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Abstract—This paper introduces a new fusion method for
magnetic resonance (MR) and ultrasound (US) images, which
aims at combining the advantages of each modality, i.e., good
contrast and signal to noise ratio for the MR image and good
spatial resolution for the US image. The proposed algorithm is
based on an inverse problem, performing a super-resolution of
the MR image and a denoising of the US image. A polynomial
function is introduced to model the relationships between the gray
levels of the MR and US images. The resulting inverse problem
is solved using a proximal alternating linearized minimization
algorithm. The accuracy and the interest of the fusion algorithm
are shown quantitatively and qualitatively via evaluations on
synthetic and experimental phantom data.

Index Terms—Image fusion, magnetic resonance imaging, ul-
trasound imaging, super-resolution, despeckling, proximal alter-
nating linearized minimization.

I. INTRODUCTION

IMAGE fusion can be defined as gathering all the important
information from multiple images, and including them into

a fewer number of images, e.g., into one single image. This
single image is usually more informative than the images
before fusion and contains all the necessary information for
the application of interest [1]. Fusion of medical images is
becoming very common for the study of a given pathology,
and generally allows for a better medical decision in clini-
cal studies. This problem requires to solve several technical
challenges because of the limitations imposed by specific
imaging modalities. A large and growing body of literature
has investigated techniques addressing these challenges [2],
[3]. Morphological operators have been extensively considered
to detect reliable spatial information in order to fuse two
different modalities such as magnetic resonance (MR) and
computed tomography (CT) [4]. More specifically, operators
based on averaging [5], K-L transforms and morphological
pyramids such as the Laplacian pyramid decomposition [6]
have been used successfully for image fusion. These methods
are known to be sensitive to the inter-image variability result-
ing from outliers, to noise and to the size and shape of the
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features extracted from the different images [2]. Wavelet-based
methods have also been considered for medical image fusion.
These methods extract image details from the high frequency
components of one image and add them to the other images
[7]. Another fusion method is based on neural networks, which
are able to learn appropriate features from a training dataset
[8]. The accuracy of the fused images strongly depends on the
quality of the training data, which can be a problem in some
applications. Some appropriate mathematical transforms have
also been combined to probabilistic approaches, to provide
efficient image fusion methods, e.g., for the fusion of gam-
magraphy and ultrasound (US) images [9]. Overall, there is a
large number of techniques that have been investigated for the
fusion of medical images with their own limitations depending
on the considered imaging modalities. However, to the best of
our knowledge, the fusion of magnetic resonance (MR) and
US images has rarely been considered in the literature, which
is precisely the aim of this paper.

MR and US are two different imaging modalities having
their own advantages and drawbacks. MR images provide a
wide field of view of patients’ anatomy with a good signal
to noise ratio but with a relatively low spatial resolution. As
a consequence, precise anatomic landmarks at the millimetric
scale can be under-evaluated. In contrast, US imaging presents
a low signal to noise ratio and a reduced field of view but
provides enhanced anatomic details due to its better spatial
resolution (especially when high frequency probes are used).
The complementary properties of MR and US images motivate
the interest of fusing these modalities, specifically for morpho-
logical workup in several diseases such as endometriosis.

Endometriosis is a typical example of pathology that re-
quires the use of MR and US modalities in conventional
clinical practice. This benignant disease is defined as the
presence of endometrial glands or stroma in sites different
from the uterine cavity. It typically affects women in their
reproductive age and is associated with chronic pelvic pain and
infertility. Endometriotic lesions can be either superficial or
deeply infiltrating. Surgery is a cornerstone for endometriosis
since disease removal positively impacts quality of life and
fertility [10]. First line radiological workup uses MR and
pelvic US imaging. MRI displays a higher sensitivity for
endometriosis diagnosis compared to pelvic US (0.94 versus
0.79) [11]. In contrast, pelvic US with transvaginal or transrec-
tal route provides a better specificity (0.94 versus 0.77) and
is more accurate in the evaluation of infiltration depth when
compared to MRI. Considering the benignant nature of the
disease and its high recurrence rate, conservative management
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treatment involving limited invasive measurements is prefer-
able to surgery whenever feasible [12]. In the setting of deep
infiltrating endometriosis, fusing the two imaging techniques
thus appears particularly promising. Indeed, the presence of
information coming from both US and MR modalities in
a single image is expected to improve preoperative disease
mapping and subsequent definition of surgical modalities.

