

INSTITUT NATION DES SCIENCES APPLIQUÉES LYON

🖞 Inserm

Reproductibilité avec VIP dans le cadre de segmentation de tumeurs de la base du crâne

Medical Imaging Research Laboratory

Morgane des Ligneris ¹ Méghane Decroocq ¹ Timothée Jacquesson ^{1,2} Carole Frindel ¹

Sorina Pop¹

¹Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, INSERM, CREATIS UMR 5220, Lyon, France.

²Département de neurochirurgie, tumeur intracrâniennes et chirurgie de la base du crâne, Hôpital neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France

Contexte :

- Patients atteints de tumeurs de la base du crâne, une pathologie fréquente (incidence de 5-14 cas pour 100 000¹).
- 3 cas : méningiomes, schwannomes et kystes épidermoïdes.

[1] Rangel-Castilla L, Russin JJ, Spetzler RF. Surgical management of skull base tumors. Rep Pract Oncol Radiother. 2016;21(4):325-335. doi:10.1016/j.rpor.2014.09.002

Contexte :

- Patients atteints de tumeurs de la base du crâne, une pathologie fréquente (incidence de 5-14 cas pour 100 000¹).
- 3 cas : méningiomes, schwannomes et kystes épidermoïdes.
- Seul l'**examen histologique** permet de confirmer la nature de la tumeur, d'y associer un pronostic et une prise en charge chirurgicale.

[1] Rangel-Castilla L, Russin JJ, Spetzler RF. Surgical management of skull base tumors. Rep Pract Oncol Radiother. 2016;21(4):325-335. doi:10.1016/j.rpor.2014.09.002

Contexte :

- Patients atteints de tumeurs de la base du crâne, une pathologie fréquente (incidence de 5-14 cas pour 100 000¹).
- 3 cas : méningiomes, schwannomes et kystes épidermoïdes.
- Seul l'**examen histologique** permet de confirmer la nature de la tumeur, d'y associer un pronostic et une prise en charge chirurgicale.
- L'Imagerie par Résonance Magnétique (IRM) de **diffusion** repose sur la diffusion préférentielle des molécules d'eau dans les tissus. Elle permet d'obtenir indirectement l'**architecture des tissus**.

MéningiomeSchwannomeKyste épidermoïdeFigure 1 : Diffusion des molécules d'eau dans les différents types de tumeurs. Image de Timothée Jacquesson.

[1] Rangel-Castilla L, Russin JJ, Spetzler RF. Surgical management of skull base tumors. Rep Pract Oncol Radiother. 2016;21(4):325-335. doi:10.1016/j.rpor.2014.09.002

Hypothèse :

La diffusion des molécules d'eau peut également être la signature du tissu tumoral et de la manière dont il s'organise.

Majorité d'angles à 90°

Majorité d'angles à 0°

Entre 0° et 90°

Figure 2 : Schéma de distribution des directions théoriques des différents types de tumeurs (en noir) et repère rotatoire (en rouge). Illustration Emeric Desmazure.

Objectif

Confirmer l'hypothèse et construire des descripteurs experts permettant de distinguer les différences de signature.

Medical Imaging Research Laboratory www.creatis.insa-lyon.fr

Matériel :

Cohorte de 80 patients avec différentes séquences d'IRM :

T1-post Gadolinium (T1GD)

diffusion

Figure 3 : Contrastes obtenus par différentes séquences d'IRM, exemple du patient MG007.

T2

Medical Imaging Research Laboratory www.creatis.insa-lyon.fr

Matériel :

Cohorte de 80 patients avec différentes séquences d'IRM :

T1-post Gadolinium (T1GD)

diffusion

Figure 3 : Contrastes obtenus par différentes séquences d'IRM, exemple du patient MG007.

T2

→ Pas d'annotations concernant la tumeur et sa délimitation.

Problématique :

Segmenter automatiquement la cohorte de patient par inférence de modèle.

CREATIS Medical Imaging Research Laboratory www.creatis.insa-lyon.fr

Le défi "Brain Tumor Segmentation" (BraTS)² :

- Présenté la première fois en 2012 lors de la conférence internationale MICCAI ("Medical Image Computing and Computer Assisted Intervention Society")
- Evalue des algorithmes de segmentation de patients atteints de gliome.

[2] : https://www.med.upenn.edu/cbica/brats2020/

Le défi "Brain Tumor Segmentation" (BraTS)² :

- Présenté la première fois en 2012 lors de la conférence internationale MICCAI ("Medical Image Computing and Computer Assisted Intervention Society")
- Evalue des algorithmes de segmentation de patients atteints de gliome.

