

trols. 
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1.08 mm vs. 13.16 mm (Wilcoxo  

identified with a 99% precision  

of 9.37 mm compared to groun
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1 sourceforge.net/projects/spinalcordtoolbox/ . 
2 creatis.insa-lyon.fr/site7/en/ctrDetect . 
1. Introduction 

The spinal cord (SC) plays a key role in the central nervous sys-

tem by ensuring the conduction of both motor and sensory sig-

naling between the brain and the peripheral nervous systems. Al-

though SC magnetic resonance imaging (MRI) has long been tech-

nically challenging, MRI has been increasingly used in the last two

decades to provide valuable quantitative information through SC

morphometry ( Papinutto et al., 2015; Fradet et al., 2014; Martin

et al., 2017a ) and to evaluate SC damage a range of neurologic dis-

orders such as multiple sclerosis, traumatic, and neurodegenerative

diseases ( Cohen-Adad et al., 2011; Nakamura et al., 2008; Ellingson

et al., 2008; Cohen-Adad et al., 2013; Martin et al., 2017b; Caw-

ley et al., 2017; Grabher et al., 2017 ). With newer acquisition tech-

niques that enhance the quality of SC MRI data ( Stroman et al.,

2014 ), there is a need for improved image processing methods to

propose robust automated quantitative analysis pipelines. 

Localizing the SC on MRI scans is a key step for automating

quantitative analysis pipelines such as SC ( De Leener et al., 2014;

Horsfield et al., 2010 ) and grey matter ( Dupont et al., 2017; Prados

et al., 2017, 2016 ) segmentations, template registration ( De Leener

et al., 2017b; Stroman et al., 2008 ) and B0 susceptibility-related

distortion correction ( Topfer et al., 2016; Vannesjo et al., 2017 ).

While localizing the SC might appear as a rudimentary comput-

erized task, it is much more challenging to achieve it robustly and

accurately across a broad range of SC shapes, craniocaudal verte-

bral length, pathologies, image field of view (FOV), image resolu-

tion and orientation, types of contrast and image artifacts (e.g. sus-

ceptibility, motion, chemical shift, ghosting, blurring, Gibbs). For

instance, about 20 recently-published SC segmentation methods

still require manual intervention for initialization and optimiza-

tion ( De Leener et al., 2016 ), especially to identify specific anatomic

landmarks within the SC. Hence, SC segmentation methods could

be made fully automatic if initialized with a robust automated SC

centerline localization module. 

Most of the existing automatic SC localization methods took

advantage of the ellipsoid shape of the SC in cross-section and

are based on the Hough transform with vesselness filtering

( De Leener et al., 2014 ), active contour ( Koh et al., 2010 ), or contin-

uous max-flow with cross-sectional similarity prior ( Pezold et al.,

2015 ). Other methods are based on energy-minimization methods

through image-based strategies, by pattern registration with par-

tial volume effect modelization ( Carbonell-Caballero et al., 2006 )

or atlas registration with topology constraint ( Chen et al., 2013 ).

While these automatic algorithms have shown good performance

( De Leener et al., 2016 ), they often require a specific region of in-

terest or are limited to specific contrast and resolution. 

This paper introduces a novel fully automatic, accurate and fast

algorithm (OptiC) to detect the center of the SC. OptiC is based on

a supervised machine learning detection method combined with

a distance-transform-based global optimization. Its performance

was evaluated on non-processed data (i.e., not cropped, filtered,

reoriented, intensity-normalized, etc.) across a large multi-center

dataset from 20 sites (n = 20) including a variety of image qual-

ity, resolution and pathologies across four image contrasts: T 2 -

weighted (T w, n = 287), T -weighted (T w, n = 120), T ∗-weighted
2 1 1 2 
n signed-rank test p-value < .01). Images containing brain regions were

, on which brain and spine regions were separated with a distance error

d-truth. 

lenging dataset suggest that OptiC could reliably be used for subsequent

ning the door to more robust analysis on pathological cases. 

© 2017 Elsevier B.V. All rights reserved.

T 2 
∗w, n = 307) and diffusion weighted (DWI, n = 90) 3D images.

or the sake of transparency and reproducibility, we have made

his method publicly available as part of the Spinal Cord Toolbox 1 

v3.0.2 and above) free and open-source software ( De Leener et al.,

017a ) and on the webpage of the CREATIS lab. 2 

The main contributions of this work are (i) an original frame-

ork to robustly find the SC centerline, based on machine learning

nd global curve optimization, (ii) an efficient algorithm to solve

he optimization problem in a non-iterative way with linear com-

lexity, (iii) a robust ponto-medullary junction (PMJ) detector to

eparate brain and spine regions and (iv) an extensive validation

n a broad dataset involving several centers, pathologies, MR con-

rasts and image resolutions. 