This paper studies a new fusion method for MR and US
images, based on two image formation models gathering the
advantages and drawbacks of each modality. More precisely,
the MR image formation model accounts for the low spatial
resolution of the observed image using a standard linear model
with blurring and downsampling operators. The US image
formation model takes into consideration the high amount of
speckle noise, which is assumed to be Rayleigh-distributed
as in many works including [13]–[15]. Given the different
physical phenomena involved in each imaging modality, we
propose to model the correspondence between gray levels
of MR and US images using a polynomial function. This
polynomial model can be theoretically motivated by the Weier-
strass approximation theorem, which states that any continuous
function on a closed and bounded interval can be uniformly
approximated on that interval by polynomials with any degree
of accuracy [16]. A more practical reason for using this kind
of relationship between MR and US images is its successfull
application to MR and US image registration [17]. The non-
linear cost function considered to solve the fusion problem
is constructed using the observation models associated with
the MR and US images and the polynomial transformation
relating the two images. Its minimization is challenging and
is handled by a proximal alternating linearized minimization
(PALM) algorithm. The proposed image fusion method is
evaluated on simulated data with available ground truth, and
on experimental data acquired on a phantom with imaging
characteristics close to endometriosis. Both qualitative and
quantitative results show the interest of fusing MR and US
images, compared to restoring independently the images with
each modality.

The remainder of the paper is organized as follows. Section
2 introduces the statistical models for MR and US image
fusion including a non-linear relation between the two modal-
ities. Section 3 details the different steps of the proposed
MR/US image fusion algorithm. Results on simulated data and
on an experimental phantom are presented in Sections 4 and
5. Conclusions and perspectives are reported in Section 6.

II. A STATISTICAL MODEL FOR THE FUSION OF
MR AND US IMAGES

The image fusion model introduced in this section assumes
that the MR and US images to be fused are aligned, i.e.,
there is no geometric distortion between them, which can
be obtained after an appropriate pre-registration. Thus, the
registration potentially required in practical applications (see,
e.g., [18]–[21]) is considered herein as a pre-processing step
and the possible registration errors are ignored hereafter. Note
that despite this hypothesis, the fusion task is still challenging
because the two imaging modalities have different resolutions
and contrasts and are corrupted by different kinds of noise.

A. Observation models

In several clinical applications including gynecology (con-
sidered in this study), MRI has the advantage of acquiring
images with a large field of view, at the expense of a relatively
low spatial resolution, of the order of 1 mm. In contrast to
MRI, depending on the choice of the probe’s central frequency,
US imaging can offer well-resolved images. However, US
images are contaminated by a high level of speckle noise and
have a reduced field of view. Based on these observations,
many existing works aimed at improving independently the
quality of MR and US images. In the case of MRI, the
loss of resolution is classically modelled by a downsampling
operation and a low pass filter [22]. In US imaging, speckle
noise is usually considered as additive when considering the
log-compressed envelope mode (also called B-mode) with
a log-Rayleigh distribution [23], [24]. This paper assumes
that the US noise sequence is independent and identically
distributed (i.i.d) as in [25], [26]. Note that modelling the
spatial correlation of noise samples would increase the com-
plexity of the fusion method and is left for future work. These
observations lead to the following image formation models

ym = SCxm + nm

yu = xu + nu
(1)

where xm ∈ RN is the non-observable high-resolution vec-
torized MR image, ym ∈ RM is the observed low-resolution
vectorized MR image and nm ∈ RN is the i.i.d. noise vector
corrupting the MR image, assumed to be Gaussian as in [27].
Note that C ∈ RN×N is a block circulant with circulant
blocks matrix modelling the blurring effect of the MRI by
a point spread function (PSF) and that S ∈ RM×N (with
N = s2M ) is a decimation operator with a decimation factor
s. On the other hand, yu ∈ RN is the observed vectorized
B-mode US image, xu ∈ RN is the noise-free vectorized
US image and nu ∈ RN is an i.i.d. additive log-Rayleigh
noise with localization parameter γ. Note that the speckle
noise affecting US images is mainly caused by diffusion,
i.e., by the constructive and destructive interferences between
echoes originated by small (with respect to the US wavelength)
point targets called scatterers. Note also that all the vectors
in (1) are obtained from the corresponding images using the
lexicographical order. Finally, we assume that xm and xu have
the same spatial sampling, which can be obtained in practical
applications by adjusting the decimation factor d in the MRI
model, so that pixels in the super-resolved MR and US images
have the same size.

B. Relation between US and MR images

MR and US imaging systems exploit different physical
phenomena. Consequently, when imaging the same tissues,
even in the virtual case of a perfect acquisition (without
noise) allowing xm and xu to be directly observable, these
two systems would not provide the same measurements. Thus,
images xm and xu in (1) are not equal, even if they correspond
to the same tissue. For solving the fusion task, we propose to
link these two images by a parametric model. More precisely,
we adopt the model originally proposed in [17] for MR/US
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image registration. This model is motivated by the fact that
US image formation is essentially based on the gradient of the
acoustic impedance between neighbouring tissues and is thus
able to highlight the interfaces between anatomical structures.
For US imaging, US waves (short pulses) are transmitted
by the transducer, propagate through the tissues, and return
to the transducer as reflected echoes. The reflected echoes
correspond to US wave reflection at the interfaces between
tissues with different acoustic impedances. Thus, the most
important features in US images correspond to regions with
gradient of impedance. The noise-free US envelope image
(after amplitude demodulation of beamformed RF signals) can
thus be expressed as

au = ∇ZHu (2)

where au is the speckle-free US envelope image, Z is the
acoustic impedance map, u is the scan direction, H stands for
Hermitian transpose and ∇ is the discrete gradient operator.
The B-mode or log envelop of au, denoted by xu in (1) is

xu = b log[∇ZHu] + g (3)

where b and g are linear gains.

