
The Black Box Toolkit

User’s Guide

bbtk version 0.9.0 (15/10/2008)

Generated on : November 12, 2008

Eduardo Dávila, Laurent Guigues, Jean-Pierre Roux

CREATIS-LRMN, Centre de Recherche en Imagerie Médicale
CNRS UMR 5220, INSERM U620, INSA Lyon, Université Claude-Bernard Lyon 1

http://www.creatis.insa-lyon.fr/creatools/bbtk

Contents

1 Introduction 2
1.1 What is bbtk ? . 2

1.1.1 The black box philosophy . 2
1.1.2 bbtk components . 3

1.2 Content of this guide . 4

2 Getting started with bbStudio 5
2.1 The interface . 5

2.1.1 ’Files’ part . 5
2.1.2 ’Messages’ part . 6
2.1.3 ’Command’ part . 7
2.1.4 ’Help’ part . 7

2.2 Running Demos and Examples . 7
2.3 Online Help . 11

2.3.1 Command line help . 11
2.3.2 Guides . 12
2.3.3 Boxes Help . 12
2.3.4 The Package Browser . 13

2.4 The Menu . 14

3 Writing black box scripts (bbs) 16
3.1 The commands . 16
3.2 Creating and executing black boxes 17
3.3 Connecting black boxes . 22
3.4 Creating complex black boxes . 26

1

3.5 Writing scripts files . 28
3.6 Creating complex black boxes that use complex black boxes 30
3.7 Naming Conventions . 30
3.8 Creating command line applications 31
3.9 Using graphical interface boxes (widget boxes) 33
3.10 Deeper in the boxes . 35

3.10.1 Default and mandatory inputs and outputs 35

4 Using third party Package 37
4.1 Plugging in a Package . 37
4.2 Hard incorporating of a Package . 37
4.3 Updating the documentation . 37
4.4 Using the package . 37

5 Using black boxes in C++ programs 38

6 bbs language reference 41
6.1 Pipeline creation and execution related commands 41
6.2 Package related commands . 42
6.3 Interpreter related commands . 43
6.4 Complex black box definition related commands 44

7 Install and run time issues 45
7.1 bbtk configuration file . 45
7.2 Misc . 46

List of Tables

1 bbs pipeline creation and execution related commands. 41
2 bbs package related commands. 42
3 bbs intepreter related commands. 43
4 bbs complex black box definition related commands. 44

List of Figures

1 The Black Box Toolkit architecture 5
2 The bbStudio Development environment interface at start time . . . 6
3 The ’Files’ lower tool bar . 6
4 bbStudio ’Help’ panel . 7
5 Examples list . 8
6 Html documentation of example ’exampleSlider’ 9
7 Source code of ’exampleSlider’ . 9
8 Execution of ’exampleSlider’ . 10

2

9 Graphical representation of a pipeline 11
10 Detailled graphical representation of a pipeline 11
11 The Package Browser . 14
12 The bbStudio menu . 14
13 The html Help . 20
14 A simple pipeline which adds 3 numbers 23
15 (Very) simple Graph of a (very) simple pipeline 24
16 Creating the complex black box Add3 26
17 Input dialog box . 33

3

1 Introduction

1.1 What is bbtk ?

The Black Box Toolkit (bbtk) is a set of tools (C++ libraries and executables)
providing a C++ framework for the definition of elementary processing units, called
black boxes, and the definition and execution of processing chains made up of
these black boxes.

1.1.1 The black box philosophy

The Answers Dictionary defines a black box as “A device or theoretical construct
with known or specified performance characteristics but unknown or unspecified con-
stituents and means of operation”
Wikipedia defines a black box as “any component in a system in which only the
input and output characteristics are of interest, without regard to its internal mech-
anism or structure”.
We should merge these definitions. : not only the inputs and outputs are of interest
but also what the box does ! Hence, we would say that a black box is any docu-
mented component of a system, letting the user know what the box is supposed
to do and how to use it but not how it does it.

The Black Box Toolkit provides a systematic framework to encapsulate (or
“wrap”) any existing C or C++ processing code into an object (a black box) having
a generic symbolic interface, where

• generic means that the interface is the same for all boxes. Hence one does not
need to know which particular method allows, say, to set a particular input
or get a particular output of the box. One can use a black box in a purely
abstract way.

• symbolic means that a particular input or output is referenced by a ’name’,
that is by a symbol which identifies the input or output. It also means that
symbolic information (text) is attached to a box: description of the box, au-
thor, description of its inputs and outputs, etc.

(Actually, genericity is achieved because the interface is symbolic. We let you
think about this. . .)

Of course, symbolic data attached to a box may be queried : what are the
inputs/outputs of the box ? what are their type ? their description ? etc. This
allows automatic documentation of boxes.

4

http://www.answers.com/topic/black-box-theater
http://en.wikipedia.org/wiki/Black_box_%28disambiguation%29

The abstract definition of black boxes is the most basic aspect of The Black
Box Toolkit architecture. Another key aspect is the groupement of black boxes
into so called packages, which are dynamic libraries which can also be queried,
in particular about the boxes they provide. The package structure then offers a
mechanism which is like a ’plug-in’ mechanism. The Black Box Toolkit provides
the methods to load a package at run-time, and create instances of the boxes it
contains.

These two mechanisms (black boxes and packages) then gives the way to:

• The definition of an interpreted script language, which allows to manipu-
late packages and boxes very easily in symbolic way. The Black Box Toolkit
provides one : bbs (the Black Box Script language) and its interpreter bbi
(the Black Box Interpreter).

• Automatic documentation of existing packages. html documentation of
packages is proposed by bbStudio.

Finally, these different components allow efficient :

• capitalization and reuse of existing processing units, including documen-
tation

• testing, prototyping in a very simple script language

• inter-operability between atomic processings which have been written by
different persons, using different libraries, etc.

1.1.2 bbtk components

The Black Box Toolkit includes :

• A C++ library - called bbtk - which defines a framework (abstract classes) to
develop black boxes and store them into dynamic libraries, called black box
packages.

• Different ”core” black box packages :

– std : the ’standard’ package including basic useful boxes.

– wx : basic graphical interface elements (widgets : sliders, buttons, etc.
based on the wxWidgets library).

– itk : the basic image processing package, based on the itk library.

– vtk : the basic images and surfaces processing and visualization package,
based on the vtk library.

– wxvtk : widget boxes based on the vtk library (2D and 3D vizualization
and interaction).

5

– toolsbbtk : Tools for bbtk administration and package development.

• A Developement environment , called bbStudio , which provides

– An online script editor and interpretor

– A powerful html Help environment , integrating :

∗ Online documentation scaning
∗ Retreiving boxes on various criterions
∗ Checking Demo and examples

• An standalone interpreter , called bbi, which allows to execute bbs scripts
or commands.

• Various Development Utilities :

– bbfy generates the C++ code of a black box from a description file written
in xml.

– bbCreatePackage allows to create the basic file architecture. to start the
development of a new black box package.

