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Abstract—The interest of compressive sampling in ultrasound
imaging has been recently extensively evaluated by several
research teams. Following the different application setups, it
has been shown that the RF data may be reconstructed from a
small number of measurements and/or using a reduced number
of ultrasound pulse emissions. Nevertheless, RF image spatial
resolution, contrast and signal to noise ratio are affected by the
limited bandwidth of the imaging transducer and the physical
phenomenon related to US wave propagation. To overcome
these limitations, several deconvolution-based image processing
techniques have been proposed to enhance the ultrasound images.
In this paper, we propose a novel framework, named compressive

deconvolution, that reconstructs enhanced RF images from com-
pressed measurements. Exploiting an unified formulation of the
direct acquisition model, combining random projections and 2D
convolution with a spatially invariant point spread function, the
benefit of our approach is the joint data volume reduction and
image quality improvement. The proposed optimization method,
based on the Alternating Direction Method of Multipliers, is
evaluated on both simulated and in vivo data.

Index Terms—Compressive sampling, deconvolution, ultra-
sound imaging, alternating direction method of multipliers

I. INTRODUCTION

ULTRASOUND (US) medical imaging has the advan-

tages of being noninvasive, harmless, cost-effective and

portable over other imaging modalities such as X-ray Com-

puted Tomography or Magnetic Resonance Imaging [1].

Despite its intrinsic rapidity of acquisition, several US

applications such as cardiac, Doppler, elastography or 3D

imaging may require higher frame rates than those provided

by conventional acquisition schemes (e.g. ultrafast imaging

[2]) or may suffer from the high amount of acquired data.

In this context, a few research teams have recently evaluated

the application of compressive sampling (CS) to 2D and 3D

US imaging (e.g. [3–8]) or to duplex Doppler [9]. CS is a

mathematical framework allowing to recover, via non linear

optimization routines, an image from few linear measurements

(below the limit standardly imposed by the Shannon-Nyquist

theorem) [10, 11]. The CS acquisition model is given by

y = Φr + n (1)

where y ∈ R
M corresponds to the M compressed mea-

surements of the image r ∈ R
N (one US radiofrequency (RF)

image in our case), Φ ∈ R
M×N represents the CS acquisition
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matrix composed for example of M random Gaussian vectors

with M << N and n ∈ R
M stands for a zero-mean additive

white Gaussian noise.

The CS theory demonstrates that the N pixels of image r

may be recovered from the M measurements in y provided

two conditions: i) the image must have a sparse representation

in a known basis or frame and ii) the measurement matrix

and spasifying basis must be incoherent [12]. In US imag-

ing, despite the difficulties of sparsifying the data because

of the speckle noise, it has been shown that RF images

may be recovered in basis such as 2D Fourier [4], wavelets

[8], waveatoms [7] or learning dictionaries [13], considering

Bernoulli Gaussian [14] or α-stable statistical assumptions

[15] and using various acquisition schemes such as plane-wave

[8], Xampling [5] or projections on Gaussian [3] or Bernoulli

random vectors [4].

However, the existing methods of CS in US have been

shown to be able to recover images with a quality at most

equivalent to those acquired using standard schemes. Never-

theless, the spatial resolution, the signal-to-noise ratio and the

contrast of standard US images (r in eq. (1)) are affected by

the limited bandwidth of the imaging transducer, the physical

phenomenon related to US wave propagation such as the

diffraction and the imaging system. In order to overcome these

issues, one of the research tracks extensively explored in the

literature is the deconvolution of US images [16–21]. Based on

the first order Born approximation, these methods assume that

the US RF images follow a 2D convolution model between the

point spread function (PSF) and the tissue reflectivity function

(TRF), i.e. the image to be recovered [22]. Specifically, this

results in r = Hx, where H ∈ R
N×N is a block circulant with

circulant block (BCCB) matrix related to the 2D PSF of the

system and x ∈ R
N represents the lexicographically ordered

tissue reflectivity function. We emphasize that this convolution

model is based on the assumption of spatially invariant PSF.

Although the PSF of an ultrasound system varies spatially and

mostly in the axial direction of the images, many settings of

the ultrasound imaging system allow to attenuate this spatial

variation in practice, such as the dynamic focalization of the

received echoes, the multiple focusing in emission and the

time gain compensation (TGC). For this reason, the PSF is

considered spatially invariant in our work, as it is the case

in part of the existing works on image deconvolution in

ultrasound imaging (e.g. [17, 20]).

The objective of our paper is to propose a novel technique

which is able to jointly achieve US data volume reduction and
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image quality improvement. In other words, the main idea is to

combine the two frameworks of CS and deconvolution applied

to US imaging, resulting in the so-called compressive decon-

volution (or CS deblurring) problem [23–27]. The combined

direct model of joint CS and deconvolution is as follows:

y = ΦHx+ n (2)

where the variables y, Φ, H , x and n have the same

meaning as defined above. Inverting the model in (2) will

allow us to estimate the TRF x from the compressed RF

measurements y.

To our knowledge, our work is the first attempt of address-

ing the compressive deconvolution problem in US imaging.