In the following sections, the theoretical aspects of OptiC will

e detailed, along with the optimization of its hyperparameters

nd the evaluation across the testing dataset. Second, the results

f the training and testing steps will be presented. Finally, the key

ontributions of OptiC method will be discussed. 

. Material and methods 

.1. Theory 

In the following subsections, the OptiC approach will be de-

ailed and a new algorithm will be proposed to efficiently find

 global minimum to the optimization problem. The final sec-

ion presents an automatic post-processing method to differentiate

rain and spinal cord regions in order to prevent analysis of the

rain region. 

.1.1. OptiC SC centerline detection 

The OptiC method relies on two prior anatomical sets of knowl-

dge: (i) the SC has a specific tubular shape and (ii) the SC center-

ine is continuous along the superior-inferior (S-I) (cranio-caudal)

xis. Consequently, the OptiC approach encodes these priors in 2

istinct steps (see Fig. 1 ): (i) step 1: a SC localization map is com-

uted, using standard object detection tools, (ii) step 2: an opti-

ization problem is solved to take into account the global tubular

hape of the SC. As a result, the SC centerline is modeled as a curve

ompromising the tubular similarity and the curve continuity. 

.1.1.1. Step1: spinal cord localization map. The goal of the first step

s to compute a localization map of the SC, in a supervised man-

er, based on the detection of its specific ellipsoidal shape. It is

chieved by predicting the presence of the SC in a given 2D image-

atch with a classification model, as commonly done for object de-

ection. Trained on labeled image-patches, the classification model

ssigns to each voxel a confidence of SC presence within the cor-

esponding patch, resulting in a SC localization map. 

.1.1.2. Step2: spinal cord centerline modeling. From the previously

omputed SC localization map, the goal of the second step is to

http://sourceforge.net/projects/spinalcordtoolbox/
http://creatis.insa-lyon.fr/site7/en/ctrDetect
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Fig. 1. OptiC pipeline overview. OptiC is based on two steps: (1) The spinal cord (SC) probabilistic localization map is computed from the input image: for each cross-sectional 

slice (a), the HOG features are computed (b) to feed a supervised classifier that outputs a localization map (c) , (2) The SC centerline is modeled as a regularized curve, constrained 

by a trade-off between the localization map values and the SC continuity in the superior-to-inferior (S-I) axis. 
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Algorithm 1 Centerline extraction procedure: OptiC. 

1: procedure ExtractCenterline( S, λ) 

2: M 0 = −S 0 
3: for z = 1:n-1 do 

4: M z = −S z + λD ( M z−1 

λ
) 

5: N z = N( M z−1 

λ
) 

6: c n −1 = argmi n x n −1 
M n −1 ( x n −1 ) 

7: for z = n-2:0 do 

8: c z = N z+1 ( c z+1 ) 
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i  
odel the SC as a curve which constrains the centerline continu-

ty. Thus, the resulting centerline C is a regularized curve compro-

ising the localization map S values and the SC continuity, which

ould be expressed as the solution of the following optimization

roblem ( Eq. (1) ): 

mi n c 0 , ... , c n −1 
C n −1 ( c 0 , . . . , c n −1 ) 

= −
∑ n −1 

z=0 
S z ( c z ) + λ

∑ n −2 

z=0 
| | c z+1 − c z | | 2 (1) 

ith λ, a regularization coefficient; c z , the SC center and S z , the

ocalization map on the z th slice; n , the number of slices in the 3D

nput MRI volume. Thus, the optimization problem has to make

 trade-off between the classifier confidence in the SC localiza-

ion, and the SC continuity between adjacent slices, respectively

ncoded by the first and second terms of ( Eq. (1) ). 

.1.1.3. Optimization problem resolution. The optimization problem

 Eq. (1 )) could be solved using a gradient descent approach. This

ould be efficient but would not ensure finding the global solu-

ion. A brute force algorithm would find the global solution but

ould be impractical with a O ( s n )complexity, where s is the num-

er of voxels per slice and n the number of slices in the 3D MRI

olume). 

In this section, a novel algorithm is detailed to efficiently solve

 Eq. (1 )) and guarantee robustness of the optimization problem

ince it provides a global solution. Based on distance-transforms,

his approach has a complexity linear with the number of voxels,

n O ( s.n ). 

To solve the problem, an auxiliary sequence of 2D images ( M k )

s defined as: 

 k ( x k ) = mi n x 0 , ... , x k −1 
C k ( x 0 , . . . , x k ) . (2) 

ith k the slice number. Slices above the index k are removed, and

he problem is seen as a function of the center on slice k only.

 k function solves the partial problem between slices 0 and k-1 as a

unction of x k . For each voxel x k of the k th slice, the minimal path to

 k regarding x 0 , … x k-1 is computed and the optimal value is stored

n M k (x k ). Especially, if the M n −1 image is known, the relation 

i n x n −1 
M n −1 ( x n −1 ) = mi n x 0 , ... , x n −1 

C n −1 ( x 0 , . . . , x n −1 ) , (3) 

nables finding the center solution of ( Eq (1 )) on the last slice: 

 n −1 = argmi n x n −1 
M n −1 ( x n −1 ) . 

