

Estimation du mouvement dans des séquences d'images échographiques : application à l'élastographie de la thyroïde

Thèse de doctorat

Adrian Basarab

Directeurs de thèse : Philippe Delachartre et Vasile Buzuloiu

Co-tutelle de thèse avec l'UPB

10 septembre 2008

1 - Introduction

2 - Etat de l'art

3 - Contributions scientifiques

4 - Conclusions et perspectives

1 - Introduction

2 - Etat de l'art

3 - Contributions scientifiques

4 - Conclusions et perspectives

Contexte médical

Enjeu médical

Discriminer les tissus pathologiques (tumeurs) des tissus sains

Hypothèse biologique

 Développement d'une pathologie accompagné par un changement d'élasticité des tissus

Exemples

Thyroïde

Module de Young (kPa)

Thyroïde saine : 9 ± 3

Tumeur bénigne : 16 ± 5

Adénome carcinome

papillaire: 50 ± 30

[Lyshchik, Ultrasonic imaging, 2005]

Sein

Module de Young (kPa)

Tissu sain: 3 ± 1

Carcinome infiltrant

 1^{er} degré : 10 ± 2

 $3^{\text{ème}}$ degré : 42 ± 12

[Samani, Physics in medicine and biology, 2007]

Contexte scientifique

- Mesurer localement l'élasticité des tissus mous par échographie
 - Elastographie ultrasonore statique [Ophir, Ultrasonic Imaging, 1991]
 - Compression des tissus avec la sonde échographique (palpation à distance)
 - Estimation du mouvement → images des déformations du milieu

Elastographie ultrasonore dynamique, impulsionnelle, ARFI

[Krouskop, J. Rehabil. Res. Dev, 1997] [Sandrin, Ultrasonic Imaging, 1999][Nightingale, UMB, 2002]

Verrous

- Estimer localement de très petits déplacements
 - Inférieurs aux pixels de l'image
 - 1 pixel: 20 μm x 120 μm (axial x latéral)
 - Déplacements : 5 à 50 μm
- Estimer des mouvements complexes
 - Complexité des tissus

M- muscle

C – artère carotide

T – thyroïde

V – veine jugulaire

Tr – trachée

→ Image échographique de la thyroïde

Compression main libre appliquée avec la sonde échographique

Images ultrasonores

Radio-fréquences (RF)

- Rarement disponible en clinique
- Convient aux mouvements de petite amplitude (élastographie)

Mode B

- Perte d'information par la démodulation
- Convient aux mouvements de grande amplitude (imagerie cardiaque)

1 - Introduction

2 - Etat de l'art

3 - Contributions scientifiques

4 - Conclusions et perspectives

Etat de l'art

- Estimation du mouvement
 - Principaux domaines d'application : compression d'images (vidéo), robotique, météorologie, médecine.
- Elastographie ultrasonore statique
 - Méthodes 1-D, 2-D
- Critères d'évaluation du champ de mouvement estimé
- Orientations choisies

Estimation du mouvement

Méthodes différentielles (flux optique)

[Horn&Shunck, 1981] [Nagel, IEEE PAMI, 1986] [Barron, J. Comp. Vision, 1992]

- Hypothèse de la conservation de l'intensité lumineuse des pixels
- Problème mal posé → besoin de régularisation

Mise en correspondance de blocs (BM)

[Noguchi, IEEE IP, 1999]

Permet l'estimation de mouvements de petite et grande amplitude

Approches spatio-temporelles

[Suhling, IEEE IP, 2005] [Alexiadis, IEEE IP, 2007]

Prise en compte de plusieurs images

Modélisations paramétriques du mouvement

[Holden, IEEE TMI, 2008] [Sarrut, IEEE TMI, 2007]

- Translations rigides, affine, projectif, bilinéaire, etc.
- Polynômes (formes libres)

Elastographie - méthodes 1-D

Estimation du retard temporel

- Par corrélation [Ophir, Ultrasonic Imaging, 1991] [Lubinski, IEEE UFFC, 1999]
- Par passage par zéro de la corrélation complexe

[Pesavento, IEEE UFFC, 1999]

Combinant les deux approches : module + phase [Ebbini, IEEE UFFC, 2006]

