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Quantum mechanics-inspired image processing



Classical mechanics

Classical mechanics

Potential
v

Classical particle

‘_L Oscillation

Particle is trapped in this region

Quantum mechanics-inspired image processing



Quantum mechanics

Quantum mechanics

Potential
v

f— Wave function

Tunneling effect

Quantum mechanics-inspired image processing



Quantum mechanics

Quantum mechanics

Potential
v

r— Wave function

Tunneling effect

Schrodinger equation: —%szp =-V(a)y + Ev

Quantum mechanics-inspired image processing



Wave functions

T T T T
Wave function with energy E3

Energy E;

AWM

Constant frequencies E

£ Wave function with energy E; w E

Energy E;

Amplitude

Wave function with energy Ej

Potential V'

L L L L

Constant potential

Schrodinger equation: —%V%ﬁ =-V(a)y + Ev

Quantum mechanics-inspired image processing



Wave functions

Amplitude

Wave function with energy E3

Low frequencies —

vwvvwwwmwwwwvmwwwm
_

High frequencies

High potential region ™.

 Wave function with energy E;

Wave function with energy Ej

~_____ Low potential region
n L .

Potential with different heights

Schrédinger equation: —%V%ﬂ = —V(a)y + Ey

Quantum mechanics-inspired image processing

Energy E3

Potential V'

Energy E;

Energy Ej



Localization effect

Quantum localization effect

Localized wave
function \

Potential
v

Random noise J

Quantum mechanics-inspired image processing



Objective

Image processing inspired by quantum mechanics
* How to compute wave vectors for images?
* Are they useful for image processing tasks?

* What kind of image processing tasks can be addressed with such tools?
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@ State of the art

© Quantum adaptive basis

e Quantum image denoising
@ Quantum many-body physics
© Beyond denoising

@ Conclusion
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@ State of the art
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Existing literature

Seminal (theoretical) work in quantum signal processing!

Image segmentation (tunnel effect)?3

Pulse-shaped signal analysis*®

Image denoising®’

@ Image processing algorithms adapted to quantum computers

LYonina C Eldar and Alan V Oppenheim. “Quantum signal processing”. In: |EEE Signal Processing Magazine
19.6 (2002), pp. 12-32.

2c. Aytekin, S. Kiranyaz, and M. Gabbouj. “Quantum mechanics in computer vision: Automatic object
extraction”. In: IEEE International Conference on Image Processing. 2013, pp. 2489-2493.

3 Akram Youssry, Ahmed El-Rafei, and Salwa Elramly. “A quantum mechanics-based framework for image
processing and its application to image segmentation”. In: Quantum Information Processing 14.10 (2015),
pp. 3613-3638.

4Taous-Meriem Laleg-Kirati, Emmanuelle Crépeau, and Michel Sorine. “Semi-classical signal analysis”. In:
Mathematics of Control, Signals, and Systems 25.1 (2013), pp. 37-61. 1sSN: 1435-568X.

5Taous-Meriem Laleg-Kirati et al. “Spectral data de-noising using semi-classical signal analysis: application to
localized MRS". In: NMR in Biomedicine 29.10 (2016), pp. 1477-1485.

6Zineb Kaisserli, Taous-Meriem Laleg-Kirati, and Amina Lahmar-Benbernou. “A novel algorithm for image
representation using discrete spectrum of the Schrodinger operator”. In: Digital Signal Processing 40 (2015),
pp. 80 -87.

7 Abderrazak Chahid et al. “A New ROI-Based performance evaluation method for image denoising using the
Squared Eigenfunctions of the Schrédinger Operator”. In: 2018 40th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC). IEEE. 2018, pp. 5579-5582.
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© Quantum adaptive basis
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Hamiltonian operator

@ Construct an adaptive basis using the solutions of Schrédinger equation.

@ The Schroedinger equation:
2
— V2 = —V(a)y + Evp

2m
@ Can be rewritten as an eigenvalue problem:
Hoasd = Evp,
2
where Hg 4 = —zﬁ—mV2 + V is the Hamiltonian operator.

@ Main idea: replace V/(a), the potential of the system, by an image pixels’ values.