Exploiting the previous US image model, relating US and
MR pixel amplitudes turns out to finding a relationship be-
tween the MRI amplitude and the acoustic impedance Z,
denoted by φ such that

Z = φ[xm]. (4)

Computing the gradient of (4) leads to

∇Z = φ′[xm]∇xm (5)

where φ′ is the derivative of the unknown function φ. By
plugging (5) into (3), the following relation between the US
and MR images is obtained

xu = b log
[
φ′(xm)∇xH

m u
]

+ g (6)

where b and g are constant. Note that the amplitude of one
pixel in xu not only depends on the value of its counterpart
in xm, but also on the gradient of the MR image. To simplify
the notations, this functional mapping between the US and
MR images is defined as

xu = f(xm,∇xH
m u) (7)

where f : RN × RN → RN is an unknown function and
∇xH

m u ∈ RN contains in its ith line the inner product between
the ith local gradient xm and the US scan direction u.

The unknown function f in (7) is approximated in this study
by a polynomial (as in [17]) such that

xu,i =
∑

p+q≤d

cpqx
p
m,i(∇x

H
m u)qi (8)

where cpq are the unknown polynomial coefficients, index i
stands for the ith coefficient of a vector and d is the degree of
the polynomial function.

C. A Bayesian approach for MR and US image fusion

Using the relationship between MR and US images in (7),
the image formation models in (1) can be rewritten as

ym = SCx+ nm

yu = f(x,∇xHu) + nu
(9)

where x ∈ RN is the unknown image to be estimated,
containing relevant information from both MR and US data.
The conditional distributions of ym and yu can be determined
using the noise distributions

ym|x ∼ N (SCx, σ2
mIN )

yu|x ∼ LR(γ)
(10)

where N (µ,Σ) denotes the normal distribution with mean
vector µ and covariance matrix Σ, and LR(γ) is the log-
Rayleigh distribution with parameter γ1. Using Bayes rule and
the independence between the noise vectors nm and nu, the
posterior distribution of x can be computed

p(x|ym,yu) ∝ p(ym|x)p(yu|x)p(x) (11)

where p(x) is the prior probability distribution of x and ∝
means “proportional to”. Finally, the log-posterior distribution
can be written as

− log p(x|ym,yu) = K +
1

2
‖ym − SCx‖2︸ ︷︷ ︸
MRI data fidelity

+ log [p(x)]︸ ︷︷ ︸
regularization

+
N∑
i=1

[
exp(yu,i − fi(x,∇xHu))− γ(yu,i − fi(x,∇xHu))

]
︸ ︷︷ ︸

US data fidelity

(12)

where yu,i and fi(x,∇xHu) are the ith components of yu
and f(x,∇xHu) and K is a constant.

Different prior distributions p(x) have been considered in
the literature to solve ill-posed problems. In this study, we
propose to use the classical total variation (TV) promoting
piece-wise constant fused images. Estimating x in the sense
of the maximum a posteriori principle using this TV regular-
ization leads to the following minimization problem

x̂ = argmin
x

1

2
‖ym − SCx‖2 + τ1‖∇x‖2

+ τ3‖∇f(x,∇xHu)‖2 + τ2

N∑
i=1

[
exp(yu,i − fi(x,∇xHu))

− γ(yu,i − fi(x,∇xHu))
]

(13)

where τ1, τ3 and τ2 are hyperparameters balancing the weights
of the data fidelity and TV regularization terms. Note that the
cost function in (13) depends on the polynomial parameters
cpq relating US and MR pixel amplitudes, that need to be
estimated before solving (13).

1The probability density function (pdf) of a variable distributed accord-
ing to a log-Rayleigh distribution denoted as z ∼ LR(γ) is p(z) =
(ez)2

γ
exp

[
− (ez)2

2γ

]
IR+ (z), where IR+ is the indicator on R+.
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III. ALGORITHM FOR MR/US FUSION

This section studies an optimization algorithm dedicated
to solve (13). The presence of the non-linear polynomial
function f in (13) prevents the use of algorithms based on
the alternate direction method of multipliers (ADMM) [28].
Consequently, we propose hereafter an algorithm based on the
proximal alternating linearized minimization (PALM), adapted
to nonconvex and nonsmooth functions [29].

A. Summary of PALM

The PALM algorithm was originally designed to minimize
functions of two vectors x and v that can be decomposed as

min
x,v

ψ(x,v) := l(x) + g(v) +H(x,v) (14)

where l and g are continuous convex functions and H may be
non-linear. Moreover, these three functions must respect the
following conditions to fit the PALM framework [29]

1) l and g are inf-bounded
(
infRN

(
f
)
> −∞ and

infRN

(
g
)
> −∞

)
.

2) For any fixed v the function x 7→ H(x,v) is C1,1, and
the partial gradient ∇xH(x,v) is globally Lipschitz.

