
L Y O N

 Computer Science Department
Year 2010

1

Summary Report

Design and Development of the BlackBox Tool Kit (BBTK)

Graphic Pipelines Editor

Ricardo A. Corredor,

Enterprise:
CREATIS-LRMN INSA (Direction)

Bâtiment Blaise Pascal
7, avenue Jean Capelle
69621 Villeurbanne - France

Instructors:
Eduardo E. Dávila Serrano, software engineer, info-dev team CREATIS
Maciej Orkisz, head of info-dev team CREATIS
Béatrice Rumpler, Computer Science Department INSA-Lyon

Abstract
This project is an additional part of the Creatools platform developed in CREATIS laboratory. It is conceived as an extension of

the existing Black Box ToolKit (BBTK) framework that allows to design, to implement, to execute and to test new prototypes of
different methods in the treatment of medical images. The actual script language bbs (Black Box Script) allows to connect differ-
ent components (black boxes) describing the pipeline of these methods. The objective is to design and to implement an intuitive

and user-friendly graphical editor in order to provide an easier way to illustrate BBTK pipelines, and finally to generate the bbs
script files to be executed. With the editor it must be easy to package a set of boxes into a complex box that can be used later
as any atomic black box. Additionally, the use of this visual environment will reduce the complexity and the development time of

a treatment pipeline, as well as the quantity of mistakes made when the script is written.

Keywords
Visual programming environments, 2D visualization, software architecture, images processing, object oriented programming,

human–computer interaction.

Résumé
Ce projet est un élément supplémentaire de la plateforme de développement Creatools du laboratoire CREATIS. Il est conçu
comme une extension de l'actuel Black Box ToolKit (BBTK) qui permet de concevoir, tester et prototyper de nouvelles méthodes
en traitement d’images médicales et de maillages. Le langage script bbs (Script Black Box) nous permet de connecter les diffé-

rents composants (boîtes noires) en décrivant un pipeline de ses méthodes. L'objectif est la conception et réalisation d’un édi-
teur intuitif et simple afin de fournir un moyen plus simple pour illustrer pipelines BBTK, et finalement de générer le script fichiers
bbs à exécuter. Avec l'éditeur il doit être facile à regrouper un ensemble de boîtes dans une boîte complexe qui peut être utilisé

plus tard comme une boîte noire quelconque. En outre, l'utilisation de cet environnement visuel permettra de réduire la com-
plexité et le temps de développement d'un pipeline de traitement, ainsi que la quantité d'erreurs commises lorsque le script est
écrit.

Mots clefs
Environnements visuels de programmation, visualisation 2D, architecture logicielle, traitement d’image, programmation orientée
objet, interaction homme machine.

2

Introduction

The laboratory Creatis (Center for Research in
Image Acquisition and Processing for Health-
care) is a biomedical imaging research unit
working in information and communication
science and technology, engineering sciences
and life sciences. It is divided into eight re-
search groups emphasized in particular as-
pects of medical image processing. Additional-
ly, the administrative and logistic department,
and the informatics services department sup-
port many activities developed in the laborato-
ry.

The department of informatics services (info-
team) has two areas: networks and equipment
support, and the scientific software develop-
ment (info-dev) area. The principal info-dev
mission is “to put in common and maintain the
software components developed in the lab, so
as to minimize the programming burden of the
researchers”

1
. One important application de-

veloped to help researchers and developers is
Creatools.

The Creatools software suite includes a set of
open-source and cross-platform tools (libra-
ries, applications, utilities…) for quick prototyp-
ing of medical image visualization and analysis
applications. This suite uses various third party
libraries (itk, vtk, wxWidgets, KWWidgets,
boost...) and custom components in order to
provide to the final users a set of different pos-
sibilities to create powerful image treatment
applications. Moreover, Creatools is ruled by
the CeCILL-B license for free software.

