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Quantum mechanics

Schrödinger equation: − ~2

2m∇
2ψ = −V (a)ψ + Eψ
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Wave functions

Schrödinger equation: − ~2

2m∇
2ψ = −V (a)ψ + Eψ
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Localization effect
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Objective

Image processing inspired by quantum mechanics

I ? How to compute wave vectors for images?

? Are they useful for image processing tasks?

? What kind of image processing tasks can be addressed with such tools?

Quantum mechanics-inspired image processing



9/42

Outline

1 State of the art

2 Quantum adaptive basis

3 Quantum image denoising

4 Quantum many-body physics

5 Beyond denoising

6 Conclusion

Quantum mechanics-inspired image processing



10/42

Outline

1 State of the art

2 Quantum adaptive basis

3 Quantum image denoising

4 Quantum many-body physics

5 Beyond denoising

6 Conclusion

Quantum mechanics-inspired image processing



11/42

Existing literature

Seminal (theoretical) work in quantum signal processing1

Image segmentation (tunnel effect)23

Pulse-shaped signal analysis45

Image denoising67

Image processing algorithms adapted to quantum computers
1Yonina C Eldar and Alan V Oppenheim. “Quantum signal processing”. In: IEEE Signal Processing Magazine

19.6 (2002), pp. 12–32.
2C. Aytekin, S. Kiranyaz, and M. Gabbouj. “Quantum mechanics in computer vision: Automatic object

extraction”. In: IEEE International Conference on Image Processing. 2013, pp. 2489–2493.
3Akram Youssry, Ahmed El-Rafei, and Salwa Elramly. “A quantum mechanics-based framework for image

processing and its application to image segmentation”. In: Quantum Information Processing 14.10 (2015),
pp. 3613–3638.
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Hamiltonian operator

Construct an adaptive basis using the solutions of Schrödinger equation.

The Schroedinger equation:

− ~2

2m
∇2ψ = −V (a)ψ + Eψ

Can be rewritten as an eigenvalue problem:

HQABψ = Eψ,

where HQAB = − ~2

2m
∇2 + V is the Hamiltonian operator.

Main idea: replace V (a), the potential of the system, by an image pixels’ values.

The Hamiltonian operator associated to an image89:

HQAB[i , j] =


x [i ] + 4 ~2

2m
for i = j ,

− ~2

2m
for i = j ± 1,

− ~2

2m
for i = j ± n,

0 otherwise,

8C. Aytekin, S. Kiranyaz, and M. Gabbouj. “Quantum mechanics in computer vision: Automatic object
extraction”. In: IEEE International Conference on Image Processing. 2013, pp. 2489–2493.

9Sayantan Dutta et al. “Quantum Mechanics-Based Signal and Image Representation: Application to
Denoising”. In: IEEE Open Journal of Signal Processing 2 (2021), pp. 190–206.
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Toy example of Hamiltonian operator for a 4× 4 image
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Quantum adaptive transform

The set of eigenvectors corresponding to the Hamiltonian operator represents the adaptive
transform and is denoted as the quantum adaptative basis (QAB).
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Denoising algorithm

Projection on QAB:

x̂ =
∑N2

i=1αiψiτi

Soft thresholding:

τi =


1 for i ≤ s,

1− i−s
ρ

for i > s and for 1− i−s
ρ
> 0,

0 otherwise.

where αi = 〈x ,ψi 〉 are the coefficients representing the image x in the QAB10.

10Sayantan Dutta et al. “Quantum Mechanics-Based Signal and Image Representation: Application to
Denoising”. In: IEEE Open Journal of Signal Processing 2 (2021), pp. 190–206.
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Denoising results
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(a) Synthetic image (b) Fruits (c) Moon

Gaussian, Poisson and speckle noise for a SNR of 15 dB

Comparison to several methods from the state of the art
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Quantitative results
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Denoising results

(a) Clean Fruits image, (b) Image corrupted with Gaussian noise corresponding to a SNR
of 15 dB.

Denoising results obtained using: (c) wavelet hard thresholding, (d) wavelet soft
thresholding, (e) total variation regularization, (f) graph signal processing, (g) non-local
means, (h) dictionary learning and (i) proposed method.
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Denoising results

(a) Clean moon image, (b) Image corrupted with Poisson noise corresponding to a SNR
of 15 dB.

Denoising results obtained using: (c) wavelet hard thresholding, (d) wavelet soft
thresholding, (e) variance stabilization transform, (f) total variation regularization, (g)
dictionary learning and (h) proposed method.
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Pros and cons

+

Good denoising results.

Good flexibility wrt noise statistics.

