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Fast Single Image Super-Resolution

Ningning Zhao, Qi Wei, Adrian Basarab, Denis Kouamé and Jean-Yves

Tourneret

Abstract

This paper addresses the problem of single image super-resolution, which consists of recovering

a high resolution image from its blurred, decimated and noisy version. Given the well-known ill-

posedness of image super-resolution, prior information is used for regularization purpose in order

to obtain a well-posed problem. Among the existing algorithms, the alternating direction method of

multipliers (ADMM) has been used intensively because of its effective implementation due to the

possibility of splitting the super-resolution problem into up-sampling and deconvolution problems,

which all can be easily solved. Instead of following this splitting strategy, we propose to consider the

decimation and blurring operators simultaneously by taking advantage of their particular properties,

leading to a new fast super-resolution approach. Based on this new scheme, different types of

priors or regularizations are considered following the Bayesian framework. For a Gaussian prior, an

analytical solution is easily obtained, which can be implemented in a very efficient way. In the case

of non-Gaussian priors, we show that this analytical solution derived from the Gaussian case can

be embedded into the ADMM framework, which accelerates the existing algorithms significantly.

Simulation results on several images show the effectiveness of our fast scheme compared with the

traditional ADMM implementation.

Index Terms

Single image super-resolution, deconvolution, block circulant matrix, ADMM, Bayesian frame-

work.
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I. INTRODUCTION

Single image super-resolution (SR), also known as image scaling up or image enhance-

ment, aims at estimating a high-resolution (HR) image from a low-resolution (LR) observed

image [1]. Resolution enhancement is still an ongoing research problem with applications

in various fields, such as remote sensing [2], video surveillance [3], hyperspectral imaging

[4] or medical imaging [5]. The methods dedicated to single image SR can be classified

into three categories [6]–[8]. The first category includes the interpolation based algorithms,

such as nearest neighbor interpolation, bicubic interpolation [9] or adaptive interpolation

techniques [10], [11]. Despite their simplicity and easy implementation, it is well-known

that these algorithms generally over-smooth the high frequency details. The second type

of methods considers example-based (or learning-based) algorithms that learn the relations

between LR and HR image patches from a given database [6], [12]–[15]. Note that the

effectiveness of the learning-based algorithms highly depends on the training image database

and generally have high computational complexity. Reconstruction-based approaches that will

be considered in this paper belong to the third category of SR approaches [7], [8], [16], [17].

These approaches formulate the image super-resolution as an optimization problem, either

by incorporating priors in the Bayesian framework or by introducing regularizations into

the ill-posed reconstruction problem. Priors or regularizations considered in the literature

include the Tikhonov regularization [18]–[20], the total variation (TV) [17], [21], [22], the

sparsity in transformed domains [23]–[26] or the generic image prior [7], [8], [16], [27].

It is also interesting to mention that regularization terms dedicated to specific areas (e.g.,

the gradient profile prior [16] and Fattal’s edge statistics [28]) also provided promising

reconstruction results. The traditional optimization techniques used to solve the single image

SR reconstruction mainly include the first order gradient-based methods [7], [8], [16] and

the alternating direction method of multipliers (ADMM) [2], [5], [17], [22]. In this work, we

focus on the ADMM-based algorithms, due to i) their efficiency in handling non-differential

target distributions (e.g., `1-norm and TV regularizations) against the traditional gradient

based methods [29], [30] and ii) the possibility they offer, through variable splitting, to

divide the original optimization problem into several easier sub-problems [30]–[32].

With the conventional ADMM [2], [5], [17] (denoted by “direct” ADMM hereafter), the

decimation and blurring operators are split and solved separately. Due to this splitting, a

cumbersome SR problem can be decomposed into an up-sampling problem and a deconvo-
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lution problem, which both can be solved efficiently. Our main contribution is to propose

a new approach which is able to handle the two operators simultaneously by exploring

their intrinsic properties. More precisely, if a Gaussian prior is considered, an analytical

solution to implement the MAP estimation of the HR image can be obtained, avoiding any

iterative updates. When handling non Gaussian priors, the proposed analytical solution can

be embedded within the ADMM framework, leading to a fast version of ADMM (denoted

by “FSR-ADMM” hereafter).

A. Model of Image Formation

We focus in this paper on the techniques scaling up the LR images. Thus, the observed

LR image can be modeled as a noisy version of the blurred and decimated HR image to be

estimated as follows

y = SHx + n (1)

where the vector y ∈ RNl×1 (Nl = ml× nl) denotes the LR observed image and x ∈ RNh×1

(Nh = mh × nh) is the vectorized HR image to be estimated, with Nh > Nl. The vectors y

and x are obtained by stacking the corresponding images (LR image ∈ Rml×nl and HR image

∈ Rmh×nh) into column vectors in a lexicographic order. Note that the vector n ∈ RNl×1 is the

independent identically distributed (i.i.d.) additive white Gaussian noise (AWGN) and that the

matrices S ∈ RNl×Nh and H ∈ RNh×Nh represent the decimation and the blurring/convolution

operations, respectively. More specifically, H is a block circulant matrix with circulant blocks,

which corresponds to cyclic convolution boundaries and left multiplying by S performs down-

sampling with an integer factor d (d = dr × dc), i.e., Nh = Nl × d. The decimation factors

dr and dc represent the number of discarding rows and columns from the input image, thus

satisfying the following relationships mh = ml × dr and nh = nl × dc.

B. Paper Organization

The remainder of the paper is organized as follows. In Section II, we recall the SR

reconstruction problem and the “direct” ADMM for a Gaussian prior. In Section III, we

study the properties of the down-sampling and blurring operators and introduce a fast SR

scheme based on an analytical solution obtained for a Gaussian prior. Section IV generalizes

the proposed fast SR scheme to non-Gaussian priors in direct or transformed domains. Our

algorithm is compared to the conventional ADMM implementation in Section V. Conclusions

and perspectives are reported in Section VI.
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II. IMAGE SUPER-RESOLUTION FORMULATION

Similar to traditional image reconstruction problems, the estimation of the HR image from

the LR observation is not invertible, leading to an ill-posed problem. To overcome this ill-

posedness (or to sidestep the over-fitting problem), incorporating some prior information or

regularizations is necessary. Assuming that the noise n in (1) is AWGN and incorporating a

proper regularization to the target image x, the maximum a posteriori (MAP) estimator, i.e.,

the mode of the posterior distribution for the SR problem of a single image can be obtained

by solving the following optimization problem

min
x

1

2
‖y − SHx‖22︸ ︷︷ ︸

data fidelity

+ τ φ(x)︸︷︷︸
regularizer

(2)

where ‖y − SHx‖22 is associated with the likelihood, referred to as data fidelity term, and

φ(x) corresponds to the image prior information, referred to as regularizer or penalty [33].