However, computing the M n −1 image is as difficult as solving the

riginal problem. Fortunately, the sequence ( M ) satisfies the fol-
k 
owing recurrence relationship: 

 k ( x k ) = mi n x 0 , ... , x k −1 
−

k ∑ 

z=0 

S z ( x z ) + λ
k −1 ∑ 

z=0 

| | x z+1 − x z | | 2 

= −S k ( x k ) + λ mi n x k −1 

{ 

M k −1 ( x k −1 ) 

λ
+ | | x k − x k −1 | | 2 

} 

= −S k ( x k ) + λ D 

(
M k −1 

λ

)
( x k ) 

ith D defined by the image operator D ( f )(x ) = mi n y f (y ) +
 | x − y | | 2 . This recurrence relation not only enables us to practically

ompute the ( M k ), it also provides a way to infer the full center-

ine, solution of ( Eq. (1 )), from the top to the bottom. Indeed, given

 k , c k −1 can be expressed as: 

 k −1 = argmi n x k −1 

{ 

M k −1 ( x k −1 ) 

λ
+ | | c k − x k −1 | | 2 

} 

= N 

(
M k −1 

λ

)
( c k ) (4) 

here N is the proximity operator defined as N( f )(x ) =
rgmi n y { f (y ) + | | x − y | | 2 } . D and N are important operators for

onvex optimization and image processing. They can be used to

ompute the distance transform and the nearest neighbors trans-

orm of an image. As proposed previously ( Meijster et al., 2002;

elzenszwalb and Huttenlocher, 2004 ), these two transforms can

e computed efficiently (with linear complexity) when the input

unction is uniformly sampled, i.e. is an image. 

The resolution of ( Eq. (1 )) is formalized in Algorithm 1 . Fast

istance and nearest-neighbor transforms are first used to com-

ute the sequences ( M k ) and( N k ) from the bottom to the top of

he volume. On the top slice, the SC center is then found as the

inimum of M n −1 . The complete centerline sequence ( c k ) is then

nferred by back-tracking on the nearest-neighbor-transforms ( N ).
k 
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As the computation of M k and N k is linear, in O ( s ), the complexity

of OptiC is also linear, in O ( s.n ). 

The proof that the Algorithm 1 finds a global solution of the

problem defined by ( Eq. (1 )) is fairly simple. Using ( Eq. (3 )), the

minimal value of C n −1 , ̂ C n −1 , is given by the global minimiza-

tion of M n −1 . This global minimization is performed by looping

on the pixel of the M n −1 2D image. The backtracking procedure

given by ( Eq. (4 )) ensures finding a path, a ( c k ) sequence, satisfy-

ing C n −1 ( c 0 , . . . , c n −1 ) = 

̂ C n −1 and thus it enables finding a global

solution of the optimization problem. 

2.1.1.4. Implementation details. In the optimization problem, the z

coordinate was assumed to be the (S-I) axis for all input volumes.

Thus, for each MRI volume, preprocessing steps involved impos-

ing a common image orientation (RPI, i.e. Right-to-left, Posterior-

to-anterior, Inferior-to-superior) based on the image header (NIFTI

input). 

In order to be robust to the native image resolution, the input

image is re-interpolated to the resolution 1 × 1 × p z mm using tri-

linear interpolation, p z being the native pixel size in z direction. To

account for the image resolution in the (S-I) axis, the regulariza-

tion coefficient λ is parameterized with a resolution independent

parameter λ′ and the interslice distance p z : 

λ = 

λ′ 
p z 2 

The SC localization map was computed using a Support Vec-

tor Machine (SVM) trained with Histogram of Oriented Gradient

features (HOG) as described previously ( Dalal and Triggs, 2005 ).

Briefly, the SVM classifier is fed with HOG-patches features com-

puted on cross-sectional slices, and outputs a localization map that

detects SC patterns, as illustrated in Fig. 1 . The HOG features were

computed on patches of 32 × 32 size, from 2D axial slices, using

the OpenCV library ( Bradski and Kaehler, 2008 ) with default pa-

rameters and signed gradients. Note that the use of a small patch

size as well as the sophisticated normalization scheme of HOG

makes the computation of the localization map robust to inhomo-

geneity artifacts and intensity scale changes. 

2.1.2. Pontomedullary junction detection 

Typical cervical SC scans include a part (or all) of the brain,

which therefore needs to be excluded in the SC centerline out-

put of the proposed algorithm. Here, an automatic method is in-

troduced to detect the presence and position of the PMJ and sub-

sequently crop the SC centerline above it. This method is included

in OptiC as a post-processing module. The choice of the PMJ is

driven by previous studies showing that this anatomical land-

mark could be used as a reference for SC template-based anal-

yses ( Stroman et al., 2008 ). Moreover, this anatomical landmark

can be precisely identified from multiple image contrasts and its

neighboring voxels exhibit appropriate features for machine learn-

ing methods. 