– bbCreateBlackBox allows to create the basic file architecture. to start
the development of a new black box, that will be included in an already
existing package.

– bbs 2cpp translates a .bbs script into a C++ file.

– bbc (sorry : Linux Only, for the moment) that compiles .bbs scripts into
executables.

– bbRegeneratePackageDoc which creates the html documentation of the
Package.

– bbRegenerateBoxesLists which creates the html pages of the various
lists of all the currenly installed boxes.

– bbPlugPackage which automatically incorporates a new package.

• A full documentation printable (pdf), browsable (html), queryable throught
keywords.

The general architecture of The Black Box Toolkit is shown in figure 1.

1.2 Content of this guide

6

Figure 1: The Black Box Toolkit architecture

2 Getting started with bbStudio

2.1 The interface

Just run it, typing in a console bbStudio or clicking on its icon or its menu entry.
You’ll get something like in figure 2 (the exact appearance of bbStudio is Operating
System and bbtk version dependent).

At start, bbStudio opens with a very minimal ’How to use’ in the middle. Don’t
forget to read it : it will vanish at the first mouse click.

The interface is divided into four parts : Files, Messages, Command, Help. It
is written using the Advanced User Interface library of wxWidgets (a.k.a. AUI),
whose ’docking manager’ allows windows and toolbars to be floated/docked onto a
frame. Feel free to resize/reposition any part you want. Your preferences will be
kept next time you run again bbStudio.

2.1.1 ’Files’ part

It’s the bbs script editor.
If you load a file holding a script, it will be displayed here, and you’ll be able to

modify it, to save it, to save-as it, to run it, using the lower toolbar (see figure 3)

7

Figure 2: The bbStudio Development environment interface at start time

Figure 3: The ’Files’ lower tool bar

2.1.2 ’Messages’ part

Two kinds of messages will be output here:
System messages : produced by the kernel, in case of a user mistyping, or an exe-
cution error
Script messages : produced by the bbtk equivalent of printf or std::cout in user
programs.

8

2.1.3 ’Command’ part

You can type here bbs commands which are executed on the fly. The buttons are
shortcuts to usual commands.

2.1.4 ’Help’ part

The ’Help’ part of bbStudio is used to browse the html help of The Black Box
Toolkit.

2.2 Running Demos and Examples

In the ’Help’ part (See figure 4), select Examples link.

Figure 4: bbStudio ’Help’ panel

You will get a list of examples (See figure 5).
Note : due to an unfixed bug in Linux, you have to click on ’reload’ to get it.

Select wx::exampleSlider.

9

Figure 5: Examples list

You can see information on the example and the graphical representation of the
workflow defined by the script (the elementary boxes that compose it, and their
connections, see figure 6).

Click on [source], it will be loaded in the ’Files’ part, within the script editor
(See figure 7);

Run it, using the ’Files’ toolbar (see figure 3)
You’ll get something like in figure 8.
Feel free to move the slider, to check it actually works...
Just a few words on what you saw :

• In the source code of the script :

load std
load wx

These bbs commands load the packages std and wx

10

Figure 6: Html documentation of example ’exampleSlider’

Figure 7: Source code of ’exampleSlider’

new Slider slider
set slider.ReactiveOnTrack 1

We create a Slider box called slider.

We tell it to inform anybody that’s interested in, that the cursor moved, each
time it moved. The default behaviour is to inform only when cursor is released.

new OutputText text

11

Figure 8: Execution of ’exampleSlider’

We create an OutputText box called text (in which slider value will be dis-
played)

new LayoutLine layout

We create a LayoutLine box called layout, a widget box designed to embed
other widgets (say, a main window)

connect slider.Widget layout.Widget1
connect text.Widget layout.Widget2

We embed slider and text into layout.

connect slider.BoxChange text.BoxExecute
connect slider.Out text.In

We tell slider to inform text every time it’s modified.

We tell slider to pass its output value (Out) to text input value (In)

exec layout

We tell layout to process itself. This also produces the execution of the boxes
connected to it (the slider, the text).

• In the Help part

You can see the graphical representation of the workflow (pipeline) created by
the script, as in figure 9.

The representation includes both the graphical interface-related pipeline (slider
and text are embedded into layout) and the data processing-related pipeline

12

Figure 9: Graphical representation of a pipeline

(slider warns text immediately when it’s modified, slider passes text its output
value)1.

You can get a much more detailled graph, like in figure 10, just clicking on the
button ’graph (detailled)’ in the toolbar of the Command part.

Figure 10: Detailled graphical representation of a pipeline

2.3 Online Help

Various levels or help are suplied by bbStudio.

2.3.1 Command line help

The ’working’ area (the left one, as opposed to the ’help’ area, on the right side) is
composed of : one single line area (Command), at the bottom, in which you can enter
your commands and a multiple line zone in which the Command interpreter prints
out the result of your commands. Command line help for the black box scripting
language (bbs) can be obtained in this zone (see 3).

1Yes, we know : all the arrows (graphical interface pipeline arrows and data processing arrows)
are blue; using different colors is planned for next release...

13

2.3.2 Guides

An html version of all the guides is browsable in the Help part of bbStudio.

• User’s Guide : This guide !

• Package Developper’s Guide : Step to step How-to for programmer who
wants to create his own black boxes/packages.

• Doxygen Documentation : Doxygen source browser.
Automatically generated from source files. Should only concern the kernel
developpers.

2.3.3 Boxes Help

Lists of currently available boxes from installed packages

• Alphabetical list :

• List by package Boxes indexed by package

• List by category : Each box is indexed by a list of keywords, called ’cate-
gories’, such as ’read/write’, ’filter’ ’viewer’, ... A given box may belong
to more than one category, however some categories are mutually exclusive.
Standard categories are :

– atomic box/complex box
Whether it’s a ’atomic’ unit written is C++ and available in binary form
in a package or it’s an assembly of several black boxes (atomic or complex)
which is described in bbs script language.
Any box is either atomic ou complex.
Any pipeline described in a bbs script is itself viewed as a complex black
box hence is tagged as belonging to this category.

– example / demo / application
These ones are scripts which produce a result when executed (i.e. they
execute a pipeline like exampleSlider above), contrarily to the scripts
which only define complex boxes but do not instanciate and execute
boxes.
∗ example : It’s just a (simple) example, for programmers, on how to

use a given feature. The Examples link on the starting page links to
the list of the boxes of this category.

∗ demo : It can be a ’good looking’ (a.k.a ’sexy’) example on some
sophisticated work, done only by using bbtk. The Demos link on the
starting page links to the list of the boxes of this category.

∗ application : It’s a final application, end user intended (e.g. Sub-
scale a huge volume witout loading it in memory, Crop a DICOM
image, etc.)

14

– widget : A piece of graphical interface (based on wxWidgets)

– dicom : Dicom medical image-related box.

– viewer : A box allowing to view something (e.g. an image).

– read/write : An I/O-related box

– mesh : A mesh-related box

– filter : A filter, mainly image filters.

– image : An image-related box

– 3D object creator : A box which creates a 3D object to be injected
into a 3D view (e.g. a plane, a surface).