In the general-purpose image processing literature, a few

methods have been already proposed aiming at solving (2)

[23–29]. In [25, 28, 29], the authors assumed x was sparse

in the direct or image domain and the PSF was unknown.

In [28, 29], a study on the number of measurements lower

bound is presented, together with an algorithm to estimate

the PSF and x alternatively. The authors in [25] solved

the compressive deconvolution problem using an ℓ1-norm

minimization algorithm by making use of the ”all-pole” model

of the autoregressive process. In [23, 24], x was considered

sparse in a transformed domain and the PSF was supposed

known. An algorithm based on Poisson singular integral and

iterative curvelet thresholding was shown in [23]. The authors

in [24] further combined the curvelet regularization with total

variation to improve the performance in [23]. Finally, the

methods in [26, 27] supposed the blurred signal r = Hx was

sparse in a transformed domain and the PSF unknown. They

proposed a compressive deconvolution framework that relies

on a constrained optimization technique allowing to exploit

existing CS reconstruction algorithms.

In this paper, we propose a compressive deconvolution

technique adapted to US imaging. Our solution is based on the

alternating direction method of multipliers (ADMM) [30, 31]

and exploits two constraints. The first one, inspired from CS,

imposes via an l1-norm the sparsity of the RF image r in the

transformed domain (Fourier domain, wavelet domain, etc).

The second one imposes a priori information for the TRF

x. Gaussian and Laplacian statistics have been extensively

explored in US imaging (see e.g. [17, 32, 33]. Moreover,

recent results show that the Generalized Gaussian Distributed

(GGD) is well adapted to model the TRF. Consequently, we

employ herein the minimization of an lp-norm of x, covering

all possible cases ranging from 1 to 2 [19, 20, 34]. Similar

to all existing frameworks, we consider the CS sampling

matrix Φ known. In US imaging, the PSF is unknown in

practical applications. However, its estimation from the RF

data as an initialization step for the deconvolution has been

extensively explored in US imaging. In this paper, we adopted

the approach in [35] in order to estimate the PSF further used

to construct the matrix H .

This paper is organized as follows. In section II, we formu-

late our problem as a convex optimization routine and propose

an ADMM-based method to efficiently solve it. Supporting

simulated and experimental results are provided in section

III showing the contribution of our approach compared to

existing methods and its efficiency in recovering the TRF from

compressed US data. The conclusions are drawn in IV.

II. PROPOSED ULTRASOUND COMPRESSIVE

DECONVOLUTION ALGORITHM

A. Optimization Problem Formulation

1) Sequential approach: In order to estimate the TRF x

from the compressed and blurred measurements y, an intuitive

idea to invert the direct model in (2) is to proceed through

two sequential steps. The aim of the first step is to recover

the blurred US RF image r = Hx from the compressed mea-

surements y by solving the following optimization problem:

min
a∈RN

‖a‖ 1 +
1

2µ
‖y − ΦΨa‖ 22 (3)

where a is the sparse representation of the US RF image

r in the transformed domain Ψ, that is, r = Hx = Ψa.

Different basis have been shown to provide good results in the

application of CS in US imaging, such as wavelets, waveatoms

or 2D Fourier basis [6]. In this paper the wavelet transform

has been employed.

Once the blurred RF image, denoted by r̂, is recovered by

solving the convex problem in (3), one can restore the TRF x

by minimizing:

min
x∈RN

α ‖x‖pp + ‖r̂ −Hx‖ 22 (4)

The first term in (4) aims at regularizing the TRF by a

GGD statistical assumption, where p is related to the shape

parameter of the GGD. In this paper, we focus on shape

parameters ranging from 1 to 2 (1 ≤ p ≤ 2), allowing us

to generalize the existing works in US image deconvolution

mainly based on Laplacian or Gaussian statistics [16–18].

2) Proposed approach: While the sequential approach

represents the most intuitive way to solve the compressive

deconvolution problem, dividing a single problem into two

separate subproblems will inevitably generate larger estimation

errors as shown by the results in section III. Therefore, we

propose herein a method to solve the CS and deconvolution

problem simultaneously. Similarly to [26], we formulate the

reconstruction process into a constrained optimization problem

explointing the relationship between (3) and (4).

min
x∈RN ,a∈RN

‖ a ‖1 +α ‖x‖
p
p +

1

2µ
‖ y − ΦΨa ‖ 2

2

s.t. Hx = Ψa

(5)

However, since our goal is to recover enhanced US imaging

by estimation the TRF x, we further reformulate the problem

above into a unconstrained optimization problem:

min
x∈RN

‖ Ψ−1Hx ‖1 +α ‖x‖
p
p +

1

2µ
‖ y − ΦHx ‖ 2

2 (6)

The objective function in (6) contains, in addition to the data

fidelity term, two regularization terms. The first one aims at

imposing the sparsity of the RF data Hx (i.e. minimizing the
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ℓ1-norm of the target image x convolved with a bandlimited

function) in a transformed domain Ψ. We should note that such

an assumption has been extensively used in the application of

CS in US imaging, see e.g. [4, 6–8, 13, 34]. Transformations

such as 2D Fourier, wavelet or wave atoms have been shown

to provide good results in US imaging. The second term aims

at regularizing the TRF x and is related to the GGD statistical

assumption of US images, see e.g. [19, 20, 34].

