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Abstract—Many beamforming methods have been developed
for ultrasound B-mode imaging, as an alternative to conven-
tional Delay-And-Sum (DAS) algorithm. Fourier-based methods
decrease the computational load, while adaptive ones enhance B-
mode image quality. These beamformers were mainly evaluated
using image quality metrics on static media, such as resolution
and contrast, but never on motion estimation.

Herein, the influence of six beamformers on velocity estimation
is quantitatively evaluated experimentally with a rotating disk.
The conventional DAS was compared with several beamformers
introduced in the literature: two Fourier-based techniques (Lu’s
and f-k), and three adaptive ones (Minimum Variance (MV),
Phase Coherence Factor (PCF) and DAS with p-th root compres-
sion of signals (p-DAS)). The experimental results demonstrate
that advanced beamformers are compatible with velocity esti-
mation. Fourier-based methods slightly outperformed DAS, and
adaptive beamformers can offer comparable velocity maps as
DAS with similar statistics regarding bias and standard deviation.
However, their performances decreased when increasing the
adaptive effect.

I. INTRODUCTION

In medical ultrasound, ultrafast plane wave imaging has

been a real breakthrough [1]. The conventional frame rate

has been increased form some tens to thousands image per

second. The plane wave imaging has enabled the emergence

of many applications for the observation of transient biological

phenomena [2].

Also, new image reconstruction algorithms have been de-

veloped, with the emergence of plane wave imaging. Methods

have been proposed to reduce the computation load of the

conventional Delay-And-Sum (DAS) beamforming operating

in the time-domain. Thanks to Fourier-based approaches, Lu’s

method [3] and Stolt’s f-k migration [4] offer similar or

even better B-mode image quality concerning resolution and

contrast.

However, image quality with plane wave is degraded with

respect to conventional multi-focused one. Then many adap-

tive beamforming technics have been proposed to preserve

both resolution and contrast of B-mode images with a high

frame rate [5]. The Capon’s Minimum Variance beamforming

(MV) has been adapted to medical ultrasound from acoustic

imaging [6]. Other beamformers aim to increase the effect

of coherent summation along the element dimension involved

in the conventional DAS. In [7], the resolution and contrast

are enhanced thanks to a non-linear amplitude compression

of acquired signals (pDAS beamforming), whereas in [8], the

coherent summation is reinforced thanks to a phase-based

dispersion criterion (PCF: phase coherence factor).

However, from our knowledge, such methods (migration

or adaptive technics) have only been tested according to B-

mode image quality metrics. Since the velocity estimation is

based on the RF-images after beamforming, the choice of

the beamformer necessarily influences the quality of velocity

estimation. This study proposes to experimentally quantify the

influence of advanced beamformers on velocity estimation,

considering a rotating agar gel disk. Two advanced migration

methods (Lu’s and f-k), and three adaptive beamformers (MV,

pDAS, and PCF) are compared to conventional DAS.

The paper is organized as follows. The second section

describes the six compared beamformers, the method for

velocity estimation, and the experimental setup. The third

section analyzes the results. The paper ends with a discussion

and conclusions.

II. METHODS AND MATERIALS

The Figure 1 provides the global pipeline of the study. A

rotating disk is imaged using an unsteered single plane wave.

Then, the raw data are beamformed into an RF image. Two

consecutive RF images are used to obtain an instantaneous

velocity estimation. The statistics of estimates are computed

from 253 maps (which corresponds to around 250 ms of data

acquisition). The velocity estimation method is unchanged,

whereas six different beamformers are investigated.

A. Beamforming methods

This section describes the conventional DAS beamformer,

three adaptive ones (MV, PCF, pDAS), and two advanced

migration technics (Lu’s, f-k).

A linear probe of N elements is used for both transmission

and reception. The reconstruction grid is (x, z), where x is the

lateral axis parallel to the array, and z is the depth axis.