The role of the regularization parameter τ is to weight the importance of the regularization

with respect to (w.r.t.) the data term.

The choice of the regularization usually depends on the specific tasks of interest, the

information resulting from previous experiments or a subjective view on the constraints

affecting the unknown model parameters [34], [35]. Various regularizations have been already

advocated to regularize the image super-resolution problem, such as, e.g., Tikhonov [36], `1-

norm [11] or total variation (TV) [5]. 1

Before proceeding to more complicated regularizations, let us consider the basic Tikhonov

regularization, i.e., φ(x) = ‖x − x̄‖22. With the Tikhonov regularization, the problem (2)

reduces to

min
x

1

2
‖y − SHx‖22 + τ‖x− x̄‖22 (3)

where x̄ is a rough estimation of the HR image, e.g., an interpolated version of the observed

image or a cleaner image obtained from other sensors [19], [20], [37]. The Tikhonov reg-

ularization with respect to x implies that the target image x is a priori close to the rough

estimation x̄, whereas the parameter τ weights the confidence in x̄ w.r.t. to the data fidelity

term. The solution of (3) can be expressed as following

x̂ = (HHSHSH + 2τINh
)−1(HHSHy + 2τ x̄) (4)

1Proposing new regularization terms or comparing the performance of existing ones is out of the scope of this paper.
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Note that if we do not consider the decimation matrix S in (3), i.e., S = INh
(INh

∈ RNh×Nh

is an identity matrix), an analytical solution (seen in (5)) can be efficiently computed since the

blurring matrix H is BCCB (block circulant with circulant blocks) and can be diagonalized

by a 2D discrete Fourier transform F , leading to the well-known Wiener filter [38].

x̃ = F−1
{
F(H)H ◦ F(y) + 2τF(x̄)

F(H)H ◦ F(H) + 2τINh

}
, (5)

where (·)H denotes complex conjugation and “ ◦ ” is the componentwise multiplication.

However, the diagonalization is no longer possible when S is different from INh
, making

the problem (3) much more challenging. More specifically, the direct implementation of this

analytical solution (4) requires the inversion of a high dimensional matrix, whose the com-

putational complexity is of order O(N3
h). One can think of using optimization or simulation-

based methods to overcome this computational difficulty. The optimization-based methods,

such as the gradient-based methods [16] or more recently ADMM [17], [31], approximate

the solution of (4) by iterative updates. The simulation-based methods, e.g., the Markov

Chain Monte Carlo methods [39]–[41], look for a the solution x̂ as the posterior mean of a

multivariate Gaussian distribution and propose to draw samples from this distribution. The

average of the generated samples yields the minimum mean square error (MMSE) estimator

of x. Despite this formal appeal, simulation-based methods have the major drawback of being

computationally expensive, which prevents their effective use when processing large images.

In this work, we focus on ADMM, which is one of the state-of-art algorithms able to

solve convex optimization problems by splitting them into smaller problems, that are easier

to handle than the initial problem [42]. The standard ADMM introduces an additional variable

z , Hx and transforms problem (3) into the following constrained optimization problem

minx,z
1

2
‖y − Sz‖22 + τ‖x− x‖22

subject to z = Hx. (6)

The augmented Lagrangian function associated with the constrained optimization problem

(6) is

L(x, z,λ) =
1

2
‖y − Sz‖22 + τ‖x− x‖22 + λT (Hx− z) +

µ

2
‖Hx− z‖22 (7)

where λ ∈ RNh×1 is a vector of the Lagrangian multipliers. Using the following variable

substitution

d = (1/µ)λ
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we obtain the scaled augmented Lagrangian function

L(x, z,d) =
1

2
‖y − Sz‖22 + τ‖x− x̄‖22 +

µ

2
‖Hx− z + d‖22 (8)

where d is a vector of scaled dual variables. The ADMM algorithm designed to solve the

optimization problems (3) or (6) can be summarized in the following three steps (each one

corresponding to a much easier optimization problem)

For k = 0, 1, . . .
zk+1 ∈ argminz

1
2
‖y − Sz‖22 + µ

2
‖Hxk − z + dk‖22

xk+1 ∈ argminx τ‖x− x̄‖22 + µ
2
‖Hx− zk+1 + dk‖22

dk+1 = dk + (Hxk+1 − zk+1),

(9)

where the superscript k represents the kth iteration. The solutions of the minimization

problems w.r.t. z and x are reminded hereafter.

• Update z: The optimization w.r.t. z can be solved as

zk+1 = (SHS + µINh
)−1
(
SHy + µ(Hxk + dk)

)
.

The update of z mainly consists of interpolating zeros and has linear complexity w.r.t.

the number of pixels.

• Update x: The optimization w.r.t. x can be solved as

xk+1 = (HHH + 2τ/µINh
)−1
(
2τ/µx̄ + HHρ

)
where ρ = zk+1 − dk. It represents a basic deconvolution step that can be efficiently

implemented in the Fourier domain.

To summarize, the standard ADMM algorithm decomposes the SR problem into an al-

ternating update between an up-sampling and a deconvolution step, both efficiently solvable

[30], [31]. Despite the efficiency of ADMM, it is still appealing to get rid of the iterative

update to obtain the solution of (3). Equivalently, is it possible to implement (4) in a non-

iterative way? Our paper aims at giving a positive answer to this question by proposing

an original strategy that will be illustrated in the following sections, representing the main

contribution of this study.

