00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019 #include "marMatrix.h"
00020 #include <math.h>
00021 #include "marMathConst.h"
00022
00023 #include "curve.hxx"
00024
00025
00026 int kCurve::MAX_DIMENSION = 0;
00027 int kCurve::MAX_STATE_DIMENSION = 0;
00028
00029 #define KCURVE_CHANGE_DIMENSIONS( ) \
00030 kCurve::MAX_DIMENSION = ( kCurve::MAX_DIMENSION > _dimension )?\
00031 kCurve::MAX_DIMENSION: _dimension;\
00032 kCurve::MAX_STATE_DIMENSION = ( kCurve::MAX_STATE_DIMENSION > _stateDim )?\
00033 kCurve::MAX_STATE_DIMENSION: _stateDim;
00034
00035
00036
00037
00038 void f_catmull( double* N, double t )
00039 {
00040 double t2 = t * t;
00041 double t3 = t2 * t;
00042
00043 N[ 0 ] = -t3 + ( 2 * t2 ) - t;
00044 N[ 1 ] = ( 3 * t3 ) - ( 5 * t2 ) + 2;
00045 N[ 2 ] = -( 3 * t3 ) + ( 4 * t2 ) + t;
00046 N[ 3 ] = t3 - t2;
00047 }
00048
00049
00050 void f_d1_catmull( double* N, double t )
00051 {
00052 double t2 = t * t;
00053
00054 N[ 0 ] = -( 3 * t2 ) + ( 4 * t ) - 1;
00055 N[ 1 ] = ( 9 * t2 ) - ( 10 * t );
00056 N[ 2 ] = -( 9 * t2 ) + ( 8 * t ) + 1;
00057 N[ 3 ] = ( 3 * t2 ) - ( 2 * t );
00058 }
00059
00060
00061 void f_d2_catmull( double* N, double t )
00062 {
00063 N[ 0 ] = -( 6 * t ) + 4;
00064 N[ 1 ] = ( 18 * t ) - 10;
00065 N[ 2 ] = -( 18 * t ) + 8;
00066 N[ 3 ] = ( 6 * t ) - 2;
00067 }
00068
00069
00070 kCurve::kCurve( size_t dim, size_t sdim )
00071 : _dimension( dim ), _stateDim( sdim )
00072 {
00073 _mC = new double[ _dimension * 4 ];
00074 _mS = new double[ _stateDim * 4 ];
00075 KCURVE_CHANGE_DIMENSIONS( );
00076 }
00077
00078
00079 kCurve::~kCurve( )
00080 {
00081 reset( );
00082 delete[] _mC;
00083 delete[] _mS;
00084 }
00085
00086
00087 kCurve& kCurve::operator=( const kCurve& r )
00088 {
00089 reset( );
00090 delete[] _mC;
00091 delete[] _mS;
00092
00093 _dimension = r._dimension;
00094 _stateDim = r._stateDim;
00095
00096 _mC = new double[ _dimension * 4 ];
00097 _mS = new double[ _stateDim * 4 ];
00098
00099 for( int i = 0; i < r._controlPoints.size( ); i++ )
00100 addControlPoint( r._controlPoints[ i ],
00101 r._controlState[ i ] );
00102 return( *this );
00103 }
00104
00105
00106 uint32_t kCurve::getClosestControlPoint( double* p )
00107 {
00108 int res;
00109
00110 marVector vp (p,_dimension),cp(_dimension);
00111 double dist, min;
00112
00113 cp = _controlPoints[ 0 ];
00114 min = ( cp - vp ).norm2( );
00115 res = 0;
00116
00117 for( int i = 1; i < _controlPoints.size( ); i++ )
00118 {
00119 cp = _controlPoints[ i ];
00120 dist = ( cp - vp ).norm2( );
00121 if( min > dist )
00122 {
00123 min = dist;
00124 res = i;
00125 }
00126 }
00127
00128 return( res );
00129 }
00130
00131
00132 void kCurve::getPoint( double* p, double s )
00133 {
00134 double t;
00135 int i;
00136
00137 calculeSplineArguments( s, i, t );
00138 evaluate( p, i, t );