3) For any fixed x the function v 7→ H(x,v) is C1,1, and
the partial gradient ∇vH(x,v) is globally Lipschitz.

4) ∇H is Lipschitz continuous on bounded subsets of the
image domain.

PALM can be viewed as a minimization of the sum of the two
functions l and g with a linearization of H around a given point
xk. The alternate minimization with respect to the two blocks
x and v proposed in [29] generates a sequence {(xk,vk)}k∈N
using the following steps

Step 1: Choose γ1 > 1, set ck = γ1Lx(vk) and update xk

as follows

xk+1 = proxlck
(
xk − 1

ck
∇xH(xk,vk)

)
= argmin

x
(x− xk)H∇xH(xk,vk) +

ck
2
‖x− xk‖2

+ l(x)

where Lx(vk) is the Lipschitz constant of x 7→ ∇xH(x,vk)
and vk is the value of v at iteration #k.

Step 2 : Choose γ2 > 1, set dk = γ2Lv(xk) and update
vk as folllows

vk+1 = proxgdk

(
vk − 1

dk
∇vH(xk,vk)

)
= argmin

v
(v − vk)H∇vH(xk,vk) +

dk
2
‖v − vk‖2

+ g(v)

where Lv(xk) is the Lipschitz constant of v 7→ ∇vH(xk,v)
and xk is the value of x at iteration #k.

Note that this iterative scheme requires to compute the
Lipschitz constants Lx(vk) and Lv(xk).

B. Proposed PALM algorithm for MR/US image fusion

In order to respect the constraints mentioned above and to
adapt our image fusion minimization problem to the PALM
framework, we propose the following parametrization

l(x) =
1

2
‖ym − SCx‖22 + τ1‖∇x‖2 (15)

g(v) = τ2
∑
i

[exp(yu,i− vi)− γ(yu,i− vi)] + τ3‖∇v‖2 (16)

H(x,v) = τ4

N∑
i=1

(
vi −

∑
p+q≤3

cpqx
p
i (∇xHu)qi

)
(17)

where
v = f(x,∇xHu).

Remark 3.1: With this choice of functions l, g and h, the
four assumptions stated previously are satisfied, as explained
hereafter.

1) Assumption 1 ensures that the PALM algorithm is well
defined, which can be easily verified in our case.

2) Assumptions 2 and 3: Since x 7→ ∇xH(x,v) and v 7→
∇vH(x,v) are polynomial functions, they are globally
Lipschitz and their domains are bounded.

3) Since H is C2, Assumption 4 is satisfied as a conse-
quence of the mean value theorem.

More details about the implementation of the PALM algorithm
for the proposed fusion of MRI and US images are provided
in Appendix A.

C. Estimation of the polynomial function f

For a given order d, the unknown polynomial function f
relating xm to xu is defined by Nd = (d + 1)(d + 2)/2
coefficients gathered in the vector cd = {cpq | p+ q ≤ d}. To
estimate these coefficients, we assume that the observed MR
and US images are related as follows

yu,i =
∑

p+q≤3

cpqy
p
m,i(∇y

H
m u)qi + εi i = 1, ..., N

or equivalently, in algebraic form

yu = Amcd + ε (18)

where Am ∈ RN×Nd is a matrix whose elements are
ypm,i(∇yHm u)qi for p + q ≤ d and ε = (ε1, ..., εN )T . The
least-squares estimator of cd (which is also the maximum
likelihood estimator for i.i.d. Gaussian errors εi) is defined by
ĉd = A†myu, where A†m = (AT

mAm)−1AT
m is the pseudo-

inverse of the matrix Am. This estimator will be used to
estimate the coefficients of the polynomial function f in our
experiments.

IV. SIMULATION RESULTS

A. Simulation setup

This section demonstrates the efficiency of the proposed
MRI/US fusion method using two sets of synthetic images
with controlled ground truth. The observed MR images were
generated from the high resolution MR images displayed in
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(a) Ground truth MRI (b) Ground truth US

(c) MRI observation (d) US observation

(e) Estimated HR MR image (f) Despeckeled US image

(g) Fused image

Fig. 1: US and MRI fusion: (a) True high resolution MR
image, (b) Simulated US image using a polynomial function
applied to the MR image (a), (c) MR low-resolution and
blurred image, (d) noisy US image, (e) high resolution MR
image estimated using the fast super resolution algorithm of
[30], (f) despeckled US image using TV regularization, (g)
fused image obtained with Algo 1.