III. PROPOSED FAST SUPER-RESOLUTION USING AN ANALYTICAL SOLUTION

Before going into further details to solve the problem (4), we list hereafter the two basic

assumptions on the blurring and decimation operators used in this work. Note that these

DRAFT October 2, 2015



7

Fig. 1. Effect of up-sampling matrix SH on image of 3 × 3 and down-sampling matrix S on the corresponding 9 × 9

image (scale up factor is 3).

assumptions are also commonly used in image deconvolution or image scaling up problems,

see e.g., [6], [15], [19], [43], [44].

Assumption 1. The blurring matrix H is the matrix representation of the cyclic convolution

operator, i.e., H is a block circulant matrix with circulant blocks (BCCB).

Using the cyclic convolution assumption, the blurring matrix and its conjugate transpose

can be decomposed as

H = FHΛF (10)

HH = FHΛHF (11)

where the matrices F and FH are associated with the Fourier and inverse Fourier transforms

(satisfying FFH = FHF = INh
) and Λ = diag{Fh} ∈ CNh×Nh is a diagonal matrix, whose

diagonal elements are the Fourier coefficients of the first column of the blurring matrix H,

denoted as h. Using the decompositions (10) and (11), the blurring operator Hx and its

conjugate HHx can be efficiently implemented in the Fourier domain, see, e.g., [45]–[47].

Assumption 2. The decimation matrix S ∈ RNl×Nh is a down-sampling operator, while its

conjugate transpose SH ∈ RNh×Nl interpolates the decimated image with zeros.

Fig. 1 shows a toy example highlighting the roles of the decimation matrix S and its

conjugate transpose SH . The decimation matrix satisfies the relationship SSH = INl
. Denoting

S , SHS, multiplying an image by S can be achieved by making an entry-wise multiplication

with an Nh ×Nh mask having ones at the sampled positions and zeros elsewhere.

Under the two assumptions mentioned above, the analytical solution of the estimated image
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in (4) can be rewritten as

x̂ = (HHSHSH + 2τINh
)−1r

= (FHΛHFSFHΛF + 2τINh
)−1r

= FH(ΛHFSFHΛ + 2τINh
)−1Fr. (12)

where

r , (HHSHy + 2τ x̄).

In order to compute the analytical solution of (4) or (12) in practical situations, we use

hereinafter an interesting property of the matrix FSFH summarized in Lemma 1 (see [19]).

Lemma 1 (Wei et al., [19]). The following equality holds

FSFH =
1

d
Jd ⊗ INl

(13)

where Jd ∈ Rd×d is a matrix of ones, INl
∈ RNl×Nl is the identity matrix and ⊗ represents

the Kronecker product.

Inspired by this elegant property of matrix FSFH , the matrix ΛHFSFHΛ in (12) can be

rewritten as follows

ΛHFSFHΛ

=
1

d
ΛH (Jd ⊗ INl

) Λ (14)

=
1

d
ΛH

((
1d1Td

)
⊗ (INl

INl
)
)

Λ (15)

=
1

d
ΛH (1d ⊗ INl

)
(
1Td ⊗ INl

)
Λ (16)

=
1

d

ΛH [INl
, · · · , INl︸ ︷︷ ︸

d

]T

[INl
, · · · , INl︸ ︷︷ ︸

d

]Λ

 (17)

=
1

d
ΛHΛ. (18)

Note that (15) was obtained from (14) by replacing Jd by 1d1Td , with 1d ∈ Rd×1 a vector

of ones. Obtaining (16) from (15) is straightforward using the following property of the

Kronecker product

AB ⊗ CD = (A⊗ C)(B ⊗D).
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In (17), Λ ∈ RNh×Nh , (INl
, · · · , INl︸ ︷︷ ︸

d

) ∈ RNl×Nh and (INl
, · · · , INl︸ ︷︷ ︸

d

)T ∈ RNh×Nl are block

matrices whose blocks are equal to the identity matrix INl
.

By rewriting Λ as Λ =



Λ1 0 · · · 0

0 Λ2 · · · 0

...
... . . . ...

0 0 · · · Λd


, the matrix Λ ∈ RNl×Nh in (18) can be

obtained as follows

Λ = [INl
, · · · , INl

]Λ

= [INl
, · · · , INl

]



Λ1 0 · · · 0

0 Λ2 · · · 0

...
... . . . ...

0 0 · · · Λd


= [Λ1,Λ2, · · · ,Λd]. (19)

Note that each block Λi ∈ RNl×Nl (for i = 1, · · · , d) is a diagonal matrix. To further simply

the expression (12), the following well-know matrix inverse lemma is employed.

Lemma 2 (Matrix inverse lemma/Woodbury formula [48]). The following equality holds

conditional on the existence of A−11 and A−13

(A1 + A2A3A4)
−1

= A−11 −A−11 A2(A
−1
3 + A4A

−1
1 A2)

−1A4A
−1
1 ,

(20)

where A1, A2, A3 and A4 are matrices of the correct sizes.

Combining the Woodbury formula in Lemma 2 with (18), the analytical solution (12) can

be computed very efficiently as stated in the following theorem.

Theorem 1. The solution x̄ in (4) can be computed as

x̂ =
1

2τ
r− 1

2τ
FHΛH

(
2τdINl

+ ΛΛH
)−1

ΛFr (21)

where r and Λ are defined in (III) and (19) respectively.

Proof: Substituting (18) into (12) leads to

x̂ = FH

(
1

d
ΛHΛ + 2τINh

)−1
Fr. (22)

October 2, 2015 DRAFT
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By using Lemma 2, the inverse matrix in (22) can be simplified leading to

x̂ = FH

(
1

2τ
INh
− 1

2τ
ΛH

(
dINl

+ ΛΛH 1

2τ

)−1
Λ

1

2τ

)
Fr

=
1

2τ
r− 1

2τ
FHΛH

(
2τdINl

+ ΛΛH
)−1

ΛFr.

Algorithm 1 summarizes the implementation of the proposed SR solution resulting from

Theorem 1, which is referred to as fast super-resolution (FSR) approach. Note that the main

contribution here is that the solution x̂ can be calculated directly, requiring no iterative steps

as well as avoiding any tuning of parameters, such as µ. The proposed approach is “fast”

in the sense that each step in Algorithm 1 is easy and light to implement. A more detailed

complexity analysis is given hereinafter.