1) Conventional Delay-And-Sum beamforming (DAS):

Each pixel rDAS(x, z) of the RF image is obtained through

a combination of the N correctly delayed samples sn(x, z),
extracted from the raw echo signals pn(t), where n is the

element index. Two assumptions are made: the speed of sound



Fig. 1. Global block diagram of the study. A rotating disk is imaged using
an unsteered single plane wave. Then, the raw data are beamformed into an
RF image. Two consecutive RF images are used to obtain an instantaneous
velocity estimation. The statistics of estimates are computed from 253 maps
(which corresponds to around 250 ms of data acquisition). The velocity
estimation method is unchanged, whereas six different beamformers are
investigated.

in the phantom is homogeneous c0 = 1540 m·s−1, and a point

scatterer generates a spherical wavefront. In this way, the echo

back-scattered by a point located at (x, z) corresponds to the

samples sn(x, z) with:

sn(x, z) = pn(τn(x, z)), (1)

where τn(x, z) is the time of flight of the wave, which is the

sum of the time in transmission for the plane wave to get to

the scatterer, and the time in reception from the scatterer to

element n of the probe:

τn(x, z) =
1

c0
(z +

√

(x− xn)2 + z2), (2)

where xn is the lateral position of the nth element. Finally,

the samples sn(x, z) are merely summed along the element

dimension, to obtain the RF image pixel value rDAS(x, z):

rDAS(x, z) =

N
∑

n=1

an · sn(x, z), (3)

where an are the weighting coefficients of the apodization

window (e.g., Tukey, Hann, and others). For DAS, a uniform

apodization is used, with a constant F-number of 1.5.

The three adaptive beamformers of this study (MV, pDAS,

PCF) follow the same process for delaying as the DAS, with

a constant F-number of 1.5. The difference lies in the way

sn(x, z) are combined to obtain the pixel value.

2) Minimum Variance beamforming (MV): For each pixel

value, the Capon’s Minimum Variance beamforming (MV)

computes the set of adaptive weights that minimizes the power

of equation (3), with a constraint of unity gain on the pixel of

interest [6]. This method requires the inversion of the spatial

covariance matrix R(x0, z0) of the rephased samples, which is

not necessary full-ranked. Then, the MV needs two operations

to be more robust. First, the spatial smoothing rearranges the

N samples sn(x0, z0) into N − L + 1 subarrays of width

L, to provide an estimate R̂(x0, z0) of R(x0, z0). Second, the

diagonal loading consists of forcing R̂(x0, z0) as a full-ranked

matrix before its inversion. A coefficient δ is added on its

diagonal, which corresponds to a spatially uncorrelated white

noise with a power δ [6]. Finally, the RF image returned by

the MV beamforming is:

rMV (x0, z0) =
1

N − L+ 1

N−L+1
∑

l=1

wH(x0, z0)s̃l(x0, z0) (4)

with s̃l(x0, z0) is the (L, 1)-vector corresponding to the lth

smoothed subarray, w is the (L, 1)-vector corresponding to the

set of adaptive weights, (.)H denotes the conjugate transpose,

L and δ are two user parameters. As L increases, the adaptive

effects of MV increase too (until maximum value L = N/2).

If L = 1 the RF image obtained tends to the DAS one. In this

study, δ was empirically set constant to δ = 1000.

3) Phase Coherence Factor beamforming (PCF): In [8],

the phase coherence factor (PCF) was proposed to attenuate

pixel values resulting from incoherent summation in equa-

tion (3). This factor is computed from the phase variance

σφ(x0, z0) of each set of N delayed samples sn(x0, z0), on

the element dimension n, as:

wPCF (x0, z0) = max

[

0; 1−
γ

σ0

σφ(x0, z0)

]

, (5)

where γ is a user parameter (default value is 1), and σ0 =
π
√

3
is a normalization factor corresponding to the standard

deviation of a uniform phase distribution. The γ value can

accentuate the adaptive effects or it can be set to 0 to recover

conventional DAS.