Figs. 1(a) and 2(a), after blurring, decimation and contamina-
tion by an additive i.i.d. white Gaussian noise leading to Figs.
1(c) and 2(c). The blurring kernel was a 2D Gaussian filter of
size 9×9 with variance σ2

m = 4. The decimation factors were
set to s = 4 for the first dataset and s = 2 for the second
dataset. A Gaussian noise was finally added to the blurred
and decimated MRI images with signal-to-noise ratios equal
to SNR = 23.26 dB for the first image and SNR = 20.73

(a) Ground truth MRI (b) Ground truth US

(c) MRI observation (d) US observation

(e) Estimated HR MR image (f) Despeckeled US image

(g) Fused image

Fig. 2: US and MRI fusion: (a) True high resolution MR
image, (b) Simulated US image using a polynomial function
applied to the MR image in (a), (c) MR low-resolution and
blurred image, (d) noisy US image, (e) high resolution MR
image estimated using the fast super resolution algorithm in
[30], (f) despeckled US image using TV regularization, (g)
fused image obtained with Algo 1.
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dB for the second image. Note that the sizes of the observed
MR images were 64 × 64 and 75 × 75 for the two datasets.
A third order polynomial (d = 3) was used to generate the
clean US images from the corresponding clean high-resolution
MR images, as shown in Figs. 1(b) and 2(b). To generate the
observed US images, log-Rayleigh noise was added to the
B-mode US images yielding the images displayed in Figs.
1(d) and 2(d). Note that the SNRs for the Rayleigh noise
affecting the US images were SNR = 13.72 dB for the first
dataset and SNR = 13.80 dB for the second dataset. A linear
normalization was finally applied to the observed MRI and
US images in order to have pixel values in the interval (0, 1).
This normalization ensures that MRI and US pixels have a
comparable grey level scale and has been used successfully in
many application such as [31].

B. Performance evaluation

The performance of the proposed fusion algorithm was
evaluated for synthetic data using four quantitative metrics:
the root mean square error (RMSE), the peak signal to noise
ratio (PSNR), the improved signal-to-noise ratio (ISNR) and
the mean structural similarity (MSSIM) [32]. These metrics
are defined explicitely in (19), where x denotes the ground
truth image, x̂ is the estimated image and y is the bicubic
interpolated MR image:

RMSE =

√
1

N
‖x̂− x‖22

PSNR = 20 log10

max(x̂,x)

RMSE

ISNR = 10 log10

‖y − x‖
‖x̂− x‖2

MSSIM =
1

M

M∑
j=1

SSIM(xj , x̂j). (19)

The metric MSSIM is implemented blockwise, where M is the
number of local windows, x̂j and xj are local regions extracted
from x̂ and x and SSIM is the structural similarity index
computed for each window as in [33]. Note that the different
metrics were computed using the fused image (estimated as
in Section III) and the US and MRI ground truth images.
The proposed algorithm was compared to existing MR and
US image restoration algorithms, whose objectives are 1)
estimating the high-resolution MR image from the observed
low resolution MR image or/and 2) denoising the observed
US image.

C. Simulated data

The fused images obtained using the proposed algorithm
are displayed in Figs. 1(g) and 2(g). The first interesting
result is that for both datasets, the fused image contains
information from both MR and US modalities in an enhanced
image compared to the two observed MRI and US images.
The fused images are compared visually in Figs. 1 and 2 to
the despeckled US image (obtained by solving the denoising
problem using a gradient descent algorithm, with a log-
Rayleigh noise hypothesis and TV regularization) and to the

Fig. 3: Error norms between experimental US and MR images
versus the polynomial degree d.

super-resolved (SR) MR image obtained using the algorithm in
[30] (that accounts for Gaussian noise and TV regularization).
The quantitative results reported in Tab. I confirm the interest
of fusing images of two different modalities, when compared
to the images restored from each imaging modality separately.
Considering MR and US data jointly allows both spatial
resolution and image contrast to be enhanced.

V. EXPERIMENTAL RESULTS WITH REAL DATA

A. MR and US image acquisition

The proposed image fusion algorithm is adapted to regis-
tered US and MR images. The multimodal registration task is
challenging in most of the medical applications, including the
one targeted by this study, i.e., endometriosis detection and
localization [18]. For this reason, the experimental evaluation
is performed hereafter on phantom data.

1) Experimental model design:
To create our experimental model, we used a slice of beef

steak of size 17× 10× 1.5 cm, on top of which was stuck a
polyvinyl alcohol (PVA) phantom, using cyanoacrylate instant
glue. The phantom was created by using a spheroid plastic
mold measuring 4.3 × 3 × 1.5 cm. The phantom substance
was based on a mixture of deionized water (89%), PVA (10%,
Sigma-Aldrich) and silica (1%, Sigma-Aldrich). Water was
heated until 90◦C. PVA was added slowly and dissolved using
a magnetic stirring (500 to 700 rpm during 1 hour). Silica
was added just after PVA was fully solubilized. The prepared
solution was then poured into the mold and submitted to
freeze-thaw cycles until solidification.

The choice of beef meat was mainly motivated by its com-
position of muscular tissue and its echogenicity that is similar
to uterus. Furthermore the presence of greasy bays facilitated
the multimodality registration process. The use of PVA for
manufacturing the phantom is interesting given its relatively
low cost and widely availablity. Moreover, its US and T1-
weighted MRI features are close to those of endometriotic
cysts (homogenous low-level echogenicity in US images, high
signal intensity in T1-weighted images, no signal loss in fat-
suppressed sequence).
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TABLE I: Quantitative results on simulated data.