@ The Hamiltonian operator associated to an image89:

X[l +4L2  fori=j,
2 C_
.. - fori=j+1
Hogli,jl = 2 ==L
—5= for i =j %+ n,
otherwise,

8¢C. Aytekin, S. Kiranyaz, and M. Gabbouj. “Quantum mechanics in computer vision: Automatic object
extraction”. In: IEEE International Conference on Image Processing. 2013, pp. 2489-2493.

9Sayantan Dutta et al. “Quantum Mechanics-Based Signal and Image Representation: Application to
Denoising”. In: IEEE Open Journal of Signal Processing 2 (2021), pp. 190-206.
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Toy example of Hamiltonian operator for a 4 X 4 image
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Quantum adaptive transform

@ The set of eigenvectors corresponding to the Hamiltonian operator represents the adaptive
transform and is denoted as the quantum adaptative basis (QAB).
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© Quantum image denoising

Quantum mechanics-inspired image processing



Denoising algorithm

2
Input: x, zh—m s, p. o
Compute a smooth version of @ by Gaussian filtering
Construct the Hamiltonian matrix H based on the
smoothed version of @
Calculate the eigenvectors v; of H
Compute the coefficients ay; by projecting = onto the
basis formed by 1),
Threshold the coefficients «; and recover the denoised
signal or image

[

PR

Output:
@ Projection on QAB:
2
x = Z;V:I oY,
@ Soft thresholding:
1 fori <s,
T = 1—% fori>sandfor1—?>0,
0 otherwise.

where a; = (x, ;) are the coefficients representing the image x in the QAB!0.

10Sayantan Dutta et al. “Quantum Mechanics-Based Signal and Image Representation: Application to
Denoising”. In: IEEE Open Journal of Signal Processing 2 (2021), pp. 190-206.
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Denoising results

(a) Synthetic image (b) Fruits (c) Moon

@ Gaussian, Poisson and speckle noise for a SNR of 15 dB

@ Comparison to several methods from the state of the art

Quantum mechanics-inspired image processing



Quantitative results

Sample Method Gaussian Noise (13dB) Poisson Noise (15 dB) Speckle Noise (15dB)

amp SNR (dB) PSNR (dB) SSIM  SNR (dB) PSNR (dB) SSIM  SNR (dB) PSNR (dB) SSIM
Wavelet hard 15.01 2446 0.61 15.01 25.68 0.60 15.01 2534 0.76

Wavelet soft 1571 25.05 0.64 15.61 2620 0.70 15.49 25.80 0.77

VST NA NA NA 25.83 0.69 25.58 0.76

Synthetic Image v 1574 25.07 0.64 2623 071 2578 077
= GSP 20.28 28.78 0.79 NA NA

NLM 1870 26.88 071 NA NA

DL 17.35 26.15 071 0.75 0.80

Proposed 31.78 0.89 092 0.95

Wavelet hard 25.07 0.65 0.65 0.64

Wavelet soft 25.08 071 0.72 071

VST NA NA 076 0.76

Fruits v 26.86 0.79 075 0.74
- GSP 27.43 0.81 NA NA
NLM 28.02 077 NA NA

DL 21.37 0.79 071 0.72

Proposed 28.07 077 0.79 0.82

Wavelet hard 30.02 0.70 072 0.71

Wavelet soft 30.98 074 0.80 0.79

VST NA NA 0.85 0.84

Moon ™ 32.19 0.80 0.86 0.86
h GSP 31.22 0.85 NA NA
NLM 33.94 0.86 NA NA

DL 27 0.81 0.85 0.84

Proposed 2481 3311 0.83 0.86 0.89
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Denoising results

(e) PSNR=26.86 dB

(f) PSNR=27.43 dB (g) PSNR=28.02 dB (h) PSNR=27.37 dB (i) PSNR=28.07 dB

@ (a) Clean Fruits image, (b) Image corrupted with Gaussian noise corresponding to a SNR
of 15 dB.