– math : Math

– misc : Miscellaneous...

Remark that the list of categories is ’auto-extensible’ : each time a new box
is created which belongs to a new category and the boxes list is regenerated,
then the new category appears in the list, holding the new box. The above list
only contains the categories used in the packages provided with current bbtk
release.

• List of adaptors : The adaptors are a special type of black box which are
used internaly to perform type conversions. Thought there are not end user
intended, you may see their list. Adaptors belong to the adaptor category.

2.3.4 The Package Browser

The package browser is a standalone application which dynamically loads and queries
the available packages. It is thus a smarter tool than the static html documentation.
You can run it with the command bbPackageBrowser or in bbStudio using either
the button of the ’Command’ part or the menu entry ’Windows>Start Package
Browser’. Remark that it may take some time to start because it loads all available
packages at start. Its appearance is reproduced in figure 11.

It allows you to find boxes using a multi-criteria filtering principle : The boxes
listed are the one whose attributes match all the words entered in the ’Filter’ part.
You can get the whole description of a given box clicking on its name.

Warnings :

• It’s case sensitive, i.e ’Button’ will give different results than ’button’

• You have to press enter in the filter zone to update the boxes list

• A filtering string only has to match a subpart of the related attribute of a box.
For example, entering ’utt’ in the ’Name’ attribute will match a box called
’Button’.

15

Figure 11: The Package Browser

Attributes :

• Package : The name of the package to which the box belongs (e.g. wxvtk,
std)

• Name : The name of a box or an application (e.g. Reader, example)

• Description : A part of the description of a box (e.g. 3D, image)

• Category : The categories of the box (e.g. demo)

• Input/Output Type : The C++ type of an input or output (e.g. int, vtkImageData*,
std::string)

• Input/Output Nature : The nature of an input or output (e.g. file name,
signal)

2.4 The Menu

At last, let’s have a look at bbStudio menu.(See figure 12)

Figure 12: The bbStudio menu

16

• File

– Open the bbtk configuration file

– Quit

• Tools

– Create package : Provides a graphical interface to help package devel-
oppers to create a new empty package.

– Create black box Provides a graphical interface to help package devel-
oppers to create a new empty black box, and add it to an already existing
package.

– Plug Package Incorporates a package into the list of known packages.
Updates the html documentation.

– Regenerate package doc : If a package has changed (e.g. new boxes)
this updates the package html documentation.

– Regenerate boxes list : Updates the boxes lists (alphabetical, by pack-
age, ...)

– Regenerate all Regenerates all the packages documentations and the
boxes lists (may be long...).

– Show last graph Shows the last pipeline graph that was generated

• Options

– Reset before running Before running a script, all the already created
boxes are destroyed, all the already loaded packages are unloaded (this is
the recomended option).

• Windows User may decide, for any reason of his own, to hide one or more
panels:

– Show ’Files’ panel

– Show ’Help’ panel

– Show ’Command’ panel

– Show ’Messages’ panel

– Start Package browser : starts the package browser (see 2.3.4).

• About

– About : Info about bbStudio.

17

3 Writing black box scripts (bbs)

This section introduces how to write down black box scripts (bbs) to create and
execute pipelines.

3.1 The commands

In bbStudio , try typing in the Command area (in what follows, the commands entered
by the user will be preceded by a prompt >) :

> help

you get the list of the commands of the interpreter :

Available commands :
author
category
config
connect
debug
define
delete
description
endefine
endpackage
exec
graph
help
include
index
input
kind
load
message
new
newgui
output
package
print
quit
reset
set
unload

18

To get help on a particular command type help <command-name>, for example:

> help author

gives :

usage : author <string>
Adds the string <string> to the author information of the black box being defined

The help command has multiple usages. It is used to get help about almost
anything in the interpreter! Type ’help help’ to get help on the help command
itself :

> help help
usage :

(1) help
(2) help <command name>
(3) help packages [all]
(4) help <package name> [all]
(5) help <black box type>
(6) help <black box name>

Effect :
(1) Lists all available commands;
(2) Prints help on a particular command;
(3) Lists the packages loaded and their black boxes.

Add ’all’ to list adaptors;
(4) Prints short help on the black boxes of a package.

Add ’all’ to include adaptors;
(5) Prints full help on a black box type;
(6) Prints information on the inputs, outputs and connectionns

of a black box instance.

3.2 Creating and executing black boxes

At start the interpreter does not know any black box. If you type ’help packages’,
which is the third form of the help command, you get :

> help packages
user
workspace

which means that the interpretor only knows one package (library of black boxes)
called user and which contains a black box called workspace. The user package is
an internal package of the interpreter, which stores user-defined black box types. At
start, it already contains one box, called workspace. workspace is a special type of
black box, called complex black box, whose purpose is to store other black boxes.

19

Any black box you create in bbStudio is stored in workspace (this will be explained
in details in sections 3.5 and ??).

If you type ’help workspace’, you get :

> help workspace
Complex Black Box <user::workspace>
User’s workspace
By : bbtk
Category(s) : complex box;
* No inputs
* No outputs
* No boxes

In the text displayed, the user:: prepended to the name workspace means that
the box workspace belongs to the user package. Then comes a description and
three lines which tell that workspace does not have any input nor output nor boxes
yet.

In order to let the interpreter know of some black boxes, you must load another
package. The std package is the “standard” package, which contains basic useful
black boxes.

To load it, type :

> include std

Then if you type :

> help packages

you get something like :

std
ASCII : ascii codes sequence to string - string to ascii...
Add : Adds its inputs
ConcatStrings : String concatenation
Configuration : Gets configuration informations
Div : Divides its inputs
ExecBbiCommand : Executes bbi commands
ExecSystemCommand : Executes system (O.S.) commands
GetVectorCharElement : Gets the i-th element from the input vector (std...
...

MagicBox : Takes *any kind* of data and copies it to its ou...
MakeFileName : Makes a kosher file name
Mul : Multiplies its inputs
MultipleInputs : This box has multiple Void inputs and one Void o...
StringRelay : Just copies the value of its input to its output...

20

StringSelect : Outputs the string set to the ith input Ini (In0...
user
workspace

Now the interpreter knows the package std and the black boxes it provides, such
as the Add box, the ConcatStrings box, and so on. Remark that the content of std
may vary from one version to another as new black boxes might be added to it. If
you type :

> help Add

You’ll get a text help, in the ’Message’ part :

Black Box <std::Add>
Adds its inputs
By : laurent.guigues@creatis.insa-lyon.fr
Categories : atomic box;math;
* Inputs :

’BoxExecute’ <bbtk::Void> [signal] : Any signal received by this input
executes the box

’BoxProcessMode’ <String> [] : Sets the processing mode of the box
(Pipeline | Always | Reactive)

’In1’ <Double> [] : First number to add
’In2’ <Double> [] : Second number to add

* Outputs :
’BoxChange’ <bbtk::VoidS> [signal] : Signals modifications of the box
’Out’ <Double> [] : Result

After loading the package it belongs to, you can create an instance of an Add
box by the command new :

> new Add a

The ’a’ at the end is the name of the instance, which will be used to reference
it later. It is important to distinguish a box type and an instance of a box type.
The Add box of the package std is actually a box type , like int is a data type in C
langage. The new command allows to create an instance of a box type, exactly like
int i; in a C code declares a variable of type int whose name is i. Of course, like
in C Language, you can declare multiple boxes of the same type in bbi .