Dataset 1 (Fig. 1)
Fused image vs MRI SR MRI Fused image vs US Despeckeled US

RMSE 0.060 0.081 0.18 0.29
PSNR [dB] 24.37 21.08 15.78 10.67
ISNR [dB] 5.25 2.11 4.1 0.98

MSSIM [dB] 0.70 0.69 0.68 0.64
Dataset 2 (Fig. 2)

Fused image vs MRI SR MRI Fused image vs US Despeckeled US
RMSE 0.052 0.071 0.3 0.37

PSNR [dB] 15.7 11.37 7.34 5.38
ISNR [dB] 4.25 1.98 3.01 1.29

MSSIM [dB] 0.74 0.61 0.58 0.24

(a) yu (b) f(ym,∇ym
Hu)

Fig. 4: (a) US image, (b) MR image obtained after applying the
estimated polynomial function, representing the same imaged
medium. The original MR image is shown in Fig. 5(b)

2) Image acquisition protocol and hyperparameters:
MRI experiments were performed using a 3T clinical imag-
ing system (Philips Achieva dStream, Inserm/UPS UMR1214
ToNIC Technical Platform, Toulouse, France). Axial fat-
suppressed T1-weighted sequences (multishot mode, 4mm
slice thickness, voxel matrix 4× 1× 4 mm) and axial, sagittal
and coronal T2-weighted sequences (multishot mode, 2 mm
slice thickness, voxel matrix 0.8×2×2 mm) were acquired. For
the image fusion, only the T1-weighted image was used. For
US image acquisition, the experimental model was immersed
in a bucket full of water. US examination was performed using
a Voluson S9 system (General Electrics). All images were
acquired with a 10-MHz linear array transducer.

In all the experiments below, the degree of the polynomial
function relating US and MR pixel intensities was set to
d = 4, which implies that the number of coefficients in cd
is Nd = 15. This choice was motivated by our results on
experimental data showing that d = 4 is the smallest degree
ensuring a good fit between US and MR images, as highlighted
in Fig. 3. The estimation of the vector cd was considered
in a preprocessing step using (18). Fig. 4 shows the effect
of applying the estimated polynomial function onto one MR
image, which can be compared to the corresponding US image
The same structures can be observed in the two images. In
particular, the glue that is not visible in the MRI can be clearly
seen in the transformed image displayed in Fig. 4(b). Finally,
it is interesting to mention that the regularization parameters
were fixed to their best values by visual inspection of the fused

images, leading to τ1 = 10−2, τ2 = 3.10−6, τ3 = 2.10−4 and
τ4 = 10−5. Interestingly, these values were not modified for
the two experimental datasets considered in this study.

B. Performance of the proposed fusion algorithm

The MRI and US observations displayed in Figs. 5(a-d)
and 5(a-d) clearly contain complementary information. MRI
provides a wide field of view and a good contrast between the
beef steak and the polyvinyl alcohol phantom, but with limited
spatial resolution. The lack of spatial resolution prevents, for
example, the observation of the glue between the slice of meat
and the PVA phantom. On the other hand, US images have a
limited field of view but provide a better spatial resolution,
allowing for example the glue structure to be imaged very
precisely. Figs. 5(e) and 6(e) show the fused images obtained
with the proposed algorithm. The benefit of fusing the two
imaging modalities can be observed, yielding a fused image
having the good contrast of MRI and the fine spatial resolution
of US. In addition to the visual inspection of the different
images, the performance of the proposed fusion method was
evaluated using two quantitative measures. The first measure
is the contrast-to-noise ratio (CNR) [34], which can be used to
evaluate the contrast between two different structures in MR,
US and fused images. The CNR is defined as

CNR =
|µi − µj |√
σ2
i + σ2

j

where µi, µj , σ2
i and σ2

j are the means and standard deviations
of two blocks of pixels extracted from two different structures.
The two regions considered in this study were chosen inside
the PVA phantom and the beef steak, respectively. The CNR
values associated with these two regions are reported in Table
II. They clearly demonstrate that image fusion allows the
image contrast to be improved for both experiments (by factors
of 82.1% and 191.67% for the two datasets) compared to US
images.

The objective of the second quantitative measure is to
evaluate the spatial resolution of MR, US and fused images.
It is based on the image profiles crossing the boundary
between different structures. The slope of these profiles at the
interface between two structures was computed and is used
as an indicator of spatial resolution [35]. Fig. 7 and Table III
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(a) MRI observation (b) MRI observation cropped

(c) US observation (d) US observation cropped

(e) Fused image

Fig. 5: Image fusion results. (a,b) Full view and cropped MR images, (c,d) Full view and cropped US images, (e) fused image
with the proposed method.

(a) MRI observation (b) MRI observation cropped

(c) US observation (d) US observation cropped

(e) Fused image

Fig. 6: Image fusion results. (a,b) Full view and cropped MR images, (c,d) Full view and cropped US images, (e) fused image
with the proposed method.
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(a) (b)

Fig. 7: (a) shows normalized pixel intensities of extracted lines from MRI, US and the fused image in (5). The MRI observation
is in blue, the US observation is in green and the fused image is in red. The vertical straight lines indicate the delimited regions
depicted in (b).