Fig. 2 details the post-processing pipeline to detect the PMJ. The

SC is first straightened along the extracted centerline, with a robust

algorithm that preserves the SC topology and its internal and adja-

cent structure ( De Leener et al., 2017b ). Straightening of the SC is

used to normalize the shape of the PMJ regardless of the patient

position during the MRI scan. To detect the presence of the PMJ on

the straightened volumes, a HOG + SVM 2D classifier (as described

in Section 2.1.1.4 .) is trained on the midsagittal slice of the straight-

ened training data, resampled to a 1 × 1 mm resolution. When the

PMJ is detected on the testing data, the centerline is cropped above

it. 
.2. Materials 

To make sure the algorithm performs well in a large variety

f data (i.e., robust to MRI vendor, contrast, sequence parame-

ers, artifacts, types of pathology, etc.), retrospective data from

0 research and clinical centers were collected. The dataset was

omposed of 501 subjects, including 173 patients with neurologic

onditions [multiple sclerosis (MS) n = 79, degenerative cervical

yelopathy (DCM) n = 63, neuromyelitis optica (NMO) n = 19, trau-

atic spinal cord injury (SCI) n = 5, amyotrophic lateral sclerosis

ALS) n = 5, syringomyelia (SYR) n = 2]. Volumes were acquired on

T systems using standard coils, spanning a broad range of FOVs

e.g. cervical, thoracic, including or not brain sections) and four dif-

erent contrasts: T 2 w (n = 287), T 1 w (n = 120), T 2 
∗w (n = 307) and

WI (n = 90). Spatial resolutions included isotropic (n = 366, from

.7 to 1.3 mm) and anisotropic data with axial (n = 430, in plane:

rom 0.3 to 1.5 mm, slice thickness: from 1.0 to 24.5 mm), or sagit-

al orientation (n = 8, in plane: from 0.4 to 0.7 mm, slice thickness:

rom 0.8 to 2.8 mm). Demography and resolution are summarized

n Fig. 3 . 

For each of the four contrasts, the dataset (N tot volumes) was

andomly split into two independent subsets, the validation (N valid 

olumes) and the testing (N test volumes) datasets, as illustrated

n Fig. 4 . The training-validation dataset (used to train and vali-

ate the model) involved 40 healthy controls (HC), and the test-

ng dataset involved the rest of the HC, and patients. The reason

or not including patient data for the training-validation was for

roviding an unbiased and generic model, which would then be

ested on patients (ultimately, this algorithm could be applied for

iagnosis purposes, hence without prior knowledge of the possi-

le pathology). The center of the SC was manually localized us-

ng FSLView ( Jenkinson et al., 2012 ) on each slice of each volume

s ground truth for the SC centerline. Similarly, the PMJ position

as manually localized on the midsagittal slice of each straight-

ned T 1 w and T 2 w volume with brainstem section. 

.3. Hyperparameters optimization 

Three hyperparameters were investigated: the number of train-

ng volumes, the effect of rotation augmentation in training, and

he regularization coefficient λ′ . To do so, for each hyperparam-

ter, 100 bootstrap iterations were run on the training-validation

ataset (N valid ), split into two independent data subsets: one for

raining (n valid 
(1) from which the training volumes were selected),

he other for evaluation (n valid 
(2) , common for all the tested val-

es of the current hyperparameter), as detailed in Fig. 4 . The best

odel was selected by computing the Mean Square Error (MSE)

etween the predicted 

ˆ C and the ground-truth C centerlines: 

SE = 

√ 

1 

n 

n −1 ∑ 

z=0 

( ̂  c i − c i ) 
2 

ith n is the number of 2D axial slices. For each hyperparameter,

ignificant differences between the tested values were investigated

ith a Kruskal-Wallis H-test. After optimization, each hyperparam-

ter was fixed for the remainder of the study. 

.3.1. Number of training images 

In this part, we investigated if increasing the number of 3D im-

ges used to train the model yielded a more robust SC detection.

ased on metrics measured on a validation dataset, models with

he following number of training volumes were compared: 1, 5, 10,

5. The number of training 3D images (n train ) achieving the best

esults were retained for the rest of the study (i.e. n valid 
(1) = n train 

nd n 

(2) = N -n ). 
valid valid train 
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Fig. 2. Automatic post-processing pipeline to restrict the OptiC centerline below the ponto-medullary junction (PMJ). The spinal cord (SC) is first straightened along the reg- 

ularized SC centerline (blue). A classifier localization map (heat probabilistic map) allows detection of the PMJ on the straightened image (middle). Finally, the SC centerline 

is restricted below the detected PMJ (right). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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.3.2. Rotation training augmentation 

Data augmentation is a common strategy to increase detection

obustness in machine learning. This study investigated whether

he model can be made rotation invariant or whether adding a

otation to the input volume improved the model generalization

nd prevented overfitting. Indeed, it is not uncommon to observe

light rotation of the head and neck itself during MRI scans. Rotations

round the (S-I) axis were applied to the training data (n train ) with

ifferent angular ranges ( ±30 ° and ±180 °) and angular increments

each 5 ° and each 10 °). 