4) Nonlinear beamforming based on p-th root compres-

sion (pDAS): In [7], the coherent summation in equation (3) is

reinforced by averaging the signed p-th root of delayed signals:

r̃pDAS(x0, z0) =

N
∑

n=1

sign(sn(x0, z0))|sn(x0, z0)|
1/p. (6)

Then, as the p-th root compression changes the dimension of

data (e.g., from volts to volts1/p), the signed p-power is applied

to the resulting sum:

rpDAS(x0, z0) = sign(r̃pDAS(x0, z0))|r̃pDAS(x0, z0)|
p. (7)

The reconstructed image must be band-pass filtered (along

the z dimension) around the transmit frequency to remove

potential artificial harmonics induced by nonlinear operations

[7]. The p value is the user parameter to accentuate the

adaptive effects or it can be set to 1 to recover DAS.

5) Lu’s and Stolt’s f-k migrations: The Lu’s [3] and

Stolt’s f-k [4] beamformers are not adaptive beamformers,

but advanced migration methods. They aim to reduce the

computing time of DAS, by operating in the Fourier domain.

They consist of a frequency remapping of the two dimensional

fast Fourier transform of the N raw signals. The Lu’s method

is based on a scattering model, whereas the f-k one is instead

based on a reflector model. They slightly differ on the way

the frequency are remapped, as explained in details in [4].



B. Velocity estimation

The velocity estimation consists of a 2D map of axial ve-

locity, from two successive beamformed RF images, acquired

with a frame rate of PRF = 1 kHz. A stack of 254 RF-

images has been beamformed, giving 253 instantaneous axial

velocity 2D maps across the time vz(x, z). Each resulting 2D

map vz(x, z) is estimated using the complex autocorrelation

function as in [9], [10], after I/Q demodulation at the transmit

frequency f0:

vz(x, z) = −
c0.PRF

4f0

∠R̂(1)(x, z)

π
(8)

where c0 is the speed of sound (m/s) and ∠R̂(1)(x, z) is

the angle of the complex autocorrelation function at lag 1.

A spatial average with a 2D Hamming kernel (size: x = 1
mm, z = 2.5 mm) is applied on the complex autocorrelation.

C. Experimental setup

An agar and silica-based rotating disk with a radius of

15 mm was imaged at different constant velocities 50, 100

and 150 deg/s (which corresponds respectively to a maximum

velocity at the edge of the disk of 13 mm/s, 26 mm/s, and

38 mm/s). A Verasonics ultrasound system (Verasonics Inc.,

Redmond, WA) and the L7-4 probe were used. The acquisition

parameters are described in Table I.

TABLE I
ACQUISITION PARAMETERS

Pitch 298 µm

Number of elements 128 (Tx/Rx)

Sampling frequency 20.8 MHz

Speed of sound 1540 m/s

Pulse repetition frequency 1 kHz

Transmission mode Single plane wave (unsteered)

Transmit frequency 5.2 MHz

Transmit pulse 3 cycles

Transmit apodization Tukey (25 %)

Receive apodization Rectangular

III. RESULTS

In this section, the results obtained with DAS, Lu’s, f-k,

MV, pDAS, and PCF beamforming are presented: the B-

mode images and the instantaneous 2D velocity maps are

qualitatively discussed, and then a quantitative analysis of the

velocity estimation statistics is presented.

A. B-mode analysis

The B-mode images of the rotating disk at the constant

velocity of 100 deg/s, obtained for the 100th acquisition,

are shown in Figure 2. To show the effect of each adaptive

beamformers, two values of user parameters are investigated.

For MV, as the subaperture width L decreases the grains in

the speckle are more prominent, in Figure 2(d) L = 0.3N and

(e) L = 0.5N . For pDAS (respectively, PCF), the higher the

value of p (respectively, γ), the darker the outside of the disk

and the higher the variance of the gray level inside the disk,

as shown in Figures 2(f) p = 1.2 and (g) p = 2 (respectively,

(h) γ = 1 and (i) γ = 1.15). Considering advanced migration

technics, (b) Lu’s and f-k (c) methods offer similar B-mode

images as (a) DAS, except in the near field: for Lu’s and f-k,

the background outside the disk is a little bit more noisy, since

they do not benefit from the constant F-number as DAS.

