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A Fast Nonrigid Image Registration With Constraints
on the Jacobian Using Large Scale Constrained

Optimization
Michaël Sdika

Abstract—This paper presents a new nonrigid monomodality
image registration algorithm based on -splines. The deformation
is described by a cubic -spline field and found by minimizing
the energy between a reference image and a deformed version
of a floating image. To penalize noninvertible transformation,
we propose two different constraints on the Jacobian of the
transformation and its derivatives. The problem is modeled by
an inequality constrained optimization problem which is effi-
ciently solved by a combination of the multipliers method and
the L-BFGS algorithm to handle the large number of variables
and constraints of the registration of 3-D images. Numerical
experiments are presented on magnetic resonance images using
synthetic deformations and atlas based segmentation.

Index Terms— -spline, Jacobian, multipliers method, multires-
olution, nonrigid registration.

I. INTRODUCTION

THE problem of nonrigid registration is, given two images,
to find a (nonlinear) function that maps each point in the

reference image to a point in the floating image.
Nonrigid registration can be used to segment images using a

prelabeled atlas [1]–[3], to estimate the motion in a sequence
of images [4] and to compress and encode video [5]. It is also
used for morphometry [6], [7], or statistical analysis of medical
images [8].

There are usually two ways to describe the transformation.
The first solution is to use a dense nonparametric model and es-
timate the position of each voxel after the transformation as in
[9]–[11] or [3]. In this case, the transformation is often found
by solving a nonlinear partial differential equation (PDE). The
brain tissues are, for example, modeled as a material such as
a linear elastic solid or viscous fluid that is subject to a defor-
mation. The second solution is to model the transformation by
a function of some parameters and estimate those parameters.
In this case the transformation is known continuously (even be-
tween voxels), there are usually much fewer variables to esti-
mate and the resolution of the transformation can be controlled
independently of the image resolution. The smoothness of the
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parameterized function with respect to the voxels enables the
analytical computation of the derivatives needed for deforma-
tion based morphometry or tensor based morphometry.

Our algorithm falls into the second category. The deforma-
tion is described by a linear combination of cubic -splines
and we estimate the coefficients of the combination to minimize
the difference between the reference image and the deformed
floating image. As the space spanned by -splines is too gen-
eral, we have to impose some constraints to find a realistic trans-
formation between the images. For example, if the images are
assumed to have the same structures, the transformation should
be topology preserving.

As far as we know, the modeling of the deformation using
-splines was introduced by Szeliski and Coughlan in [12].

They proposed to regularize their deformation by adding a pe-
nalization term including first or second order derivatives of the
deformation as done usually in PDE based registration.

In [13], Kybic et al. focused their work on the efficiency of the
implementation and showed that -splines were a good alterna-
tive to other parametrization such as wavelet or Fourier repre-
sentation.

In [14], Sorzano et al. extended the usual regularization term
based on the norm of the second derivatives taking into account
the vectorial nature of the deformation. They obtained two terms
based on the second derivative and, using the analytic properties
of -splines, they write them as two quadratic functions of the

-spline coefficients.
Rohlfing et al.[15] used a mutual information cost function.

They penalized their cost function by adding the absolute value
of the log of the Jacobian of the deformation or the square of the
second derivative for each voxel. They used finite differences to
compute the gradient of the Jacobian term.

In [16], Musse et al. used a block nonlinear Gauss-Seidel al-
gorithm to minimize the energy between the images with the
constraint that the Jacobian was continuously positive. Their
method only applies to 2-D images. They described their de-
formation by linear -splines and, as they minimized the cost
one node at a time, they showed that the constraints are reduced
to two linear inequality constraints.

Noblet et al. extended the work of [16] in [17] to 3-D im-
ages. They used interval arithmetic to find the maximum fea-
sible step along their search direction to stay in the feasibility
region where the Jacobian is continuously positive. This algo-
rithm guarantees an invertible transformation between the im-
ages. However, it is restricted to linear -spline as higher order

-splines would make the interval analysis part computation-
ally prohibitive.
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In [18], Rueckert et al. used the sufficient injectivity condi-
tion for -spline of [19] to guarantee the invertibility. As this
condition is very restrictive, they describe their transformation
with a composition of about forty invertible -spline transfor-
mations. The topology preservation property is at the cost of
the compactness and simplicity of the transformation represen-
tation.