We notice that our regularized reconstruction problem based

on the objective function in (6) is different from a typical

CS reconstruction. Specifically, the objective function of a

standard CS technique applied to our model would only

contain the classical data fidelity term and an ℓ1-norm penalty

similar to the first term in (6) but without the operator

H . However, such a CS reconstruction is not adapted to

compressive deconvolution, mainly because the requirements

of CS theory such as the restricted isometry property might

not be guaranteed [26].

To solve the optimization problem in eq. (6), we propose

hereafter an algorithm based on the alternating direction

method of multipliers (ADMM).

B. Basics of Alternating Direction Method of Multipliers

Before going into the details of our algorithm, we report

in this paragraph the basics of ADMM. ADMM has been

extensively studied in the areas of convex programming and

variational inequalities, e.g., [30]. The general optimization

problem considered in ADMM framework is as follows:

min
u,v

f(u) + g(v)

s.t. Bu + Cv = b, u ∈ U , v ∈ V
(7)

where U ⊆ R
s and V ⊆ R

t are given convex sets, f : U →
R and g : V → R are closed convex functions, B ∈ R

r×s and

C ∈ R
r×t are given matrices and b ∈ R

r is a given vector.

By attaching the Lagrangian multiplier λ ∈ R
r to the linear

constraint, the Augmented Lagrangian (AL) function of (7) is

L(u, v, λ) = f(u) + g(v)− λt(Bu+ Cv − b)

+
β

2
‖ Bu+ Cv − b ‖22

(8)

where β > 0 is the penalty parameter for the linear

constraints to be satisfied. The standard ADMM framework

follows the three steps iterative process:















uk+1 ∈ argmin
u∈U

L(u, vk, λk)

vk+1 ∈ argmin
v∈V

L(uk+1, v, λk)

λk+1 = λk − β(Buk+1 + Cvk+1 − b)

(9)

The main advantage of ADMM, in addition to the rela-

tive ease of implementation, is its ability to split awkward

intersections and objectives to easy subproblems, resulting into

iterations comparable to those of other first-order methods.

C. Proposed ADMM parameterization for Ultrasound Com-

pressive Deconvolution

In this subsection, we propose an ADMM method for

solving the ultrasound compressive deconvolution problem in

(6).

Using a trivial variable change, the minimization problem

in (6) can be rewritten as:

min
x∈RN

‖ w ‖1 +α ‖x‖
p
p +

1

2µ
‖ y −Aa ‖ 2

2 (10)

where a = Ψ−1Hx, w = a and A = ΦΨ. Let us

denote z =

[

w

x

]

. The reformulated problem in (10) can fit

the general ADMM framework in (7) by choosing: f(a) =

1
2µ ‖ y − Aa ‖22, g(z) =‖ w ‖1 +α ‖x‖

p
p, B =

[

IN
Ψ

]

,

C =

[

−IN 0

0 −H

]

and b = 0. IN ∈ R
N×N is the identity

matrix.

The augmented Lagrangian function of (10) is given by

L(a, z,λ) = f(a) + g(z)− λt(Ba + Cz)

+
β

2
‖ Ba+ Cz ‖22

(11)

where λ ∈ R
2N stands for λ =

[

λ1

λ2

]

, λi ∈ R
N (i =

1, 2). According to the standard ADMM iterative scheme, the

minimizations with respect to a and z will be performed

alternatively, followed by the update of λ.

D. Implementation Details

In this subsection, we detail each of the three steps of our

ADMM-based compressive deconvolution method. While the

following mathematical developments are given for the case

when the regularization term for TRF x is equal to ‖ x ‖pp
(adapted to US images), our approach using a generalized total

variation regularization is also detailed in Appendix A and may

be useful for other (medical) applications.

Step 1 consists in solving the z-problem, since z =

[

w

x

]

,

this problem can be further divided into two subproblems.

Step 1.1 aims at solving:

wk =argmin
w∈RN

‖ w ‖1 −(λ
k−1
1

)t(ak−1 −w)

+
β

2
‖ ak−1 −w ‖22

⇔ wk =argmin
w∈RN

‖ w ‖1 +
β

2
‖ ak−1 −w −

λk−1
1

β
‖ 2

2

⇔ wk =prox‖·‖1/β

(

ak−1 −
λk−1
1

β

)

(12)

where prox stands for the proximal operator as proposed in

[36–38]. The proximal operators of various kinds of functions

including ‖x‖
p
p have been given explicitly in the literature (see

e.g. [39]). Basics about the proximal operator of ‖x‖
p
p are

reminded in Appendix B.
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Step 1.2 consists in solving:

xk = argmin
x∈RN

α ‖ x ‖pp −λ
k−1
2 (Ψak−1 −Hx)

+
β

2
‖ Ψak−1 −Hx ‖22

(13)

For p equal to 2, the minimization in (13) can be easily

solved in the Fourier domain, as follows:

xk =
[

βHtH + 2αIN
]−1
×
[

βHtΨak−1 −Htλk−1
2

]

(14)

For 1 6 p < 2, we propose to use the proximal operator to

solve (13). In this case, eq. (13) will be equivalent to

xk = argmin
x∈RN

α ‖ x ‖pp +
β

2
‖ Ψak−1 −Hx−

λk−1
2

β
‖22

(15)

Denoting h(x) = 1
2 ‖ Ψak−1 − Hx −

λ
k−1

2

β ‖ 2
2, we can

further approximate h(x) by

h′(xk−1)(x− xk−1) +
1

2γ
‖ x− xk−1 ‖22 (16)

where γ > 0 is a parameter related to the Lipschitz constant

[40] and h′(xk−1) is the gradient of h(x) when x = xk−1.