00139 }
00140
00141
00142 void kCurve::getState( double* st, double s )
00143 {
00144 double t;
00145 int i;
00146
00147 calculeSplineArguments( s, i, t );
00148 evalState( st, i, t );
00149 }
00150
00151
00152 void kCurve::getTangent( double* tg, double s )
00153 {
00154 double t;
00155 int i;
00156
00157 calculeSplineArguments( s, i, t );
00158 derivative1( tg, i, t );
00159
00160
00161 marVector tmp( tg, _dimension );
00162 memcpy( tg,
00163 ( double* )( tmp.normalize( ) ),
00164 _dimension * sizeof( double ) );
00165 }
00166
00167
00168 void kCurve::getNormal( double* n, double s )
00169 {
00170 double t;
00171 int i;
00172
00173 calculeSplineArguments( s, i, t );
00174 derivative2( n, i, t );
00175
00176
00177 marVector tmp( n, _dimension );
00178 memcpy( n,
00179 ( double* )( tmp.normalize( ) ),
00180 _dimension * sizeof( double ) );
00181 }
00182
00183
00184 void kCurve::getBinormal( double* b, double s )
00185 {
00186
00187 marVector tg( _dimension ), n( _dimension );
00188 double t;
00189 int i;
00190
00191 calculeSplineArguments( s, i, t );
00192 derivative1( ( double* )tg, i, t );
00193 derivative2( ( double* )n, i, t );
00194
00195 memcpy( b,
00196 ( double* )( tg.cross( n ).normalize( ) ),
00197 _dimension * sizeof( double ) );
00198 }
00199
00200
00201 void kCurve::addControlPoint( double* cp, double* sp )
00202 {
00203 double* tmp = new double[ _dimension ];
00204 memcpy( tmp, cp, _dimension * sizeof( double ) );
00205 _controlPoints.push_back( tmp );
00206 if( sp != NULL && _stateDim > 0 ) {
00207
00208 double *tmp1 = new double[ _stateDim ];
00209 memcpy( tmp1, sp, _stateDim * sizeof( double ) );
00210 _controlState.push_back( tmp1 );
00211
00212 } else
00213 _controlState.push_back( NULL );
00214
00215 if( _controlPoints.size( ) == 1 ) {
00216
00217 _controlT.push_back( 0.0 );
00218 _controlL.push_back( 0.0 );
00219
00220 } else {
00221
00222
00223
00224
00225
00226 marVector v1( _dimension ), v0( _dimension );
00227 double len;
00228 int p;
00229
00230 p = _controlPoints.size( ) - 1;
00231 v1 = _controlPoints[ p ];
00232 v0 = _controlPoints[ p - 1 ];
00233 len = ( v1 - v0 ).norm2( ) + _controlL[ p - 1 ];
00234 _controlL.push_back( len );
00235 _controlT.push_back( 0.0 );
00236 for( int i = 0; i < _controlT.size( ); i++ )
00237 _controlT[ i ] = _controlL[ i ] / len;
00238 }
00239 }
00240
00241
00242 void kCurve::getControlPoint( int i, double* cp, double* sp )
00243 {
00244 memcpy( cp, _controlPoints[ i ], _dimension * sizeof( double ) );
00245 if( sp != NULL && _controlState[ i ] != NULL && _stateDim > 0 )
00246 memcpy( sp, _controlState[ i ], _stateDim * sizeof( double ) );
00247 }
00248
00249
00250 void kCurve::setControlPoint( int i, double* cp, double* sp )
00251 {
00252 memcpy( _controlPoints[ i ], cp, _dimension * sizeof( double ) );
