Caracterisation of the Carotid Artery Walls

Context

Cardiovascular diseases, especially atherosclerosis, are responsible of one-third of deaths throughout the world, and represent the principal cause of mortality and morbidity in industrialized countries. During the atherosclerosis process, significant changes of the mechanical properties of the vessel wall may occur before the anatomical changes become visible. Early detection of this pathology is therefore an important issue.

This work is done in collaboration with team 2 at Creatis. More details about tracking and segmentation algorithms can be found here

 

Material and Methods

We propose a novel method to estimate the 2D trajectory of the arterial walls, in ultrasound B-mode image sequences of the common carotid artery in vivo. This user-independent approach is called CST for Contour and Speckle Tracking, and is based on two main steps:

  • Firstly the interfaces of the intima-media complex are segmented by a dynamic programming method that exploits a matched filter. The intima-media thickness (IMT) and the radial displacement of the walls are estimated (cf below).

  • Then a series of kernel blocks is automatically positioned in the tissues along the segmentation contours. The global longitudinal motion, which remains very challenging to assess in vivo, is estimated by a pertinent collaboration of all the kernels (cf below).

 

Results

  • Two sequences are presented below, with a speckle tracking (a) and a contour tracking (b). In addition to the well known radial motion, the recently discovered longitudinal motion is also clearly visible.

a) 2D trajectory of the arterial walls estimated by a speckle tracking approach.

b) Intima-Media thickness and radial displacement estimated by a contour tracking approach.

  • The figure below compares the radial (diameter change, a) and longitudinal (b,c) arterial wall movement between a young healthy (plain) and an older diabetic (dashed) subject over two cardiac cycles. The typical pulse wave pattern is clearly visible in the healthy diameter change. The most significative difference is the amplitude of the longitudinal motion, which is comparable to the diameter change (i.e. ~1mm) for the healthy subject, and almost nil for the pathologic patient.

 

References

Articles

[ZAHN-15] G. Zahnd, S. Balocco, A. Sérusclat, P. Moulin, M. Orkisz, and D. Vray,  "Progressive attenuation of the longitudinal kinetics in the common carotid artery: preliminary in vivo assessment",  Ultrasound in Medicine & Biology, vol. 41, no. 1, pp. 339-345, 01/2015 .

[ZAHN-15] G. Zahnd, S. Salles, A. Serusclat, P. Moulin, H. Liebgott, and D. Vray,  "Real-time ultrasound-tagging to track the 2D motion of the common carotid artery wall in vivo",  Medical Physics, pp. accepted, 2015.

[ZAHN-14] G. Zahnd, M. Orkisz, A. Sérusclat, P. Moulin, and D. Vray,  "Simultaneous extraction of carotid artery intima-media interfaces in ultrasound images - Assessment of wall thickness temporal variation during the cardiac cycle", Int J Comput Assist Radiol Surg, vol. 9, no. 4, pp. 645-658, 10/2013, 2014 .

[ZAHN-13a] G. Zahnd, M. Orkisz, A. Sérusclat, P. Moulin, and D. Vray,  "Evaluation of a Kalman-based block matching method to assess the bi-dimensional motion of the carotid artery wall in B-mode ultrasound sequences", Medical Image Analysis, vol. 17, no. 5, pp. 573-585, 2013 .

[ZAHN-12a] G. Zahnd, D. Vray, A. Serusclat, D. Alibay, M. Bartold, M. Durand, L. M. Jamieson, K. Kapellas, L. J. Maple-Brown, K. O'Dea, et al.,  "Longitudinal displacement of the carotid wall and cardiovascular risk factors: associations with aging, adiposity, blood pressure and periodontal disease independent of cross-sectional distensibility and intima-media thickness",  Ultrasound in Medecine & Biology, vol. 38, no. 10, pp. 1705-1715, 2012.

[ZAHN-11d] G. Zahnd, L. Boussel, A. Marion, M. Durand, P. Moulin, A. Sérusclat, and D. Vray,  "Measurement of two-dimensional movement parameters of the carotid artery wall for early detection of arteriosclerosis: a preliminary clinical study",  Ultrasound in Med. & Biol., vol. 37, no. 9, pp. 1421?1429, 2011 .