Algorithm 1: FSR implementing the analytical solution (4)
Input: y, H, S, x̄, τ , d

// Factorization of H (FFT of the blurring kernel): H = FΛFH

1 Λ← Dec (H);

// Compute Λ

2 Λ = ΛΛH ;

// Calculate FFT of r: Fr

3 Fr← F(HHSHy + 2τ x̄);

// Hadamard (or entrywise) product in frequency domain

4 xf ←
(
ΛH

(
2τdINl

+ ΛΛH
)−1

Λ
)

Fr ;

// inverse FFT and subtract from r

5 x̂← 1
2τ

r− 1
2τ

FHxf ;

Output: x̂

Complexity Analysis

In Algorithm 1, Steps 2 and 4 have a low complexity of the order O (Nh). Note that in Step

4, though the implementation is in the frequency domain, the matrix 2τdINl
+ ΛΛH to be

inverted is a real matrix as ΛΛH is real, implying that only Nl divisions are required.

Steps 1, 3 and 5 have a complexity of the order O(Nh logNh) because of the FFT or

iFFT operations. More specifically, there is one FFT/iFFT in Step 1/ Step 5 while two FFT
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operations are necessary in Step 3, where the matrix Fr can be implemented in the Fourier

domain as

Fr = F(FHΛHFSHy + 2τ x̄)

= ΛHFSHy + 2τFx̄.
(23)

Thus, the most computationally expensive part lies in the implementation of Step 3. In total,

four FFT/iFFT computations are required in our implementation. Comparing with the original

problem (4), the order of computation complexity has decreased significantly from O(N3
h)

to O(Nh logNh), which allows the analytical solution (21) to be computed efficiently.

IV. GENERALIZATION OF THE FAST SUPER-RESOLUTION SCHEME

In addition to the Tikhonov regularizer (Gaussian prior) addressed in the previous section,

there are other various regularizers (associated with non-Gaussian priors) in either image or

transformed domains, commonly used for single image SR. In this section, we will show

that the analytical solution studied in Section III can be generalized to solve the SR problem

associated with more complicated regularizations. This generalization is accomplished by

embedding the analytical solution (21) in the standard ADMM framework, leading to a fast

version of ADMM, denoted by “FSR-ADMM” hereafter.

In the following, we focus on two regularizations widely used for the SR problem, i.e.,

the TV regularization in the image domain [17], [49], [50] and the `1-norm regularization

(Laplace prior) in the wavelet domain [25]. In both cases, we start by recalling a standard

way of solving the optimization problem with conventional ADMM and then present the

proposed fast scheme.

A. TV regularization

TV regularization is well-known for its ability to remove unwanted details whilst preserving

the important ones such as edges. Consequently, it has been widely used in reconstruction

applications, such as image SR [5], [49], [50] or compressed sensing [2]. Considering the

TV regularizer, i.e., φ(x) = ‖x‖TV, we obtain the following optimization problem

min
x

1

2
‖y − SHx‖22 + τ‖x‖TV (24)

where

‖x‖TV =
√
‖Dhx‖22 + ‖Dvx‖22

October 2, 2015 DRAFT
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is the isotropic TV [49], Dhx and Dvx represent the horizontal and vertical spatial derivatives

of the image x.

1) “direct” ADMM with TV regularization: In the classical ADMM scheme, problem (24)

can be solved using the variable splitting strategy as recalled below [17]

min
x,uTV

1

2
‖y − SuTV1‖22 + τ

√
‖uTV2‖22 + ‖uTV3‖22

subject to Ax = uTV, (25)

where A ∈ R3Nh×Nh and uTV ∈ R3Nh×1 have the following definitions

A =


H

Dh

Dv

 and uTV =


uTV1

uTV2

uTV3


where the vectors uTV1, uTV2 and uTV3 belong to RNh×1. The augmented Lagrangian function

of the constrained optimization problem (25) is

L(x,uTV,λTV) =
1

2
‖y − SuTV1‖22 + τ

√
‖uTV2‖22 + ‖uTV3‖22 + λTTV(Ax− uTV) +

µ

2
‖Ax− uTV‖22

or equivalently

L(x,uTV,dTV) =
1

2
‖y − SuTV1‖22 + τ

√
‖uTV2‖22 + ‖uTV3‖22 +

µ

2
‖Ax− uTV + dTV‖22.

The dual variables dTV ∈ R3Nh×1 are summarized in the following vector

dTV =
[

dTTV1,d
T
TV2,d

T
TV3

]T
where the vectors dTV1, dTV2, and dTV3 ∈ RNh×1. The “direct” ADMM scheme solving (24)

can be summarized into the three steps provided below

For k = 0, 1, . . .
xk+1 ∈ argminx

µ
2
‖Ax− ukTV + dkTV‖22

uk+1
TV ∈ argminuTV

1
2
‖y − SuTV1‖22+

τ
√
‖uTV2‖2 + ‖uTV3‖2 + µ

2
‖Axk+1 − uTV + dkTV‖22

dk+1
TV = dkTV + (Axk+1 − uk+1

TV )

(26)

where the superscript k denotes the kth iteration of the algorithm. The optimization problems

in (26) w.r.t. x and uTV are reminded hereinafter.

• Update x:

xk+1 = (HHH + DH
h Dh + DH

v Dv)
−1ρTV
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where ρTV = HHρTV1 + DH
h ρTV2 + DH

v ρTV3, ρTV1 = ukTV1− dkTV1, ρTV2 = ukTV2− dkTV2

and ρTV3 = ukTV3 − dkTV3.