Constraints on the Jacobian are also used in non parametric
registration. In [20], Haber et al. bound the Jacobian during the
registration. The optimization problem is solved using a log-bar-
rier interior penalization method coupled with Gauss-Newton it-
erations. As they used a dense transformation, they have to pay
special attention to the discretization of the constraints. Their
dense representation also implies a larger number of unknowns
and constraints.

In this paper, we propose to solve the registration problem
by using a large scale constrained optimization algorithm. We
also propose two constraints to penalize noninvertible transfor-
mation. The Jacobian of the transformation is guaranteed to be
above a positive threshold for all the voxels at the end of the al-
gorithm and negative Jacobians are penalized between voxels.

In the first part, we will model the problem of nonrigid reg-
istration as a constrained optimization problem and describe its
components, especially the constraints imposed on the transfor-
mation. We will then present the numerical algorithm used to
solve our problem. We will finish with some numerical experi-
ments on MR -weighted images of the brain to evaluate the
different variants of the algorithm. A comparison is done with
a classical regularization method and with the ITK [21] imple-
mentation of the Demons of Thirion [3].

II. NEW MODEL

We address in this article the problem of monomodality image
registration. For the sake of concreteness, we consider 3-D im-
ages but the generalization to any dimension is easy. We assume
that the intensity of the voxels do not vary too much between the
two images, and can be used directly to register the images. This
assumption is usually satisfied after preprocessing steps such as
histogram equalization or bias field removal for MRI images.

The transformation will be described by a linear combination
of cubic -splines uniformly placed on the image. The -spline
coefficients are found by solving an inequality constrained min-
imization. The cost function is data dependent and makes the
transformation of the floating image fit the reference. The con-
straints (one per voxel) strongly penalize noninvertible transfor-
mation.

Formally, the problem can be written as

(1)

where is the floating image, is the reference image, is
the set of the voxels of the reference image, is the transforma-
tion parametrized by the -spline coefficients to be estimated.

is the constraint on the transformation at the voxel and
will be given by (2) or (3). The function specifies the dissimi-
larity between the intensity of the images. In the implementation

of our algorithm, we use , but a robust M-estima-
tion can be obtained if we use for example the Cauchy function

or the Geman-McClure func-
tion . Multichannel registra-
tion can be done by considering and as vectors. A regular-
ization term can also be added to the cost function if desired.

A. Image Model

To evaluate the cost function, we only evaluate the reference
image on the voxels, but we need the values of the floating image
everywhere. So we define the floating image as a twice continu-
ously differentiable function using interpolating cubic -Spline

where and is the 3-D tensor
product of cubic -spline. (Note that will be indifferently
used for the cubic -spline or its tensor product). The interpola-
tion coefficients are efficiently found from the values at each
voxel using the -spline transform of [22]. Even though the
evaluation of cubic -spline is more expensive than a simpler
model (nearest neighbor or linear interpolation), their smooth-
ness makes them desirable from an optimization point of view.
In practice, the computation time is reduced due to the reduced
number of iterations (see also [23]).

B. Parametrization of the Deformation

The deformation is also described by cubic -splines, and
thus is a twice differentiable function. The nodes are uniformly
placed on the image. The transformation is described as

The coefficients are the parameters to be estimated and
is the spacing between the nodes.

C. Search Space

As our transformation is modeled with cubic -splines, it is
twice continuously differentiable. For functions, a necessary
condition of invertibility is that its Jacobian is strictly positive
everywhere in . This condition, which is specified by an in-
finite number of inequalities, is not directly usable in this form
in a numerical algorithm.

The first idea is to sample those constraints, that is to say to
force the Jacobian to be above a given positive threshold for each
voxel. The first constraint we propose for our model (1) is

(2)

where is a given voxel, the -spline coefficients, and the
Jacobian of the transformation.

