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ABSTRACT

Punctate white matter lesions (PWML) are the most common
white matter injuries observed in preterm neonates. Auto-
matic detection of these lesions could better assist doctors in
diagnosis. Recent advances in deep learning have resulted
in optimistic results on many MR biomedical image bench-
mark datasets, but few methods seem to tackle the detection
of very small lesions in ultrasound images. In this paper, we
propose a two-phase strategy. Firstly, we highlight the fore-
ground information by aggregating the lesions in the ground
truth along the coronal projection of the brain, then we train
a segmentation network to detect PWML with the resulting
over-segmented masks. Secondly, a classification network is
used to eliminate false alarms and improve the accuracy of the
model. Experimental results demonstrate the effectiveness of
our method to detect PWML in ultrasound images, improv-
ing the recall by 13% compared to the best published models,
while limiting the number of false alarms efficiently.

Index Terms— Deep Learning, Automatic Anomaly De-
tection, 3D Ultrasound Imaging, White Matter Injury, U-Net.

1. INTRODUCTION

Punctate white matter lesions (PWML) are responsible for
neurodevelopmental sequelae in early childhood [1] [2]]. Ac-
curate detection and segmentation of these lesions by an
automatic algorithm could better assist doctors in diagnosis.
Currently, MRI is the gold standard for lesion detection, but
this procedure is expensive and not easily to access. As ul-
trasound is routinely performed on newborns, this modality
could actually be of real interest for the detection of lesions
and would allow more children with PWML to benefit from
medical care.

Many papers present unsupervised approaches using
CNNs for breast tumors classification [3], and brain tu-
mor segmentation [4], but few methods seem to tackle the
detection of very small lesions. On the other hand, on the
side of supervised methods, research on automatic detection
of PWML in MR images was first tackled by Mukherjee et
al. [5]], that proposed a method that considers the correlation

of pixels in 3D space. Besides, Liu et al. [6] proposed a
spatiotemporal transformation structure in order to use the
information between adjacent slices, which achieves higher
performance than existing methods and consumes less com-
puting resources than 3D CNNs. Despite the high contrast
and low noise of MR images, the reported accuracy for the
PWML detection task remains low with a Dice under 0.60
and a recall at 0.65. Finally, Erbacher et al. [7] started work-
ing on this task with cranial ultrasound (cUS) images and
introduced a novel deep architecture based on the 2D U-Net
backbone and a soft attention model focusing on the PWML
localization, called Priority U-Net, with the recall and the
precision in the PWML detection task reaching 0.5370 and
0.5043, respectively.

As shown above, the detection and segmentation of
PWML on cUS is extremely challenging. First, despite a
higher resolution than MRI, US images are difficult to anal-
yse because of their low contrast, the presence of speckle and
the high variability related to the data acquisition process.
Second, PWML are very tiny (in our dataset, the median vol-
ume of the lesions is less than 1mm?), resulting in the lesion
area being much smaller than the whole brain area, so the
data imbalance problem between positive and negative pixels
makes it a huge challenge for deep learning models to learn.
Finally, the presence of numerous artifacts in the brain, very
similar to true lesions in terms of gray levels, sometimes loca-
tion or even shape, makes the distinction between true lesions
and false alarms even more complicated. Recently, Dakak et
al. [8]] developed an automatic approach to analyze disconti-
nuities on industrial CT volumes by reducing the number of
false alarms using a U-Net for image segmentation followed
by a classification step performed by a second neural network
called CT-Casting Net.

In this work, we first train a Priority U-Net to perform
over-segmentation on the expanded groundtruth in order to
increase the number of detected lesions (higher recall). In
a second step, a modified Casting Net is used to eliminate
false alarms and improve the accuracy of our model (higher
precision). Finally, when compared with other methods, our
model achieves better results in the detection of PWML.
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Fig. 1: PWML detection pipeline : The over-segmentation of lesions with the Priority U-Net improves the recall but produces
many false positives. A second stage of classification allows us to differentiate true lesions from false alarms and improves the
precision of the intermediate output. 2D predictions are then concatenated and compared to the 3D groundtruth for final
assessment.

2. METHODOLOGY

2.1. Over-segmentation with Priority U-Net

Before training the model, the lesions in the ground truth are
expanded by aggregating the foreground pixels within a 5-
slice sliding block along the coronal projection of the brain
volume. It results in a label image with a higher percentage of
foreground than the original label image, causing additional
losses and helping to make training more effective.

Segmentation training is then performed on the modified
ground truth with the Priority U-Net model (Fig. [T)), which
includes layers relying on 3D probabilistic maps derived from
a spatial prior knowledge of PWMLs location and computed
on the training dataset.