After the creation of the box a, type :

> help workspace

you get :

21

Complex Black Box <user::workspace>
User’s workspace
By : bbtk
Category(s) : complex box;
* No inputs
* No outputs
* Boxes :

’a’ <std::Add>

which means that bbi workspace now contains a black box named a, of type
std::Add.

Type

Help Add

and have a look to the ’Help’ Part (see figure : 13)

Figure 13: The html Help

You can see a description (the one which was provided by the author of the box),
the author(s) of the box (usually e-mail adress(es)) and the categories to which the
box belongs. Finally comes the lists of inputs and outputs of the box. For each
input or output, bbi provides its name , its type (between < and >, e.g. <Int>) and
a description. Remark that the box Add is not a ’complex’ black box but an ’atomic’
box, hence its help does not include a pipeline graph.

You can see that Add boxes have two inputs, with name In1 and In2, and an
output, with name Out.

22

You can set the input In1 of the Add box a to the value 1 by the command :

> set a.In1 1

Similarly, setting the input In2 of a to the value 2 is done with :

> set a.In2 2

And you print the output Out of the box a with :

> print "result=$a.Out$"
result=3

In the string passed to the print command, each substring enclosed between a
couple of $ is considered as the name of an output of a box. To process this special
substrings, the interpretor :

1. Processes the box if needed (see below)

2. Converts the output of the box to a string if possible (see below)

3. Substitutes the result in the string to print

4. Postpones an implicit ’new line’ character to the string

Box processing is needed if :

• either at least input has changed since last processing

• or the input ’BoxProcessMode’ of the box is set to ’Always’, which forces
box reprocessing.

Note that all boxes have an input named ’BoxProcessMode’.
Another way to process the box a is to issue the command :

> exec a

however this command does not display anything (except if the box itself displays
something in its processing). It just processes the box if needed. This command
is used to execute boxes that do not have any output, such as boxes that write
something to a file or, display a graphical interface, and so on.

23

Summary

• The include command allows to load a package, and the complex black boxes
that come with it..

• help gives help on :

– Available commands if you just type help.

– A particular command if you type help <command-name>.

– All available packages and their boxes (without description) if you type
help packages.

– A particular package and its boxes (with brief description) if you type
help <package-name>.

– A particular black box type (with full description) if you type help
<box-type-name>. In particular, help workspace displays information
on the content of the ’workspace’ black box, which stores the boxes
created by the user (by new).

• new : creates an instance of a black box.

• set : sets the value of an input of a black box.

• Under any component of bbStudio, to reference the input called i of a black
box called b you must type ’b.i’. The same syntax holds for outputs.

• print : prints a string, substituting each substring of the form $b.o$ by the
value of the output o of the black box b. Note that an implicit trailing ’new
line character’ is added at the final string.

• exec : runs, if needed, the process of a box.

3.3 Connecting black boxes

The Black Box Toolkit allows to create and execute processing chains, also called
pipelines, by connecting black boxes. This section explains how to do it with exam-
ples. Read section ?? to get more information on pipeline processing.

First start bbStudio and load the package std, typing :

> include std

in the ’Command’ part.
Assume you want to compute 1+2+3. You can do it by chaining two Add boxes,

as shown in figure 14.
The bbi instructions to create and execute this pipeline are :

24

Figure 14: A simple pipeline which adds 3 numbers

> new Add a
> new Add b
> connect a.Out b.In1
> set a.In1 1
> set a.In2 2
> set b.In2 3
> print $b.Out$

You will see the (very expected) result :

6

The first three commands build the pipeline, the next three set a and b black
boxes inputs and the last one prints b black box output (the pipeline is executed
before printing, because the interpretor ’knows’ the box b, whose output is requested,
is not up to date).

The command ’connect a.Out b.In1’ “plugs” the output Out of the box a into
the input In1 of the box b. Once the boxes are connected, the processing of the two
boxes are chained : getting the output of b requires getting its inputs, hence getting
the output of a which is connected to it. This pipeline mechanism can recurse into
arbitrary long chains of boxes (see ?? for details).

Lets’ consider an other, more image oriented, example :

> include vtk
> include wx
> include itk
> include wxvtk

> new FileSelector fileDialog
> new ImageReader reader
> new Slider slider
> new Viewer2D viewer

> connect fileDialog.Out reader.In
> connect reader.Out viewer.In

25

> connect slider.Out viewer.Slice
> connect slider.BoxChange viewer.BoxExecute

> exec viewer

Some explainations : the include instructions load the necessary packages.

FileSelector will pop a File Selector, at run time, that will out the user chosen
file name.
Slider will pop a Slider, at run time, that will out an integer, used later as a slice
number.
ImageReader will read any itk readable file, whose name is passed as a std::string,
and return a pointer on an itk image.
Viewer2D displays a plane, whose number is specified by an integer.

connect fileDialog.Out reader.In plugs the output of the File Selector (a std::string)
to the input of the reader (a std::string, too).
connect reader.Out viewer.In plugs the output of the reader (an bbtk::any¡bbitk::ImagePointer¿
which is a type defined by the itk package which can hold any itk image pointer) to
the input of the Viewer (a vtkImageData *)
connect slider.Out viewer.Slice plugs the output of the slider (an int) to an
other output (named Slide) of the viewer.
connect slider.BoxChange viewer.BoxExecute says the viewer that it must re
process itself any time the slider is modified.

exec viewer processes the viewer.
This would correspond to the graph in figure 15

Figure 15: (Very) simple Graph of a (very) simple pipeline

Of course, to be able to connect two boxes, the output and the input must be
compatibles. You can always connect an output to an input of the same type, but

26

you can do more, thanks to particular (hidden) black boxes called adaptors.
An adaptor is a black box which has at least one input, called In, and at least

one ouput called Out and whose role is to convert a data of the type of In into a
data of the type of Out (other inputs or outputs may serve to parameter the adaptor
or retreive other useful information).

Under bbStudio, if you type :

> load std
> help std all

you get :

Package std v1.0.0 - laurent.guigues@creatis.insa-lyon.fr
Basic useful black boxes
Black boxes :

...
BoolToString [DA] : Converts a Bool (bool) into a string
CastBoolToChar [DA] : Static cast from Bool (bool) to Char (signed c...
CastBoolToDouble [DA] : Static cast from Bool (bool) to Double (double...

...
CastBoolToUChar [DA] : Static cast from Bool (bool) to UChar (unsigne...
CastBoolToUInt [DA] : Static cast from Bool (bool) to UInt (unsigned...

...
CastUIntToBool [DA] : Static cast from UInt (unsigned int) to Bool (...
CastUIntToChar [DA] : Static cast from UInt (unsigned int) to Char (...
CastUIntToDouble [DA] : Static cast from UInt (unsigned int) to Double...