Estimation du facteur d'échelle

[Alam, IEEE UFFC, 1998] [Brusseau, Ultrasonic Imaging, 2000] [Fromageau, JASP, 2007] [Lindop, IEEE UFFC, 2008]

Elastographie - méthodes 2-D

Méthode classique : speckle tracking (BM)

[Konofagou, Ultrasound in Med&Biol, 1998] [Bohs, Ultrasonics, 2000]

- Modèles paramétriques de mouvement [Zhu, Ultrasonic Imaging, 2002]
- Méthodes différentielles [Pellot-Barakat, IEEE TMI, 2004]
 - Hypothèse de la conservation de l'intensité lumineuse non respectée

Méthodes 2-D avec modulations latérales

- Adapter la formation des images RF [Jensen, IEEE UFFC, 1998]
 - Modulations dans les deux directions des images

Méthodes 2-D avec modulations latérales

- Exploiter l'information de phase dans la direction latérale des images RF 2-D
- Utiliser les méthodes 1-D dans la direction latérale [Liebgott, IEEE UFFC, 2007]
 - Estimation séparable du vecteur de déplacement
 - Passage par zéro de la phase de la corrélation complexe
 - Dans les directions axiale et latérale
- Méthode itérative d'ajustement de la phase de la corrélation complexe

[Sumi, IEEE UFFC, 2007] [Sumi, IEEE UFFC, 2008]

Estimation des translations 2-D

Critères de comparaison

- Images de simulation
 - Erreur absolue entre le déplacement vrai et estimé (axial et latéral)
- Images expérimentales
 - Critère de recalage [Fitzpatrick, Hanbook of Med. Imaging, 2000]
 - Recalage d'une image avec le champ dense estimé $i_2
 ightarrow \hat{i}_1$
 - Moyenne des coefficients de corrélation calculés bloc à bloc entre i_1 et $\hat{i_1}$

$$\xi \in [0\% \ 100\%]$$

CNR entre l'inclusion (tumeur) et le milieu englobant (thyroïde)

$$CNR = \left| \frac{\mu_A - \mu_B}{\sigma_A + \sigma_B} \right|$$

[Bae, IEEE EMBS, 2004] [Li, IEEE ICIT, 2005]

Orientations choisies

- Estimation basée sur la mise en correspondance de blocs
 - Moins sensible aux changements d'intensité lumineuse
- Exploitation des spécificités des images RF 2-D
 - Estimateur 2-D subpixélique des translations locales
- Modélisation paramétrique du mouvement local
 - Prendre en compte la complexité des mouvements
- Utilisation des séquences de plusieurs images
 - Prendre en compte les spécificités de l'élastographie ultrasonore

1 - Introduction

2 - Etat de l'art

3 - Contributions scientifiques

4 - Conclusions et perspectives

3- Contributions scientifiques

A- Estimation du mouvement basée sur la phase des signaux (PBM)

B- Méthode de mise en correspondance de blocs déformables (BDBM)

C- Estimation du mouvement dans des séquences d'images adaptée à l'élastographie main libre

Contribution scientifiques

Estimation du mouvement avec des paires d'images

A) PBM

- Exploiter la forme des signaux 2-D issus des images RF 2-D
- Modèle local de mouvement : translations rigides

• B) BDBM

- Modèle bilinéaire pour prendre en compte les déformations locales
- Applicable sur des images RF classiques

C) Estimation du mouvement dans des séquences d'images

 Utilise les méthodes d'estimation du mouvement entre des paires d'images

3- Contributions scientifiques

A- Estimation du mouvement basée sur la phase des signaux (PBM)

B- Méthode de mise en correspondance de blocs déformables (BDBM)

C- Estimation du mouvement dans des séquences d'images adaptée à l'élastographie main libre

A- Estimation du mouvement basée sur la phase des signaux

Objectif

 Méthode de type BM avec une estimation subpixélique et 'rapide' des translations locales 2-D

Approche proposée

- Utiliser la phase des signaux
- Fournir une solution analytique à l'estimation locale des translations
 - Basée sur une forme a priori des images RF 2-D

Outil

 Images RF 2-D de simulation et expérimentales (acquises avec l'échographe Ultrasonix)

Motivation de l'estimation locale subpixélique

• Estimation du mouvement avec BM classique pour différents facteurs d'interpolation des grilles de recherche des blocs