The output of the network usually includes many false
positives, that will be removed during the next classification
step.

2.2. Classification of PWML & False alarms

Table 1: Architecture of the CT-Casting-Net. [§]]

Layer Layer Type Kernel Size  #Filters
1 Conv2D + ELU 5x5 64
2 MaxPooling2D 2x2 64
3 Conv2D + ELU 5x5 128
4 MaxPooling2D 2x2 128
5 Conv2D + ELU 5x5 256
6 MaxPooling2D 2x2 256
7 Conv2D+ReLU+Dropout 5x5 512
8 MaxPooling2D 2x2 512
9 Flatten + FC + ReLU - 256
10 FC + Softmax - 2

In parallel, 3 CNN classifiers based on the Casting Net Archi-
tecture (Table[T)) are trained on a different projection, to pre-
dict the class of smaller 2D patches (32x32) extracted from
the volume and centered on the connected components of the
predicted mask. The goal is to teach the network to differenti-
ate true lesions from artifacts present in the brain, at a smaller
scale.

During the testing phase, once the 3D intermediate mask
is obtained after the first step of over-segmentation, 2D
patches are extracted around the regions of interest (thumb-
nails from the image, centered around the connected compo-
nents of the predicted mask) on the 3 orthogonal projections
of the brain and sent to the corresponding classifier to iden-
tify the true PWML (Fig. 2). The intermediate mask is then
corrected (lesions predicted as false alarms are removed).

2.3. Class imbalance issue

As mentionned in the introduction, because the lesions are
very small, the data imbalance problem between lesionnal
pixels and background makes it a huge challenge for deep
learning models to learn correctly. Therefore, the use of spe-
cific loss functions is considered to overcome this issue.

Self-Balancing Focal Loss: For a better training of the Prior-
ity U-Net, the Self-Balancing Focal Loss (SBFL) introduced
by Liu et al. [6] is used in addition to the Dice Loss. The
SBFL divides the whole loss into foreground loss and back-
ground loss part. It can automatically balance these losses
and ultimately boosts the performance of the model.

SBFLO = 7(]— - ypred) X Ypred X lOg(l — Ypred + 5)

SBFLl = —Ypred X (1 - ypred) X log(ypred + 6)

5= 0.4 x sum(SBF L) 405
-~ sum(SBFLg) + sum(SBFLy)
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Fig. 2: PWML detection pipeline (2nd step): Classification of PWML/False Alarms. The classification networkhelps to
differentiate between actual lesions and other brain artifacts at a smaller scale. The previous mask obtained after the
over-segmentation is corrected with the output of the classification.

SBFL = x SBFL, + (1 — ) x SBFLy

Where y,,.cq is the intermediate output of the Priority
U-Net and SBF Ly and SBF' L are the focal loss of back-
ground and foreground pixels respectively. In order to seg-
ment PWML, we will focus on the segmentation of the lesion
areas when balancing the loss of positive and negative sam-
ples. That is, 8 should always be between 0.5 and 0.9 to
ensure that the model does not only focus on the segmenta-
tion of positive areas. For that reason, we constrain 3 not to
exceed 0.9 by applying a coefficient of 0.4 to the equation.
Finally, the SBFL is composed of SBF'L; weighted by
and SBF L, weighted by 1 — 3.

Weighted Cross-Entropy Loss: For the binary classifica-
tion of the patches, the Casting Net was modified to include
Weighted Cross-Entropy. Indeed, under class imbalance, the
model is seeing much more zeros than ones, so it will also
learn to predict more zeros than ones because the training
loss can be minimized by doing so.

Weighted Cross Entropy applies a scaling parameter « to
Binary Cross Entropy, allowing us to penalize false positives
or false negatives more harshly. When « is greater than 1,
the model penalizes more on false negatives, hence helping
increase Recall. On the other hand, when « is less than 1,
the model penalizes more on false positives, hence helping
increase Precision.

LBCE = —Ytrue X lOg(ypTed) - (1 - ytrue) X lOg(l - ypred)

LwBCE = —Wtrue Xlog(ypred)_(l_ytrue) xzog(l_ypred)

Because our training dataset contained more negative than
positive examples, but as we wanted to limit the trade-off be-

tween Precision and Recall, we performed a grid-search over
a 10-fold cross-validation and finally set o to 1.5.

3. EXPERIMENTS & RESULTS

3.1. Dataset

The 2D images are extracted from 54 reconstructed US brain
volumes (including 29 with PWML) from 45 preterm babies
whose mean age at birth was 31.6 £ 2.5 gestational weeks.
In total, the dataset without preprocessing contains 414 le-
sions. The smallest lesion barely reaches 0.02mm?3, while
the largest is more than 41mm?. The median lesion size is
0.72mm?3, which is extremely tiny. Besides, PWML have
quite varied contrasts and do not really have specific shapes
(punctate, ovoid or sometimes linear) [3] They are usually lo-
cated in the center of hemispheres, near the lateral ventricles.