@ Denoising results obtained using: (c) wavelet hard thresholding, (d) wavelet soft
thresholding, (e) total variation regularization, (f) graph signal processing, (g) non-local
means, (h) dictionary learning and (i) proposed method.
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Denoising results

(a) Clean (b) Noisy (c) PSNR=29.90 dB (d) PSNR=30.51 dB

(e) PSNR=31.17 dB (f) PSNR=32.21 dB (g) PSNR=31.65 dB (h) PSNR=33.34 dB

@ (a) Clean moon image, (b) Image corrupted with Poisson noise corresponding to a SNR
of 15 dB.

@ Denoising results obtained using: (c) wavelet hard thresholding, (d) wavelet soft
thresholding, (e) variance stabilization transform, (f) total variation regularization, (g)
dictionary learning and (h) proposed method.
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Pros and cons

@ Good denoising results.

@ Good flexibility wrt noise statistics.

@ Limited to small images (Hamiltonian high dimension).

@ Block-wise implementation for large images, with blocks processed
independently.

@ Need to smooth the image before computing the QAB to escape the localization
effect.

v
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@ Quantum many-body physics
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From one particle to multiple particles

Hamiltonian operator

\
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, Potential
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ge p!

e, Aytekin, S. Kiranyaz, and M. Gabbouj. “Quantum mechanics in computer vision: Automatic object
extraction”. In: IEEE International Conference on Image Processing. 2013, pp. 2489-2493.

12Sayantan Dutta et al. “Quantum Mechanics-Based Signal and Image Representation: Application to
Denoising”. In: IEEE Open Journal of Signal Processing 2 (2021), pp. 190-206.
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From one particle to multiple particles
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e, Aytekin, S. Kiranyaz, and M. Gabbouj. “Quantum mechanics in computer vision: Automatic object
extraction”. In: IEEE International Conference on Image Processing. 2013, pp. 2489-2493.

12Sayantan Dutta et al. “Quantum Mechanics-Based Signal and Image Representation: Application to
Denoising”. In: IEEE Open Journal of Signal Processing 2 (2021), pp. 190-206.
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From one patch to multiple patches
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13Sayantan Dutta et al. “Image Denoising Inspired by Quantum Many-Body physics”. anglais. In: IEEE
International Conference on Image Processing (ICIP 2021), Anchorage, Alaska, USA, 19/09/2021-22/09/2021.

2021.
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Hamiltonian for multiple patch approach

@ Hamiltonian for one image patch:

P _, z
Ho= =5 V5, +V0a)+ 3 b a=1 2
b=1,b#a
— ———  ——
Ho, Hi,

a
where, ;4 is the interaction between the a-th and b-th patches, Hp, is the Hamiltonian in
the a-th patch as a single particle system, and Hj, is the total interaction between the
a-th patch and its neighbours.
@ Effective potential for one image patch:
VETective = V(ya) + 3251 bta lab = V(va) + Hi,
@ Modelisation of the interactions between patches

[ A8l
ab = Pp2
ab

Quantum mechanics-inspired image processing



Denoising algorithm

@ Similar to a non local mean algorithm
For each image patch
@ Compute its effective potential using the interactions with its neighbours.
@ Construct the Hamiltonian from the effective potential.
@ Compute the QAB by eigendecomposition of the Hamiltonian.
@ Denoise the current patch by soft thresholding its projection in the QAB.
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Numerical simulations

Three sample images

™

Lake image House image

Lena image
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Numerical simulations

Three sample images

) £

House image

Four different noise levels
+ (SNRs of 2, 8, 16 and 22
dB)
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Numerical simulations

Three sample images

Four different noise levels
+ (SNRs of 2, 8, 16 and 22
dB)

B

Lake image House image

Lena image

Comparison with
three state-of-the-art
methods

NLM PLPCA
PGPCA

?Tolga Tasdizen. “Principal neighborhood dictionaries for nonlocal means image denoising”. In: |EEE
Transactions on Image Processing 18.12 (2009), pp. 2649-2660.

bCharles-Alban Deledalle, Joseph Salmon, Arnak S Dalalyan, et al. “Image denoising with patch based PCA:
local versus global.”. In: BMVC. vol. 81. 2011, pp. 425-455.
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Results

Clean Noisy image PSNR =31.32dB, PSNR=31.81dB, PSNR=31.89dB, PSNR =32.00dB,
Lena image SNR =16 dB SSIM = 0.828 SSIM =0.815 SSIM = 0.806 SSIM = 0.846