Erreur axiale moyenne [µm]

Erreur latérale moyenne [µm]

Temps de calcul relatif à l'estimation sans raffinement

Facteur d'interpolation des grilles de recherche

- Objectif: même précision que la méthode de BM classique avec des facteurs d'interpolation des grilles de recherche importants
 - Sans interpoler les images
 - Temps de calcul comparable au BM classique sans interpolation

Exemple introductif (1-D)

En 2-D

- Images RF 2-D (avec modulations latérales)
- Deux inconnues (les déplacements sur les deux directions)
- Phases de deux signaux analytiques 2-D
- Estimateur analytique des translations

Calcul des images de phase

Images RF 2-D	i_1	i_2
Transformées de Fourier	$oldsymbol{I_1} \wedge$	I ₂ ∧
Garder un seul quadrant dans le domaine des fréquences		
Images complexes	i_{11} , i_{12}	i_{21}, i_{22}
Images de phase	ϕ_{11} , ϕ_{12}	ϕ_{21}, ϕ_{22}

Images de phase:
$$\phi_{ij}(x_1, x_2) = \arctan\left(\frac{Im(i_{ij}(x_1, x_2))}{Re(i_{ij}(x_1, x_2))}\right), \quad i, j = 1, 2$$

Exemple de calcul d'une image de phase

Méthode proposée (PBM)

Champ dense de mouvement 2-D

$$i_2(x_1, x_2) = i_1(x_1 + u(x_1, x_2), x_2 + v(x_1, x_2))$$

Modèle local

Dans les images RF 2-D

 $-(f_1,f_2)$ fréquences dans les deux directions de l'espace, supposées connues

$$s_{1}(x_{1},x_{2}) = w_{s1}(x_{1},x_{2})\cos(2\pi f_{1}(x_{1}-d_{s11}))\cos(2\pi f_{2}(x_{2}-d_{s12}))$$

$$s_{2}(x_{1},x_{2}) = w_{s2}(x_{1},x_{2})\cos(2\pi f_{1}(x_{1}-d_{s21}))\cos(2\pi f_{2}(x_{2}-d_{s22}))$$
Décalages relatifs entre s_{1} et s_{2} d_{1} d_{2}

Différences de phase

$$\phi_{I}(x_{1}, x_{2}) = 2\pi f_{1}d_{1} + 2\pi f_{2}d_{2}$$

$$\phi_{2}(x_{1}, x_{2}) = -2\pi f_{1}d_{1} + 2\pi f_{2}d_{2}$$

Estimation locale des translations

Résultats

- Comparaison de la méthode proposée par rapport à :
 - BM classique (BM NCC)
- Simulation numérique
 - Critère : erreur absolue (axiale et latérale)
- Données expérimentales sur fantôme
 - Critères:
 - CNR (intérieur et extérieur de l'inclusion, calculé sur les images de déformation)

Simulation des images RF

- Approche système [Yu, IEEE IP, 2002]
 - Convolution entre une PSF et une distribution de diffuseurs
 - Allures des PSF pour le RF et le RF 2-D [Liebgott, IEEE UFFC, 2008]

$$h(x_1, x_2) = exp\left(-\pi \left(\frac{x_1^2}{\sigma_1^2} + \frac{x_2^2}{\sigma_2^2}\right)\right) cos(2\pi f_2 x_2)$$

 $\times cos(2\pi f_1 x_1)$

Simulation numérique

Simulation de deux images RF 2-D

 Milieu : même caractéristiques que le fantôme CIRS (Tissue Simulation & Phantom Technology, USA)

- Coefficient de Poisson : 0,49
- Compression axiale (déplacement imposé obtenu avec Femlab*)
- PSF

$$f_1 = 0.5 \, \text{mm}^{-1}, f_2 = 5 \, \text{mm}^{-1}; \ \sigma_1 = 3 \, \text{mm}, \ \sigma_2 = 1 \, \text{mm}$$

Dimension d'un pixel : 19,6 μm × 75,2 μm (soit 10×25 points/période)

^{*} Logiciel de calcul aux éléments finis

Résultats de simulation

 Comparés au BM NCC pour différents facteurs d'interpolation (axial,latéral)