., -
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Fig. 3: PWML examples from the Brain US Dataset (images
on top and label masks on bottom). PWML have varied

contrasts and shapes, and are often difficult to distinguish
from peripheral vessels or arteries in cross-section.



3.2. Data Preprocessing

As the acquisition process of the ultrasound images is per-

formed manually by the pediatrician along the anterior/posterior

axis of the brain, the brain scan does not always results in the
same number of dynamic sequences (DICOM). In order to
recover a complete volume, we completed this process by
a reconstruction algorithm [9]. After that, a first prepro-
cessing phase consists of extracting a sub-volume of size
128 x 128 x 128 in the top-right hemisphere, periventricular
region of the brain for each patient. Eventually, it is planned
to process the entire brain by this process.

In order to compare with MRI, a first filtering is per-
formed on the size of the lesions for each volume to limit the
number of lesions that are too small and to make the problem
less complex. As a result, only 90% of the lesional volume is
kept for each patient, which allows us to get rid of the tiniest
lesions, that are usually not even visible in the MRI.

For the first over-segmentation step, lesions in the ground
truth are expanded as described in the section [2.1] and 2D im-
ages of size 128 x 128 containing PWML are extracted along
the coronal projection of the brain to train the Priority U-Net.
Horizontal flipping is randomly applied with a probability of
0.5 for data augmentation.

For the second classification step, patches of size 32 x 32
are extracted from the original volumes and used to train the
3 classifiers along each projection of the brain (axial, coronal
and sagittal), including various examples with real lesions,
artifacts/false alarms and normal examples. Random affine
transforms (rotation, shearing, scaling, and translation) and
flipping were employed for data augmentation.

3.3. Experimental Setup

The proposed pipeline was implemented in Python 3.9 with
Keras and TensorFlow backend. All the models were trained
and tested with GPU. For each model, we performed a 10-
fold cross validation with 3 patients in the validation set and
27 patients in the training set.

The Priority U-Net was trained for 25 epochs with the
Self-balancing Focal Loss and the Dice Loss, whereas the
Casting-Net was trained for approximately 70 epochs using
the Weighted-binary Cross-entropy Loss. The batch size is
4 for the segmentation network and 32 for the classification
network. The initial learning rate was fixed at 10e-1 with the
Adam optimizer and automatically decreased by a factor 0.1
when validation loss did not improved for 10 epochs.

3.4. Results

Table 2: Final results of the proposed approach (Priority
U-Net + Classification) compared to the U-Net and the
original Priority U-Net. All these results are the medians of
10-folds cross-validation.

Model Recall Precision F1-Score
U-Net 53.41 54.12 50.86
Priority U-Net 60.22 51.40 55.46
Priority U-Net (HF)  73.32 47.72 55.77
Priority U-Net (HF)
+ Classification 68.91 56.00 56.23

To quantitatively assess the quality of the PWML detection
produced by the target pipeline, we employed 3 criteria to
evaluate each model : The recall, the precision and the F1-
score. For each of these metric, the closer to 1 the better. The
quantitative results are shown in Table 2]

The evolution of the results after training the Priority U-
Net with the highlighted foreground (HF) seems to indicate
that expanding the PWML in the label images and performing
over-segmentation on them actually helps the network to de-
tect smaller objects, thus significantly increasing the recall of
13% compared to the results obtained with the original Prior-
ity U-Net. After the classification, the recall slightly declines,
while the precision improves from 47 to 56%, which compen-
sates for the degradation observed in the previous step.

As a result, our model achieves better performance for
PWML detection in US images, with a higher sensitivity to
very small lesions. We believe that the precision could still be
improved by providing more spatial information to the model.

4. DISCUSSION AND CONCLUSION

In this paper, we preprocessed the label images to get a higher
percentage of foreground, before training a network to per-
form an over-segmentation of the original lesions. This first
step was followed by a second step of classification to limit
the number of missclassified artifacts in the brain. At the end
of the pipeline, we reach a higher recall and precision (69%
and 56% respectively) than those obtained with the Priority
U-Net.

Many previous studies have focused on MRI-based lesion
detection, and very few have addressed problems on a scale
as small as PWML. While relatively few have conducted this
task on US images, this work highlights once again the possi-
bility of detecting brain lesions through ultrasound imaging.

Nevertheless, we anticipate that results might be improved
by enriching the database with more patients. Improvements
on the segmentation results and using multimodal fusion for
classification are currently under study and will be the object
of future works as well.
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