The Black Box Toolkit (BBTK) is one of the
most important tools included in the suite. The
following definition obtained from the PLUME-
FEATHER project reference

2
 summarizes its

principal objectives. It is a flexible framework
for the design, programming, testing and proto-
typing of applications. It provides the user with
libraries of high-level components for: the con-
struction of graphical interfaces, input/output
(file management), display, interaction. These
components (black boxes) can be heterogene-
ous. The black boxes can be assembled into
pipelines, using a very intuitive script language
(bbs), in order to realize either stand-alone
applications or meta-widgets, reusable in other

1
 This information is taken from Creatis web site. For more

information about the laboratory and its units go to:
http://www.creatis.insa-lyon.fr/site/en. Accessed 10 June
2010
2
 Projet Plume. Creatools Project Reference. Online:

http://www.projet-plume.org/en/relier/creatools. Accessed
10 June 2010

applications. A set of black boxes can be en-
capsulated in one complex box with the same
characteristics of an atomic black box. Script
edition and testing are made easy by a graphi-
cal environment (bbStudio). bbStudio automat-
ically generates from the script a graphical
representation of the pipeline, by use of the
Graphviz facility.

However, the complexity of a particular pipe-
line in terms of number of boxes increases the
lines of code (LOC) in the bbs descriptor file.
The graphical representation is only a non-
editable static PNG picture. Gradually the high
quantity of text becomes a restriction to under-
stand and edit applications. The advantages to
manage prototypes disappear when the user
does not have a direct control over the objects.

A visual representation of the boxes and their
connections described by the bbs script lan-
guage gives an overview of the pipeline. How-
ever, a direct manipulation of black boxes and
its connections is desired, in order to provide
user-friendly and intuitive interactions, reduc-
ing time to modify the diagram. Furthermore,
the number of typing and syntax errors should
be reduced if the script is automatically gener-
ated from the graphical representation. The
use of graphical metaphors would also hide a
programming and logic background that is not
necessarily mastered by all the possible BBTK
users, such as scientists, medical researchers,
mathematicians …

The objective of this project is to design and to
implement a usable, extensible, and highly
modifiable graphical editor for the BBTK
(BBTK GEditor), which supports the principal
functions of the current scripting language. In
addition, the editor has to be easily integrated
to Creatools, using useful components already
implemented.

In the next section will be discussed the prin-
cipal system requirements to be developed
according to the user needs. Next, a revision
of some existing applications which provide
interesting interaction techniques will be made
and the option of reusing some components or
libraries found will be discussed. Later, a solu-
tion proposal will be presented, beginning by a
high-level component description and finishing
with the description of the BBTK GEditor main
classes. Afterwards, some important technical
aspects and the state of the actual version will
be described. Finally, the conclusions and
future work section will make a revision of the
objectives and the tasks to continue the devel-
opment of BBTK GEditor.

It is important to note that all the tables, dia-
grams, or important figures that could be diffi-
cult to understand due to the two-columns
style will be placed in the web site of the
project and a reference will be added before
their analysis.

System requirements

In the development of every new application it
is necessary to describe the principal needs of
the users, in terms of the functionalities and
the system. A good method to describe the
functional requirements is to fill a Use Case
UML diagram.

The Use Case Diagram is an UML definition
which shows a summarized description of the
system actors, and their functional require-
ments or use cases.

Figure 1. BBTK GEditor Use Case Diagram

The use cases diagram of BBTK GEditor (Fig.
1) presents four groups of functional require-
ments. The groups on the left bring together
the basic requirements, or what it was called,
standard requirements. They are functions that
the application and the workspace must sup-
port as a visual editor compared to the other
existing tools. These requirements are:

Application Requirements
FR-01: Create a new pipeline diagram
FR-02: Save pipeline diagram
FR-03: Load pipeline diagram

Scene Requirements
FR-04: Move the scene
FR-05: Zoom in/Zoom out

On the other hand, the two groups on the right
join the actions over the objects designed in
base to the BBTK definitions, and also the
most specific requirements to support all the
functionalities included in BBTK. The list of
specific requirements is:

Objects Requirements
FR-06: Add a black box
FR-07: Remove a black box
FR-08: Connect boxes

FR-09: Remove a connection
FR-10: Select an object
FR-11: Move an object

BBTK Specific Requirements
FR-12: Execute pipeline
FR-13: Show BBTK packages and boxes list
FR-14: Create a complex black box
FR-15: Save the BBS script
FR-16: Load a BBS script

Additionally to the functional requirements
description, it is necessary to present the re-
strictions that the system must solve. A stan-
dard form in software engineering is to identify
the quality attributes [4] that principally affect
the system architecture and design. To pro-
pose a solution for the BBTK GEditor it was
selected the following collection.

Reusability: The editor can reuse code and

components already made in Creatools libra-
ries. The architecture must reflect the integra-
tion with other modules.

Extensibility: Including new functionalities in

the editor has to be easy and low-cost. The
solution must be scalable and low coupled.

Modifiability: Due to the constant rotation of

developers in info-dev, changes must be easy
to perform; without a big effort. A complete
documentation is essential.

Portability: Creatools can run in different plat-

forms. For that, it is important that BBTK GEdi-
tor works in all the platforms supported by
Creatools, i.e. currently: Windows, Linux and
Mac OS.

Usability: The user interface has to be simple,

coherent and intuitive.

Context

This context review was looking for easy reus-
able and available implementations that could
be modified to accomplish the objectives of
BBTK GEditor. The principal restrictions were
imposed by the non-functional requirements
described in the last section. All these factors
affect the decision of using an external com-
ponent, because it makes dependence to a
code conceived by other group. However, the
revision was not only searching a general li-
brary with the basic functions to interact with
black boxes, but also the mainly used ideas in
terms of objects and GUI widgets distribution,
interaction techniques, colors, and so on. In
fact, a conclusion of this analysis will show the

advantages and disadvantages of visual envi-
ronments, as well as the difference between
BBTK GEditor and other similar applications.

Figure 2. FxEngine visual environment

After searching possible visual programming
environments, libraries or applications, a set
with the most relevant characteristics was se-
lected and evaluated according to the quality
attributes already stated. Principally, the Ex-
tensibility (EXT), Modifiability (MOD), Portabili-
ty (POR), and Usability (USA) could affect the
final decision and could show the differences
among them. The result of this study was pub-
lished online

3
 in a table that has the descrip-

tion, the analysis of Pros and Cons, and finally
the quality attributes that are included in each
implementation.

After comparing the alternatives, Open Inven-
tor and FxEngine (Fig. 2) were the nearest
frameworks to the requirements and specifica-
tions. However, after consulting the web sites
and servers of both projects it was very difficult
to get a trustful and stable version. They didn’t
have a complete documentation and the
projects had not been updated for a long time.

One factor that affected the final decision was
that info-dev needs fully control of its tools.
This means that the introduction of external
technologies was an important risk, and the
specificity of the editor with BBTK and its inte-
gration, will require many changes to reach all
the functional requirements.

Another significant reference as a visual pro-
gramming environment is Mevislab. It is a de-
velopment environment for medical image
processing and visualization. It has a very
powerful and consistent tool to design net-
works, but it has some constraints. For exam-
ple, it is difficult to follow a very big diagram

3
 Context revision table: http://www.creatis.insa-

lyon.fr/~corredor/ContentPages/Documentation.html#Cont
ext

and it is not possible to modularize the dia-
grams. It is also commercial software and it
was not possible to access the code.

System Architecture and Design

The BBTK GEditor Analysis Diagram
4
 propos-

es a high-level extraction of the principal func-
tional and non-functional requirements. It is
important to note that this diagram does not
reflect the implementation, but the principal
concepts to develop a good detailed design
and the relation between all the concepts. Ad-
ditionally, the information flow can be inferred
in order to have a functional overview of the
program.