Données expérimentales

- Formation de deux images RF 2-D
 - Acquisition des données brutes avec l'échographe Ultrasonix
 - Sur le fantôme CIRS
 - Fréquence centrale 8 MHz, sonde linéaire avec 128 éléments

Dimension d'un pixel : 19,6 μm × 75,2 μm (soit 8×24 points/période)

Résultats expérimentaux

PBM: conclusion

 Méthode d'estimation du mouvement utilisant des images de phase

Avantages :

- Estimation analytiques 2-D des translations
 - Appliquée directement sur les signaux
- Précision par rapport aux méthodes classiques (BM NCC)
- Adaptée aux images faiblement échantillonnées

Inconvénients :

- Adaptée aux images RF 2-D (l'estimation axiale fonctionne également sur les images RF classiques)
- Modèle local : translations rigides

PBM: conclusion

• 3 articles:

- [Basarab et al., IEEE UFFC, en révision]
 - Méthode PBM
- [Basarab et al., IEEE IP, accepté sous corrections mineures]
 - Développement mathématique n-D de l'estimateur analytique
 - Étude statistique de l'estimateur
- [Liebgott, Basarab, et al., IEEE UFFC, 2008]
 - Formation d'images RF 2-D adaptées à l'imagerie du mouvement

3 conférences

- IEEE EMBC '07, Gretsi '07, IEEE ICASSP '06

3- Contributions

A- Estimation du mouvement basée sur la phase des signaux

B- Méthode de mise en correspondance de blocs déformables

C- Estimation du mouvement dans des séquences d'images adaptée à l'élastographie main libre

B- Méthode de mise en correspondance de blocs déformables

Objectif

Prendre en compte la complexité spatiale du mouvement

Approche proposée

 Modèle de mouvement bilinéaire pour contrôler la déformation locale

Outil

Images RF de simulation et expérimentales (sur fantôme et sur thyroïde)

Motivation

Exemples de déformation

- Nécessité de prendre en compte les déformations locales
- Modèle des translations rigides insuffisant

Méthode proposée (BDBM)

Estimation locale

- ROI autour du nœud courant
- Estimation par BM classique (ou *PBM*) des déplacements des coins *C*
- 2 systèmes de 4 équations avec 4 inconnues
- Déformation des blocs recherchés suivant le modèle bilinéaire estimé à l'itération précédente

Résultats

- Comparaison des résultats par rapport au BM classique
- Simulation numérique
 - Critère : erreur absolue (axiale et latérale)
- Données expérimentales sur thyroïde
 - Critère:
 - CNR (entre la tumeur et la thyroïde, calculé sur les images de déformation et sur les images échographiques mode B)

Simulation numérique

Caractéristiques du milieu simulé

90
$$E(x_1, x_2) = 50 + 50 \exp\left(-\pi \left(\frac{x_1}{4}\right)^2\right) \exp\left(-\pi \left(\frac{x_2}{4}\right)^2\right)$$

Coefficient de Poisson 0,49

- Simulation de deux images RF classiques
 - Compression axiale de 2% (dilatation latérale de 0,98%)
 - PSF (paramètres de l'échographe Siemens Elegra)

$$f_2 = 7.5MHz$$
; $\sigma_1 = 1.09mm$; $\sigma_2 = 0.36mm$;

Résultats de simulation

Erreurs d'estimation

Ecart type de l'erreur absolue en µm			
Axial		Latéral	
BDBM	ВМ	BDBM	BM
0,39	1,1	2,7	13,4

Cartes des déformations axiales

Résultats expérimentaux

Images mode B

Vecteurs de déplacement

Cartes des Déformations axiales (%)

• Thyroïde saine

Tumeur maligne

1,37 (1,25 avec le BM)

BDBM: conclusion

 Méthode d'estimation du mouvement utilisant un maillage déformable (modèle bilinéaire)

Avantages :

- Méthode plus robuste que le BM classique
- Peut être appliquée sur des images RF classiques
- Peut être utilisée avec l'estimateur analytique des translations (PBDBM) sur des images RF 2-D

• Inconvénient :

Temps de calcul plus important que le BM (ou le PBM)