...

[DA] stands for default adaptor.
Once you have loaded the package std, you can plug an output of type char into

an input of type double. When the interpreter encounters the connect command,
it looks for an adequate adaptor in the loaded packages. In our case, as the package
std provides the CastUCharToDouble adaptor, the interpreter automatically creates
an instance of this adaptor and place it between the output and the input you want
to connect (however this adaptor is hidden to you, it is embedded into the created
connection and does not appear as an existing black box). When the pipeline is
processed the adaptor converts the output data into the required input type, in a
totally transparent way. In our example, the CastUCharToDouble adaptor would
simply cast the value of the char into a double, however arbitrarily complex type
conversion may be done.
WARNING : these adaptors are C++ static cast, i.e., there is, right now, no ’intelli-
gent’ conversion (only truncation) e.g. think to CastDoubleToUChar!

Note that the set and print commands of interpreter work with adaptors from
string to the type of the input to set or from the type of the output to print to

27

string. Hence in order to set or print values the adequate adaptors must be
available in the packages currently loaded.

Summary

• The connect command allows to connect two black boxes

• You can connect two black boxes if (and only if) :

– The output and the input are of the same type, or

– There is an adaptor black box in the packages loaded which converts data
of the output type into data of the input type

• help <package name> does not display the adaptors of the package. To see
them use : help <package name> all. including adaptors

3.4 Creating complex black boxes

Remember the pipeline of figure 14, which computed the sum of three doubles. You
can consider it as a whole and define a new black box type, which will be a complex
black box, having three inputs and one output, as shown in figure 16.

Figure 16: Creating the complex black box Add3

The bbi commands to define this complex black box are the following :

> load std
>
> define Add3
>
> new Add a
> new Add b
> connect a.Out b.In1
>
> author "myself"
> description "adds 3 doubles"

28

> input x a.In1 "first double to add"
> input y a.In2 "second double to add"
> input z b.In2 "third double to add"
> output result b.Out "output"
>
> endefine

Explainations :
As we will use Add boxes, we need to load the package std, which is done in first

line.
The command define then starts the definition of the complex box type, which

will be called Add3.
The next three lines define the pipeline, exactly in the same way than outside a

complex box definition.
The commands author, description, input and output are commands specific

to complex boxes definition :
author and description are used for the documentation of the new box. You

can provide multiple author or description commands, the arguments of the com-
mands will be concatenated to produce the final author and description strings.

input and output are used to define the inputs and outputs of the new complex
box. Their syntax is the same : for each new input/output you need to say to which
internal input/output it corresponds and to provide a help string documenting the
input/output. In our example, we define that the box Add3 has three inputs : x,
y and z. The input x corresponds to the input In1 of the internal box a. In the
same way, the external input y corresponds to the internal input a.In2, and the
external input In3 to b.In2. The only output of the new box is called result and
corresponds to b.Out. The figure 16 illustrates the external to internal input/output
correspondence.

Finally, the endefine command ends the definition of the new box type.
After this definition, if you ask for help on packages, you get :

> help packages
std
Add
...

user
Add3
workspace

The user package now contains a new black box type, called Add3. If you ask
for help on this type of box, you get :

> help Add3
Complex Black Box <user::Add3>
adds 3 doubles

29

By : myself
* Inputs :

’x’ <double> : first double to add
’y’ <double> : second double to add
’z’ <double> : third double to add

* Outputs :
’result’ <double> : output

* Boxes :
’a’ <std::Add>
’b’ <std::Add>

and you can use it like any other box, for example type :

> new Add3 a
> set a.x 1
> set a.y 2
> set a.z 3
> print $a.result$
6

As a side note, we can say that, for consistency reasons, it would have been bet-
ter to name In1, In2 and In3 the inputs of the black box Add3, since all the ’natural
entry’ of a box is named In, or Inx if there are more than one ’natural entry’ .

Summary

• The define/endefine commands allows to define complex black box types, i.e.
types of black boxes made up of other black boxes. Inside a define/endefine
block :

– The author and description commands allow to document the new
type of box

– The input and output commands allow to define the inputs and outputs
of the new type of box, that is to which inputs and outputs of internal
boxes they correspond.

3.5 Writing scripts files

Once you have defined a new type of complex box, you may like to reuse it. To do
this, you can simply write the bbs commands defining the new box into a text file and
afterwards include that file in bbi. Doing this, you start writing bbs scripts. The
conventional (and mandatory) extension for such scripts is bbs (black box script).
For consistency reasons, you are requested to prepend bb to the name.

30

For example, the Add3 complex box we previously worked on can be defined in
the bbAdd3.bbs file :

File bbAdd3.bbs

Defines the Add3 black box which adds 3 doubles
load std

define Add3
I am the author
author "myself"
description "adds 3 doubles"
Pipeline creation
new Add a
new Add b
connect a.Out b.In1
Inputs definition
input x a.In1 "first double to add
input y a.In2 "second double to add
input z b.In2 "third double to add"
Output definition
output result b.Out "output"

endefine

End of file

Lines starting with a # character or a // character are ignored, they are con-
sidered as comments by the interpreter. To use this file in bbStudio, click on the
include button, and browse your filestore to find the file.

> include bbAdd3.bbs
> help Add3
Complex Black Box <user::Add3>
adds 3 doubles
By : myself
* Inputs :

’x’ <double> : first double to add
’y’ <double> : second double to add
’z’ <double> : third double to add

* Outputs :
’result’ <double> : output

* Boxes :
’a’ <std::Add>
’b’ <std::Add>

>
and so on ...

31

If the file has the bbs extension, you can ommit it and just type :

> include Add3

3.6 Creating complex black boxes that use complex black boxes

Of course, you can include script files in other script files, like in the following
example :

File bbAdd4.bbs

Defines the Add4 black box which adds 4 doubles
include Add3

define Add4
author "myself"
description "adds 4 doubles"
new Add3 a
new Add b
connect a.Out b.In1
input In1 a.In1 "first double to add
input In2 a.In2 "second double to add
input In3 a.In3 "third double to add"
input In4 b.In2 "fourth double to add"
output Out b.Out "output"

endefine

End of file

The inner boxes have they own entries (In1, In2, In3 for box a, In1, In2 for box
b)
Only the inputs In1, In2, In3 of box a and the input In2 of box b is of interest for
the end user, but he dosn’t want to have to care neither about the inner boxes name,
nor about the names of their Inputs.
The writer of the complex box has the ability to give these inputs a meaningfull
name !

input In3 a.In3 "third double to add"
input In4 b.In2 "fourth double to add"

3.7 Naming Conventions

• File names : For consistency reasons, you are requested to prepend bb, and
postpone an extention .bbs, to the names of the files that hold a complex
black box definition.

For example, the Add3 complex box we previously worked on can be defined
in the bbAdd3.bbs file.

32

• Search Paths : For consistency reasons, the names of dynamic libraries holding
the packages start by bb. For instance, the package wx will be in the library
bbwx.dll (Windows) or libbbwx.so (Linux).