.3.3. Regularization coefficient 

The regularization coefficient λ′ is a hyperparameter that affects

he (S-I) axis regularization of the extracted centerline. The higher
′ is, the more the centerline points from two adjacent slices tend

o converge in the X-Y plane. To optimize λ′ , discrete values were

nvestigated from 0 to 4. Note that, when λ′ is equal to zero , the

enterline is given by the maximal values of the SC localization

ap, and when λ′ goes to infinity, the centerline will tend to be a

ertical straight line. 

.4. Evaluation 

Once the OptiC hyperparameters were selected, OptiC perfor-

ance was evaluated on the testing dataset (N test ), using both HC

nd patients (see Fig. 4 ). 

.4.1. OptiC SC centerline detection 

For each contrast, an OptiC optimized model was evaluated on

he testing dataset and compared to a recently-published auto-

atic SC localization method ( De Leener et al., 2015 ), based on

he Hough transform detection with vesselness filtering (referred

s Hough in the following paragraphs). Validation metrics were

SE between the predicted and ground truth SC centerlines and

he localization rate, defined as the percentage of slices for which

he predicted centerline was included in the manually-segmented

C. 

.4.2. Pontomedullary junction detection 

To achieve fully automatic pipelines involving multi-center

atasets with a variety of FOVs, the PMJ detection is a mandatory
ost-processing step to restrict the centerline curve to SC regions.

he proposed method to detect the PMJ was evaluated on T 2 w and

 1 w datasets that included a large number of volumes with brain

ections: PMJ appeared on 45% of T 2 w and 90% of T 1 w volumes

f the testing dataset. The training and testing datasets were the

ame as in the previous section. 

The detection performance was assessed with recall (measure

f completeness) and precision (measure of exactness) metrics: 

ecall = 

T P 

T P + F N 

precision = 

T P 

T P + F P 

here TP (true positives) and FN (false negatives) are the num-

er of volumes with brain section where the PMJ is respectively

etected and not detected; FP (false positives) are the number of

olumes on which PMJ is detected even though the brain section

s not present. 

For volumes with detected PMJ, the localization accuracy is

valuated by computing the distance between the predicted and

rue PMJ position along the (S-I) axis. 

.4.3. Proof-of-concept: application to SC segmentation 

SC segmentation provides relevant morphometric information

bout SC atrophy ( Yiannakas et al., 2016 ) and is an important

tep in template-based analysis pipelines ( De Leener et al., 2017a ).

hus, as a proof-of-concept application, a SC segmentation method

ropSeg ( De Leener et al., 2015 ), which uses propagation of 3D

eshes, was initialized using an OptiC centerline to compare its

enefit over the default initialization. Dice coefficient ( Dice, 1945 ),

etween the predicted and ground-truth segmentations (done by

xperienced users), evaluated the quality of the segmentation of

he testing subjects. The computation time was also measured for

he SC segmentation process when initialized with OptiC versus

ith the default version. 

. Results 

Fig. 5 presents the results of the hyperparameter optimiza-

ion for each contrast. The selected hyperparameters were chosen



220 C. Gros et al. / Medical Image Analysis 44 (2018) 215–227 

Fig. 3. Demography and resolution. Retrospective data from a large variety of pathologies (1) and contrasts (2) were used. For clarity purposes, the distribution of subjects 

is only shown for pathologies and contrasts. Volumes were acquired at 3T, spanning a large range of slice orientations, in plane resolutions (3a) and slice thickness (3b). Ab- 

breviations: MS: multiple sclerosis; DCM: degenerative cervical myelopathy; NMO: neuromyelitis optica; SCI: Traumatic spinal cord injury; ALS: amyotrophic lateral sclerosis; 

SYR: syringomyelia. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

i  

O  

c  

f  

n  

f  

1  

a  

N  

f  

b  

o  

v

through a bootstrap analysis, as a trade-off between detection ac-

curacy (measured by the MSE) and simplicity of the model. The

OptiC hyperparameter (filled in green) was the same for all con-

trast, selected as either the best tested value or not significantly

different from the best tested value, according to Kruskal-Wallis H-

tests. 

3.1. OptiC SC centerline detection 

Fig. 6 shows qualitative examples of SC centerline detection on

healthy controls (HC) and patient volumes from the testing dataset.