TABLE II: CNR comparison for the phantom images.

CNR
MRI US Fused image

SET 1 (Fig. 3) 48.76 dB 20.64 dB 37.73 dB
SET 2 (Fig. 4) 54.71 dB 15.72 dB 45.85 dB

highlight the improved spatial resolution resulting from the
fusion of the two modalities. We observe that the fused image
can differentiate neighbouring structures and highlight small
structures as the glue, contrary to MRI images. For example,
the second interface in Fig. 7, between the PVA phantom
and the glue is not distinguishable in the MRI, while it is
clearly visible in the US and fused images. This observation
is confirmed by the slope coefficients reported in Table III.
These two measures confirm the benefit of fusing the two
imaging modalities, yielding a fused image having a good
contrast (better than the one of US images) and a fine spatial
resolution (better than the low spatial resolution of MRI).

TABLE III: Profile slope at the interfaces between different
regions of interest in the MRI, US and fused images (FI),
corresponding to the vertical line in Fig. 7.

MRI (×10−2) US (×10−2) FI (×10−2)
Slope #1 2.89 7.42 7.42
Slope #2 -0.10 8.89 6.86
Slope #3 3.57 5.47 6.61
Slope #4 -1.35 -1.95 -2.05

Similarly to most of the existing image reconstruction
algorithms, the quality of the fusion algorithm investigated
in this paper depends on the values of the hyperparameters.
The hyperparameter τ4 was set to 10−5 to ensure a good
compromise between the MR and US data fidelity terms. A
different choice of τ4 would provide different fusion results.
As an example, for the experimental dataset #1, the fused
image obtained for τ4 = 10−4 has similar features as the
US image, i.e., low contrast (CNR = 21.01dB) and good
spatial resolution (with a profile slope at the interface between
the PVA and the glue of 8.89 × 10−2). On the contrary, for
τ4 = 10−5, the fused image is close to the MRI, having good

contrast (CNR = 47.51dB) and a low spatial resolution (with
a profile slope at the interface between the PVA and the glue
of −10−3) as shown in Fig. 8. Similar comments can be made
for the other hyperparameters, such as τ1 and τ3 balancing the
weight between the data fidelity terms and the total variation
regularization (the reader is invited to consult the technical
report [36] associated with this paper for more details).

(a) Evolution of CNR (b) Evolution of the slope

Fig. 8: Influence of the hyperparameter τ4 on the fused image.
(a) shows the CNR evolution whereas (b) shows the evolution
of the interface 2 slope for different values of τ4.

VI. CONCLUSIONS

This paper studied a new fusion method for magnetic
resonance (MR) and ultrasound (US) images. The proposed
method was able to reconstruct a fused image containing infor-
mation from both observations, by solving a super-resolution
inverse problem for MRI and a despeckling problem for US
images. These two problems were solved jointly by using
appropriate statistical models and a polynomial relationship
between the images of interest. A PALM algorithm was finally
investigated to solve the resulting fusion problem. Results
obtained on simulated and real images clearly showed the
interest of combining the information contained in these two
imaging modalities, instead of restoring them independently.

To the best of our knowledge, this work is a first attempt
for fusing MR and US images. It opens several interesting
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perspectives. A natural progression of this work is to take into
account the possible correlation of noise samples especially for
the US image, to take into account the presence of potential
artifacts and to adapt the algorithm to not-fully developed
speckle. Also, learning the functional dependence between
MR and US images using machine learning techniques is
an interesting prospect, which might help to understand the
existing relationships between these two modalities. Finally,
combining the proposed framework with multimodal image
registration is also an interesting problem, which would allow
the proposed MR/US image fusion to be robustified with a
better applicability to in vivo data.
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APPENDIX A: IMPLEMENTATION OF THE PALM
ALGORITHM OF SECTION III B

We denote hereafter by {(xk,vk)}k∈N the sequence gener-
ated by the PALM algorithm.

1) Lipschitz constants:
Before going into the details of the PALM algorithm used

to solve Problem (14), this section explains how the Lipschitz
constants Lx(v) and Lv(x) of x 7→ ∇xH(x,v) and v 7→
∇vH(x,v) can be computed. Eq. (17) leads to

∇vH(x,v) = 2τ4

(
v −

∑
p+q≤3

cpqx
p(∇xHu)q

)
. (20)

The computation of the Lipschitz constant Lv(x) is straight-
forward and leads to Lv(x) = 2τ4, ∀x. The Lipschitz constant
of x 7→ ∇xH(x,v) is more complicated to evaluate. We
therefore use PALM with a backtracking stepsize rule as
suggested in [37]. Note that one of the pillars of PALM’s
convergence proof is the following lemma for smooth func-
tions.