The constraint imposes the positivity of the Jacobian on all
the voxels but lets the transformation free between the voxels.
To overcome this problem, we propose to constrain the Jacobian
derivatives to be small when the Jacobian approaches its lower
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bound . The constraint proposed is based on the following
lemma from [24]:

Lemma 1: Let be a positive function, twice
differentiable everywhere. Furthermore, let

, then, for any

This lemma establishes a necessary (and sufficient) condition
between a positive function and its first derivative. Intuitively,
one can understand that when a positive function approaches
zero, so does its derivatives (see the proof in Appendix I).

For a function positive, if we apply the Lemma
1 on the function obtained by fixing all but one variable, and
summing the inequalities, we have

We note that the function is only piecewise twice differen-
tiable, and that the Lemma 1 cannot be applied. The second con-
dition we propose for the registration is inspired by the Lemma
1 to impose a relation between the Jacobian and its derivatives.
This constraint is

(3)

where is a well chosen function.
A generalization of the condition imposed by the Lemma 1

is permitted by the function, which enables more control on
the variation of the Jacobian given its value. To keep the Ja-
cobian in a given range, we just have to choose a function
which is positive in this range and negative outside. For ex-
ample, will only allow Jaco-
bian values in at the voxels and bound its deriva-
tives by . When the Jacobian approaches
or , its derivatives will be close to zero and the Jacobian will
not go too far away from between the voxels. If a
volume preserving registration is desired, one can take

. This function will constrain all voxels to have Jaco-
bian of 1 and null Jacobian derivatives.

To enforce the positivity of the Jacobian, we propose the fol-
lowing function:

(4)

where the parameters and are positive. is an in-
creasing function. This function excludes the Jacobian values
lower than on the voxels and when the Jacobian is close to

, it forces its derivatives to be small, thus the Jacobian is less
likely to be negative between voxels. Fig. 1 shows a plot of

for and several values of and
.

Remark that for both and , the node spacing of the
-spline has an influence on the invertibility. Indeed, a larger
leads to a higher number of constraints per node.

III. OPTIMIZATION ALGORITHM

We now have to solve an inequality constrained optimization
problem with a large number of variables and constraints. For

Fig. 1. The � function for a = 100; " = 0:01 and several values of b
and c.

example, to register 3-D images of size 256 256 180 with a
node spacing of six voxels, the problem has variables
and constraints. Note that for such a problem, the Hessian
matrix cannot be stored in memory of current computers. Even
storing only nonzero elements in single precision would require
11 GB.

We use the multipliers method which solves the constrained
minimization problem by solving a sequence of unconstrained
problem while estimating the Lagrange multipliers. The inner
iterations will use the limited memory BFGS algorithm [25],
[26]. A multiresolution approach will provide a good starting
point.

A. Multipliers Method

By writing the problem in the following way:

we can define the augmented Lagrangian as

where and are the La-
grange multipliers. Note that despite the function, the aug-
mented Lagrangian is continuously differentiable. The multi-
pliers method consists of iteratively minimizing with fixed
then updating the variable and the penalty parameter . This
gives us the following algorithm.

Multipliers Method

� = 0; c = c0; cprec = c0; r = r0

while kg(c)k1 > Cstop do

c = argminLr(�; �)

� = max(0; � + rg(c))

if kg(c)k1 > Cspeedkg(cprec)k1 then

r = rCincr

end if

end while
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The starting point is provided by the multiresolution pro-
cedure. The inner minimization with fixed is done using a nu-
merical algorithm (see Section III-B). In our implementation,
was set to .

The multipliers are updated using the first order formula
which fits our requirement of low memory. This algorithm is
globally convergent, and the solution is obtained for a finite
value of the penalty parameter. Note that for a simple exterior
penalization, the solution is only obtained when tends to
infinity, making the problem ill-conditioned.

For more insight on the augmented Lagrangian and the mul-
tipliers method see [27]–[31].

The constants , and control, respectively,
the stopping criterion, the speed of the decrease of the con-
straints violations and the increase of the penalty parameters.
In our implementation, we took .
The choice of , based on the two following propositions,
will guarantee the positivity of Jacobian for all the voxels.