On both axial and sagittal views, SC centerlines were predicted

closely to the ground-truth centerlines. 
OptiC performance was evaluated on testing datasets contain-

ng four contrasts, including HC and a large number of patients.

ptiC was compared to the Hough method in Fig. 7 in terms of lo-

alization rate and MSE. The localization rates were 98.77 ± 4.49%

or OptiC and 63.75 ± 48.79% for Hough (averaged across contrasts

 = 644, Wilcoxon signed-rank test p-value < .01). The MSE results,

or subjects with a detected cord (i.e. localization rate > 0%), were

.02 ± 1.10 mm for OptiC and 9.95 ± 13.76 mm for Hough (averaged

cross contrasts n = 485, Wilcoxon signed-rank test p-value < .01).

ote that the Hough method performed adequately on HC but

ailed on most patients, whereas OptiC performed similarly well on

oth HC and patients. Table 1 shows how the two compared meth-

ds perform for different pathologies (with more than 10 patients in-

olved) . 
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Fig. 4. Training-validation and testing dataset breakdown. The dataset of each contrast (N tot ) was randomly split into two independent subsets: the training-validation 

(N valid = 40) and the testing (N test = N tot -N valid ) datasets. The training-validation dataset only involved healthy controls (HC, in blue) whereas the testing dataset involved both 

patients (in purple) and HC. The training-validation data were also split into 2 independent subsets: the first (n valid 
(1) ) for model training, the second (n valid 

(2) ) for evaluation. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Spinal cord (SC) detection results on pathological cases in terms of localization rate (top) and Mean Square Error (MSE) between the ground-truth and predicted 

SC centerline (bottom). Results are compared between the “Hough” method ( De Leener et al., 2015 ) and the proposed method (called “OptiC”). The table 

presents the average metrics across contrasts per pathology: multiple sclerosis (MS), degenerative cervical myelopathy (DCM) and neuromyelitis optica (NMO). 

MS patients DCM patients NMO patients 

(n = 79) (n = 63) (n = 19) 

Localization rate [avg. %] (Best value: 10 0.0 0) Hough : 49.75 ± 45.70 Hough : 48.15 ± 44.23 Hough : 72.76 ± 39.66 

OptiC : 99.36 ± 3.14 OptiC : 96.10 ± 7.00 OptiC : 97.76 ± 4.00 

MSE [avg. mm] (Best value: 0.00) Hough : 14.79 ± 16.47 Hough : 13.34 ± 13.62 Hough : 8.86 ± 13.00 

OptiC : 0.98 ± 0.40 OptiC : 1.14 ± 0.51 OptiC : 1.19 ± 0.78 

Table 2 

Pontomedullary junction (PMJ) detection results on T 2 w and T 1 w testing datasets. Recall, precision and area under ROC curve (AUC) evaluated the ability of the 

proposed method to automatically detect the presence of the PMJ in the MRI volumes, referred to as True Positive volumes (TP). The signed distance error 

measures the distance between the predicted and the true PMJ position along the (S-I) axis. 

Recall [%] Precision [%] AUC [%] Distance error [mm] 

(Best value: 100) (Best value: 100) (Best value: 100) (Best value: 0.00) 

T 2 w (n = 247, n TP = 111) 86 88 86 0.11 ± 13.59 

T 1 w (n = 80, n TP = 72) 100 99 97 0.46 ± 11.38 
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.2. Pontomedullary junction detection 

Table 2 shows the results of the PMJ automatic detection on the

 2 w and T 1 w testing datasets. The proposed detection method pro-

ides good results in terms of recall (T 2 w: 86%; T 1 w: 100%), with

ew FN detections, as well as high precision (T 2 w: 88%; T 1 w: 99%),

ith few FP detection. Moreover, the averaged signed distance er-

or between the predicted and the true PMJ position along the (S-

) axis is in the range of 1 cm around the PMJ (T 2 w: 0.11 ± 13.59;

fi  
 1 w: 0.46 ± 11.38), resulting in an adequate separation of brain and

C structures ( Table 2 ). 

.3. Proof of concept: application to SC segmentation 

Automatic SC segmentation tasks remain a challenging problem

n a variety of MRI data ( De Leener et al., 2016 ), mainly due to the

ifficulty to robustly detect the SC. This localization is often the

rst step of automatic SC segmentation pipelines. Hence, as a proof
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Fig. 5. Hyperparameter optimization. Three hyperparameters were investigated (from left to right): the number of training 3D images, the effect of rotation augmentation in 

training and the regularization coefficient. The optimization was done for the four contrasts (from top to bottom): T 2 w, T 1 w, T 2 
∗w, DWI. Here, Avg. ± Std. of the Mean Square 