Summary

• The include command tells the interpreter to include a script file.

• Lines starting with a # or with a // are considered as comments by the inter-
preter.

• Lines between a line starting with a /* an a line ending with a */ are considered
as comments by the interpreter.

3.8 Creating command line applications

Now that you know how to create complex black boxes (with define/endefine),
think back to the workspace object. Remember that it is also a complex black
box. Actually, when you type interpreter commands outside a define/endefine
block, you progressively define the workspace complex black box. You can think of
it like if at start the interpreter was issuing a command ’define workspace’ and
then letting you define the interior of the box workspace.

Remember that the command inputs allows to define an input of a complex
box. Now, if you use the command input outside a define/endefine block then it
defines an input of the workspace box, that is an input of the main program. This
input will then be connected to the parameters that the user passes to the command
line.

For example, consider the script :

File add.bbs

load std
new Add a
input x a.In1 "first number to add"
input y a.In2 "second number to add"
print "x+y=$a.Out$"

End of file

The third and fourth lines define two inputs x and y. When you execute this
script, you can pass these two arguments on the command line, like this :

> bbi add x=1 y=1
x+y=2

33

You can also invoke bbi the option -h, which gives help on the workspace box :

> bbi add -h
User’s workspace
By : bbi (internal)
* Inputs :

’x’ <double> : first number to add
’y’ <double> : second number to add

To get a better help, use the description and author commands :

File add.bbs

description "Adds two numbers"
author "foo@bar.com"
load std
new Add a
input x a.In1 "first number to add"
input y a.In2 "second number to add"
print "x+y=$a.Out$"

End of file

Now if you ask for help on the add script, you get :

> bbi add -h
Adds two numbers
By : foo@bar.com
* Inputs :

’x’ <double> : first number to add
’y’ <double> : second number to add

Rather than getting the inputs of a script from the command line, you can ask
bbi to prompt the user for the values, using the -t commutator :

> bbi add -t
x=[the program waits for user answer]2
y=[the program waits for user answer]5
x+y=7

You can also use the -g commutator. bbi then prompts the user in graphical
mode, displaying a dialog box for each input, like in fig. 17.

Note that for both -t and -g options, the input from the user is a string and
bbi converts it to the right input type using an adaptor, hence the right adaptors
must be loaded.

34

Figure 17: Input dialog box

Summary

• The input, description and author commands, when they are used outside
a define/endefine block allow to define the inputs, description and author
of the main program.

• Inputs of the main program can be passed on the command line using the
syntax <input-name>=<value>. No white space is allowed, if the value or the
input name contains white spaces, enclose them between double quotes, e.g.
"parameter with white spaces = gnu’s not unix".

• The -h option of bbi prints help on the main program.

• The -t option of bbi orders the program to prompt for its inputs in text mode.

• The -g option of bbi orders the program to prompt for its inputs in graphical
mode.

3.9 Using graphical interface boxes (widget boxes)

Basic graphical interface components are provided in the package wx, such as but-
tons, sliders, file open/save dialogs, etc.

As first example, type the following commands in bbi :

> load wx
> new InputText t
> print $t.Out$\n

When you type enter after the last line, a window pops up in which you can
entrer a text. When you close the window, the text you entered is printed by the
print command.

Type help wx, you get something like :

35

Package wx v1.0.0- info-dev@creatis.insa-lyon.fr
Basic graphical interface elements (sliders, buttons ...) based on wxWidgets
Black boxes :
ColourSelector : Colour Selector dialog (bbfication of wxColourSele...
ColourSelectorButton : A button which displays a colour picker dialog whe...
CommandButton : Button which executes bbi commands
DirectorySelector : Pops up a directory selection dialog (wxDirDialog)
FileSelector : Pops up a file selection dialog for reading or sav...
InputText : A zone in which the user can enter a text (wxTextC...
LayoutLine : LayoutLine widget (wxBoxSizer)
LayoutSplit : Widget which splits a window in two fixed size par...
LayoutTab : LayoutTab widget (wxNotebook)
OutputText : Text zone to be inserted into a window (wxStaticTe...
RadioButton : RadioButton group widget 0-9 entries
Slider : Slider widget (wxSlider)

You can reproduce the same experiment as above using a Slider or a FileDialog
rather than a InputText..

There is a special kind of widget, called ’Layout’, designed to contain other
widgets in order to build larger dialog boxes.

For example, the LayoutSplit widget is a container which “splits” a window into
two parts, either horizontally or vertically, each part including another widget. The
initial size of the two parts can be fixed by the input ’Proportion’ and be adjusted
by the user thanks to a “handle”.

The example exampleLayoutSplit demonstrates its use. Run it : it displays a
window with two sliders. Move the sliders and close the window. Now look at the
source file to see how this is done :

File scripts/test/testSplit.bbs

load wx

new Slider s1
new Slider s2

new LayoutSplit s
connect s1.Widget s.Widget1
connect s2.Widget s.Widget2

exec s

End of file

First, the two sliders s1 and s2 are created. A LayoutSplit box s is also created.
The connect commands then “includes” the sliders in the split widget. The input

36

Widget is common to all widget boxes : every widget can be inserted into another
widget. The outputs Widget1,Widget2 are specific of layout widgets (in bbi type
help Slider : you will see the output Widget; type help LayoutSplit : you will
see the inputs Widget1 and Widget2 and the output Widget). When you connect
the Widget output of a box to the Widgeti input of a layout widget, you order to
include the widget in the layout. Of course, the order of connection is important. In
our case, the slider s1 is included first, then the slider s2 : s1 will be placed on top
of s2 (the LayoutSplit box is implemented that way, but this is arbitrary choice).

Right now, there are only three layout widgets in the wx package :

• the LayoutSplit widget we just described

• the LayoutLine widget can have multiple children (Widget1, Widget2,. . . Widget9
inputs) and divides its window into as much parts as children, each part of
equal size. The orientation of the LayoutSplit or of the LayoutLine can
be changed by the input Orientation. With only those two layout widgets
you can already create complex dialog boxes (of course layouts can be nested,
which leads to tree-like structures of widgets).
See the script exampleComplexLayoutSplit In LayoutSplit for an example.

• The LayoutTab widget arranges its children in different pages or ’tabs’ (wxNotebook-
based). The label of each page is the name of the widget it contains.

3.10 Deeper in the boxes

3.10.1 Default and mandatory inputs and outputs

• Any atomic black box has two default Inputs, which are created by the system
:

– BoxExecute : Any signal received by this input executes the box

– BoxProcessMode : Sets the processing mode of the box :

∗ Pipeline :The box executes itself only when an input was changed
(normal pipeline processing).

∗ Reactive : Re-processes immediately when any input changes.
To be more selective, better use ’connect A.BoxChange B.BoxExecute’.