• Update uTV: The optimization w.r.t. uTV can be divided into three sub-steps w.r.t. uTV1,

uTV2 and uTV3:

uk+1
TV1 = argmin

uTV1

1

2
‖y − SuTV1‖22

+
µ

2
‖Hxk+1 − uTV1 + dkTV1‖22

= (SHS + µINh
)−1(SHy + Hxk+1 + dkTV1)

uk+1
TV2 = argmin

uTV2

τ
√
‖uTV2‖2 + ‖uTV3‖2 +

µ

2
‖uTV2 − ν1‖22

uk+1
TV3 = argmin

uTV3

τ
√
‖uTV2‖2 + ‖uTV3‖2 +

µ

2
‖uTV3 − ν2‖22

where ν1 =
(
Dhx

k+1 + dkTV2

)
and ν2 =

(
Dvx

k+1 + dkTV3

)
. Both optimizations w.r.t.

uTV2 and uTV3 can be obtained numerically using the vector-soft-thresholding, based

on the fact that they are pixel-wise decoupled [49], [51], [52]. More specifically, by

denoting u2,3 = [uTV2,uTV3] and ν = [ν1,ν2] (u2,3,ν ∈ RNh×2), we have

u2,3[i] = prox‖·‖2(ν[i]) = max{0, ‖ν[i]‖2 − τ/µ}
ν[i]

‖ν[i]‖2
(27)

where the vectors u2,3[i],ν[i] ∈ R1×2 are the first lines of the corresponding matrices,

for i ∈ {1, · · · , Nh}.

2) Fast ADMM with TV regularization: Compared to the classical ADMM implementation

shown above, we propose a faster ADMM scheme by using the developed analytical solution

in Section III. More specifically, we show in what follows that the use of this analytical

solution allows a more compact variable splitting strategy, i.e., two variables splitting instead

of three in Section IV-A1 as follows

minx,uTVF

1

2
‖y − SHx‖22 + τ

√
‖uTVF1‖2 + ‖uTVF2‖2

subject to Bx = uTVF (28)

where B ∈ R2Nh×Nh and uTVF ∈ R2Nh×1 are defined by

B =

 Dh

Dv

 and uTVF =

 uTVF1

uTVF2

 .
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The corresponding augmented Lagrange function is

L(x,uTVF,λTVF) =
1

2
‖y − SHx‖22 + τ

√
‖uTVF1‖2 + ‖uTVF2‖2 + λTTVF(Bx− uTVF) +

µ

2
‖Bx− uTVF‖22
(29)

or equivalently

L(x,uTVF,dTVF) =
1

2
‖y − SHx‖22 + τ

√
‖uTVF1‖2 + ‖uTVF2‖2 +

µ

2
‖Bx− uTVF + dTVF‖22

(30)

where the dual variables are contained in a vector ∈ R2Nh×1

dTVF =

 dTVF1

dTVF2

 .
The fast SR algorithm proposed to solve the optimization problem (28) or (24) can be

summarized into three steps detailed below:

For k = 0, 1, . . .
xk+1 ∈ argminx

1
2
‖y − SHx‖22 + µ

2
‖Bx− ukTVF + dkTVF‖22

uk+1
TVF ∈ argminuTVF τ

√
‖uTVF1‖2 + ‖uTVF2‖2

+µ
2
‖Bxk+1 − uTVF + dkTVF‖22

dk+1
TVF = dkTVF + (Bxk+1 − uk+1

TVF).

(31)

The step updating x in (31) can be treated as an SR problem with Gaussian regularization,

and is thus efficiently solved using the fast implementation (21) derived in Section III

xk+1 =
(
HHSHSH + µDH

h Dh + µDH
v Dv

)−1
r

= FH
(
ΛHFSFHΛ + µΣH

h Σh + µΣH
v Σv

)−1
Fr

= FH

(
1

d
ΛHΛ + µΣH

h Σh + µΣH
v Σv

)−1
Fr

= FH

(
1

µ
Σ− 1

µ
ΣΛH

(
dINl

+
1

µ
ΛΣΛH

)−1
ΛΣ

1

µ

)
Fr

=
1

µ
FHΣFr− 1

µ
FHΣΛH

(
dµINl

+ ΛΣΛH
)−1

Fr (32)

where r =
(
HHSHy + µDH

h ρh + µDH
v ρv

)
with ρh = ukTVF1−dkTVF1 and ρv = ukTVF2−dkTVF2,

and Σ = [ΣH
h Σh+ΣH

v Σv]
−1. Note that Σh and Σv are two diagonal matrices whose elements

are the Fourier transforms of the first columns of matrices Dh and respectively Dv. The

analytical solution (32) is obtained using the cyclic boundary assumption of the derivative
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operator, implying that Dh and Dv are BCCB matrices. Thus, (32) can be implemented

efficiently using the results of Section III.

The step updating uTVF can be efficiently solved by the vector-soft-thresholding operator

in (27). The resulting fast SR method with TV regularization is summarized in Algo. 2.

Algorithm 2: FSR-ADMM with TV regularization

1 Set k = 0, choose µ > 0, x0, d0, input ;

2 Repeat

// Update x using the analytic solution in (32)

3 ρh = ukTVF1 − dkTVF1;

4 ρv = ukTVF2 − dkTVF2 ;

5 Fr = F(HHSHy + µDhρh + µDvρv);

6 Λ← Dec (H);

7 Λ = ΛΛH ;

8 Σh ← Dec (Dh);

9 Σv ← Dec (Dv);

10 P← (ΣH
h Σh + ΣH

v Σv)
−1 ;

11 xf ←
(
PΛH

(
µdINl

+ ΛPΛH
)−1

ΛP
)

Fr ;

12 x̂← 1
µ
FHPFr− 1

µ
FHxf ;

// Update u using the vector-soft-thresholding operator

13 ν = [Dhx
k+1 + dkTVF1,Dvx

k+1 + dkTVF1] ;

14 uk+1
TVF[i] = max{0, ‖ν[i]‖2 − τ/µ} ν[i]

‖ν[i]‖2 ;

// Update the dual variables d

15 dk+1
TVF = dkTVF + (Bxk+1 − uk+1

TVF);

16 k ← k + 1

17 until stopping criterion is satisfied.