Proposition 1: At the end of the algorithm used with the
constraint, the value of the Jacobian on the voxels is greater than

.
Proof: At the end of the algorithm, for any voxel we have

so

Proposition 2: At the end of the algorithm used with the
constraint and the function, the value of the Jacobian
on the voxels is greater than .

Proof: At the end of the algorithm, for any voxel such
that , we have

from which we deduce:

In our implementation we took for the con-
straint and for the constraint. Consequently,
the Jacobian is always higher than on the voxels. When
we use , a large value for gives a stronger constraint on nega-
tive Jacobian and a larger can be used to stop the algorithm
earlier. However, a too large value for will make the problem
ill-conditioned. Taking seems to be a good compro-
mise.

B. Inner Iterations

The inner unconstrained minimization is solved using the
limited memory BFGS algorithm with a non monotone line
search.

The inverse BFGS formula is one of the most used quasi
Newton formulas. At each iteration, a symmetric positive defi-

nite approximation of the inverse of the Hessian is updated and
used to find the next iterate. The update is formed using a pair
of vectors: the difference between the current point and the last
iterate and the difference between the gradient of those two iter-
ates. In the limited memory version, a predefined number of up-
date pairs is stored and the matrix-vector product is formed from
the list of update pairs. The Hessian matrix or its inverse is thus
never explicitly formed (see [25] and [26]). The convergence of
the algorithm and the validity of the BFGS updates are ensured
by a nonmonotone version of the weak Wolfe line search of
Lemaréchal (see [32]–[34]). Indeed, nonmonotone line searches
improve the convergence of optimization algorithms by weak-
ening the condition imposed to terminate the line searches.

C. Multiresolution

A simple coarse to fine approach will be used to provide a
good starting point. A multiscale pyramid is built for the ref-
erence and the floating image. The problem is then solved for
each level from the coarsest to the finest resolution. For each
level, the starting point used is obtained by applying the EX-
PAND operator of [35] to the solution of the previous level.

This multiresolution approach is very important to reduce the
computation time of the algorithm and to avoid local minima.
Using a semi coarsening type of multiresolution (the resolution
is increased in one direction at a time) gave us better results.
Indeed the finer discretization in scale provided by semi coars-
ening reduce even more the chance to be trapped in a local min-
imum.

Note that accuracy is not necessary at intermediate scales.
Except for the full resolution, the optimization is stopped after
few iterations.

D. Numerical Issues

To be rigorous, the question of the constraint qualifications
and the numerical stability of the discretization and the algo-
rithm should be addressed. These questions are difficult to solve.
However, the multipliers method avoids solving a KKT system
and leads to a better conditioning. Then, the cubic -splines
used for the interpolation and derivatives of the floating image
and the transformation as well as the spacing between the nodes
help for the stability. Indeed, for each node, pixels
have a direct influence during the registration.

IV. EFFICIENT IMPLEMENTATION OF THE AUGMENTED

LAGRANGIAN AND ITS GRADIENT

We need to provide to the L-BFGS algorithm the value of
the augmented Lagrangian and its gradient at each iteration of
the inner minimization. In this paragraph, we give the analytical
expression for the gradient and how to implement it efficiently.

As pointed out in [13] for the unconstrained case, the gradient
can be written as a sum of convolution with -spline deriva-
tives:

where is the derivation order and a tensor cubic
-spline derivatives up to second order.
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So the computation of the augmented Lagrangian and its gra-
dient is efficiently done in three steps for each derivation order

.
Step 1) Expansion of the deformation and its derivatives by

upsampling the -spline coefficients with a factor
followed by convolution with .

Step 2) Computation of the for the different for all
the voxels.

Step 3) Reduction by a convolution with followed
by a downsampling with a factor for the gradient
computation.

The expression of the functions for the two constraints pro-
posed are given in the Appendix II.

Note that we only need a full expansion of the -spline field
along the and directions. For the last dimension , we
can expand one line at a time and save memory.