Error (MSE) between the estimated centerline and the ground truth across 100 bootstrap iterations are plotted in red. All the experiments were performed using 100 bootstrap 

iterations, except for experiments demonstrated in top left panel which required 10 0 0 iterations to ensure validation stability. For each hyperparameter optimization, ( ∗) indicates 

significant differences between the selected value (filled in green) and the other tested values, according to Kruskal–Wallis H-tests ( ∗: p ≤ .05, ∗∗: p ≤ .01). (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. Examples of automatic spinal cord (SC) centerline detection on healthy controls (HC) and patients, on T 2 w (top-left), T 2 
∗w (top-right), T 1 w (bottom-left) and DWI 

(middle-right) images, with highly-variable spatial resolutions and including a few artifacts (yellow arrows). This includes a comparison between ground-truth (red) and auto- 

matic (blue) SC centerlines on axial and sagittal views. MS: multiple sclerosis; DCM: degenerative cervical myelopathy; NMO: neuromyelitis optica; ALS: amyotrophic lateral 

sclerosis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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f concept of OptiC’s application, we used OptiC to initialize a pub-

icly available SC segmentation method, PropSeg ( De Leener et al.,

015 ). Fig. 8 compared the results of PropSeg when initialized with

he default method (called “Hough + PropSeg” ) and with the SC

enterline provided by OptiC (called “OptiC + PropSeg” ). Dice co-

fficients calculated between the predicted and the ground-truth

egmentations were 0.87 ± 0.14 when using OptiC initialization

ersus 0.44 ± 0.43 when using the default initialization (averaged

cross contrasts n = 644, Wilcoxon signed-rank test p-value < .01).

ptiC was particularly valuable in pathological cases with a Dice

oefficient of 0.84 ± 0.14 versus 0.36 ± 0.41 when using the default

nitialization (averaged across contrasts n = 259, Wilcoxon signed-

ank test p-value < .01). 

The “OptiC + PropSeg” results for T 2 w and T 1 w datasets were

btained by using the centerline automatically cropped at the

MJ position. This additional post-processing slightly improved the

ice coefficient of segmentations on MRI volumes with PMJ sec-

ions: Dice coefficients were 0.89 ± 0.13 without cropping versus

.90 ± 0.11 with PMJ cropping (averaged across contrasts n = 183). 

Moreover, the above results were obtained efficiently when us-

ng OptiC, 0.41 ± 0.46 seconds per 2D axial slice (including read-

ng/writing tasks, on an iMac i7 4-cores 3.4 GHz 8Gb RAM) versus

.05 ± 82.90 seconds without OptiC initialization (averaged across

ontrasts n = 644, Wilcoxon signed-rank test p-value < .01). Note

hat, OptiC centerline extraction is not time consuming since it is

 

o  
chieved in 10.00 ± 6.98 milliseconds per 2D axial slice (averaged

cross contrasts n = 644). 

. Discussion 

In this article, a new automatic and fast method to detect the

enter of the SC on MRI data was presented. The proposed method

s based on a supervised machine learning detection method com-

ined with a novel algorithm that efficiently provides the global

olution of an optimization problem. Additionally, a new post-

rocessing feature to detect and correct for the PMJ landmark al-

ows the pipeline to handle datasets with a variety of image FOVs. 

Key benefits of OptiC are (i) robustness to image artifacts (e.g.

usceptibility, motion, ghosting, chemical shift, blurring, Gibbs)

hanks to the sophisticated normalization HOG strategy ( Dalal and

riggs, 2005 ), (ii) respect for anatomical cord continuity as a re-

ult of the regularization along the (S-I) axis, (iii) robustness of

urve extraction ensured by the finding of the global minimum

iv) fast computation time by reason of a linear complexity with

he number of voxels. Further efforts to extend our results might

onsider the use of more sophisticated object detection classifier,

uch as Convolutional Neural Networks ( Ronneberger et al., 2015;

ong et al., 2015 ), and/or other engineering features, such as SURF

eatures ( Bay et al., 2008 ). 

The hyperparameter study shows that training the model with

nly one image provides good results. It suggests the possibility to
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Fig. 7. Results of the spinal cord (SC) localization in terms of localization rate (top) and Mean Square Error (MSE) between the ground-truth and predicted SC centerline 

(bottom). For each metric, the best value is indicated in green in the y-axis. Results are compared between the Hough method ( De Leener, Cohen-Adad, and Kadoury 2015 ) 

(left distribution plots) and the OptiC method (right distribution plots), where each point represents a healthy control (blue) or patient (red). Each method was evaluated on 

the 4 contrast datasets: T 2 w, T 1 w, T 2 
∗w and DWI (from left to right). The table presents the average metrics per contrast for each method, and for the HC and the patient 