Conferences

[SALL-14] S. Salles, D. Garcia, B. Bou-Saïd, F. Savary, A. Sérusclat, D. Vray, and H. Liebgott,  "Plane Wave Transverse Oscillation (PWTO): an ultra-fast transverse oscillation imaging mode performed in the Fourier domain for 2D motion estimation of the carotid artery",  IEEE ISBI 2014, 2014.

[ZAHN-14a] G. Zahnd, M. Orkisz, S. Balocco, A. Sérusclat, P. Moulin, and D. Vray,  "Tracking arterial wall motion in a 2D+t volume",  IEEE-EMBS International Conferences on Biomedical and Health Informatics, Valencia, Spain, 06/2014.

[ZAHN-12b] G. Zahnd, M. Orkisz, A. Sérusclat, and D. Vray,  "Longitudinal motion of the carotid artery wall and speckle decorrelation issue: accurate estimation using a Kalman-based speckle tracking method",  IEEE Ultrasonics Symposium, Dresden (Germany), 2012.

[ZAHN-12c] G. Zahnd, M. Larsson, H. Gao, A. Sérusclat, D. Vray, and J. D'hooge,  "A novel method to generate synthetic ultrasound data of the carotid artery based on in vivo observation as a tool to validate algorithm accuracy",  IEEE Ultrasonics Symposium, Dresden (Germany), 2012.

[SALL-12] S. Salles, G. Zahnd, H. Liebgott, and D. Vray,  "Real time US-tagging combined with phase-based optical flow applied to 2D motion estimation of the carotid artery wall",  IEEE Ultrasonics Symposium, Dresden (Germany), 2012.

[ZAHN-11a] G. Zahnd, M. Orkisz, A. Sérusclat, and D. Vray,  "Estimation de la trajectoire 2D des parois de l'artère carotide, dans des séquences d'images échographiques, par une approche conjointe de segmentation et de suivi de speckle guidé",  GRETSI, Bordeaux, France, pp. 4 pages in CD, Septembre, 2011.

[ZAHN-11c] G. Zahnd, L. Boussel, A. Sérusclat, and D. Vray,  "Intramural shear strain can highlight the presence of atherosclerosis: a clinical in vivo study",  IEEE Int. Ultrasonics Symposium, Orlando, Florida, USA, pp. 1770-1773, 2011.

[ZAHN-11b] G. Zahnd, M. Orkisz, A. Sérusclat, and D. Vray,  "Minimal-path contours combined with speckle tracking to estimate 2D displacements of the carotid artery wall in B-mode imaging",  IEEE Int. Ultrasonics Symposium, Orlando, Florida, USA, pp. 732-735, October, 2011.

[ZAHN-10b] G. Zahnd, A. Marion, A. Sérusclat, M. Durand, L. Boussel, and D. Vray,  "Estimation des paramètres mécaniques de la paroi carotidienne par imagerie ultrasonore in vivo pour la détection précoce de comportements pathologiques",  Congrès Français d'Acoustique, Lyon, France, 2010.

[ZAHN-10a] G. Zahnd, A. Marion, A. Sérusclat, P. Moulin, M. Durand, L. Boussel, and D. Vray,  "A new user-independent in vivo method for 2D motion estimation of the carotid wall by ultrasound imaging for early detection of pathological behavior",  IEEE International Ultrasonics Symposium, San Diego, USA, pp. 1348-1351, 2010 .

[ZAHN-09] G. Zahnd, A. Basarab, H. Liebgott, O. Basset, and P. Delachartre,  "Real-time specific beamforming applied to motion trajectory estimation in ultrasound imaging",  IEEE International Ultrasonics Symposium, Roma, Italy, pp. 1342-1345, 2009 .

[ZAHND-12d] G. Zahnd,  Estimation du mouvement bi-dimensionnel de la paroi artérielle en imagerie ultrasonore par une approche conjointe de segmentation et de speckle tracking,  : INSA de Lyon, 2012.