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ABSTRACT

A motion compensation method dedicated to intraoperative

RGB video imaging in neurosurgery is presented in this work.

The dedicated motion model proposed is based on subspace

learning of the patient brain motion. The resolution method

uses keypoints for a sparse, fast and robust estimation of the

brain motion. Our results, obtained from in vivo data, show

that our method is as accurate as standard motion estimation

method while being much faster. It is also very robust to un-

predicted events that can happen in the operative room and

opens the way to intraoperative real time hemodynamics map

during neurosurgery on human subjects.

Index Terms— motion compensation, image registration,

learning, computer vision, neurosurgery, interventional image

processing

1. INTRODUCTION

Brain intraoperative RGB video imaging is relevant in terms

of interventionnal imaging in neurosurgery. It has been used

for example on small animal to map hemoglobin changes on

the cortex due to functional activation [1]. As far as we know,

such interventional functional mapping has not been done yet

on human in real time during the perioperative period. In-

deed, beside the constraints due to experimentation in the op-

erative room, brain motion occurs after opening the skull and

the dura matter. These motions are mainly due to cardiac and

breathing cycles, but also to any other motion of the patient

or the operating table. This leads to the need of a dedicated

real time motion compensation method for the problem of in-

terventional RGB video imaging in neurosurgery.

Motion compensation relates to the vast field of image

registration (see [2, 3] for recent reviews on these two sub-

jects), and is most commonly addressed with optical flow

equation. However, the specific application domain consid-

ered here has two important properties that can be advanta-

geously used: the viewpoint changes are limited and the mo-

tion of the object recorded by the camera is repetitive. This

leads us to consider subspace learning to provide priors to the

transformation and to improve the computation speed.

Linear parameterization of the optical flow to model the

transformation have been proposed in the context of mouth

motion or articulated limb motion analysis [4]. The linear ba-

sis are either given or estimated from principal component

analysis (PCA) and the warping coefficients are then esti-

mated with a dense computationally expensive optimization

procedure. In [5], PCA is also used to learn the transforma-

tion subspace, however, the PCA coefficients are estimated

from only a sparse set of keypoints.

There are several contributions in this work. First, a trans-

formation model adapted to the brain motion compensation

problem in the context of neurosurgery is proposed. We also

show that, the use of subspace learning and keypoints track-

ing is an effective method to solve this problem.Then an it-

erated re-weighted least square (IRLS) algorithm is proposed

for a robust numerical resolution of the motion compensation.

Compared to [5], the robust resolution stays at the keypoints

level: the model validation does not go down at the pixel level

and consequently, our method better scales with the image

size. Our method allows compensating for the motion in real

time; it is very robust and even allows the surgeon to move its

tools in the field of view without losing the tracking.

2. METHODS

Two properties of the video obtained can be exploited to re-

duce the computation time and provides priors to the trans-

formation model. First, the camera is always pointing at the

same moving object, so if a viewpoint change occurs, it is

limited. Second, as the brain deformation is repetitive, learn-

ing can be used to capture the main modes of the motion once

it has been estimated on the first frames. Using these two re-

marks, a transformation model as well as a sparse and robust

resolution method is proposed.

2.1. Motion Model

The transformation is decomposed into two components. The

first one models the patient moves and slight motion of the

operation table or the camera. It is global, large scale and un-

predictable and is modeled as a time dependent affine trans-



form. The second component, Td, models the local nonrigid

deformations of the brain:

T (x, t) = A(t)x+ b(t) + Td(x, t). (1)

Td is mainly due to the cardiac pulsation and consequently,

the same motion is repeated over time. A strict periodicity of

the motion would be a too strong hypothesis as the patient car-

diac pulse rate is not strictly constant over time. However, one

can assume the deformation lies in a low dimensional affine

space:

Td(x, t) = Tµ(x) +

K∑

k=1

λk(t)pk(x). (2)

Tµ is the average local deformation, pk are the stationary basis

vectors of the deformation and λk are the 2D time dependent

deformation coefficients in this basis (product λk(t)pk(x) is

the entrywise Hadamart product). If a composition of the de-

formable and affine part might be more appropriate, it would

imply a nonlinear parameterization of the transformation. As

we will see in the experiments, the additive model seems suf-

ficient for our problem.