Regarding the bases of the detailed design,
some design patterns were used in order to
assemble functionalities with restrictions. Wiki-
pedia propose a very concise definition of a
design pattern which is “a formal way of docu-
menting a solution to a design problem in a
particular field of expertise” [3].

Figure 3. Graphical Objects Model-View-Controller

One pattern highly used in GUI development is
the Model-View-Controller (MVC) pattern (Fig.
3) that makes a division between the GUI and
the logic domain. In BBTK GEditor, this pattern
is adapted in two levels: in the application and
the BBTK graphical objects. Inside the applica-
tion exists a division between control and view
components, such as browsers, panels, but-
tons, menus, etc., and the BBTK graphical
objects module. For the graphical objects, the
same MVC design made for the Contours
module of creaMaracasVisu library is reused.
The model of each object keeps the state, the
spatial position, and some individual characte-
ristics. The view has the visual actors and the
necessary information to paint them. The con-
troller responds to user actions and updates
both, the model and the view.

Additionally, to manage the actions in the
scene it was used the Observer/Observable
pattern (Fig. 4). This pattern “defines a one-to-
many dependency between objects so that

4
 Analysis diagram: http://www.creatis.insa-

lyon.fr/~corredor/ContentPages/Documentation.html#Anal
ysis

when one object changes state, all its depen-
dents are notified and updated automatically”
[2]. When an object in the pipeline changes its
state, the scene manager is notified to update
the other elements.

Figure 4. Observer design pattern

According to these design guidelines, it was
possible to define a global architecture for the
implementation. Firstly, in order to reuse the
components developed with the third party
libraries of Creatools, it was necessary to use
them as well for BBTK GEditor. The architec-
ture diagram (Fig. 5) presents the principal
dependences among the components.

Figure 5. BBTK GEditor Component Diagram

The GUI will be implemented using wxWidgets
objects and the virtual canvas will be managed
by VTK [1]. Nevertheless, reusing some parts
of creaMaracasVisu library will help to include
the VTK objects in wxWidgets objects. This
custom library has also a system to manage
the interaction of the user with the virtual
world, and the implemented MVC of some
graphical objects, for example the connections
between black boxes. Finally, BBTK GEditor
has a total dependence with BBTK in aspects
such as reusing some GUI objects to show the
list of black boxes and its information, revising
the possible connections between objects, and
executing the pipelines translated into tempor-
al bbs files.

Inside the principal BBTK GEditor is developed
the first level of the MVC described before
(Fig. 6). A division into three static libraries is
made in order to conserve the low coupling
and to delegate functions in specific modules.
The KernelBBTKGEditor library joins together
the logic definition of the graphical objects in

the scene, i.e. the models in the MVC imple-
mentation for the objects. The WxBBTKGEdi-
tor library works as the view and part of the
controller, having the objects which mainly
depend of wxWidgets library. Lastly, the
VtkBBTKGEditor library brings together the
view and controllers of the graphical objects
that uses the VTK external library.

Figure 6. BBTK GEditor libraries composition

Each static library has a more detailed descrip-
tion presented in UML class diagrams

5
, but an

explanation of the main classes in each library
is useful to understand them.

In the kernel diagram it is possible to see all
the principal core concepts presented in the
analysis diagram, but having a more clear idea
about the implementation. All the graphical
objects extend of a general GObjectModel
which has the common characteristics among
the elements, for example the position in the
VTK virtual world. The dependence of creaMa-
racasVisu contour model to create the connec-
tion, and the emergence of a new type of ob-
jects, GComplexPortType are two important
considerations. These new elements will be
necessary when creating complex black box-
es. The application will have a parameter to
enable this option and to decide the inputs and
outputs of the new box. They will be
represented as a simple box in the scene with
one port and a name, depending in the port
type: complex input or complex output. After
adding the complex ports to the scene it is
possible to save the bbs file of a complex box
to be reused in a pipeline.