Lemma 6.1: Let h : Rn → R be a continuously dif-
ferentiable function with Lipschitz continuous gradient and
Lipschitz constant Lh. Then for any L ≥ Lh and ∀x, y ∈ Rn

h(x) ≤ h(y) + (x− y)
H∇xh(x) +

L

2
‖x− y‖22. (21)

Using simple algebra, one can show that the function ψ defined
in (14) satisfies the following relation

ψ(x,v) ≤ QL(x, y, v) (22)

where

QL(x, y, v) = l(x) + g(v) +H(y, v)

+ (x− y)H∇xH(y, v) +
L

2
‖x− y‖2.

In order to ensure the convergence of the PALM algorithm, the
backtracking rule consists of verifying that the inequality (22)
is satisfied at every step. To estimate the Lipschitz constant,
at each iteration k, we search for the smallest nonnegative
integers ik such that Lk+1 = λikLk verifies

ψ(pL̄(xk),vk) ≤ QL̄(pL̄(xk),xk,vk)

with

pL̄(xk) = proxlLk+1

(
xk − 1

Lk+1
∇xH(xk,vk)

)
.

Remark 6.2: The sequence of values ψ(xk,vk) computed
by PALM is decreasing for all xk and vk.
The proof is straightforward. For every k ≥ 1

ψ(xk+1,vk) ≤ QLk+1
(xk+1,xk,vk)

and

QLk+1
(xk+1,xk,vk) ≤ QLk+1

(xk,xk,vk) = ψ(xk,vk).

Thus
ψ(xk+1,vk) ≤ ψ(xk,vk)

and
ψ(xk,vk+1) ≤ ψ(xk,vk)

which concludes the proof.
Remark 6.3: Since inequality (22) is satisfied for L ≥

Lx(v),∀v, where Lx(v) is the Lipschitz constant of x →
∇xH(x, v), the following inequalities can be obtained

Lx(vk) ≤ Lk+1 ≤ λLH(vk). (23)

Note that the inequality Lx(vk) ≤ Lk+1 is sufficient to ensure
the convergence of PALM. However, the second inequality
Lk+1 ≤ λLH(vk) allows the convergence rate to be controlled
by an appropriate choice of λ.
In the following subsections, the updates of each variable
within PALM algorithm are described in details.

2) Update of x: hspace+0.5cm
The update of x is achieved by minimizing the sum of

quadratic functions, leading to

xk+1 = proxlLk+1

(
xk − 1

Lk+1
∇xH(xk,vk)

)
= argmin

x

1

2
‖SCx− ym‖2 + τ1‖∇x‖2

+
Lk+1

2
‖x− (xk − 1

Lk+1
∇xH(xk,vk))‖2

where l is defined in (15) and Lk+1 is the Lipschitz constant at
iteration k+1. This minimization problem admits an analytical
solution, which can be computed efficiently in the Fourier
domain. The practical tractability of this solution is possible
for large images using the decomposition of the decimation
matrix S proposed in [30], since the convolution operator is
diagonalizable in the Fourier domain. The update of x at the
(k + 1)th iteration is then obtained as follows

xk+1 =

[
CHSHSC + 2

(
τ1D +

Lk+1

2
IN
)]−1

R (24)

with

R = CHSHym + 2Lk+1

(
xk − 1

Lk+1
∇xH(xk,vk)

)
D = DH

h Dh +DH
v Dv

where Dh and Dv are the horizontal and vertical finite
difference operators.
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The direct computation of the solution (24) requires the
inversion of high dimensional matrices. To overcome this
problem, we adopt herein the solution proposed in [30],
which is recalled hereafter. Based on the circulant boundary
conditions, the blurring matrix C is a block circulant with
circulant blocks matrix (BCCB) that can be decomposed as

C = FHΛF

where F and FH are 2D Fourier and 2D inverse Fourier
operators, Λ = diag(Fh), with h the first column of the
matrix C. Taking into account this property and using the
Woodbury inverse formula [30], the update of x can be
rewritten as

xk+1 =
1

τ1Lk+1
FHψFr

− 1

τ1Lk+1
FHψΛH(2τ1sIN + ΛψΛH)−1ΛψFr

(25)

where

r = CHSHym + Lk+1

(
xk − 1

Lk+1
∇xH(xk,vk)

)
and the matrix Λ is defined as

Λ = diag(Λ1, ...,Λd)

where Λ is a block diagonal matrix and its diagonal elements
are matrices Λi, and where

ψ = F (τ1(DH
h Dh +DH

v Dv) +
Lk+1

2
IN )−1FH .

3) Update of v:
The vector v is updated using a gradient descent algorithm

with backtracking line search, given that the function to mini-
mize in this step is differentiable and convex. More precisely,
the following update has ben considered

vk+1 = argmin
v

τ2
∑
i

[exp(yu,i − vi)− γ(yu,i − vi)]

+ τ3‖∇v‖2 +
dk
2
‖v − (vk − 1

dk
∇vH(xk+1,vk))‖2

= proxgdk

(
vk − 1

dk
∇vH(xk+1,vk)

)
(26)

where g is defined in (16) and dk = Lv(xk) is the Lipschitz
constant of ∇vH at iteration k.

4) Algorithm summary:
Algo. 1 summarizes all the steps of the proposed MR/US
image fusion method.
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