BDBM: conclusion

- 1 article:
 - [Basarab et al., Elsevier MIA, 2008]
 - Méthode BDBM appliquée à l'élastographie de la thyroïde
- 1 conférence
 - IEEE ICIP '07
 - Application de la méthode à l'élastographie ultrasonore et à l'estimation du flux sanguin (avec des images mode B)

Profil de vitesse

Profil de cisaillement

3- Contributions

A- Estimation du mouvement basée sur la phase des signaux

B- Méthode de mise en correspondance de blocs déformables

C- Estimation du mouvement dans des séquences d'images adaptée à l'élastographie main libre

C- Estimation du mouvement dans des séquences d'images adaptée à l'élastographie main libre

Objectif

- Prendre en compte une séquence de plusieurs images
- Tenir compte de la compression appliquée
- Visualiser les tumeurs thyroïdiennes

Approche proposée

- Moyennage du déplacement sur une séquence avec prise en compte de la direction de la compression
- Nouvelle cartographie pour visualiser les tumeurs

Outil

Images RF de simulation et expérimentales (sur fantôme et sur thyroïde)

Motivation

Schéma de compression main libre des tissus

Motivation

- Hypothèse biologique : tumeur plus dure que le milieu englobant
- Hypothèse physique : homogénéité des vecteurs de déplacement à l'intérieur d'une tumeur
 - Au cours de la compression des tissus

 <u>Paramètre choisi</u>: orientation des vecteurs de déplacement

Méthode proposée

Orientation globale de la compression

- Hypothèse: la direction principale de la compression passe par les points qui ont subit le déplacement latéral le plus faible (pour chaque profondeur)
- Pour une profondeur x_{20} $x_{10} = arg \min_{x_1} \left(\left| u(x_1, x_{20}, t) \right| \right)$
- Régression linéaire

$$x_2 = x_1 \cdot \gamma(t) + \delta(t)$$

Exemple

Compression non-axiale

Méthode proposée

Entrée **Traitement** Sortie Estimer le champ dense de mouvement (N-1) champs entre chaque paire d'images consécutives denses 2-D Estimer l'orientation de la compression 2×(N-1) paramètres globaux de la entre chaque paire d'images consécutives compression (N-1) champs denses 2-D Extraire une séquence exploitable. Champ dense Calculer le champ dense moyen. moyen $2 \times (N-1)$ paramètres globaux de la Carte paramétrique compression Direction locale du déplacement (DLD)

Champ dense moyen

- Trier la séquence
 - L'angle γ soit le plus petit possible
 - Le décalage δ soit le plus proche de la mi-largeur
 - Garder une séquence de T images

Déplacement moyen le long de la trajectoire

Dans les deux directions (axiale et latérale)

Seuils fixes

Carte paramétrique

$$DLD(x_{1},x_{2}) = \frac{\overline{u}(x_{1},x_{2})}{\overline{v}(x_{1},x_{2})}$$

Résultats sur thyroïde

- Images acquises in-vivo sur un patient atteint d'un cancer thyroïdien
 - Séquence de 10 images acquise avec un échographe Siemens Elegra
 - Compression main libre avec la sonde échographique
 - Contours tracés par le médecin sur les images mode B

Résultats

Séquences : conclusion

- Estimation du mouvement adaptée à l'élastographie main libre
 - Estimation de l'orientation globale de la compression
 - Tri de la séquence
 - Calcul du champ dense moyen de mouvement
- Nouvelle carte paramétrique adaptée à l'élastographie de la thyroïde
 - Meilleure discrimination entre la tumeur et la thyroïde (CNR ~3,5 fois plus grand que sur les élastogrammes classiques)
- 1 article
 - [Basarab et al., VLSI (Springer), 2008]
- 1 conférence
 - IEEE ISBI '08

1 - Introduction

2 - Etat de l'art

3 - Contributions scientifiques

4 - Conclusions et perspectives

Conclusions

- Estimation du mouvement basée sur la phase des signaux
 - Images RF 2-D
 - Adaptée à l'estimation subpixélique
- Mise en correspondance de blocs déformables
 - Prise en compte de la complexité spatiale du mouvement
- Estimation dans des séquences d'images
 - Tri de la séquence (orientation de la compression)
 - Moyennage du déplacement
 - Nouvelle cartographie pour discriminer les tumeurs thyroïdiennes
- Validation des méthodes sur des données de simulation et expérimentales