V. NUMERICAL EXPERIMENTS

The evaluation of nonrigid registration algorithms is a dif-
ficult task. Several metrics may be used to compare different
registration methods (see for example [36]). In this paper, the
registration is evaluated by measuring its ability to recover a
synthetic transformation and to perform an atlas based segmen-
tation of brain structures.

We compare the results of our algorithm with different
regularization: without any constraints (NO), the constraint
with a given , the constraint with its parameters

, a standard bending energy penalization (BE ),
and the Demons algorithm of [3].

In the BE method, the cost function is completed by the term

which is a quadratic term in the -spline coefficients. This
penalization term and its derivatives are computed using the
method described in [14].

For the Demons algorithm, we used a multiscale implementa-
tion provided by the ITK library [21] with a number of iterations
of 100 as suggested in [36]. Experiments have been done with
smoothing either the deformation field (Demons D ) or the up-
date field (Demons U ).

A. Intersubject Registration Example

Our software without constraints, with the
and constraints (with ) as well as the Demons
D algorithm have been used to register two different
subjects. weighted images acquired on a 3T scanner with a
voxel size of 0.93 mm 0.93 mm 1 mm were used. Before
the registration, the brains have been extracted using BET [37].
Then the images have been smoothed with a Gaussian kernel

and histogram equalized to normalize the intensities
and enhance the contrast.

Figs. 2 and 3 shows the results of the registration for the slices
90 and 100. We show for each method the deformed image, the

deformed image with superimposed contours of the reference
and the deformation grid obtained by applying the transforma-
tion to a regular grid.

We can see that in general the Demons are visually not as
good as the others. This is especially visible in the cortex at the
bottom of the brain. The top of the ventricle, subject to a large
deformation, does not match well either. Adding more iterations
did not improve the results.

The output image with and constraints are very similar
but the deformation grid of seems somewhat more regular
than the one of .

Without constraints, the registration seems visually good and
sometimes better than the results of or but this is at the cost
of the topology preservation. For example, in the cortex, at the
bottom left of the brain at slice 100, the output image matches
better the contours of the reference. However, when we look at
the deformation grid, we clearly see it contains folds.

For all the methods, the mean displacement of the voxels over
the brain tissues is around 57.

B. Experiments With Synthetic Deformation

weighted images acquired on a 3T scanner with a voxel
size of 0.93 mm 0.93 mm 1 mm were used.

A set of 20 invertible deformations and 20 noninvertible de-
formations has been synthetically generated and applied to an
MR image. Then, on the original image, the bias field has been
removed using the N3 algorithm of [38], a Gaussian noise of

has been added (mean intensity of the white matter is
1194), a slight Gaussian smoothing has been applied
and a histogram equalization has been performed. Only the brain
tissues have been used to compute the histogram. Next, each de-
formed image has been smoothed, histogram equalized and used
as reference of the registration to the original image.

1) The Deformations: Our ground truth deformations are ex-
pressed as , compositions of deformation
of the forms

where and . If we
want to generate invertible transformations, we force each to
be invertible by choosing small enough (see Appendix III).
An example of a deformed image is given in Fig. 4.

2) Invertibility of the Output: Our algorithm, with either of
the two proposed constraints, guarantees that the Jacobian is
strictly positive on all voxels. As the deformation we use in our
registration algorithm is given by a parametric model, we can
analytically compute its value and derivatives everywhere and
not only on the voxels.

To have an idea of the ability of the methods to preserve the
positivity of the Jacobian even between voxels, we compute the
analytical value of the Jacobian on a grid 4 4 4 times finer
than the original reference image. For each registration, we com-
pute the minimum value of the Jacobian of this grid. We
did not report the results for the Demons algorithm as one cannot
compute the analytical value of the Jacobian in this case.
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Fig. 2. Results for real subject registration. The first line (a) presents the reference (slice 90) and the floating images (slice 85). Lines (b), (c), (d), and (e) present
the deformed image, the deformed image with superimposed contours of the reference as well as the deformation grid for the registration without constraints (b),
with the g constraint (c), with the g constraint (d), and with the Demons algorithm (e).