T2-FLAIR

Figure 4 : Sous régions du gliome segmentés³

[2] : https://www.med.upenn.edu/cbica/brats2020/

[3] : https://www.med.upenn.edu/cbica/brats2020/tasks.html

T2

Le défi "Brain Tumor Segmentation" (BraTS)² :

- Présenté la première fois en 2012 lors de la conférence internationale MICCAI ("Medical Image Computing and Computer Assisted Intervention Society")
- Evalue des algorithmes de segmentation de patients atteints de gliome.

 Gagnant BraTS 2020 : nnU-Net⁴, un algorithme de segmentation automatique basé deep learning, auto-adaptatif.

• Dispose de 2 modèles entrainés

Figure 4 : Sous régions du gliome segmentés³

- [2] : https://www.med.upenn.edu/cbica/brats2020/
- [3] : https://www.med.upenn.edu/cbica/brats2020/tasks.html

[4] : Isensee, Fabian, et al. "nnU-net for brain tumor segmentation." International MICCAI Brainlesion Workshop. Springer, Cham, 2020

Introduction

Méthodes Résultats

Conclusion

CREATIS Medical Imaging Research Laboratory www.creatis.insa-lyon.fr

Pré-traitement des données

- Utilisation du pipeline de pré-traitement BraTS⁶ implémenté sur la plateforme VIP⁷ :
- Implémenté sur VIP depuis Cancer Imaging Phenomics Toolkit (CaPTk)⁸

[6] B. H. Menze et al., "The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)," in IEEE Transactions on Medical Imaging, vol. 34, no. 10, pp. 1993-2024, Oct. 2015, doi: 10.1109/TMI.2014.2377694.
[7] Tristan Glatard, Carole Lartizien, Bernard Gibaud, Rafael Ferreira da Silva, Germain Forestier, et al.. A virtual imaging platform for multi-modality medical image simulation.. *IEEE Transactions on Medical Imaging*, Institute of Electrical and Electronics Engineers, 2013, 32 (1), pp.110-8. (10.1109/TMI.2012.2220154). (inserm-00762497)
[8] https://cbica.github.io/CaPTk/preprocessing_brats.html

- Utilisation du pipeline de pré-traitement BraTS⁶ implémenté sur la plateforme VIP⁷ :
- Implémenté sur VIP depuis Cancer Imaging Phenomics Toolkit (CaPTk)⁸

Figure 5 : Schéma des différentes étapes de prétraitement du pipeline

[6] B. H. Menze et al., "The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)," in IEEE Transactions on Medical Imaging, vol. 34, no. 10, pp. 1993-2024, Oct. 2015, doi: 10.1109/TMI.2014.2377694.
[7] Tristan Glatard, Carole Lartizien, Bernard Gibaud, Rafael Ferreira da Silva, Germain Forestier, et al.. A virtual imaging platform for multi-modality medical image simulation.. *IEEE Transactions on Medical Imaging*, Institute of Electrical and Electronics Engineers, 2013, 32 (1), pp.110-8. (10.1109/TMI.2012.2220154). (inserm-00762497)
[8] https://cbica.github.io/CaPTk/preprocessing brats.html

• Utilisation du pipeline de pré-traitement BraTS⁶ implémenté sur la plateforme VIP⁷ :

Résultats

• Implémenté sur VIP depuis Cancer Imaging Phenomics Toolkit (CaPTk)⁸

Méthodes

Introduction

Figure 5 : Schéma des différentes étapes de prétraitement du pipeline

[6] B. H. Menze et al., "The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)," in IEEE Transactions on Medical Imaging, vol. 34, no. 10, pp. 1993-2024, Oct. 2015, doi: 10.1109/TMI.2014.2377694.
[7] Tristan Glatard, Carole Lartizien, Bernard Gibaud, Rafael Ferreira da Silva, Germain Forestier, et al.. A virtual imaging platform for multi-modality medical image simulation.. *IEEE Transactions on Medical Imaging*, Institute of Electrical and Electronics Engineers, 2013, 32 (1), pp.110-8. (10.1109/TMI.2012.2220154). (inserm-00762497)
[8] https://cbica.github.io/CaPTk/preprocessing_brats.html

Conclusion

5/13

• Utilisation du pipeline de pré-traitement BraTS⁶ implémenté sur la plateforme VIP⁷ :

Résultats

• Implémenté sur VIP depuis Cancer Imaging Phenomics Toolkit (CaPTk)⁸

Figure 5 : Schéma des différentes étapes de prétraitement du pipeline

[6] B. H. Menze et al., "The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)," in IEEE Transactions on Medical Imaging, vol. 34, no. 10, pp. 1993-2024, Oct. 2015, doi: 10.1109/TMI.2014.2377694.
[7] Tristan Glatard, Carole Lartizien, Bernard Gibaud, Rafael Ferreira da Silva, Germain Forestier, et al.. A virtual imaging platform for multi-modality medical image simulation.. *IEEE Transactions on Medical Imaging*, Institute of Electrical and Electronics Engineers, 2013, 32 (1), pp.110-8. (10.1109/TMI.2012.2220154). (inserm-00762497)
[8] https://cbica.github.io/CaPTk/preprocessing_brats.html