-

Limited to small images (Hamiltonian high dimension).

Block-wise implementation for large images, with blocks processed
independently.

Need to smooth the image before computing the QAB to escape the localization
effect.
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From one particle to multiple particles

1112

11C. Aytekin, S. Kiranyaz, and M. Gabbouj. “Quantum mechanics in computer vision: Automatic object
extraction”. In: IEEE International Conference on Image Processing. 2013, pp. 2489–2493.

12Sayantan Dutta et al. “Quantum Mechanics-Based Signal and Image Representation: Application to
Denoising”. In: IEEE Open Journal of Signal Processing 2 (2021), pp. 190–206.
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1112

11C. Aytekin, S. Kiranyaz, and M. Gabbouj. “Quantum mechanics in computer vision: Automatic object
extraction”. In: IEEE International Conference on Image Processing. 2013, pp. 2489–2493.

12Sayantan Dutta et al. “Quantum Mechanics-Based Signal and Image Representation: Application to
Denoising”. In: IEEE Open Journal of Signal Processing 2 (2021), pp. 190–206.
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From one patch to multiple patches

13

13Sayantan Dutta et al. “Image Denoising Inspired by Quantum Many-Body physics”. anglais. In: IEEE
International Conference on Image Processing (ICIP 2021), Anchorage, Alaska, USA, 19/09/2021-22/09/2021.
2021.
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Hamiltonian for multiple patch approach

Hamiltonian for one image patch:

Ha = −
~2

2ma
∇2

ya
+ V (ya)

︸ ︷︷ ︸
H0a

+
z∑

b=1,b 6=a

Iab︸ ︷︷ ︸
HIa

, a = 1, · · · , z

where, Iab is the interaction between the a-th and b-th patches, H0a is the Hamiltonian in
the a-th patch as a single particle system, and HIa is the total interaction between the
a-th patch and its neighbours.

Effective potential for one image patch:

V effective
a = V (ya) +

∑z
b=1,b 6=a Iab = V (ya) + HIa

Modelisation of the interactions between patches

Iab = p |A−B|
D2

ab

Quantum mechanics-inspired image processing
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Denoising algorithm

Similar to a non local mean algorithm

For each image patch

Compute its effective potential using the interactions with its neighbours.

Construct the Hamiltonian from the effective potential.

Compute the QAB by eigendecomposition of the Hamiltonian.

Denoise the current patch by soft thresholding its projection in the QAB.

Quantum mechanics-inspired image processing
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Numerical simulations
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Numerical simulations
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Numerical simulations

⇓

ab

aTolga Tasdizen. “Principal neighborhood dictionaries for nonlocal means image denoising”. In: IEEE
Transactions on Image Processing 18.12 (2009), pp. 2649–2660.

bCharles-Alban Deledalle, Joseph Salmon, Arnak S Dalalyan, et al. “Image denoising with patch based PCA:
local versus global.”. In: BMVC. vol. 81. 2011, pp. 425–455.
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Results
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Denoising can do more than denoise

Plug & play ADMM

Replace the explicit choice of the regularization function by existing
state-of-the-art denoisersa.

aS. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg. “Plug-and-Play priors for model based
reconstruction”. In: 2013 IEEE Global Conference on Signal and Information Processing. 2013, pp. 945–948. doi:
10.1109/GlobalSIP.2013.6737048.

Regularisation by denoising

Design a regularization function based on a state-of-the-art denoisera.

aY. Romano, M. Elad, and P. Milanfar. “The little engine that could: Regularization by denoising (RED)”. In:
SIAM Journal on Imaging Sciences 10.4 (2017), pp. 1804–1844.
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Poisson deconvolution

The image formation model is governed by the Poisson process P(·) as

y = P(Hx),

where y ∈ IRn2
represents the noisy-blurred observation of the desired image

x ∈ IRn2
and H ∈ IRn2×n2

is a block circulant with circulant block matrix.

ADMM to solve the regularized (g(z)) deconvolution problem

xk+1 = arg min
x

f (x) +
λk

2

∥∥∥x − zk + uk
∥∥∥2

2

zk+1 = arg min
z

g(z) +
λk

2

∥∥∥xk+1 − z + uk
∥∥∥2

2

uk+1 = uk + xk+1 − zk+1

λk+1 = γλk

The data fidelity term f (x) is

f (x) = −yT log(Hx) + 1T Hx + constant

Quantum mechanics-inspired image processing
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Plug & play framework

zk+1 = arg min
z

(
g(z) + (λk/2)