3) Quality of the Registration: For all the voxels, we can
measure the error between the ground truth and the output
of the registration :

As no information is available in the background, we only took
into account the voxels inside the brain region given by BET

[37]. To measure the quality of the registration, we measured
the mean of the error

(5)

where the number of voxels in the brain.
4) Results: The results of the simulations were reported in

Table I for the two sets of ground truth transformations (invert-
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Fig. 3. Results for real subject registration. First line (a) presents the reference (slice 100) and the floating images (slice 89). Lines (b), (c), (d), and (e) present
the deformed image, the deformed image with superimposed contours of the reference as well as the deformation grid for the registration without constraints (b),
with the g constraint (c), with the g constraint (d), and with the Demons algorithm (e).

ible or noninvertible). The number of transformations with neg-
ative Jacobians, the mean of and the mean of
are given for each method. The value of before registra-
tion is 59.68 for the invertible simulation set and 59.79 for the
noninvertible one.

We ran our registration algorithm without constraints (NO),
with the constraint with or , with the

constraint with ( A) or ( B)

and with the bending energy penalization ( , 0.005 and
0.05). We also combined the or constraint with BE 0.005
( and ).

We first noticed that with NO, we obtain negative Jacobians in
all the cases. The registration without constraints does not give
a good mean error compared to the other methods.

The standard regularization with a small penalization (BE
0.001 or 0.005) does improve the registration and reduces the
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Fig. 4. Results for images with known simulated deformation: (a) floating image, (b) reference, (c) result with g constraint, (d) result with g constraint.

number of negative Jacobians. However, an increase of the pe-
nalization coefficients to improve the invertibility leads to a
strong reduction of the registration quality.

The Demons algorithms did not give good results either. We
noticed however that Demons U gave better results than Demons
D. This may be explained by the fact that, as pointed out in
[39], Demons U approximates viscous fluid registration when
Demons D approximates elastic registration and consequently,
Demons U allows larger deformation.

The use of constraint slightly improves the registration re-
sults over NO. However, when , the Jacobian becomes
negative between the voxels almost everytime. A higher value
or the addition of BE 0.005 is required to avoid negative Ja-
cobians. Indeed, the addition of the BE produces more regular
transformations, less likely to oscillate between voxels. More-
over, the addition of BE 0.005 to decreases significantly the
mean registration error. The constraint provides an improve-
ment over NO as well. Similarly to , the addition of BE 0.005
improves the registration. The best results of the evaluation are
obtained by A 0.005 with the lowest and no neg-
ative Jacobians, even between voxels. You can notice that if, for

A, is much bigger than , for B, we have
.

C. Experiments With Atlas Based Segmentation

1) Presentation: In this section, we evaluate the performance
of the algorithm for segmentation of brain structures. For this ap-
plication, preserving the topology allows us to avoid disconnect
components, cavities or handles in the resulting segmentation.

We used the MR brain data set and their manual segmentation
provided by the Center for Morphometric Analysis at Massa-
chusetts General Hospital. There are 18 256 256 128 brain
images with a resolution of 0.93 0.93 1.5 (eight images),
1.0 1.0 1.5 (six images) or 0.83 0.83 1.5 (four images).

The first image is used as the reference image. All the other
images are registered to the reference and their segmentation
mask mapped to the reference. Then for each structure of the
segmentation, we measure the relative overlap between the
ground truth , manually segmented on the reference, and the
segmentation given by the registration

1http://www.cma.mgh.harvard.edu/ibsr/

A value of 100 means a perfect segmentation. We present in
the Table II, the mean of the relative overlap for five structures
of the left part of the brain: the putamen (P), the caudate (C), the
thalamus proper (TP), the lateral ventricle (LV), and the cerebral
white matter (CWM). The global mean of over these five
structures is given in the last column. The values of before
registration are given at the last line of this table.

2) Results: We first see that using the Demons does not pro-
duce a good segmentation compared to the -spline registra-
tion. In opposition to the previous experience, the bending en-
ergy penalization does not always improve the segmentation. If
adding the BE penalization to NO, and improves the re-
sults for P and TP, this is not the case for C, LV and CWM. A
good segmentation can be produced with NO, BE, and
but with the two constraints proposed, a good quality can be ob-
tained while no negative Jacobians are encountered.