Conclusion

[8] https://colca.glthub.io/CaPik/preprocessing_brats.h

Introduction

Méthodes

5/13

- Utilisation du pipeline de pré-traitement BraTS⁶ implémenté sur la plateforme VIP⁷ : •
- Implémenté sur VIP depuis Cancer Imaging Phenomics Toolkit (CaPTk)⁸ ۲

Figure 5 : Schéma des différentes étapes de prétraitement du pipeline

[6] B. H. Menze et al., "The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)," in IEEE Transactions on Medical Imaging, vol. 34, no. 10, pp. 1993-2024, Oct. 2015, doi: 10.1109/TMI.2014.2377694. [7] Tristan Glatard, Carole Lartizien, Bernard Gibaud, Rafael Ferreira da Silva, Germain Forestier, et al.. A virtual imaging platform for multi-modality medical image simulation.. IEEE Transactions on Medical Imaging, Institute of Electrical and Electronics Engineers, 2013, 32 (1), pp.110-8. (10.1109/TMI.2012.2220154). (inserm-00762497) [8] https://cbica.github.io/CaPTk/preprocessing brats.html

Méthodes Résultats Introduction Conclusion

Medical Imaging Research Laboratory www.creatis.insa-lyon.fr

Versions

On cherche à tester la reproductibilité de ce pipeline qui est disponible sous différentes versions :

- La version **1.8.1** : localement et sur VIP.
- La version **1.9.0**: sur VIP.
- La version **1.8.1 fuzzy** : sur VIP, on introduit du bruit.

Medical Imaging Research Laboratory www.creatis.insa-lyon.fr

Versions

On cherche à tester la reproductibilité de ce pipeline qui est disponible sous différentes versions :

- La version **1.8.1** : localement et sur VIP.
- La version **1.9.0**: sur VIP.
- La version **1.8.1 fuzzy** : sur VIP, on introduit du bruit.

Métriques

Le coefficient de Sorenson-Dice permet de calculer la similarité entre deux segmentations.

Figure 6 : Coefficient de Sørensen-Dice. Source : https://ichi.pro

On cherche à tester la reproductibilité de ce pipeline qui est disponible sous différentes versions :

- La version **1.8.1** : localement et sur VIP.
- La version **1.9.0**: sur VIP.
- La version 1.8.1 fuzzy : sur VIP, on introduit du bruit. (.

Métriques

- Le coefficient de Sorenson-Dice : calculer la similarité entre deux segmentations.
- Le checksum : vérifier si deux fichiers sont identiques.

Référence : v181 en local (seulement une référence de comparaison).

On compare les résultats de **9 patients** sur :

- Les différentes exécutions d'une version sur VIP \rightarrow checksums
- L'exécution de référence VS exécution sur VIP \rightarrow dice

Figure 6 : Coefficient de Sørensen-Dice. Source : https://ichi.pro

Medical Imaging Research Laboratory www.creatis.insa-lyon.fr

v181 et v190

- Pour deux exécutions sur VIP, sur la même version et sur les mêmes patients :
 - \rightarrow checksum identiques.

Figure 7 : Boxplot des dices d'une exécution VIP par rapport à la référence pour 9 patients

Méthodes Résultats

Introduction

Conclusion

Figure 7 : Boxplot des dices d'une exécution VIP par rapport à la référence pour 9 patients

Introduction Méthodes Résultats Conclusion

7/13

Figure 7 : Boxplot des dices d'une exécution VIP par rapport à la référence pour 9 patients

V181 patient FA T2

V181 local

segmentation

segmentation

V181 VIP

Figure 8 : T1GD et segmentation pour l'exécution en locale et l'exécution v181 sur VIP pour le patient FA

 \rightarrow Différences liées à la machine.

V190 patient FV 3D

V181 local

T1GD

segmentation

segmentation

V190 VIP

Figure 9 : T1GD et segmentation pour l'exécution en locale et l'exécution v190 sur VIP pour le patient FV

 \rightarrow Problème dès l'étape de recalage

Exécutions fuzzy vs référence

Figure 10 : Boxplot des dices entre les différentes exécutions fuzzy VIP avec la référence locale sur 9 patients

Exécutions fuzzy vs référence

Figure 10 : Boxplot des dices entre les différentes exécutions fuzzy VIP avec la référence locale sur 9 patients

Exécutions fuzzy vs référence

Figure 10 : Boxplot des dices entre les différentes exécutions fuzzy VIP avec la référence locale sur 9 patients

11/13

fuzzy patient FA T2

Introduction Méthodes Résultats

Conclusion

fuzzy patient FV 3D

UNIVERSITÉ DE LYON

fuzzy patient FV 3D

• Checksums identiques entre les différentes exécutions d'une même version sur VIP.