Clean Noisy image PSNR =21.48 dB, PSNR=20.97 dB, PSNR =20.57 dB, PSNR =21.59 dB,
Lake image SNR=2dB SSIM = 0.608 SSIM = 0.460 SSIM = 0.406 SSIM = 0.621

2

NLM PGPCA PLPCA

I

Denoised images
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Results

Clean
Lena image

Clean
Lake image

=

Noisy image PSNR =31.32dB, PSNR=31.81dB, PSNR=31.89dB

SNR =16 dB SSIM =0.828 SSIM = 0.815 SSIM = 0.806

Noisy image ~ PSNR =21.48 dB, PSNR =20.97 dB, PSNR =20.57
SNR =2 dB SSIM = 0.608 SSIM = 0.460 SSIM = 0.406

NLM PGPCA

PSNR = 32.00 dB,
SSIM = 0.846

Denoised images
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© Beyond denoising
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Denoising can do more than denoise

Plug & play ADMM

@ Replace the explicit choice of the regularization function by existing
state-of-the-art denoisers?.

?S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg. “Plug-and-Play priors for model based
reconstruction” . In: 2013 IEEE Global Conference on Signal and Information Processing. 2013, pp. 945-948. DOI:
10.1109/GlobalSIP.2013.6737048.

.
Regularisation by denoising
@ Design a regularization function based on a state-of-the-art denoiser?.
2Y. Romano, M. Elad, and P. Milanfar. “The little engine that could: Regularization by denoising (RED)". In:
SIAM Journal on Imaging Sciences 10.4 (2017), pp. 1804-1844.
4
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https://doi.org/10.1109/GlobalSIP.2013.6737048

Poisson deconvolution

@ The image formation model is governed by the Poisson process P(-) as
y = P(HXx),

2
where y € IR"™ represents the noisy-blurred observation of the desired image
2 2 2
x € R"™ and H € R™ *" s a block circulant with circulant block matrix.

@ ADMM to solve the regularized (g(z)) deconvolution problem

. MK 2
xk+1 = arg min f(x)+ — “x—zk+uk"
x 2 2
k+1 : Ak k+1 k 2
z"* = arg min g(z)+—Hx —z+u H
z 2 2
S SRS N

ARFL — o \K
@ The data fidelity term f(x) is

f(x) = —yTlog(Hx) + 1T Hx + constant
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Plug & play framework

2
k! = arg min (g(z) + (/\"/2)‘x"+1 +uk - z‘ ) = Associated with a
z denoising process

l

ZKH = D(kar1 + uk) = The 2@ iteration is replaces by
a state-of-the-art denoiser?
(Here D is the denoiser)

?S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg. “Plug-and-Play priors for model based
reconstruction”. In: 2013 |IEEE Global Conference on Signal and Information Processing. 2013, pp. 945-948. DpoI:
10.1109/GlobalSIP.2013.6737048.
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https://doi.org/10.1109/GlobalSIP.2013.6737048

Plug & play framework for Poisson model

sk — (xk+1 + uk>% Redefine

l

<k Reparameteri - 3 . S
ph AT 2/ 2F + 3 — Variance stabilization transform (VST)??

(gives a Gaussian approximation)

z = ’D<2k> — Apply a state-of-the-art denoiser

?Lucio Azzari and Alessandro Foi. “Variance stabilization in Poisson image deblurring”. In: 2017 IEEE 14th
International Symposium on Biomedical Imaging (ISBI 2017). |EEE. 2017, pp. 728-731.

barie Rond, Raja Giryes, and Michael Elad. “Poisson inverse problems by the plug-and-play scheme”. In:
Journal of Visual Communication and Image Representation 41 (2016), pp. 96-108.
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Drawbacks

Limitations

* These VST-based approaches exhibit inaccuracies while dealing with
high-intensity noise?.

* The convolution operation is not invariant under a VST?.