By plugging (16) into (15), we obtain:

xk ≈argmin
x∈RN

α ‖ x ‖pp +βh′(xk−1)(x− xk−1)

+
β

2γ
‖ x− xk−1 ‖22

⇔ xk ≈argmin
x∈RN

α ‖ x ‖pp +
β

2γ
‖ x− xk−1 + γh′(xk−1) ‖22

(17)

According to the definition of the proximal operator, we can

finally get

xk ≈ proxαγ‖·‖p
p/β{x

k−1 − γh′(xk−1)} (18)

We should note that (18) provides an approximate solution,

thus resulting into an inexact ADMM scheme. However,

the convergence of such inexact ADMM has been already

established in [30, 41, 42].

Step 2 aims at solving:

ak = argmin
a∈RN

1

2µ
‖ y −Aa ‖22 −(λ

k−1)t(Ba+ Czk)

+
β

2
‖ Ba+ Czk ‖22

⇔ ak = (
1

µ
AtA+ βIN + βΨtΨ)−1(

1

µ
Aty + λk−1

1 +Ψtλk−1
2

+ βwk + βΨtHxk)
(19)

The formula above is equivalent to solving an N × N
linear system or inverting an N × N matrix. However, since

the sparse basis Ψ considered is orthogonal (e.g. the wavelet

transform), it can be reduced to solving a smaller M × M

linear system or inverting an M ×M matrix by exploiting the

Sherman-Morrison-Woodbury inversion matrix lemma [43]:

(β1IN + β2A
tA)−1 =

1

β1
IN −

β2

β1
At(β1IM + β2AA

t)−1A

(20)

In this paper, without loss of generality, we considered the

compressive sampling matrix Φ as a Structurally Random

Matrix (SRM) [44]. Therefore, A was formed by randomly

taking a subset of rows from orthonormal transform matrices,

that is, AAt = IM . As a consequence, there is no need to solve

a linear system and the main computational cost consists into

two matrix-vector multiplications per iteration.

Step 3 consists in solving:

λk = λk−1 − β(Bak + Czk) (21)

The proposed optimization routine is summarized in Algo-

rithm 1.

Algorithm 1 ADMM algorithm for Solving (6)

Input: a0, λ0, α, µ, β
1: while not converged do

2: wk ← ak−1,λk−1 ⊲ update wk using (12)

3: xk ← ak−1,λk−1 ⊲ update xk using (14) or (18)

4: ak ← wk,xk,λk−1 ⊲ update ak using (19)

5: λk ← wk,xk,ak,λk−1 ⊲ update λk using (21)

6: end while

Output: x

III. RESULTS

The performance of the proposed compressive deconvolu-

tion method are evaluated on several simulated and experi-

mental data sets. First, we test our algorithm on a modified

Shepp-Logan phantom containing speckle noise to confirm

that the lp-norm regularization term is more adapted to US

images than the generalized TV used in [26]. The approach in

[26] is referred as CD Amizic hereafter. Second, we give the

results of our algorithm for different lp-norm optimizations

on simulated US images, showing the superiority of our

approach over the intuitive sequential method explained in

section II. Finally, compressive deconvolution results on two in

vivo ultrasound images are presented. Moreover, a comparison

between our approach and CD Amizic on the standard Shepp-

Logan phantom is provided in Appendix C.

A. Results on modified Shepp-Logan phantom

We modified the Shepp-Logan phantom in order to simulate

the speckle noise that degrades in practice the US images. For

this, we followed the procedure classically used in US imaging

[45]. First, scatterers at uniformly random locations have been

generated, with amplitudes distributed according to a zero-

mean generalized Gaussian distribution (GGD) with the shape

parameter set to 1.3 and the scale parameter equal to 1. The

scatterer amplitudes were further multiplied by the values of

the original Shepp-Logan phantom pixels located at the closest
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Fig. 1: Reconstruction results for SNR = 40dB and a CS ratio of 0.6. (a) Modified Shepp-Logan phantom containing random

scatterers (TRF), (b) Degraded image by convolution with a simulated US PSF, (c) Reconstruction result with CD Amizic, (d)

Reconstruction result with the proposed method using a generalized TV prior (ADMM GTV), (e, f, g) Reconstruction results

with the proposed method using an lp-norm prior, for p equal to 1.5, 1.3 and 1 (ADMM L1.5, ADMM L1.3 and ADMM L1).