- Checksums identiques entre les différentes exécutions d'une même version sur VIP.
- v181 VIP a peu de variabilité par rapport à la référence.
- v190 VIP est plus variable par rapport à la référence (observé à l'échelle des données).

- Checksums identiques entre les différentes exécutions d'une même version sur VIP.
- v181 VIP a peu de variabilité par rapport à la référence.
- v190 VIP est plus variable par rapport à la référence (observé à l'échelle des données).
- Variabilité introduite par fuzzy, comme attendu.
- Variabilité la plus importe sur un même patient, lors du changement de version (v181 → v190) et avec le bruit introduit (vfuzzy): → dépendant aux données

- Checksums identiques entre les différentes exécutions d'une même version sur VIP.
- v181 VIP a peu de variabilité par rapport à la référence.
- v190 VIP est plus variable par rapport à la référence (observé à l'échelle des données).
- Variabilité introduite par fuzzy, comme attendu.
- Variabilité la plus importe sur un même patient, lors du changement de version (v181 → v190) et avec le bruit introduit (vfuzzy): → dépendant aux données

Perspectives

- Vérifier quel résultat est le plus proche de la vérité terrain entre la résultat local et VIP.
- Comparer toutes les étapes du pipeline, pour savoir où la variabilité intervient.

Merci pour votre attention

NnU-Net modèle n°1 :

- Modèle du défi "Medical Segmentation Decathlon" ٠ (MSD) de 2018
- Défi dont l'object est de s'adapter à **différents jeux** • de données.
- Données d'entrainement 750 cas de BraTS 2016 et ٠ 2017

Pha	se Task	Modality	Protocol	Target	# Cases (Train/Test)
	Brain	mp-MRI	FLAIR, T1w, T1 \w Gd, T2w	Edema, enhancing and non-enhancing tumor	750 4D volumes (484/266)
t phase	Heart	MRI	_	Left atrium	30 3D volumes (20/10)
	Hippocampus	MRI	T1w	Anterior and posterior of hippocampus	394 3D volumes $(263/131)$
mer	Liver	CT	Portal venous phase	Liver and liver tumor	210 3D volumes (131/70)
dola	Lung	CT	_	Lung and lung cancer	96 3D volumes (64/32)
Deve	Pancreas	CT	Portal venous phase	Pancreas and pancreatic tumor mass	420 3D volumes (282/139)
	Prostate	mp-MRI	T2, ADC	Prostate PZ and TZ	48 4D volumes (32/16)
stery phas	Colon	CT	Portal venous phase	Colon cancer primaries	190 3D volumes $(126/64)$
	Hepatic Vessels	CT	Portal venous phase	Hepatic vessels and hepatic tumor	443 3D volumes $(303/140)$
My	Spleen	CT	Portal venous phase	spleen	$61~3\mathrm{D}$ volumes $(41/20)$

Tableau 1 : Données des 10 jeux de données du défi MSD

Figure 5 : Les 10 taches de segmentation du défi MSD

[5] Simpson, Amber L. et al. "A large annotated medical image dataset for the development and evaluation of segmentation algorithms." ArXiv abs/1902.09063 (2019): n. pag.

Introduction

Méthodes Résultats Conclusion

UNIVERSITÉ DE LYON

CREATIS Medical Imaging Research Laboratory www.creatis.insa-lyon.fr

NnU-Net modèle n°2:

- Modèle du défi BraTS 2020
- Données de 364 cas d'apprentissage et 125 cas de validation.
- Apprentissage basé région
- Suppression de certaines régions et fusion d'autres
- Augmentation de la batch size

→ Les deux modèles nécessitent un pipeline de pré-traitement

Table 1: S	Summarizing the original characte	eristics of the BraTS d	ataset.
MRI Sequence	Property	Acquisition	Slice thic

Acronym	MRI Sequence	Property	Acquisition	Slice thickness
T1	T1-weighted	Native image	Sagittal or Axial	Variable (1-5mm)
T1Gd	T1-weighted	post-contrast enhancement (Gadolinium)	Axial 3D acquisition	Variable
T2	T2-weighted	Native image	Axial 2D	Variable (2-4mm)
T2-FLAIR	T2-weighted	Native image	Axial or Coronal or Sagittal 2D	Variable

Tableau 2 : Récapitulatif du jeu de données BraTS

Figure 6 : Architecture du réseau généré par nnU-Net