2.2. Learning the Brain Deformation Basis

The pk basis vectors must be learned for each new experi-

ment. This basis indeed depends on the camera position-

ing, the patient specific anatomy and the brain deformation

pattern. Consequently, the first N frames are dedicated to

the learning of this basis: for i ≤ N , the transformation

T (x, ti) between the initial and the ith frame is estimated

from any standard motion estimation routine. The affine part

A(ti), b(ti) is then estimated as the solution of the following

linear least square problem:

min
A(ti),b(ti)

∑

x

‖A(ti)x+ b(ti)− T (x, ti)‖
2
2 . (3)

Local brain deformations in the learning frames are then

obtained by subtraction:

Td(x, ti) = T (x, ti)−A(ti)x− b(ti).

A PCA is finally run to estimate the low dimensional

affine space where the local deformation components lie

while correctly capturing the variability: Tµ is the average

of (Td(x, ti))i∈[1,N ] and the basis vectors pk are the K first

eigenvectors of their covariance matrix.

2.3. Motion Estimation

Once the brain deformation basis is known, the motion be-

tween the initial and the current frame is given by the time

dependent parameters: A(t), b(t) and λk(t). The number of

parameters to estimate is reduced from twice the number of

pixels to 2K + 6. To estimate such a low number of pa-

rameters, it is not necessary to use all the pixels. We select

and track a sparse set of L keypoints (xl)l∈[1,L] and use them

to recover the whole transformation field. The keypoints are

chosen as the well-known Harris keypoints [6] on the initial

frame. Using the algorithm described in [7] the transforma-

tion T (xl, t) can be estimated on these pixels only.

The linearity of the equation

T (xl, t) = A(t)xl + b(t) + Tµ(xl) +

K∑

k=1

λk(t)pk(xl) (4)

with respect to A(t), b(t) and λk(t) now allows to estimate

these parameters from a simple linear least square fit.

Most of the time, this least square fit is sufficient to accu-

rately estimate the motion. However, a more robust fit pro-

cedure is necessary when some keypoints violate the low di-

mensional transformation model. This is the case if T (xl, t)
is not correctly estimated for some keypoints and happens in

practice if, for example, a surgical tool appears in the field

of view. In this case, we found that IRLS can be used to ro-

bustly find A(t), b(t) and λk(t): after a first unweighted least

square fit, parameters are iteratively estimated from weighted

fits: the weight for xl is gσ(rl) where rl is the current resid-

ual and gσ a Gaussian with a standard deviation σ which is

halved at each iteration.

To summarize, once the learning of the pk basis is done,

the transformation between the initial and the current frame is

estimated with the following algorithm:

• estimate T (xl, t) on the L keypoints using the sparse

Lucas and Kanade method [7]

• find A(t), b(t) and λk(t) using IRLS on the problem 4

• compute T (x, t) using the equation 1 and 2.

The complexity of the registration algorithm is then: L key-

points transformation estimations for the first step and few

linear system solving on a (K + 3)× L matrices for the sec-

ond step. This is very low when compared to the application

of a standard registration or motion estimation method which

involves the iterative resolution of a nonlinear problem with a

cost function using all the pixels in the image.

3. NUMERICAL EXPERIMENTS

Several criteria have been used to assess the performance of

our method. First, the affine model has been validated by

comparing the transformations obtained from a standard op-

tical flow motion estimation and our learning based low di-

mensional model. We also measure the temporal standard de-

viation images of the videos. The robustness of our method is

finally assessed visually.

The proposed methods are denoted as ULS when un-

weighted least square fit is used and IRLS when the fit is

done with iterated re-weighted least square. N and K should

be large enough to sample the transformation space correctly

and capture its variability. However too large values do not



improve the results while increasing the CPU time. They

were set to N = 25 and K = 4. Few hundreds keypoints

were detected for each video.

The Farnebäck optical flow routine (GF) described in [8]

has been used for comparison and for the learning step of both

ULS and IRLS.

Seven videos from three patients has been used in the ex-

periments. Each video lasts between 30 and 90 seconds, has

a frame rate of 25 fps and a frame size of either 511 × 388
or 720 × 576. On the last video (denoted as V7), the sur-

geon placed a surgical tool in the field of view to evaluate the

robustness of the method.