Fig. 2. B-mode images of the rotating disk at the constant velocity of 100
deg/s, obtained for the 100th acquisition with different beamformers. For
each of the three adaptive beamformers, two values of adaptive parameter are
presented.

B. Influence of beamforming methods on velocity estimation

1) Qualitative analysis: The instantaneous 2D axial veloc-

ity maps of the rotating disk at the constant velocity of 100

deg/s, obtained for the 100th and 101st acquisitions are shown

in Figure 3. To show the effect of each adaptive beamformers,

two values of user parameters are investigated as for B-

modes. For all adaptive beamformers, as their respective user

parameter values decrease, the velocity maps are smoother

and closer to the ground truth in (j) (see Figure 3, for MV

(d) L = 0.3N and (e) L = 0.5N , for pDAS (f) p = 1.2 and

(g) p = 2, for PCF (h) γ = 1 and (i) γ = 1.15). Considering

advanced migration technics, (b) Lu’s and (c) f-k methods offer

similar velocity estimates as (a) DAS.

Fig. 3. Instantaneous 2D axial velocity maps of the rotating disk at the
constant velocity of 100 deg/s, obtained for the 100th and 101st acquisitions
with different beamformers. For each of the three adaptive beamformers, two
values of adaptive parameter are presented. The green box in (j) is the region
of spatial averaging for bias and standard deviation of vz(x, z).

2) Quantitative analysis: For each velocity estimation at a

given position (x, z), the bias and standard deviation (STD)

of vz(x, z) are computed along the time dimension, consid-

ering the 253 velocity maps. These two metrics are spatially



averaged in the region of interest in the represented green box

in Figure 3(j), and normalized with respect to the theoretical

maximum axial velocity on the edge of the disk. Results are

shown for three rotating speeds of the disk in Figure 4(a) 50

deg/s, (b) 100 deg/s, and (c) 150 deg/s.

The experimental results demonstrate that advanced beam-

formers (migration or adaptive) can provide close velocity

estimates to those of conventional DAS. The results in Figure

4(b) for the rotating speed of 100 deg/s are commented.

Fourier-based methods slightly outperformed DAS (averaged

bias for DAS: 5%, Lu: 4%, f-k: 4%). Adaptive beamformers

can offer comparable velocity maps as DAS with similar statis-

tics regarding bias (DAS: 5%, MVL=0.3N : 5%, pDASp=1.2:

5%, PCFγ=1: 6%) and STD (DAS: 5%, MVL=0.3N : 6%,

pDASp=1.2: 6%, PCFγ=1: 6%). However, their performances

decreases when increasing the adaptive effect. For example,

using pDAS, when the value of p increases, the quality

of the velocity estimates is decreasing (bias for DAS: 5%,

pDASp=1.2: 5%, pDASp=2: 9%, and STD for DAS: 5%, p-

DASp=1.2: 6%, pDASp=2: 11%). These trends are preserved,

as the rotating speed decreases to (a) 50 deg/s or increases to

(c) 150 deg/s, for all beamformers.

Fig. 4. Normalized biases and standard deviations of axial velocity estimates
for different beamforming technics. For each velocity estimation at a given
position (x, z), the bias and standard deviation are computed along the time
dimension, considering the 253 velocity maps. The metrics are averaged in the
region of interest in the green box represented in Figure 3(j). Three rotating
speeds were investigated for the disk: (a) 50 deg/s, (b) 100 deg/s, and (c) 150
deg/s. Metrics are normalized with respect to the theoretical maximum axial
velocity of the disk with (a) 13 mm/s, (b) 26 mm/s, and (c) 38 mm/s.

IV. DISCUSSION AND CONCLUSION

From our knowledge, here is the first experimental and

quantitative study on the influence of beamforming methods on

velocity estimation. These results demonstrate that advanced

beamformers (migration or adaptive) can provide close ve-

locity estimates to those of conventional DAS. A trade-off is

at stake between a strong adaptive effect for resolution and

contrast improvements of B-mode imaging and degrading the

statistics of velocity estimation. These preliminary results pave

the way for applications coupling adaptive beamforming with

velocity estimations.
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