00253 if( sp != NULL && _stateDim > 0 )
00254 memcpy( _controlState[ i ], sp, _stateDim * sizeof( double ) );
00255
00256 if( _controlPoints.size( ) > 1 ) {
00257
00258 marVector v1( _dimension ), v0( _dimension );
00259 double len;
00260 int it;
00261
00262 for( it = i; it < _controlT.size( ); it++ ) {
00263 v1 = _controlPoints[ it ];
00264 v0 = _controlPoints[ it - 1 ];
00265 len = ( v1 - v0 ).norm2( ) + _controlL[ it - 1 ];
00266 _controlL[ i ] = len;
00267 }
00268
00269 for( it = 0; it < _controlT.size( ); it++ )
00270 _controlT[ it ] = _controlL[ it ] / len;
00271 }
00272 }
00273
00274
00275 double kCurve::length( double step )
00276 {
00277
00278 marVector nV( 4 ), q( _dimension ), p( _dimension );
00279
00280 marMatrix mC( _mC, _dimension, 4 );
00281 double l = 0;
00282
00283 loadCatmullControlMatrix( 0 );
00284 f_catmull( ( double* )nV, 0 );
00285 p = ( mC * nV ) * 0.5;
00286
00287 for( int i = 0; i < _controlPoints.size( ); i++ ) {
00288
00289 loadCatmullControlMatrix( i );
00290 for( double t = 0.0; t <= 1.0; t += step ) {
00291
00292 f_catmull( ( double* )nV, t );
00293 q = ( mC * nV ) * 0.5;
00294 l += ( q - p ).norm2( );
00295 p = q;
00296
00297 }
00298
00299 }
00300 return( l );
00301 }
00302
00303
00304 double kCurve::projectOverControlPoints( double* pr, double* pt )
00305 {
00306
00307 marVector xpc( 3 ), xpo( pt, 3 );
00308
00309 marVector xpa( 3 ), xpn( 3 );
00310
00311 marVector xpr( pr, 3 );
00312 double sina, sinn, cosa, cosn, tha, thn;
00313 double d, e, t, l, tca, tcn, lca, lcn;
00314 uint32_t icp = getClosestControlPoint( pt );
00315
00316 getControlPoint( icp, ( double* )xpc, NULL );
00317
00318 if( icp == 0 ) {
00319
00320 getControlPoint( icp + 1, ( double* )xpn, NULL );
00321
00322 sinn = ( ( xpo - xpc ).cross( xpn - xpc ) ).norm2( ) /
00323 ( ( xpo - xpc ).norm2( ) * ( xpn - xpc ).norm2( ) );
00324 cosn = ( xpo - xpc ).dot( xpn - xpc ) /
00325 ( ( xpo - xpc ).norm2( ) * ( xpn - xpc ).norm2( ) );
00326
00327
00328 thn = acos( cosn ) + ( ( sinn >= 0 )? PI: 0 );
00329
00330 if( 0 <= thn && thn <= (PI/2) ) {
00331
00332 tca = _controlT[ icp ];
00333 lca = _controlL[ icp ];
00334 tcn = _controlT[ icp + 1 ];
00335 lcn = _controlL[ icp + 1 ];
00336 xpa = xpc;
00337
00338 d = ( ( xpn - xpa ).cross( xpa - xpo ) ).norm2( ) /
00339 ( xpn - xpa ).norm2( );
00340 e = ( xpo - xpa ).norm2( );
00341 e = ( e * e ) - ( d * d );
00342 e = sqrt( e );
00343 xpr = ( ( xpn - xpa ).normalize( ) * e ) + xpa;
00344 l = ( xpr - xpa ).norm2( ) + lca;
00345 t = ( ( ( tcn - tca ) / ( lcn - lca ) ) * ( l - lca ) ) + tca;
00346
00347 } else {
00348
00349 xpr = xpc;
00350 t = 0;
00351
00352 }
00353
00354 } else if( icp == _controlPoints.size( ) - 1 ) {
00355
00356 getControlPoint( icp - 1, ( double* )xpa, NULL );
00357
00358 sina = ( ( xpa - xpc ).cross( xpo - xpc ) ).norm2( ) /