TABLE I: Quatitative results for the modified Shepp-Logan phantom with US speckle (SNR = 40dB)
CS ratios CD Amizic ADMM GTV ADMM L1.5 ADMM L1.3 ADMM L1

80%
PSNR 30.82 31.11 32.23 32.32 32.05
SSIM 83.24 85.03 86.44 88.77 87.70

60%
PSNR 29.68 29.83 31.27 31.50 31.32
SSIM 74.58 77.83 82.26 86.03 85.64

40%
PSNR 26.76 28.11 29.58 30.04 30.12

SSIM 43.43 61.46 73.88 79.95 81.75

20%
PSNR 20.22 21.53 26.81 27.29 28.20

SSIM 8.35 12.77 51.70 62.93 72.34

positions to the scatterers. The resulting image, mimicking the

tissue reflectivty function (TRF) in US imaging, is shown in

Fig.1(a). The blurred image in Fig.1(b) was obtained by 2D

convolution between the TRF and a spatially invariant PSF

generated with Field II [46], a state-of-the-art simulator in US

imaging. It corresponds to a 3.5 MHz linear probe, sampled in

the axial direction at 20 MHz. The compressive measurements

were obtained by projecting the blurred image onto SRM and

by adding a Gaussian noise corresponding to a SNR of 40 dB.

The results were quantitatively evaluated using the standard

peak signal-to-noise ratio (PSNR) and the Structural Similarity

(SSIM) [47]. PSNR is defined as

PSNR = 10log10
NL2

‖ x− x̂ ‖2
(22)

where x and x̂ are the original and reconstructed images,

and the constant L represents the maximum intensity value in

x. SSIM is extensively used in US imaging and defined as

SSIM =
(2µxµx̂ + c1)(2σxx̂ + c2)

(µ2
x + µ2

x̂ + c1)(σ2
x + σ2

x̂ + c2)
(23)

where x and x̂ are the original and reconstructed images,

µx, µx̂, σx and σx̂ are the mean and variance values of x
and x̂, σxx̂ is the covariance between x and x̂; c1 = (k1L)

2

and c2 = (k2L)
2 are two variables aiming at stabilizing the

division with weak denominator, L is the dynamic range of

the pixel-values and k1, k2 are constants. Herein, L = 1, k1 =
0.01 and k2 = 0.03.

Reconstruction results for a CS ratio of 0.6 are shown in

Fig.1. They were obtained with: the recent compressive decon-

volution technique reported in [26] (referred as CD Amizic),

the proposed method using the generalized TV prior (denoted

by ADMM GTV) and the proposed method using the lp-

norm for p equal to 1.5, 1.3 and 1 (denoted respectively by

ADMM L1.5, ADMM L1.3 and ADMM L1). All the hyper-

parameters were set to their best possible values by cross-

validation. For CD Amizic, {β, α, η, τ} = {107, 1, 104, 102}.
For ADMM GTV {µ, α, β} = {10−5, 2× 10−1, 102} and for

the proposed method with lp-norms, {µ, α, β, γ} = {10−5, 2×
10−1, 101, 3 × 10−2} . The quantitative results for different

CS ratios are regrouped in Table.I. They confirm that the lp-

norm is better adapted to recover the TRF in US imaging than

the generalized TV. The difference between the two priors is

further accentuated when the CS ratio decreases.

Keeping in mind that the generalized TV prior is not well

suited to model the TRF in US imaging, we did not use

CD Amizic in the following sections dealing with simulated

and experimental US images. Moreover, the proposed method

was only evaluated in its lp-norm minimization form.

B. Results on simulated ultrasound images

In this section, we compared the compressive deconvolution

results with our method to those obtained with a sequential

approach. The latter recovers in a first step the blurred US

image from the CS measurements and reconstructs in a second

step the TRF by deconvolution.
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Fig. 2: Simulated US image and its compressive deconvolution

results for a CS ratio of 0.4 and a SNR of 40 dB. (a)

Original tissue reflectivity function, (b) Simulated US image,

(c) Results using the sequential method, (d, e, f) Results with

the proposed method for p equal to 1.5, 1.3 and 1 respectively.

Two ultrasound data sets were generated, as shown in Fig-

ures 2 and 3. They were obtained by 2D convolution between

spatially invariant PSFs and the TRFs. For the first simulated

image, the same PSF as in the previous section was simulated

and the TRF corresponds to a simple medium representing

a round hypoechoic inclusion into a homogeneous medium.

The scatterer amplitudes were random variables distributed

according to a GGD with the shape parameter set to 1. The

second data set is one of the examples proposed by the Field

II simulator [46], mimicking a kidney tissue. The PSF was

also generated with Field II corresponding to a 4 MHz central

frequency and an axial sampling frequency of 40 MHz. It

corresponds to a focalized emission (the PSF was measured

at the focal point) with a simulated linear probe containing 128

elements. The shape parameter of the GGD used to generate

the scatterer amplitudes was set to 1.5 and the number of

scatterers was considered sufficiently large (106) to ensure

fully developped speckle. In both experiments, the compressed

measurements were obtained by projecting the RF images on

SRM, aiming at reducing the amount of data available.