3.1. Evaluation of the transformation model

To evaluate our low dimensional transformation model, the

transformation T obtained with our method is compared to

the transformation TGF obtained using GF. The difference im-

age D between the two results is measured as:

D(x) =
1

n

∑

t

‖TGF(x, t)− T (x, t)‖ ,

where n is the number of frames in the video. This measure is

an indication that our model is adequate for our problem and

that we are able to obtain similar transformations as the ones

obtained by algorithms with much more degree of freedom.

V1 V2 V3 V4 V5 V6

max 2.01 2.46 1.92 4.63 6.95 9.34

avg 0.09 0.34 0.35 1.51 0.50 0.68

Table 1. Maximum and average difference in video V1 to V6.

In the table 1, the maximum and average of D are given

for videos V1 to V6 when IRLS is used. As visible, the aver-

age difference is subpixel for all the video. The maximum dif-

ference is also very low for V1-3. It seems somewhat impor-

tant for V4-6 but one has to remember that in uniform regions

and regions where the intensity gets saturated, the motion is

not reliably estimated even for standard algorithms.

The difference image of V1 is shown on figure 1. For the

most part of the image, the mean difference is subpixel. The

bright spots in difference images are usually located where

the intensity gets saturated during the course of the video.

3.2. Intensity Variation Based Validation

In this section, the temporal standard deviation (TSD) aver-

aged on the three RGB channels of the videos is used to as-

sess that the registration went well. TSD images have been

inspected for the video V1 to V6 and they are all similar. In

figure 2, TSD images for V1 is presented before motion com-

pensation, using GF and using IRLS. The intensity scaling is

the same for the three TSD images.

(a) Sample image
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(b) Difference image D

Fig. 1. Difference image in pixel between the motion esti-

mated using GF and our method.

(a) Sample image (b) Std-dev Before

(c) Std-dev After, GF (d) Std-dev After, Our Method

Fig. 2. Intensity temporal standard deviation of the recorded

video before and after motion compensation using standard

optical flow routine and IRLS.

The average TSD was reduced from 15% to 40% depend-

ing on the video with a slightly higher reduction for GF.

As expected, the motion compensation reduces the global

range of the TSD images. It also removes brain structures vis-

ible on the TSD image of the raw video, meaning the align-

ment is correct in regions with high spatial gradients. Results

obtained with GF and IRLS are visually similar. The main re-

maining bright spots are located for both methods where the

intensity gets saturated during the video. This may be due to

an incorrect motion estimation but also to the saturation itself.

3.3. Robustness

The robustness of the method is assessed using the V7 video

on which a surgical tool is moved in the field of view during

the recording. Snapshots of motion compensated videos are

presented on figure 3.

As one can see, the presence of the tools strongly affects

the motion compensation with GF or ULS, resulting in highly

artefacted videos. Contrarily, the stability of the IRLS fit re-

sults in a visually correct video.



Fig. 3. Snapshots of the V7 video at several timepoints (in column). In line are presented, from top to bottom, the raw video

and motion compensated video using GF, ULS and IRLS.

3.4. CPU Time Consideration

Frame size GF ULS IRLS

511× 388 0.2 0.01 0.02
720× 576 0.45 0.04 0.09

Table 2. CPU time per frame in seconds (fps). Real time

constraints is satisfied when fps < 0.04s.

CPU time measurements using a single core of an Intel

Xeon E5620 2.40GHz are reported on table 2. Compared to

GF, the reduction achieved by both ULS and IRLS is very

important. ULS is always compatible with the real time con-

straint. For IRLS, the real time constraint is satisfied for mod-

erate frame size and can easily be satisfied with the use of

multiple cores for large frame size.

4. CONCLUSION

In this work, a motion compensation method dedicated to in-

traoperative video processing has been proposed. Compared

to standard methods, the complexity is reduced by reducing

the number of unknowns (from twice the number of pixels to

2K + 6), the cost function complexity (from the number of

pixels to L) and the nature of the resolution (from a nonlinear

problem to few linear system resolutions). Our IRLS method

also enables robust motion compensation even when unpre-

dicted events breaking the optical flow brightness constancy

assumption occur during the course of the video. Our results

show that robust and real time motion compensation can be

achieved for neurosurgery applications.
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