Perspectives

- Mettre en œuvre la méthode PBM sur l'échographe Ultrasonix
- Etendre la méthode PBM en trois directions
- Complexifier le modèle des translations rigides
- Tester les méthodes sur d'autres organes
- Régularisation (spatio) temporelle du mouvement
- Prendre en compte des a priori (de forme et sur le mouvement à estimer)

Estimation du mouvement dans des séquences d'images échographiques : application à l'élastographie de la thyroïde

Thèse de doctorat

Adrian Basarab

Directeurs de thèse : Philippe Delachartre et Vasile Buzuloiu

Co-tutelle de thèse avec l'UPB

10 septembre 2008

Publications dans des revues internationales avec comité de lecture

Acceptées

- [Basarab 08d] A. Basarab, H. Liebgott, F. Morestin, A. Lychshik, T. Higashi, R. Asato, P. Delachartre. A method for vector displacement estimation with ultrasound images and its application for thyroid nodular disease. *Medical Image Analysis*, vol.12, n°3, p. 259-274, 2008.
- [Basarab 08c] A. Basarab, A. Lyshchik, C. Grava, V. Buzuloiu, P. Delachartre, Ultrasound image sequence registration and its application for thyroid nodular disease, *The Journal of Signal Processing Systems*, Springer, special issue on Biomedical Imaging, sous press, 2008.
- [Liebgott 08] H. Liebgott, A. Basarab, P. Gueth, C. Cachard, P. Delachartre. Lateral RF images synthesis using synthetic aperture imaging technique. *IEEE UFFC*, vol.55, n°9, p. 2097-2103, 2008.
- [Basarab 08b] A. Basarab, H. Liebgott, P. Delachartre. Analytic estimation of subsample spatial shift using the phases of multidimensional analytical signals. *IEEE Transactions on Image Processing*, accepté sous corrections mineures, 2008.

En révision

- [Basarab 08a] A. Basarab, P. Gueth, H. Liebgott, P. Delachartre. Phase-based block matching and its application to motion estimation with specific RF images. *IEEE UFFC*, *en révision*, 2008.
- [Duboeuf 08] F. Duboeuf, H. Liebgott, A. Basarab, E. Brusseau, P. Delachartre, D. Vray. A simple reliable technique for static Young's modulus measurement of tissue-mimicking materials. *Medical Physics*, *en révision*, 2008.

Conférences avec actes

- [Basarab 08] A. Basarab, C. Grava, V. Buzuloiu, and P. Delachartre. Multi-frame motion estimation for freehand elastography and its application to thyroid tumor imaging. In IEEE ISBI, Paris, France, May 2008.
- [Basarab 07c] A. Basarab, W. Aoudi, H. Liebgott, D. Vray, and P. Delachartre. Parametric deformable block matching for ultrasound imaging. In IEEE ICIP, San Antonio, USA, September 2007.
- [Basarab 07b] A. Basarab, C. Grava, V. Buzuloiu, and P. Delachartre. Estimation de décalages subpixéliques par ajustement de la phase des signaux complexes. In **Gretsi**, Troyes, France, September 2007.
- [Basarab 07a] A. Basarab, Pierre Gueth, H. Liebgott, and P. Delachartre. Two-dimensional least-squares estimation for motion tracking in ultrasound elastography. In IEEE EMBC, Lyon, France, August 2007.
- [Duboeuf 07] F. Duboeuf, H. Liebgott, A. Basarab, E. Brusseau, P. Delachartre, and D. Vray. Static mechanical assessment of elastic Young's modulus of tissue mimicking materials used for medical imaging. In Proc. 29th Int. IEEE EMBC 2007, Lyon, France, pages 3450-3453, 2007.
- [Gueth 07] P. Gueth, A. Basarab, H. Liebgott, and P. Delachartre. Beamforming techniques for motion estimation in ultrasound elastography. In IEEE International Ultrasonics Symposium, New-York, USA, October 2007.
- [Basarab 06] A. Basarab, H. Liebgott, C. Grava, and P. Delachartre. Two-dimensional subsample estimation using plane phase fitting. In IEEE ICASSP, volume 2, Toulouse, France, pages 1152-1155, May 2006.
- [Liebgott 06] H. Liebgott, A. Basarab, D. Loizeau, J.E. Wilhjelm, J.A. Jensen, and P. Delachartre. Improved Beamforming for Lateral Oscillations in Elastography Using Synthetic Aperture Imaging. In IEEE International Ultrasonics Symposium, Vancouver, Canada, pages 2168-2171, October 2006.