TABLE II: Quantitative results for simulated US images (SNR

= 40dB)
CS Sequential Proposed Proposed Proposed

Ratios (l1.5) (l1.3) (l1)

Figure 2

80%
PSNR 26.50 24.74 25.29 26.82

SSIM 75.01 73.91 77.66 79.45

60%
PSNR 25.96 24.44 24.74 26.03
SSIM 68.59 69.37 74.72 76.26

40%
PSNR 23.38 24.21 24.57 25.28

SSIM 47.60 62.58 71.86 72.78

20%
PSNR 21.10 23.72 24.42 24.77

SSIM 36.07 50.34 66.48 70.44

Figure 3

80%
PSNR 26.06 26.71 26.72 26.69
SSIM 45.99 56.81 56.84 56.71

60%
PSNR 25.44 26.38 26.31 26.29
SSIM 38.86 54.14 53.90 53.80

40%
PSNR 25.37 25.89 25.95 25,97

SSIM 34.61 50.22 50.51 50.61

20%
PSNR 24.96 25.22 25.20 25.12
SSIM 30.89 41.41 41.32 40.97

Fig. 3: Simulated kidney image and its compressive deconvo-

lution results for a CS ratio of 0.2 and a SNR of 40dB. (a)

Original tissue reflectivity function, (b) Simulated US image,

(c) Results using the sequential method, (d, e, f) Results with

the proposed method for p equal to 1.5, 1.3 and 1 respectively.

Fig. 4: The impact of hyperparameters on the performance of

proposed algorithm on Figure. 2.

With the sequential approach, YALL1 [42] was used to

process the CS reconstruction following the minimization

in eq. (3). The deconvolution step was processed using the

Forward-Backward Splitting method [48, 49]. Both the CS

reconstruction and the deconvolution procedures were per-

formed with the same priors as the proposed compressive

deconvolution approach.

The algorithm stops when the convergence criterion ‖
xk − xk−1 ‖ / ‖ xk−1 ‖< 1e−3 is satisfied. In order

to highlight the influence of these hyperparameters on the

reconstruction results, we consider the simulated US image

in Fig. 2. The PSNR values obtained while varying the values

of these hyperparameters are shown in Fig. 4. From Fig. 4, one

can observe that the best results are obtained for small values

of µ, corresponding to an important weight given to the data

attachment term. The best value of α is the one providing



0278-0062 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMI.2015.2493241, IEEE Transactions on Medical Imaging

IEEE TRANSACTIONS ON MEDICAL IMAGING 7

Fig. 5: From left to right, the original in vivo image and its compressive deconvolution results for CS ratios of 1, 0.8, 0.6 and

0.4 respectively with p = 1.

Fig. 6: From left to right, the original in vivo image and its compressive deconvolution results for CS ratios of 1, 0.8, 0.6 and

0.4 respectively with p = 1.5.

the best compromise between the two prior terms considered

in eq. (6), promoting minimal ℓ1-norm of Hx in the wavelet

domain and GGD statistics for x. The choice of β and γ
parameters, used in the augmented Lagrangian function and

in the approximation of the ℓp-norm proximal operator, have

an important impact on the algorithm convergence. Moreover,

one may observe that for a given range of values, the choice

of γ has less impact on the quality of the results than

the other three hyperparameters. Despite different optimal

values for each CS ratio, in the results presented through

the paper, we considered their values fixed for all the CS

ratios. The hyperparameters with our approach were set to

{µ, α, β, γ} = {10−5, 2 × 10−1, 1, 10−2} for the round cyst

image and {µ, α, β, γ} = {10−5, 2× 10−1, 1× 103, 10−4} for

the simulated kidney image.

The quantitative results in Table II show that the proposed

method outperforms the sequential approach, for all the CS

ratios and values of p considered. They confirm the visual

impression given by Figures 2 and 3. We should remark that

for the first simulated data set, the l1-norm gives the best

result. This may be explained by the simple geometry of the

simulated TRF, namely its sparse appearance. The second data

set, more realistic and more representative of experimental

situations, shows the interest of using different values of p.

It confirms the generality interest of the proposed method,

namely its flexibility in the choice of TRF priors.

C. In vivo study

In this section, we tested our method with two in vivo data

sets. The experimental data were acquired with a 20 MHz

single-element US probe on a mouse bladder (first example)

TABLE III: CNR assessment for in vivo data

Figure Original CNR p values
CS ratios

100% 80% 60% 40%

Fig.6 1.106
p = 1 1.748 1.546 1.367 1.333

p = 1.5 1.690 1.424 1.304 1.287

Fig.7 1.316
p = 1 2.373 2.162 1.895 1.434

p = 1.5 2.317 2.082 1.905 1.451

and kidney (second example). Unlike the simulated cases

studied previously, the PSF is not known in these experiments

and has to be estimated from the data. In this paper, the PSF

estimation method presented in [35] has been adopted. The

PSF estimation adopted is not iterative and the computational

time for this pre-processing step is negligible compared to the

reconstruction process. The compressive deconvolution results

are shown in Figures 5 and 6 for different CS ratios.