(Pat.) subgroups. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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fastly and easily create a new model if needed (e.g. adapted to a

new contrast or to a specific pathology) without requiring a large

amount of training 3D images. Rotation augmentation on the train-

ing data did not prove useful to detect the SC, even if HOG fea-

tures are not inherently rotation invariant. This can probably be ex-

plained by the setting of a common image orientation in the pre-

processing steps. The regularization coefficient optimization sug-

gests that the solving of the optimization problem ( λ′ � = 0) provides

significant improvements compared to the SC localization map out-

put by the classifier ( λ′ = 0 ). Parameter optimization, notably on the

number of training data, showed the ability of SVM + HOG classifier

to robustly learn the SC pattern without requiring a large amount

of training data. Indeed, increasing the number of training volumes

(with or without data augmentation) did not improve validation met-

rics. We explain this result by first recognizing that, in comparison

with other machine learning algorithms, linear SVMs in general, as

parametric model, don’t need a large number of training data for

reaching maximum classification efficiency, and second, that the cho-

sen training subject was composed of a large number of slices ( e.g.

256 slices for the T2w training volume), therefore there is already
n inherent variability that apparently was useful enough for the

lassifier. 

This study evaluated the performance of the OptiC method to

utomatically detect the SC on a variety of MRI data and to pro-

ide a reliable SC centerline. OptiC was validated on a large multi-

enter dataset with heterogeneous contrast, resolution, FOVs. Both

ccuracy and robustness of the method have been shown, even on

hallenging pathological cases with hyperintense lesions or cord

eformations, such as in 3D images from patients with MS (n = 79)

r DCM (n = 63): the averaged MSE from patients was 1.08 mm vs.

.97 mm from controls. Overall, the proposed method performed bet-

er than the compared method ( De Leener et al., 2015 ). Indeed, while

VM + HOG classifier tracks SC pattern in a supervised manner, the

ough approach aims at detecting circles whereas the cord is not a

erfect circle, especially on pathologically compressed cord. Moreover,

he Hough detection is only performed on the mid Superior-to-Inferior

ross-sectional slice whereas the proposed method outputs a localiza-

ion map on the whole volume allowing a more robust SC detection.

ven on pathological cases where the compressed cord is hardly de-

ectable on some slices, the OptiC’s second step allows a good ap-
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Fig. 8. Results of the spinal cord (SC) segmentation in terms of Dice coefficients between the ground-truth and predicted SC segmentation. For each metric, the best value 

is indicated on green in the y-axis. Results are a comparison of PropSeg ( De Leener et al., 2015 ) segmentations when centerline initialization is performed with the default 

method (left distribution plots) vs. the OptiC method (right distribution plots), where each point represents a healthy control (blue) or patient (red). Each method was 

evaluated on the 4 contrast datasets: T 2 w, T 1 w, T 2 
∗w and DWI (from left to right). The table presents the averaged metrics per contrast for each method. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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o  
roximation of the SC centerline by regularizing the centerline along

he Superior-to-Inferior axis. The robustness of the proposed method

rovides a proof-of-concept to allow more robust automatic analy-

is on pathological cases with clinical applications. 

The automatic detection of the PMJ allows the extraction of a

C centerline restricted to SC regions even on MRI volumes that

nclude the brain. Other anatomical structures such as the top of

1 vertebra or the bottom of the medulla oblongata might also

ave been appropriate to separate the brain and SC regions, but

hese structures are much more challenging to label consistently

nd to detect automatically. The straightening of the SC is a nec-

ssary step to robustly detect the PMJ, however, the computation

f the warping fields is time consuming. Validation results demon-

trate the precision of the PMJ detection method (low rate of FP

etections) and its accuracy ( ∼1 cm around the PMJ). Notably, its

enefit for SC segmentation tasks was shown by slightly improving

he Dice coefficient of the segmentation. Therefore, delineating the

C below the PMJ would have benefits when integrated on fully

utomatic pipelines. 

This paper shows the benefits of the OptiC centerline to ini-

ialize a state-of-the-art automatic SC segmentation technique

 De Leener et al., 2015 ). Automatic detection of the SC has also

ecently been proposed to improve B0 field correction in targeted

ptimization of shim currents ( Topfer et al., 2016; Vannesjo et al.,

017 ) to adapt the shimming to the exact position of the SC in

 2 
∗-w images. Other applications, such as template registration or

hape analysis, could also benefit from this method. 

. Conclusion 

SC centerline detection is a key step to initialize fully automatic

ipelines in various applications such as SC segmentation, shape

nalysis, template registration or B0 field correction. In this pa-

er, a fully automated method for localizing the SC from MRI data

as presented, extensively validated on a large multi-center het-
rogeneously acquired datasets with a large variety of pathologies

nd successfully compared with a state-of-the-art SC localization

echnique. The proposed SC centerline detection method is freely

vailable as part of the Spinal Cord Toolbox: http://sourceforge.

et/projects/spinalcordtoolbox/ and on the CREATIS webpage www. 

reatis.insa-lyon.fr/site7/en/ctrDetect . 
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