B. `1-norm regularization in the wavelet domain

Single image enhancement in transformed domains such as the wavelet domain (based on

the sparsity of wavelet coefficients of piecewise constant images) has been widely studied

in the literature, see e.g., [11], [25]. In this section, we consider the SR problem with
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Laplace/`1-norm regularization in the wavelet domain. To our knowledge, most of the SR

methods implemented in the wavelet domain only consider the blurring kernel, resulting into

a deconvolution problem (e.g., see [23]). However, in this paper, we take into account both

the decimation operator and the blurring kernel as considered in the previous sections. We

assume that x can be decomposed as a linear combination of wavelets, i.e., x = Wθ, where

θ ∈ RM×1 is the vector containing the wavelet coefficients, M is the number of wavelets

considered in the decomposition, W ∈ RNh×M and WH ∈ RM×Nh are the wavelet and

inverse wavelet transforms, thus satisfying the relationship WWH = INh
, WHW = IM ,

where Iq is the identity matrix ∈ Rq×q, q ∈ {M,Nh}. The single image SR problem can

then be rewritten as

min
θ

1

2
‖y − SHWθ‖22 + τ‖θ‖1. (33)

Solving (33) provides the MAP estimator of the wavelet coefficients, which in turn, via an

inverse wavelet transform, provide the super-resolved image.

1) “direct” ADMM with `1-norm regularization: Considering the traditional variable split-

ting method, (33) can be transformed into the following optimization problem

min
θ,uL

1

2
‖y − SuL1‖22 + τ‖uL2‖1

subject to Gθ = uL (34)

where G ∈ R(Nh+M)×M , uL ∈ R(Nh+M)×1 are defined as

G =

 HW

I

 , uL =

 uL1

uL2

 .
with uL1 ∈ RNh×1 and uL2 ∈ RM×1. The corresponding augmented Lagrange function

associated with (34) is

L(θ,uL,λL) =
1

2
‖y − SuL1‖22 + τ‖uL2‖1 + λTL (Gθ − uL) +

µ

2
‖Gθ − uL‖22 (35)

or equivalently

L(θ,uL,dL) =
1

2
‖y − SuL1‖22 + τ‖uL2‖1 +

µ

2
‖Gθ − uL + dL‖22 (36)

where the dual variables are contained in the vector

dL =
[

dTL1,d
T
L2

]T
∈ R(Nh+M)×1
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with dL1 ∈ RNh×1 and dL2 ∈ RM×1. The “direct” ADMM solving (33) can be summarized

into three steps

For k = 0, . . .
θk+1 ∈ argminθ

µ
2
‖Gθ − ukL + dkL‖22

uk+1
L ∈ argminuL

1
2
‖y − SuL1‖22 + τ‖uL2‖1

+µ
2
‖Gθk+1 − uL + dkL‖22

dk+1
L = dkL + (Gθk+1 − uk+1

L )

(37)

The optimization problems w.r.t. θ and uL are detailed below

• Update θ:

θk+1 = (WHHHHW + IM)−1(WHHHρL1 + ρL2) (38)

where ρL1 = ukL1 − dkL1 and ρL2 = ukL2 − dkL2.

• Update uL: Denoting νL1 = HWθk+1 + dkL1 and νL2 = θk+1 + dkL2, the variables uk+1
L1

and uk+1
L2 are updated as following

uk+1
L1 = argmin

uL1

1

2
‖y − SuL1‖22 +

µ

2
‖νL1 − uL1‖22

= (SHS + µINh
)−1(SHy + µνL1)

uk+1
L2 = argmin

uL2
τ‖uL2‖1 +

µ

2
‖νL2 − uL2‖22

where the MAP estimator of uL2 can be calculated by the following soft-thresholding operator

[51]:

prox|·|(ν) = max{0, |ν| − τ/µ} (39)

where ν is an element from the vector νL2.

2) Fast ADMM `1-norm regularization: With the proposed fast SR scheme, we transform

(33) into the following constrained optimization problem

min
θ,uLF

1

2
‖y − SHWθ‖22 + τ‖uLF‖1

subject to θ = uLF. (40)

The augmented Lagrange function corresponding to (40) is

L(θ,uLF,λLF) =
1

2
‖y − SHWθ‖22 + τ‖uLF‖1 + λTLF(θ − uLF) +

µ

2
‖θ − uLF‖22 (41)

October 2, 2015 DRAFT



18

or equivalently

L(θ,uLF,dLF) =
1

2
‖y − SHWθ‖22 + τ‖uLF‖1 +

µ

2
‖θ − uLF + dLF‖22. (42)

Similar to the TV regularization, the proposed fast SR algorithm for `1-norm regularization

uses the analytical solution of Section III resulting into the following three steps

For k = 0, . . .
θk+1 ∈ argminθ

1
2
‖y − SHWθ‖22 + µ

2
‖θ − ukLF + dkLF‖22

uk+1
LF ∈ argminuLF τ‖uLF‖1 + µ

2
‖θk+1 − uLF + dkLF‖22

dk+1
LF = dkLF + (θk+1 − uk+1

LF )

(43)

The estimation of θ consists of an SR problem with Gaussian regularization and can thus be

calculated analytically following Section III

θk+1 =
(
WHHHSHSHW + µIM

)−1
r

= WHFH
(
ΛHFSFHΛ + µINh

)−1
FWr

= WHFH

(
1

d
ΛHΛ + µINh

)−1
FWr

= WHFH

(
1

µ
INh
− 1

µ
ΛH

(
dINl

+ ΛΛH 1

µ

)−1
Λ

1

µ

)
FWr

=
1

µ
r− 1

µ
WHFHΛH

(
µdINl

+ ΛΛH
)−1

ΛFWr (44)

where r = WHHHSHy + µ(uLF − dLF). The estimation of uLF is conducted with the

soft thresholding operator (39), since the corresponding optimization problem is pixelwise

decoupled.

The resulting algorithm for Laplace regularization in the wavelet domain is summarized

in Algo. 3.

V. EXPERIMENTAL RESULTS

In this section, we compare the proposed fast SR algorithm based on ADMM and the

traditional ADMM, on several images and using the three regularization terms considered in

the previous sections. Our main objective is to analyze the reduced computational efficiency

of the proposed technique. All the experiments were performed using MATLAB 2013A on

a computer with Windows 7, Intel(R) Core(TM) i7-4770 CPU @3.40GHz and 8 GB RAM.