∗ Always :Usefull for ’sources’, that must be processed, even when no
input changed (e.g. : FileSelector, ColorSelector)
This one is not end user intended (for Package developer only)

• And one default output :

– BoxChange : Signals any modification of the box. This output may be
connected if necessary to the BoxExecute input of an other box : each
time the boxes changes (e.g. a Slider is moved) the box it is connected
to will be forced to update.

37

If you create complex boxes, it is a good idea to define those inputs and
outputs to be able to force the execution of your complex box or be aware of
its changes...

• Any widget box has five Inputs, that will be dealt with only if the box is not
connected to the Widget i of any Layout box :

– WinHeight : Height of the window

– WinWidth : Width of the window

– WinTitle : Title of the window

– WinClose : Any received signal closes the window

– WinHide : Any received signal hides the window

– WinDialog : When set to ’true’, creates a dialog window, that blocks
the pipeline until it is closed (modal)

If you define a complex widget box, it is a good idea to define these inputs to
be able to customize your window settings.

• Any widget box has one mandatory Output :

– Widget : that is the wxWindow itself. If it’s not connected to the Widgeti
of any Layout box, then the box will create its own window (frame or
dialog) on execution. If it’s connected to the Widgeti of a Layout box,
it will be embedded in its parent window.

If you define a complex widget box, it is a good idea to use this standard name
for your window output

• Any Layout box (i.e. LayoutLine, LayoutSplit or LayoutTab) has one or more
mandatory Inputs :

– Widgeti : e.g. a LayoutSplit box (Widget which splits a window in two
resizeable parts) has two Input parameters Widget1 and Widget2, used
to embed the child windows.
e.g. a LayoutLine divides the window in up to 9 (depending on the
number of inputs Widget i) fixed size parts.

If you define a complex layout box, it is a good idea to use these standard
names for your sub-windows inputs.

38

4 Using third party Package

4.1 Plugging in a Package

bbStudio makes it easy for you : in the menu Tools just click on the option Plug
Package. You will be asked to ’Select package directory’. Browse untill you
find the install or the build directory, depending whether you installed the package
or not.

bbStudio will update the configuration file, generate the ’Package documenta-
tion’, and update the ’Boxes Lists’.

You will be able to use the new package just as you did for any other bbtk
canonical Package.

4.2 Hard incorporating of a Package

If the Package you want to use is supplied in a non standard way (e.g. : you where
given one ore more dynamic libraries (.dll or .so), and/or one or more directories
containing bbtk scripts (.bbs) you can edit your bbtk configuration and add the
appropriate paths, see 7.1.

4.3 Updating the documentation

You may add your own boxes (simple boxes, if you are aware enough in C++ language,
or complex boxes if you are aware enough in bbtk scripting).

To update the html help of this package, use the option Regenerate package
doc in the menu Tools of bbStudio. You’ll be prompted for the Package name.
Avoid using the -a option (Regenerate all), since it’s time consumming.

To update html boxes lists with the new boxes, use the option Regenerate
Boxes Lists in the menu Tools of bbStudio.

4.4 Using the package

The only thing you have to do is to include or load the package, within a script,
or from the Command part, and enjoy the black boxes it contains.

39

5 Using black boxes in C++ programs

A very useful feature is that you may use any widget black box within a C++ program
without worrying about writing a wxWidgets main application.

Let’s look a the following bbs script :

Load the packages
load std
load wx

Create the Objects
new Slider slider
new OutputText text
new LayoutLine layout

Graphical pipeline
connect slider.Widget layout.Widget1
connect text.Widget layout.Widget2

Execution pipeline
connect slider.BoxChange text.BoxExecute
connect slider.Out text.In

Go!
exec layout

User wants to create a slider and an output text, within a LayoutLine, and
display the slider value in the output text. Think about the (little!) nightmare to
code the same, in ’raw C++’, using wxWidgets.

The following C++ code does the same :

#include <bbtkFactory.h>
#include <bbwxSlider.h>
#include <bbwxOutputText.h>
#include <bbwxLayoutLine.h>

int main(int argv, char* argc[])
{
try
{
// we need to intanciate a bbtk::Factory to be aware of the adaptors
bbtk::Factory::Pointer factory = bbtk::Factory::New();

40

// Load the packages
// ----------------
factory->LoadPackage("std");
factory->LoadPackage("wx");

// Create the Objects
// ------------------
bbwx::Slider::Pointer slider = bbwx::Slider::New("slider");
bbwx::OutputText::Pointer text = bbwx::OutputText::New("text");
bbwx::LayoutLine::Pointer layout = bbwx::LayoutLine::New("layout");

// Graphical pipeline
bbtk::Connection::Pointer c1 = bbtk::Connection::New(slider,"Widget",

layout,"Widget1");

bbtk::Connection::Pointer c2 = bbtk::Connection::New(text,"Widget",
layout,"Widget2");

// Execution pipeline
// ------------------

// We have to pass the ’factory’, in order to call automatically an adaptor,
// if necessary.
bbtk::Connection::Pointer s2t = bbtk::Connection::New(slider,"Out",

text,"In",
factory);

bbtk::Connection::Pointer c3 = bbtk::Connection::New(slider,"BoxChange",
text,"BoxExecute");

layout->bbSetInputWinDialog(true);

// Go!
// ---
layout->bbExecute();

}
catch (bbtk::Exception e)
{
bbtk::MessageManager::SetMessageLevel("Error",1);
e.Print();

}
}

In this code, we use the headers of the \texttt{bbwx} \CPP library,

41

which define the black boxes of the \texttt{wx} package.

to be continued ...

42

6 bbs language reference

6.1 Pipeline creation and execution related commands

Table 1: bbs pipeline creation and execution related commands.
Command Parameters Effect

new <box-type> <box-name>
Creates a box of type box-type and
name box-name.

newgui <box-name> <gui-box-name>

Automatically creates a graphical user
interface with name gui-box-name for
the black box box-name and connects it
to the box inputs

delete <box-name> Destroys the box named box-name

connect <box1.output> <box2.input>
Connects the output output of the box
named box1 to the input input of the
box named box2

set <box.input> <value>

Sets the input input of the box named
box to the value value. An adaptor
must exist in the packages loaded which
converts a std::string to the type of
the input input.

exec <box-name>

Executes the box named box-name.
If needed the boxes connected to its
inputs are also processed recursively
(pipeline processing).

freeze
Allows to block execution commands
while keeping definition commands ac-
tive (this one is not for end user)

unfreeze
Turns back to ’normal’ mode (this one
is not for end user).