00359 ( ( xpa - xpc ).norm2( ) * ( xpo - xpc ).norm2( ) );
00360 cosa = ( xpa - xpc ).dot( xpo - xpc ) /
00361 ( ( xpa - xpc ).norm2( ) * ( xpo - xpc ).norm2( ) );
00362
00363
00364 tha = acos( cosa ) + ( ( sina >= 0 )? PI: 0 );
00365
00366
00367 if( 0 <= tha && tha <= (PI/2) ) {
00368
00369 tca = _controlT[ icp - 1 ];
00370 lca = _controlL[ icp - 1 ];
00371 tcn = _controlT[ icp ];
00372 lcn = _controlL[ icp ];
00373 xpn = xpc;
00374
00375 d = ( ( xpn - xpa ).cross( xpa - xpo ) ).norm2( ) /
00376 ( xpn - xpa ).norm2( );
00377 e = ( xpo - xpa ).norm2( );
00378 e = ( e * e ) - ( d * d );
00379 e = sqrt( e );
00380 xpr = ( ( xpn - xpa ).normalize( ) * e ) + xpa;
00381 l = ( xpr - xpa ).norm2( ) + lca;
00382 t = ( ( ( tcn - tca ) / ( lcn - lca ) ) * ( l - lca ) ) + tca;
00383
00384 } else {
00385
00386 xpr = xpc;
00387 t = _controlT[ _controlPoints.size( ) - 1 ];
00388
00389 }
00390
00391 } else {
00392
00393 getControlPoint( icp - 1, ( double* )xpa, NULL );
00394 getControlPoint( icp + 1, ( double* )xpn, NULL );
00395
00396 sina = ( ( xpa - xpc ).cross( xpo - xpc ) ).norm2( ) /
00397 ( ( xpa - xpc ).norm2( ) * ( xpo - xpc ).norm2( ) );
00398 sinn = ( ( xpo - xpc ).cross( xpn - xpc ) ).norm2( ) /
00399 ( ( xpo - xpc ).norm2( ) * ( xpn - xpc ).norm2( ) );
00400 cosa = ( xpa - xpc ).dot( xpo - xpc ) /
00401 ( ( xpa - xpc ).norm2( ) * ( xpo - xpc ).norm2( ) );
00402 cosn = ( xpo - xpc ).dot( xpn - xpc ) /
00403 ( ( xpo - xpc ).norm2( ) * ( xpn - xpc ).norm2( ) );
00404
00405
00406 tha = acos( cosa ) + ( ( sina >= 0 )? PI: 0 );
00407
00408 thn = acos( cosn ) + ( ( sinn >= 0 )? PI: 0 );
00409
00410 if( tha < thn ) {
00411
00412 tca = _controlT[ icp - 1 ];
00413 lca = _controlL[ icp - 1 ];
00414 tcn = _controlT[ icp ];
00415 lcn = _controlL[ icp ];
00416 xpn = xpc;
00417
00418 } else {
00419
00420 tca = _controlT[ icp ];
00421 lca = _controlL[ icp ];
00422 tcn = _controlT[ icp + 1 ];
00423 lcn = _controlL[ icp + 1 ];
00424 xpa = xpc;
00425
00426 }
00427
00428 d = ( ( xpn - xpa ).cross( xpa - xpo ) ).norm2( ) /
00429 ( xpn - xpa ).norm2( );
00430 e = ( xpo - xpa ).norm2( );
00431 e = ( e * e ) - ( d * d );
00432 e = sqrt( e );
00433 xpr = ( ( xpn - xpa ).normalize( ) * e ) + xpa;
00434 l = ( xpr - xpa ).norm2( ) + lca;
00435 t = ( ( ( tcn - tca ) / ( lcn - lca ) ) * ( l - lca ) ) + tca;
00436
00437 }
00438
00439 return( t );
00440 }
00441
00442
00443 double kCurve::projectOverCurve( double* pr, double* pt )
00444 {
00445 return( 0 );
00446 }
00447
00448
00449 void kCurve::evaluate( double* p, int i, double t )
00450 {
00451
00452 marVector nV( 4 ), q( _dimension );
00453
00454 marMatrix mC( _mC, _dimension, 4 );
00455
00456 loadCatmullControlMatrix( i );
00457 f_catmull( ( double* )nV, t );
00458 q = ( mC * nV ) * 0.5;
00459 memcpy( p, ( double* )q, _dimension * sizeof( double ) );