2|ν| , [|ν1|, · · · , |νM |]T ∈ RM×1.
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Algorithm 3: FSR-ADMM with `1-norm regularization in wavelet domain

1 Set k = 0, choose µ > 0, x0, d0, input ;

2 Repeat

// Update x using the analytic solution in (32)

3 r = WHHHSHy + µ(uLF − dLF);

4 Λ← Dec (H);

5 Λ = ΛΛH ;

6 xf ←
(
ΛH

(
µdINl

+ ΛPΛH
)−1

Λ
)

FWr ;

7 x̂← 1
µ
r− 1

µ
WHFHxf ;

// Update u using the soft-thresholding operator

8 ν = θk+1 + dkLF ;

9 uk+1
TVF = max{0, |ν| − τ/µ} 2;

// Update the dual variables d

10 dk+1
LF = dkLF + (θk+1 − uk+1

LF );

11 k ← k + 1

12 until stopping criterion is satisfied.

The MATLAB codes and all the simulation results are available in the first author’s homepage
3.

A. Quality assessment metrics

The performances of the different SR algorithms are evaluated in terms of the following

metrics: improved signal-to-noise ratio (ISNR), normalized root mean square error (NRMSE)

and mean structural similarity (MSSIM). The definitions of these metrics are given below

3http://zhao.perso.enseeiht.fr/
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ISNR = 10 log10

‖x− y‖2

‖x− x̂‖2
(45)

NRMSE =

√
‖x− x̂‖2
‖x‖2

(46)

MSSIM =
1

M

M∑
j=1

SSIM(xj, x̂j) (47)

where the vectors x,y, x̂ are the ground truth (reference image/HR image), bicubic inter-

polation of the observation and the restored SR image respectively. Note that MSSIM is

implemented blockwise, with M the number of local windows, xj and x̂j local regions

extracted from x and x̂ and SSIM the structural similarity measure of each window (defined

in [53]).

B. Example 1: Results with Gaussian regularization

We first consider the proposed SR approach with a Gaussian prior, leading to the `2-

norm/Tikhonov regularization (3) for the “pepper” image of size 134× 198. The HR image

(shown in Fig. 2(e)) was blurred by a Gaussian filter (whose variance was set to σ2
h = 3) of

size 7 × 7 and downsampled by a factor of 2 in each spatial direction (dr = dc = 2). The

resulting blurred and downsampled image was contaminated by an additive white Gaussian

noise (AWGN) corresponding to a blurred-signal-to-noise ratio (BSNR) = 40 dB defined as

below

BSNR = 10 log10

(
‖SHx− E(SHx)‖22

Nσ2
n

)
(48)

where N is the total number of pixels of the observed image, shown in Fig. 2(a) and E(·)

is the arithmetic mean operator.

With the formulated problem (3), the quality of the SR is highly influenced by the choice

of x̄, which is the rough approximation of the HR image to reconstruct. In the experiments

considered in this part, we have used two different ways to generate x̄.

In the first case, x̄ (denoted as x̄obs) is obtained by bicubic interpolation of the observed

image, shown in Fig. 2(b). In the second case, x̄ is obtained by a more accurate approximation

of the HR image computed by bicubic interpolation of the decimated reference image, without

the influence of the blurring operator. We denote this approximated HR image by “x̄ref”, as

shown in Fig. 2(f). In each case, the regularization parameter τ was manually fixed to its
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optimal value by cross-validation: τ = 2 × 10−3 in the first case and τ = 8 × 10−3 in the

second case. Note that the same values of τ have been employed for the “direct” ADMM

and for our implementation based on the analytical solution (23) detailed in Section III. With

the “direct” ADMM, two other parameters have to be tuned: the stepsize that was set to

µ = 0.05 and the tolerance of the stopping criterion that was set to 10−4. Again these two

values were obtained by cross-validation. In this paper, the stopping criterion is chosen as

the relative cost function error, i.e.,

|f(xk+1)− f(xk)|
f(xk)

(49)

where f(x) = 1
2
‖y − SHx‖22 + τ‖x − x̄‖22. Note that other ways of defining the stopping

criterion such as those studied in [30] could be also investigated.

The restored images obtained with the proposed solution (referred to as analytical solution

(AS)) are displayed in Figs. 2(c) (case 1) and 2(g) (case 2) corresponding to the two different

values of x̄. The results obtained with the “direct” ADMM are shown in Figs. 2(d) (case 1)

and 2(h) (case 2) for comparison. The visual impression, confirmed by the numerical results

of Tab. I, show that the HR image reconstructions obtained with our method are similar

to those obtained with the “direct” ADMM. However, the reconstruction process with the

proposed analytical solution is much faster than the iterative “direct” ADMM. Indeed, the

computational time with our method is divided by a factor of 60 for the first value of x̄ and

by a factor of 80 for its second value.

Note that the restored images obtained with x̄ref (i.e., case 2) are visually much better

than the ones obtained with x̄obs (i.e., case 1), especially considering the artifacts near the

object boundaries. These artifacts visible in case 1 are mainly due to the blurring operation,

stemming from x̄obs. This result was expected since “x̄ref” is a more accurate approximation

of the HR image than “x̄obs”.

C. Example 2: fast ADMM-based SR scheme

In this second group of experiments, we consider the non Gaussian priors discussed

in Section IV, namely the TV regularization in the spatial domain and the Laplace/`1-

norm regularization in the wavelet domain. The results obtained with our fast ADMM

implementation (referred to as FSR-ADMM) are compared with those obtained by a standard

ADMM algorithm (referred to as “direct” ADMM).
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(a) Observation† (b) Case 1: x̄obs (c) Case 1: FSR-ADMM (d) Case 1: “direct”

ADMM

(e) Reference (f) Case 2: x̄ref (g) Case 2: FSR-ADMM (h) Case 2: “direct”

ADMM

Fig. 2. Super-resolution results with up-sampling factor of 2 for the image “pepper”.

†Note that the LR images (observations) have been scaled for better visualization in this paper (i.e., the LR images contain d times fewer

pixels than the corresponding HR images).

