Skip to main content
Home

Main navigation

  • News
    • All news
    • Seminars
  • Presentation
    • CREATIS
    • Organigram
    • People directory
    • Staff
    • Contacts
    • Access
  • Research
    • Research teams
    • Transversal projects
    • Structuring projects
    • Imaging platform
    • Activity reports
    • Data information note
  • Contributions
    • Publications
    • Patents
    • Software
  • Studies & Training
    • Implications dans les formations
    • Doctoral Studies
  • Jobs Opportunities
  • French French
  • English English
Search API form
User account menu
  • Account
    • Log in

Breadcrumb

  1. Accueil
  2. Learning from and visualization of environmental, socio-economic and geodemographic data

Learning from and visualization of environmental, socio-economic and geodemographic data

Ajouter à mon calendrier
Google Agenda Outlook Calendrier
The presentation gives an overview of recent studies carried out by the geomatics group of FGSE in the domain of environmental, natural hazards and socio-economic data analysis, modelling and visualization using machine learning algorithms (MLA). The main MLA recently used – artificial neural networks of different architectures (adaptive general regression neural networks, extreme learning machines, self-organizing maps) and a variety of kernel-based methods, have demonstrated their efficiency in studying multivariate and high-dimensional environmental phenomena. We present generic methodology and some of the results of real data case studies: environmental pollution, renewable resources assessment, natural hazards analysis (landslides, avalanches). Two particular topics of the current research will be discussed: 1) feature selection using extreme learning machines and simulated annealing; and 2) intrinsic dimension estimation and feature selection using the multipoint Morisita index.

Orateur

Prof. Mikhail Kaneski

Lieu

Salle de réunion B502

Date - horaires

Tue 24/06/2014 - 13:30

Type d'évenement

Séminaire

Téléchargements

Barre liens pratiques

  • Authentication
  • Intranet
  • Rss feed
  • Creatis on Twitter
  • Webmail
Home

Footer menu

  • Contact
  • Map
  • Newsletter
  • Legal Notices