The WxBBTKGEditor classes describe the
frames, dialogs, menus that compose the GUI.
The wxVtkSceneManager makes the connec-
tion between wxWidgets and VTK elements
and controls the state of the objects in the
scene. The creation and addition of each
graphical object is made by this important
class. A mechanism of drag-and-drop from the
Package Browser of BBTK is used to insert an

5
 Libraries Class diagrams: http://www.creatis.insa-

lyon.fr/~corredor/ContentPages/Documentation.html#Desi
gn

element in a specific position of the virtual
world.

Finally, the VtkBBTKGEditor provides control-
lers and views of the graphical objects, imple-
mented with external objects. Modifying the
graphical representation of each object, its
colors and size can be easily performed
changing an individual class or a general con-
stants file included in the implementation.

Implementation and Test

The implementation of BBTK GEditor was
made using the object-oriented programming
language, C++. To generate projects for differ-
ent programming environments like Visual
Studio, CodeBlocks, Eclipse, among others,
the Cmake build system was used. Using this
tool it is possible to compile code in different
platforms.

The actual version was tested with Creatools
2.0.3 and creaThirdPartyLibraries 3.0.1, which
includes the latest VTK and wxWidgets stable
versions (these applications can be down-
loaded from the Creatools website). In this
version (Fig. 7), almost all the functional re-
quirements were implemented with a basic and
simple interface. Only the requirement which
produces a pipeline diagram from a bbs file
was not implemented due to time, but the ar-
chitecture supports its addition. The principal
objective in the development process was
implementing the functions in a way that some
custom parameters could be easily changed
according to the results of later user tests and
validations. However, some requirements were
found in the development and it was not possi-
ble to have a stable solution to these needs.
For example, the complex black box creation
and edition is performed, but the list of black
boxes is not updated with the inclusion of the
new complex box.

Figure 7. An example of a black boxes pipeline

 using BBTK GEditor

Regarding the test and validation phase, the
software development team gave a feedback
about the relevance of the requirements to be

implemented. They also provided some impor-
tant guidelines about the interactivity and visu-
al aspects of the editor. Nevertheless, it is
necessary to design a test plan to supply a
complete version of this implementation that
can be quickly and effortlessly downloaded,
installed, and used by all the possible users of
BBTK GEditor.

Conclusions

A first version of the graphical editor for BBTK
library was designed and implemented. This
implementation permits to design and execute
black boxes pipelines The architecture
presents a modifiable and extensible structure
that follows some design patterns in order to
resolve the principal non-functional require-
ments of the software.

In spite of the appearance in the process of
new requirements that were not considered in
the initial analysis, their implementation did not
produce a high effort. These changes showed
the level of flexibility and extensibility in the
design, although it is indispensable to continue
the development of BBTK GEditor in order to
have a more stable version for the users.

Future Work

More development cycles will be needed to
test all the requirements and to present a fully
functional application to the users. However, a
list of important changes, corrections, and
additions has been made in order to help the
future programmers to identify the principal
problems with the actual version. This list will
be published using MantisBT, a free bug track-
ing system. It is also essential to continue the
code documentation and to create a friendly
user manual that explains the functions of the
editor.

References

[1] Will Schroeder, Ken Martin, and Bill Lorensen. “The
Visualization Toolkit”, Third Edition. Kitware Inc. 1997

[2] SourceMaking. “Behavioral patterns. Observer design
pattern”, Sourcemaking, teaching IT professionals, 2010.
URL: http://sourcemaking.com/design_patterns/

observer. [Online]. Accessed 9 June 2010

[3] Wikipedia contributors, “Design pattern”. Wikipedia,

The Free Encyclopedia, 2010. [Online]. Accessed 9 June
2010.

[4] Wikipedia contributors, “List of system quality
attributes”, Wikipedia, The Free Encyclopedia, 2010.
[Online]. Accessed 12 June 2010.