Given that the true TRF is not known in experimental

conditions, the quality of the reconstruction results is evaluated

using the contrast-to-noise ratio (CNR) [50], defined as

CNR =
|µ1 − µ2|
√

σ2
1 + σ2

2

(24)

where µ1 and µ2 are the mean of pixels located in two

regions extracted from the image while σ1 and σ2 are the

standard deviations of the same blocks. The two regions

selected for the computation of the CNR are highlighted by the

two red rectangles in Figures 5(a) and 6(a). Table. III gives the

CNR assessment for these two in vivo data sets with different

CS ratios and p values. Given the sparse appearance of the

bladder image in Fig. 5(a), the best result was obtained for p
equal to 1. However, the complexity of the tissue structures

in the kidney image in Fig. 6 results into better results for p
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larger than 1. Nevertheless, both the visual impression and the

CNR results show the ability of our method to both recover

the image from compressive measurements and to improve its

contrast compared to the standard US image. In particular, we

may remark the improved contrast of the structures inside the

kidney on our reconstructed images compared to the original

one.

IV. CONCLUSION

This paper introduced an ADMM-based compressive decon-

volution framework for ultrasound imaging systems. The main

benefit of our approach is its ability to reconstruct enhanced

ultrasound RF images from compressed measurements, by

inverting a linear model combining random projections and

2D convolution. Compared to a standard compressive sam-

pling reconstruction that operates in the sparse domain, our

method solves a regularized inverse problem combining the

data attachment and two prior terms. One of the regularizers

promotes minimal ℓ1-norm of the target image transformed

by 2D convolution with a bandlimited ultrasound PSF. The

second one is seeking for imposing GGD statistics on the

tissue reflectivity function to be reconstructed. Simulation

results in Appendix C on the standard Shepp-Logan phantom

show the superiority of our method, both in accuracy and

in computational time, over a recently published compressive

deconvolution approach. Moreover, we show that the proposed

joint CS and deconvolution approach is more robust than an

intuitive technique consisting of first reconstructing the RF

data and second deconvolving it. Finally, promising results on

in vivo data demonstrate the effectiveness of our approach in

practical situations. We emphasize that the 2D convolution

model may not be valid over the entire image because of

the spatially variant PSF. While in this paper we focused on

compressive image deconvolution based on spatially invariant

PSF, a more complicated global model combining several local

shift invariant PSFs represents an interesting perspective of

our approach. Our future work includes: I) the consideration

of blind deconvolution techniques able to estimate (update)

the spatially variant or invariant PSF during the reconstruction

process, II) automatic techniques for choosing the optimal

parameter p used to regularize the tissue reflectivity function,

III) extend our method to 3D ultrasound imaging, IV) evaluate

other existing setups to obtain the random compressed mea-

surements further adapted to accelerate the frame rate instead

of only reducing the amount of acquired data, V) consider

the compressed deconvolution of temporal image sequences

by taking advantage of the information redundancy and by

including in our model the PSF frame-to-frame variation

caused by strong clutters in in vivo scenarios, VI) evaluate

our approach on more experimental data.

APPENDIX A

PROPOSED COMPRESSIVE DECONVOLUTION WITH

GENERALIZED TV

Although the generalized total variation (TV) used in [26] is

not suitable for ultrasound images, it may have great interest

in other (medical) application dealing with piecewise constant

images. As suggested in [26], the generalized TV is given by:

∑

d∈D

21−o(d)
∑

i

∣

∣∆d
i (x)

∣

∣

p
(25)

where o(d) ∈ {1, 2} denotes the order of the difference

operator ∆d
i (x), 0 < p < 1, and d ∈ D = {h, v, hh, vv, hv}.

∆h
i (x) and ∆v

i (x) correspond, respectively, to the horizon-

tal and vertical first order differences, at pixel i, that is,

∆h
i (x) = ui − ul(i) and ∆v

i (x) = ui − ua(i), where l(i)
and a(i) denote the nearest neighbors of i, to the left and

above, respectively. The operators ∆hh
i (x), ∆vv

i (x), ∆hv
i (x)

correspond, respectively, to horizontal, vertical and horizontal-

vertical second order differences, at pixel i.
Replacing the ℓp-norm by the generalized TV in our com-

pressive deconvolution scheme results in a modified x update

step, that turns in solving:

xk =argmin
x∈RN

α
∑

d∈D

21−o(d)
∑

i

∣

∣∆d
i (x)

∣

∣

p

− λk−1
2 (Ψak−1 −Hx) +

β

2
‖ Ψak−1 −Hx ‖22

Similarly to the first step of the method in [26], the equation

above can be solved iteratively by:

xk,l =

[

βHtH + αp
∑

d

21−o(d)(∆d)tBk,l
d (∆d)

]−1

×
[

βHtΨak−1 −Htλk−1
2

]

(26)

where l is the iteration number in the process of updating x,

Bk,l
d is a diagonal matrix with entries ∆

d is the convolution

matrix (BCCB matrix) of the difference operator ∆d
i (·) and

Bk,l
d (i, i) = (vk,ld,i), which is updated iteratively by:

vk,l+1
d,i = [∆d

i (x
k,l)]2 (27)

When a stopping criterion is met, we can finally get an

update of x.