Bibliographie

- [Ophir 91] J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, X. Li. Elastography: a quantitative method for imaging the elasticity of biological tissues, *Ultrasonic Imaging*, pp. 111-134, 1991.
- [Pesavento 99] A. Pesavento, C. Perrey, M. Krueger, H. Ermert. A time-efficient and accurate strain estimation concept for ultrasonic elastography using iterative phase zero estimation. *IEEE Transactions on UFFC, Vol. 46, N°5, pp.* 1057-67, 1999.
- [Fromageau 03] J. Fromageau, P. Delachartre. Description of a new strain and displacement estimator for elastography. *IEEE Ultrasonics Symposium*, Vol.2 pp. 5-8, 2003.
- **[Ebbini 06]** E. S. Ebbini. Phase-coupled two-dimensional speckle tracking method. *IEEE Transactions on UFFC, Vol. 53, N°5, pp.* 972-990, 2006.
- [Lubinski 99] M.A. Lubinski, E.Y Emelianov, M. O'Donnell.Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation. *IEEE Transactions on UFFC*, Vol. 46, N°1, pp. 82-96, 1999.
- [Jensen 98] J. A. Jensen and P. Munk. A new method for estimation of velocity vectors. *IEEE Transactions on UFFC*, vol. 45, pp. 837-851, 1998.
- [Pellot 04] C. Pellot-Barakat, F. Frouin, M. F. Insana, A. Herment. Ultrasound elastography based on multiscale estimations of regularized displacement fields. *IEEE Transactions on Medical Imaging*, Vol. 23, N°2, 2004.
- [Suhling 05] M. Suhling, M. Arigovindan, P. Hunziker, M. Unser. Motion analysis of echocardiograms using a local-affine, spatio-temporal model. *IEEE Trans. Image Process.*, vol. 14, N°4, pp. 525-536, 2005.
- [Lyshchik 05] A. Lyshchik et al., Elastic moduli of thyroid tissues under compression, *Ultrasonic Imaging*, vol. 27, N°2, 2005.
- [Krouskop 97] E. Krouskop et al., A pulsed Doppler ultrasonic system for making noninvasive measurements of the mechanical properties of soft tissues, J. Rehabil. Res. Dev, vol. 24, N°2, 1997.
- [Sandrin 99] L. Sandrin et al., Time-resolved pulsed elastography with ultrafast ultrasonic imaging, Ultrasonic imaging, vol. 21(4), 1999.
- [Nightingale 02] K.R. Nightingale et al., Acoustic radiation force impulse imaging: In vivo demonstration fo clinical feasibility, UMB, vol. 28(2), 2002.

Creatis

- [Horn 81] Horn, Schunk, Determing optical flow, Artificial Intelligence, vol. 17, 1981.
- [Nagel 86] H. Nagel et al. An investigation of smoothness constraints for the estimation of displacement vectors from image sequences, IEEE PAMI, vol. 8(1), 1986.
- [Barron 92] J.L. Barron et al., Performance of optical flow techniques, Int. J. of Computer Vision, vol. 12(1), 1992.
- [Noguchi 99] Y. Noguchi et al., Fast full search block matching algorithm for MPEG-4 video, ICIP, vol. 1, 1999.
- [Sarrut 07] D. Sarrut et al., A comparison framework for breathing motion estimation methods from 4-d images, IEEE TMI, vol. 26(12), 2007.
- [Alam 98] S.K. Alam et al., An adaptative strain estimator for elastography, IEEE UFFC, vol. 45(2), 1998.
- [Brusseau 00] E. Brusseau et al., Axial strain imaging using a local estimator of the scale factor from RF ultrasound signals, Ultrasonic Imaging, vol. 22(2), 2000.
- [Lindop 08] J. E. Lindop, Phase-based ultrasonic deformation, IEEE UFFC, vol. 55(1), 2008.
- [Konofagou 98] Konofagou, Ophir, A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson's ratios in tissues, UMB, vol. 24(8), 1998.
- [Bohs 00] L.N. Bohs et al., Speckle tracking for multidimensional flow estimation, Ultrasonics, vol. 38, 2000.
- [Sumi 08] C. Sumi, Regularization for ultrasonic measurements of tissue displacement vector and strain tensor, IEEE UFFC, vol. 55(4), 2008.
- [Yu 02] Yu, Acton, Speckle reducing anisotropic diffusion, IEEE IP, vol. 11(11), 2002.