?Joseph Salmon et al. “Poisson noise reduction with non-local PCA". In: Journal of mathematical imaging and
vision 48.2 (2014), pp. 279-294.

bArie Rond, Raja Giryes, and Michael Elad. “Poisson inverse problems by the plug-and-play scheme”. In
Journal of Visual Communication and Image Representation 41 (2016), pp. 96-108.
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Plug in our denoiser without any VST

The PnP-ADMM scheme with proper parameterization reads as
2
xkt1 = arg min( — yTlog(Hx) 4+ 1T Hx + ()\k/2)‘x = ZAE uk’ )
X

Z‘H—1 = DQ.AB (Xk+1 + llk)
uk+1 = uk + Xk+1 _ zk+1

@ Denoising process executes the time-consuming task of computations of all the
projection coefficients of the noisy image onto the adaptive basis.
@ But very few coefficients actually participate in the restoration process.

@ Using the orthogonal matching pursuit (OMP) algorithm computes a sparse
approximation of the most significant coefficients. This reduces the

computational time significantly!®.

1“Sayantan Dutta et al. “Plug-and-Play Quantum Adaptive Denoiser for Deconvolving Poisson Noisy Images”.
In: IEEE Access (2021).
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Numerical simulations

@ A detailed survey has been performed through three sample images: one
synthetic image and two cropped versions of standard images.

@ All the images are distorted with a Gaussian blurring kernel of size 4 x 4 and
standard deviation o = 3 with with three different Poisson noise levels
corresponding to SNRs of 20, 15 and 10 dB.

@ We provide a comparison with a state-of-the-art PnP-ADMM methods? (P*IP)
and a standard total variation-based ADMM deconvolution algorithm?
(TV-ADMM) adapted to Poisson observations.

?Arie Rond, Raja Giryes, and Michael Elad. “Poisson inverse problems by the plug-and-play scheme”. In:
Journal of Visual Communication and Image Representation 41 (2016), pp. 96-108.

bFran;ois de Vieilleville et al. “Alternating direction method of multipliers applied to 3d light sheet fluorescence
microscopy image deblurring using gpu hardware”. In: 2011 Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. |EEE. 2011, pp. 4872—-4875.
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Results

e

Lena image corrupted with 10 dB Poisson noise.

(e) Synthetic image corrupted with 15 dB Poisson noise.

o s 1 15 20 25 3 & 4
Iteration (k)

e - Figure: Logarithmic RMSE
as a function of the number of

(f) Fruits image corrupted with 20 dB Poisson noise. iterations.

Flgu F€: In each row, the first, second, third, fourth and fifth
images are accordingly clean, blurred noisy, deblurred result by
TV-ADMM, deblurred result by P*IP and deblurred result by
the proposed Algorithm.
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Quantitative data

TABLE III

QUANTITATIVE DATA (AVERAGE OVER 200 NOISE REALIZATIONS)

Poisson Noise

Sample  Method  —gxp——5E—SNR = 1508 SNR = 1048
36465010 24805034 22535153
TV-ADMM ) (60,01 0.58+0.01 0.5240.02
. BI0ETST  209TELI8 1896334
1
Synthetic PP 0.74£0.06 0.59+0.11 0.48+0.18
oAby DSCIOIZ  ZIBE043  HIELN
-Pn 0.92-20.00 0.86-0.01 0.740.03
T737E031 24525065 19.97E132
TV-ADMM 7 541 0.01 0.66-0.01 0.5240.02
Lena v I33E044 487276 IS6TEASS
0.81-0.01 0.76-0.07 0.55+0.16
OAbpop  BITIOI 27045045 20.8£339
0.81-20.00 0.75+0.01 0.65-0.08
30512038 19005023 17545093
TV-ADMM %) 571 0.01 0.55+0.01 0.5140.01
Fruit . WALI0 17225462 14355385
ruits 0.59-£0.04 0.5240.11 0.530.04
21375094 19355096 17285355
QAB-PP g 62 +0.01 0.57-£0.02 0.51-£0.12

*The best values are highlighted in bold.
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@ Conclusion
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Conclusion

Any relationship with graph image processing?

Consider the Schrddinger equation in the frequency domain.

*
*
* Look at other (fascinating) quantum mechanics principles.
* Machine learning-based algorithms.

*

Quantum computing.

Codes available

* https://github.com/SayantanDutta9b
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