00460 }
00461
00462
00463 void kCurve::evalState( double* s, int i, double t )
00464 {
00465
00466 marVector nV( 4 ), q( _stateDim );
00467
00468 marMatrix mS( _mS, _stateDim, 4 );
00469
00470 loadCatmullStateMatrix( i );
00471 f_catmull( ( double* )nV, t );
00472 q = ( mS * nV ) * 0.5;
00473 memcpy( s, ( double* )q, _stateDim * sizeof( double ) );
00474 }
00475
00476
00477 void kCurve::derivative1( double* d, int i, double t )
00478 {
00479
00480 marVector nV( 4 ), q( _dimension );
00481
00482 marMatrix mC( _mC, _dimension, 4 );
00483
00484 loadCatmullControlMatrix( i );
00485 f_d1_catmull( ( double* )nV, t );
00486 q = ( mC * nV ) * 0.5;
00487 memcpy( d, ( double* )q, _dimension * sizeof( double ) );
00488 }
00489
00490
00491 void kCurve::derivative2( double* d, int i, double t )
00492 {
00493
00494 marVector nV( 4 ), q( _dimension );
00495
00496 marMatrix mC( _mC, _dimension, 4 );
00497
00498 loadCatmullControlMatrix( i );
00499 f_d2_catmull( ( double* )nV, t );
00500 q = ( mC * nV ) * 0.5;
00501 memcpy( d, ( double* )q, _dimension * sizeof( double ) );
00502 }
00503
00504
00505 void kCurve::reset( )
00506 {
00507 int i;
00508
00509 for( i = 0; i < _controlPoints.size( ); i++ )
00510 delete[] _controlPoints[ i ];
00511 _controlPoints.clear( );
00512
00513 for( i = 0; i < _controlState.size( ); i++ )
00514 if( _controlState[ i ] != NULL ) delete[] _controlState[ i ];
00515 _controlState.clear( );
00516
00517 _controlT.clear( );
00518 _controlL.clear( );
00519 }
00520
00521
00522 void kCurve::loadCatmullControlMatrix( int i )
00523 {
00524
00525 marMatrix mC( _mC, _dimension, 4 );
00526 int l;
00527
00528 for( int j = i - 1; j <= i + 2; j++ ) {
00529
00530 for( int k = 0; k < _dimension; k++ ) {
00531
00532 l = ( j >= 0 )? j: 0;
00533 l = ( l >= _controlPoints.size( ) )?
00534 _controlPoints.size( ) - 1: l;
00535 mC( k, j - i + 1 ) = _controlPoints[ l ][ k ];
00536
00537 }
00538
00539 }
00540 }
00541
00542
00543 void kCurve::loadCatmullStateMatrix( int i )
00544 {
00545
00546 marMatrix mS( _mS, _stateDim, 4 );
00547 int l;
00548
00549 for( int j = i - 1; j <= i + 2; j++ ) {
00550
00551 for( int k = 0; k < _stateDim; k++ ) {
00552
00553 l = ( j >= 0 )? j: 0;
00554 l = ( l >= _controlState.size( ) )?
00555 _controlState.size( ) - 1: l;
00556 mS( k, j - i + 1 ) = _controlState[ l ][ k ];
00557
00558 }
00559
00560 }
00561 }
00562
00563
00564 void kCurve::calculeSplineArguments( double s, int& i, double& t )
00565 {
00566 for( i = 0; i < _controlT.size( ) && _controlT[ i ] <= s; i++ );
00567
00568 if( s < 1.0 ) i--;
00569
00570 t = ( ( _controlL[ _controlL.size( ) - 1 ] * s ) - _controlL[ i ] ) /
00571 ( _controlL[ i + 1 ] - _controlL[ i ] );
00572 t = ( s < 1.0 )? t: 1.0;
00573 i = ( s < 1.0 )? i: _controlT.size( ) - 1;
00574 }
00575
00576