APPENDIX B

PROXIMAL OPERATOR

The proximal operator of a function f is defined for x0 ∈
R

N by:

proxf (x
0) = argmin

x∈RN

f(x) +
1

2
‖ x− x0 ‖22 (28)

When f = K|x|p, the corresponding porximal operator has

been given by [39]:

proxK|x|p(x
0) = sign(x0)q (29)

where q > 0 and

q + pKqp−1 =
∣

∣x0
∣

∣ (30)

It is obvious that the proximal operator of K |x| is a soft

thresholding, which is equal to:



0278-0062 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMI.2015.2493241, IEEE Transactions on Medical Imaging

IEEE TRANSACTIONS ON MEDICAL IMAGING 9

Fig. 7: Shepp-logan image and its compressive deconvolution results for a SNR of 40dB. (a) Original image, (e) Blurred image,

(b,c,d) Compressive deconvolution results with CD Amizic for CS ratios of 0.8, 0.6 and 0.4, (f,g,h) Compressive deconvolution

results with the proposed method for CS ratios of 0.8, 0.6 and 0.4.
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Fig. 8: Mean reconstruction running time for 10 experiments

conducted for each CS ratio for a SNR of 40 dB.

proxK|x|(x
0) = max

{∣

∣x0
∣

∣ −K, 0
} x0

|x0|
(31)

When p 6= 1, we used Newton’s method to obtain its

numerical solution, i.e. the value of q.

APPENDIX C

COMPARISON WITH THE COMPRESSIVE DECONVOLUTION

METHOD IN [26]

In this appendix we show an experiment aiming to evaluate

the performance of the proposed approach compared to the

one in [26], denoted by CD Amizic herein. The comparison

results are obtained on the standard 256 × 256 Shepp-Logan

phantom. The measurements have been generated in a similar

manner as in [26], i.e. the original image was normalized,

degraded by a 2D Gaussian PSF with a 5-pixel variance,

projected onto a structured random matrix (SRM) to generate

the CS measurements and corrupted by an additive Gaussian

noise. We should remark that in [26] the compressed mea-

surements were originally generated using a Gaussian random

matrix. However, we have found that the reconstruction re-

sults with CD Amizic are slightly better when using a SRM

compared to the PSNR results reported in [26]. Both methods

were based on the generalized TV to model the image to be

estimated and the 3-level Haar wavelet transform as sparsify-

ing basis Ψ. With our method, the hyperparameters were set to

{α, µ, β} = {10−1, 10−5, 102}. The same hyperparameters as

reported in [26] were used for CD Amizic. Both algorithms

based on the non-blind deconvolution (PSF is supposed to be

known) and used the same stopping criteria.

Fig.7 shows the original Shepp-Logan image, its blurred

version and a series of compressive deconvolution reconstruc-

tions using both our method and CD Amizic for CS ratios run-

ning from 0.4 to 0.8 and a SNR of 40 dB. Table.IV regroups

the PSNRs obtained with our method and with CD Amizic for

two SNRs and for four CS ratios from 0.2 to 0.4. In each case,

the reported PSNRs are the mean values of 10 experiments. We

may observe that our method outperforms CD Amizic in all

the cases, allowing a PSNR improvement in the range of 0.5
to 2 dB. Moreover, Fig.8 shows the computational times with

CD Amizic and the proposed method, obtained with Matlab

implementations (for CD Amizic, the original code provided

by the authors of [26] has been employed on a standard

desktop computer (Intel Xeon CPU E5620 @ 2.40GHz, 4.00G

RAM). We notice that our approach is less time consuming

than CD Amizic for all the CS ratios considered.

TABLE IV: PSNR assessment for Shepp-Logan phantom
SNR CS ratios 20% 40% 60% 80%

40dB
CD Amizic 23.04 24.88 25.30 25.51

Proposed method 24.09 25.38 26.26 26.91

30dB
CD Amizic 22.61 24.05 24.40 24.55

Proposed method 23.92 25.12 25.82 26.33

ACKNOWLEDGMENT

The authors would like to thank Prof. Rafael Molina

for providing the compressive deconvolution code used for

comparison purpose in this paper. This work was partially

supported by ANR-11-LABX-0040-CIMI within the program

ANR-11-IDEX-0002-02 of the University of Toulouse and

CSC (Chinese Scholarship Council).



0278-0062 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMI.2015.2493241, IEEE Transactions on Medical Imaging

IEEE TRANSACTIONS ON MEDICAL IMAGING 10

REFERENCES

[1] T. L. Szabo, Diagnostic ultrasound imaging: inside out. Aca-
demic Press, 2004.

[2] M. Tanter and M. Fink, “Ultrafast imaging in biomedical
ultrasound,” Ultrasonics, Ferroelectrics, and Frequency Control,
IEEE Transactions on, vol. 61, no. 1, pp. 102–119, January
2014.

[3] A. Achim, B. Buxton, G. Tzagkarakis, and P. Tsakalides,
“Compressive sensing for ultrasound rf echoes using a-stable
distributions,” in Engineering in Medicine and Biology Society
(EMBC), 2010 Annual International Conference of the IEEE.
IEEE, 2010, pp. 4304–4307.

[4] C. Quinsac, A. Basarab, and D. Kouamé, “Frequency domain
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