D. Computation Time

The computation time on a AMD processor 2.4 Ghz for im-
ages with 256 256 180 voxels and with a node spacing of
6 6 6 is around 4 min without constraints, 10 min with the

constraint and 20 min with the constraint. The addition
of the penalization to or reduces the CPU time by 30%.
Demons D algorithm with and 100 iterations per
level is about 10 min.

VI. CONCLUSION

In this study, we have presented a nonrigid registration algo-
rithm. The registration is modeled by a nonlinear optimization
problem with nonlinear constraints to prevent the Jacobian to be
negative. The optimization problem is solved using a combina-
tion of the multipliers method and the L-BFGS algorithm with a
nonmonotone line search. The numerical resolution is efficient
and does not require too much memory. The transformation is
modeled using cubic -splines, making it intrinsically smooth,
local, compact, and fast to compute. The approach can however
easily be applied to other parametrization.

Numerical experiments were performed with atlas based seg-
mentation and recovery of a synthetic deformation and the pro-
posed methods show good results.

Depending on the application, the invertibility of the trans-
formation may not always be desirable “everywhere.” For ex-
ample, for intersubject registration, some topological changes
may occur due to multiple sclerosis lesions or tumor. In these
cases, topological changes should be handled in a specific way
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TABLE I
RESULTS FOR SIMULATED TRANSFORMATION. WE HAVE REPORTED FOR EACH METHOD THE NUMBER OF REGISTRATIONS (OUT OF 20) PRODUCING NEGATIVE

JACOBIANS (jJ < 0j), THE MEAN OF THE MINIMUM VALUE OF THE JACOBIAN (E(J )) AND THE MEAN OF THE ERROR BETWEEN THE OUTPUT

AND THE GROUND TRUTH (E(err)). JACOBIANS ARE EVALUATED IN A 4� 4� 4 FINER GRID AND THE ERROR IS EVALUATED ONLY ON BRAIN VOXELS.
WE DISTINGUISH INVERTIBLE FROM NON INVERTIBLE GROUND TRUTH

TABLE II
RESULTS FOR ATLAS BASED SEGMENTATION. WE HAVE REPORTED FOR EACH METHOD THE NUMBER OF REGISTRATIONS (OUT OF 17) PRODUCING NEGATIVE

JACOBIANS (jJ < 0j), THE MEAN OF THE MINIMUM VALUE OF THE JACOBIAN (E(J )) AND THE MEAN RELATIVE OVERLAP FOR THE PUTAMEN (P),
THE CAUDATE (C), THE THALAMUS PROPER (TP), THE LATERAL VENTRICLE (LV) AND THE CEREBRAL WHITE MATTER (CWM). LAST COLUMN IS THE MEAN

RELATIVE OVERLAP OVER THESE FIVE STRUCTURES. THE JACOBIANS ARE EVALUATED IN A 4� 4� 4 FINER GRID

but the topological constraints should be kept everywhere else.
This issue will be addressed in a future work.

APPENDIX I
PROOF OF THE LEMMA 1

Let be two reals. By the Taylor-Lagrange theorem
:

By the positivity of and the definition of :

which is a positive second-order polynomial in , so its discrim-
inant is negative

APPENDIX II
GRADIENT OF THE COST FUNCTION

In this Appendix, we give the analytical expressions of the
functions of the Section IV needed to compute the gradient of
the augmented Lagrangian.

Let

be the expansion of the -spline coefficients using the kernel

and

be the Jacobian of the deformation.
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We also define the spatial derivatives of the Jacobian

and have similar
expression.

The function associated with the zero order term is the data
fitting term

For the terms of superior order we have two different expres-
sions depending of the constraints we have chosen ( or ).
All those functions can be written

If we note is the cross product of , we have for the
constraint (2)

For the constraint (3) if we define

and

then we have

APPENDIX III
GENERATING INVERTIBLE SYNTHETIC DEFORMATIONS

Let us define by

and by

will be invertible if we ensure that . Let
, we have:

Thus, by choosing such that , the function
is invertible. For the function we used, we have

.
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