Creatis

Méthode proposée (PBM)

Champ dense de mouvement 2-D

$$i_2(x_1, x_2) = i_1(x_1 + u(x_1, x_2), x_2 + v(x_1, x_2))$$

Parcours des nœuds

- Grille rectangulaire de nœuds de pas (G_1, G_2)
- Parcours en triangle adapté à l'élastographie ultrasonore
- Initialisation des translations du nœud courant N_i
 - Notation : (D_{i1}, D_{i2})

Modèle local

Différences de phase

$$\phi_{1}(x_{1}, x_{2}) = 2\pi f_{1}d_{1} + 2\pi f_{2}d_{2}$$

$$\phi_{2}(x_{1}, x_{2}) = -2\pi f_{1}d_{1} + 2\pi f_{2}d_{2}$$

- Élimination des sauts de phase par seuillage
 - Sous l'hypothèse de petits déplacements (rendue possible par l'initialisation)

Estimation analytique des translations

Système de deux équations avec deux inconnues

$$\hat{d}_1 = \frac{\overline{\phi}_1 - \overline{\phi}_2}{4\pi f_1} \qquad \qquad \hat{d}_2 = \frac{\overline{\phi}_1 + \overline{\phi}_2}{4\pi f_2}$$

- Avec $\overline{\phi}_l$ et $\overline{\phi}_2$ les valeurs moyennes de ϕ_l et ϕ_2 sur le domaine Ω
- Estimation finale pour le nœud courant
 - Ajout des déplacements initiaux

$$d_{1}[N(P_{i1}, P_{i2})] = \hat{d}_{1} + D_{i1}$$
$$d_{2}[N(P_{i1}, P_{i2})] = \hat{d}_{2} + D_{i2}$$

Résultats de simulation

 Comparés au CCPR pour différents facteurs de décimation des images RF 2-D (axial, latéral)

Résultat expérimentaux

Critère de recalage

Contributions

• Estimation du mouvement entre une paire d'images

• Estimation du mouvement avec une séquence d'images

Orientations choisies

- Méthode d'estimation du mouvement adaptée aux images RF 2-D
 - Exploiter la forme des signaux 2-D issus de ces images
 - Estimateur 2-D subpixélique des translations locales
- Méthode d'estimation du mouvement basée sur un maillage déformable
 - Prendre en compte la complexité des mouvements
 - Modélisation paramétrique locale du mouvement
- Étendre ces méthodes à des séquences d'images
 - Prendre en compte les spécificités de l'élastographie ultrasonore

Méthode proposée (PBM)

Champ dense de mouvement 2-D

$$i_2(x_1, x_2) = i_1(x_1 + u(x_1, x_2), x_2 + v(x_1, x_2))$$

Estimation locale des translations

Estimation locale

Différences de phase

$$\phi_{I}(x_{I}, x_{2}) = 2\pi f_{I}d_{I} + 2\pi f_{2}d_{2}$$

$$\phi_{2}(x_{I}, x_{2}) = -2\pi f_{I}d_{I} + 2\pi f_{2}d_{2}$$

Système de deux équations avec deux inconnues

$$\hat{d}_1 = \frac{\overline{\phi_1} - \overline{\phi_2}}{4\pi f_1} \qquad \qquad \hat{d}_2 = \frac{\overline{\phi_1} + \overline{\phi_2}}{4\pi f_2}$$

– Avec $\overline{\phi_l}$ et $\overline{\phi_2}$ les valeurs moyennes de ϕ_l et ϕ_2 sur le domaine de définition des blocs

Résultats sur thyroïde – patient 2

Lateral distance [mm]

Convergence BDBM

Paramètres BDBM