∣∣∣xk+1 + uk − z
∣∣∣2) ⇒ Associated with a

denoising process

ww�
zk+1 = D

(
xk+1 + uk

)
⇒ The 2nd iteration is replaces by

a state-of-the-art denoisera

(Here D is the denoiser)

aS. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg. “Plug-and-Play priors for model based
reconstruction”. In: 2013 IEEE Global Conference on Signal and Information Processing. 2013, pp. 945–948. doi:
10.1109/GlobalSIP.2013.6737048.
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Plug & play framework for Poisson model

z̃k =
(
xk+1 + uk

)
−→ Redefine

ww�

z̃k Reparameterize−−−−−−−−−−−→ 2

√
z̃k +

3

8
−→ Variance stabilization transform (VST)ab

(gives a Gaussian approximation)ww�
zk+1 = D

(
z̃k
)

−→ Apply a state-of-the-art denoiser

aLucio Azzari and Alessandro Foi. “Variance stabilization in Poisson image deblurring”. In: 2017 IEEE 14th
International Symposium on Biomedical Imaging (ISBI 2017). IEEE. 2017, pp. 728–731.

bArie Rond, Raja Giryes, and Michael Elad. “Poisson inverse problems by the plug-and-play scheme”. In:
Journal of Visual Communication and Image Representation 41 (2016), pp. 96–108.
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Drawbacks

Limitations

? These VST-based approaches exhibit inaccuracies while dealing with
high-intensity noisea.

? The convolution operation is not invariant under a VSTb.

aJoseph Salmon et al. “Poisson noise reduction with non-local PCA”. In: Journal of mathematical imaging and
vision 48.2 (2014), pp. 279–294.

bArie Rond, Raja Giryes, and Michael Elad. “Poisson inverse problems by the plug-and-play scheme”. In:
Journal of Visual Communication and Image Representation 41 (2016), pp. 96–108.
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Plug in our denoiser without any VST

The PnP-ADMM scheme with proper parameterization reads as

xk+1 = arg min
x

(
− yT log(Hx) + 1T Hx + (λk/2)

∣∣∣x − zk + uk
∣∣∣2)

zk+1 = DQAB
(
xk+1 + uk

)
uk+1 = uk + xk+1 − zk+1

Denoising process executes the time-consuming task of computations of all the
projection coefficients of the noisy image onto the adaptive basis.

But very few coefficients actually participate in the restoration process.

Using the orthogonal matching pursuit (OMP) algorithm computes a sparse
approximation of the most significant coefficients. This reduces the
computational time significantly14.

14Sayantan Dutta et al. “Plug-and-Play Quantum Adaptive Denoiser for Deconvolving Poisson Noisy Images”.
In: IEEE Access (2021).
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Numerical simulations

A detailed survey has been performed through three sample images: one
synthetic image and two cropped versions of standard images.

All the images are distorted with a Gaussian blurring kernel of size 4× 4 and
standard deviation σ = 3 with with three different Poisson noise levels
corresponding to SNRs of 20, 15 and 10 dB.

We provide a comparison with a state-of-the-art PnP-ADMM methodsa (P4IP)
and a standard total variation-based ADMM deconvolution algorithmb

(TV-ADMM) adapted to Poisson observations.

aArie Rond, Raja Giryes, and Michael Elad. “Poisson inverse problems by the plug-and-play scheme”. In:
Journal of Visual Communication and Image Representation 41 (2016), pp. 96–108.

bFrançois de Vieilleville et al. “Alternating direction method of multipliers applied to 3d light sheet fluorescence
microscopy image deblurring using gpu hardware”. In: 2011 Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. IEEE. 2011, pp. 4872–4875.
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Results

X

(d) Lena image corrupted with 10 dB Poisson noise.

(e) Synthetic image corrupted with 15 dB Poisson noise.

(f) Fruits image corrupted with 20 dB Poisson noise.

Figure: In each row, the first, second, third, fourth and fifth
images are accordingly clean, blurred noisy, deblurred result by
TV-ADMM, deblurred result by P4IP and deblurred result by
the proposed Algorithm.
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Figure: Logarithmic RMSE
as a function of the number of
iterations.
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Quantitative data

*The best values are highlighted in bold.
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Conclusion

Perspectives

I ? Any relationship with graph image processing?

? Consider the Schrödinger equation in the frequency domain.

? Look at other (fascinating) quantum mechanics principles.

? Machine learning-based algorithms.

? Quantum computing.

Codes available

I ? https://github.com/SayantanDutta95

Quantum mechanics-inspired image processing

https://github.com/SayantanDutta95


42/42Quantum mechanics-inspired image processing


	State of the art
	Quantum adaptive basis
	Quantum image denoising
	Quantum many-body physics
	Beyond denoising
	Conclusion