TABLE I

EX. 1: QUALITY ASSESSMENT FOR THE IMAGE “PEPPER”

Method ISNR(dB) NRMSE MSSIM CPU(s)

Case 1

AS 3.9311 0.0955 0.4986 0.0041

“direct” 3.9346 0.0954 0.4995 0.2647

Case 2

AS 6.4798 0.05988 0.6998 0.0039

“direct” 6.4784 0.05989 0.7004 0.3085

The images “Lena”, “monarch” and “Barbara” of size 512×512 pixels were considered in

these experiments. These reference or HR images were blurred by a Gaussian filter of size

9 × 9 (whose variance was set to σ2
h = 3), downsampled by a decimation factor of 4 × 4

(i.e. dr = dc = 4) and contaminated by an AWGN corresponding to BSNR = 40 dB. The

observations (LR images) and the ground truths/original images are shown in Fig. 3 (first

two columns) for illustration.
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1) TV regularization in the spatial domain: The regularization parameter was manually

fixed to 2 × 10−3 for the image “Lena”, to 1.8 × 10−3 for the image “monarch” and to

2.5× 10−3 for the image “Barbara” in this Section.

Fig. 3 shows the SR results obtained using the bicubic interpolation technique (3rd column),

the proposed FSR-ADMM (4th column) and the “direct” ADMM (last column). As expected,

the ADMM reconstructions are more accurate than a simple interpolation of the LR image that

is not able to solve the deblurring problem. Note that the results with FSR-ADMM and with

“direct” ADMM are visually similar. This visual inspection is confirmed by the quantitative

results provided in Tab. II. We emphasize that the proposed FSR-ADMM outperforms the

“direct” ADMM implementation in terms of reconstruction times. Indeed, a speed-up of at

least a factor of 2 is reported in Tab. II. Moreover, the plots in Fig. 4 illustrate the convergence

of the two ADMM implementations. The proposed fast reconstruction method (FSR-ADMM)

converges faster and with less fluctuations than the “direct” ADMM. The fluctuations of the

convergence curves obtained with the “direct” ADMM are caused by the fact that there are

more additional variables to solve the optimization problem when compared with the proposed

FSR-ADMM. This fact is also responsible of the larger number of iterations acquired to reach

convergence with the “direct” ADMM.

2) `1-norm regularization in the wavelet domain: In this section, we evaluate the two

ADMM implementations using an `1-norm regularization in the wavelet domain (taking

advantage of the sparsity of the wavelet coefficients). All experiments were conducted using

the discrete Haar wavelet transform and the Rice wavelet toolbox [54]. The regularization

parameter for both ADMM implementations was fixed to 2× 10−4 for the “Lena” image, to

1.8× 10−4 for the “monarch” image and to 2.5× 10−4 for the image “Barbara”.

Fig. 5 shows the SR reconstruction results with an `1-norm minimization in the wavelet

domain. The HR images estimated with the FSR-ADMM and the “direct” ADMM are visually

similar and better than a simple interpolation. The numerical results in Tab. III confirm that

the two ADMM implementations present similar performance. As in the previous case, the

FSR-ADMM outperforms the “direct” ADMM in terms of CPU time. The faster and smoother

convergence obtained with our method is also illustrated by the plots in Fig. 6. Note that

the fluctuations in the evolution of the objective function and the ISNR during the iterations

obtained with the “direct” ADMM is due to the variable splitting, which requires more

variables and constraints for the standard ADMM when compared to the proposed method.
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TABLE II

EX. 2: SR QUALITY ASSESSMENT WITH TV REGULARIZATION

Image Method ISNR NRMSE MSSIM Time Iter.

(dB) (×10−2) (sec.)

Lena
FSR-ADMM 5.2874 6.14 0.4069 2.0593 19

“direct” ADMM 5.2929 6.14 0.4138 7.7142 125

Monarch
FSR-ADMM 6.4343 7.16 0.4165 3.1090 28

“direct” ADMM 6.4323 7.17 0.4836 9.1289 150

Barbara
FSR-ADMM 2.0980 12.64 0.3599 2.5550 23

“direct” ADMM 2.0979 12.65 0.3605 9.0444 150

Observation Original Bicubic Interpolation FSR-ADMM “direct” ADMM

Fig. 3. Super-resolution results with TV regularization. First column: observed LR images, second column: original HR

images, third column: results using bicubic interpolation, fourth column: results using our fast ADMM-based SR scheme,

fifth column: results using standard ADMM scheme.

VI. CONCLUSION

This paper has studied a new fast single image super-resolution approach based on the

widely used image formation model. The proposed super-resolution approach computes the

image maximum a posterior estimator efficiently by exploiting the properties of the decima-

tion and the blurring operators. For the Gaussian prior, computing the maximum a posteriori

of the target image can be solved analytically, getting rid of any iterative steps. For the non-

Gaussian priors, variable splittings has allowing this analytical solution to be embedded into
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Fig. 4. TV regularization: evolution of the objective function (left) and the ISNR (right) over time.

October 2, 2015 DRAFT



26

TABLE III

EX. 2: SR QUALITY ASSESSMENT WITH `1-NORM REGULARIZATION

Image Method ISNR NRMSE MSSIM Time Iter.

(dB) (×10−2) (sec.)

Lena
FSR-ADMM 4.8977 6.42 0.3903 5.3092 28

“direct” ADMM 4.8584 6.45 0.3912 32.7638 176

monarch
FSR-ADMM 5.2197 8.24 0.3859 4.4268 23

“direct” ADMM 5.1727 8.28 0.4253 32.2093 200

Barbara
FSR-ADMM 2.0093 12.77 0.3401 5.9850 32

“direct” ADMM 1.9904 12.80 0.3398 36.7896 200

the ADMM framework, thus accelerating the standard ADMM scheme. Results on several

natural images have confirmed the computational efficiency of our approach and have shown

fast and smooth convergence. As a perspective of this work, an interesting research track

consists of extending the proposed method to some online applications such as video super-

resolution and medical imaging.
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[39] O. Féron, F. Orieux, and J.-F. Giovannelli, “Gradient scan Gibbs sampler: an efficient algorithm for high-dimensional

Gaussian distributions,” 2015. [Online]. Available: http://arxiv.org/abs/1509.03495
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