43

6.2 Package related commands

Table 2: bbs package related commands.
Command Parameters Effect

include <package-name>
Loads the package package-name and
includes all its complex box definition
scripts.

load <package-name>

Loads the atomic black boxes of pack-
age package-name. Loads the dynamic
library but not the complex boxes de-
fined in the scripts shipped with the
package. Use it only if you know that
you won’t work with its complex black
boxes

unload <package-name>

Unloads the package package-name.
The package must have been previously
loaded. No box of a type defined in this
package must still exist.

reset -
Deletes all boxes and unloads all pack-
ages so that the interpreter gets back to
its initial state

package <package-name>
All complex black boxes definitions un-
til the next endpackage will be stored
into the package package-name

endpackage - Closes a package command

44

6.3 Interpreter related commands

Table 3: bbs intepreter related commands.
Command Parameters Effect
help - Prints help on available commands

<command-name>
Prints help on the command
command-name

packages
Prints help on available packages and
their box types (without description)

<package-name>

Prints help on the package
package-name and its boxes (with
brief description). The package must
have been previously loaded

<box-type>

Prints help (with full description) on
the type of box box-type. The box
type must belong to a package which
has been previously loaded

message -
Prints information on available kinds of
messages and their current level

<kind> <level>
Sets the level of verbosity of the inter-
preter for the kind of messages kind to
level.

include <file-name>

Includes and executes the content of the
file named file-name exactly like if you
were typing its content at the place were
the include command is.

print <string>

Prints the string after substituting each
token of the form $box.output$ by the
adaptation to string of the value of the
output output of the box named box.
An adaptor must exist in the packages
loaded which converts the type of the
output output to a std::string.

graph ...
Generates the html doc including the
pipeline graph for a given complex box

index ...
Generates the html index of currently
loaded boxes types

config - Displays the configuration parameters

debug <debug-directive>

[expr—-C—-D] Prints debug info on
living bbtk objects containing the string
expr (default expr=”). -C checks the
factory integrity. -D turns on objects
debug info after main ends

quit - Exits the interpreter

45

6.4 Complex black box definition related commands

Table 4: bbs complex black box definition related commands.
Command Parameters Effect

define <box-type> [<package-name>]

Starts the definition of a complex
black box of type box-type. If
<package-name> is provided then in-
cludes the box in the given package
(otherwise it is defined in the cur-
rent package, i.e. user if outside a
package/endpackage block).

endefine -
Ends the definition of a complex black
box type

author <string>
Concatenate the string to the author
string of the current complex black box.

description <string>
Concatenate the string to the descrip-
tion of the current complex black box.

category <string>

Specifies the categories of the cur-
rent complex black box. The categories
must be separated by semicolons, e.g.
”widget;image”

kind <box kind>

Specifies the kind of the cur-
rent complex black box (ADAP-
TOR, DEFAULT ADAPTOR,
WIDGET ADAPTOR, DE-
FAULT WIDGET ADAPTOR)

input <name> <box.input> <help>

Defines a new input for the current
complex black box, named name. It is
defined as corresponding to the input
input of the box box.
<help> is the help string for the new
input. The box box must already have
been created in the complex box and of
course have an input named input.

output <name> <box.output> <help>

Defines a new output for the current
complex black box, named name. It is
defined as corresponding to the output
output of the box box. <help> is the
help string for the new output. The box
box must already have been created in
the complex box and of course have an
output named output.

Note : if outside a define/endefine block then the current complex black box
is ’user::workspace’, that is the main program equivalent (this is how applications
are documented). This remark holds for all complex black box related commands.

46

7 Install and run time issues

7.1 bbtk configuration file

At start, bbtk applications (bbStudio , bbi) try to open an xml configuration file
named bbtk config.xml. The search order is

1. The current directory

2. The subdir .bbtk of the user’s home directory.

• On Unix, the home directory is the one stored by the environnement
variable HOME, typically /home/username.

• On Windows, the home directory is the user’s profile directory stored by
the environnement variable USERPROFILE, typically C:\ Documents and
Settings\ username.

3. If none of these two paths contains the file then it creates a new one in the
.bbtk directory.

Information on bbtk configuration is obtained in bbStudio by clicking on the
Config button of the Command part toolbar.

If you did not installed other packages than the ones provided by bbtk , you get
something like :

=============
Configuration
=============
bbtk_config.xml : [/home/guigues/.bbtk/bbtk_config.xml]
Documentation Path : [/usr/local/bin/../share/bbtk/doc]
Data Path : [/usr/local/bin/../share/bbtk/data]
Temp Directory : []
File Separator : [/]
BBS Paths
--- [.]
--- [/usr/local/bin/../share/bbtk/bbs]
PACKAGE Paths :
--- [.]
--- [/usr/local/bin/../lib]

The first line let you know which configuration file is currently used.
You can open this file using bbStudio menu Files>Open bbtk Config file.
You will get something like :

<?xml version=\"1.0\" encoding=\"iso-8859-1\"?>
<config>

47

<bbs_path> </bbs_path>
<package_path> </package_path>

</config>

The xml tags bbs path and package path allow to set additionnal directories in
which to search for bbs files and packages dynamic libraries.

For example, if you add the line :

<bbs_path> /home/guigues/bbs </bbs_path>

Then the interpreter will search for bbs in the folder /home/guigues/bbs, which
allows a command like ’include bbMyBox.bbs’ to work if the folder /home/guigues/bbs
contains the file bbMyBox.bbs.

The same, the xml tag <package path> let you set additional path in which to
find a package dynamic library, hence allowing to load additionnal packages with
the ’load’ command.

All bbs and package paths are summmarized in the information output when
pressing ’Config’ in bbStudio . You can see that two bbs paths are always set :

• The current directory (.)

• The bbs folder of bbtk

Also, two package paths are always set :

• The current directory (.)

• The libraries folder of bbtk

Additional paths set in your bbtk config.xml are added after those standard
paths. Note that the order displayed is the one in which the folders are searched
when include or load commands are issued.

7.2 Misc

• bbStudio is written using the Advanced User Interface library of wxWidgets.
If, after some hazardous floating/docking operations onto the frame, you feel
very unhappy with the result, just remove from the hidden directory .bbtk
the file named bbStudio.aui.

48

	1 Introduction
	1.1 What is bbtk ?
	1.1.1 The black box philosophy
	1.1.2 bbtk components

	1.2 Content of this guide

	2 Getting started with bbStudio
	2.1 The interface
	2.1.1 'Files' part
	2.1.2 'Messages' part
	2.1.3 'Command' part
	2.1.4 'Help' part

	2.2 Running Demos and Examples
	2.3 Online Help
	2.3.1 Command line help
	2.3.2 Guides
	2.3.3 Boxes Help
	2.3.4 The Package Browser

	2.4 The Menu

	3 Writing black box scripts (bbs)
	3.1 The commands
	3.2 Creating and executing black boxes
	3.3 Connecting black boxes
	3.4 Creating complex black boxes
	3.5 Writing scripts files
	3.6 Creating complex black boxes that use complex black boxes
	3.7 Naming Conventions
	3.8 Creating command line applications
	3.9 Using graphical interface boxes (widget boxes)
	3.10 Deeper in the boxes
	3.10.1 Default and mandatory inputs and outputs

	4 Using third party Package
	4.1 Plugging in a Package
	4.2 Hard incorporating of a Package
	4.3 Updating the documentation
	4.4 Using the package

	5 Using black boxes in C++ programs
	6 bbs language reference
	6.1 Pipeline creation and execution related commands
	6.2 Package related commands
	6.3 Interpreter related commands
	6.4 Complex black box definition related commands

	7 Install and run time issues
	7.1 bbtk configuration file
	7.2 Misc

