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Abstract—This paper proposes a joint segmentation and decon-
volution Bayesian method for medical ultrasound (US) images.
Contrary to piecewise homogeneous images, US images exhibit
heavy characteristic speckle patterns correlated with the tissue
structures. The generalized Gaussian distribution (GGD) has
been shown to be one of the most relevant distributions for
characterizing the speckle in US images. Thus, we propose a
GGD-Potts model defined by a label map coupling US image
segmentation and deconvolution. The Bayesian estimators of the
unknown model parameters, including the US image, the label
map and all the hyperparameters are difficult to be expressed in
closed form. Thus, we investigate a Gibbs sampler to generate
samples distributed according to the posterior of interest. These
generated samples are finally used to compute the Bayesian
estimators of the unknown parameters. The performance of the
proposed Bayesian model is compared with existing approaches
via several experiments conducted on realistic synthetic data and
in vivo ultrasound images.

Index Terms—Bayesian inference, ultrasound imaging, image
deconvolution, segmentation, Gibbs sampler, generalized Gaus-
sian Markov random field.

I. INTRODUCTION

ULTRASOUND (US) imaging is a well-established medi-
cal imaging modality widely used for clinical diagnosis,

visualization of anatomical structures, tissue characterization
and blood flow measurements. The popularity of US imaging
compared to other imaging modalities such as computed
tomography (CT) or magnetic resonance imaging (MRI) is
mainly due to its efficiency, low cost and safety [1]. Despite
these advantages and the recent advances in instrumentation
[2] and beam-forming [3], it also has some limitations, mainly
related to its poor signal-to-noise ratio, limited contrast and
spatial resolution. Furthermore, US images are characterized
by speckle, which considerably reduces their quality and
may lead to interpretation issues. For this reason, several
despeckling methods can be found in the US literature [4], [5].
Despite its negative effect, speckle has also been extensively
used as a source of information in applications such as image
segmentation and tissue characterization [6], [7]. Specifically,
it has been shown that the statistical properties of the speckle
are strictly correlated with the tissue structures [8], [9]. Thus,
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methods allowing image restoration using the statistical prop-
erties of the speckle noise are also an interesting research track
in US imaging [8], [10].

A. Problem Statement

Under the first order Born approximation and the assump-
tion of weak scattering classically assumed for soft tissues
[11], the radio-frequency (RF) US images can be modeled
as the convolution between a blurring operator/point spread
function (PSF) and a tissue reflectivity function (TRF), see,
e.g., [8], [10]–[13]. The resulting linear model is given by

y(r) = h(r)⊗ x(r) + n(r), r ∈ R (1)

where ⊗ is the two dimensional convolution operator, y(r) is
the observed image pixel at the location r, x(r) is the TRF to
be estimated, h(r) is the system PSF, n(r) is the measurement
noise and R is the image domain. Equivalently, after lexico-
graphical ordering the corresponding images y(r), x(r), n(r)
and forming the huge matrix H ∈ RN×N associated with
h(r), we obtain the following equivalent model

y = Hx + n. (2)

Due to the physical corrections related to image formation
(e.g., time gain compensation, dynamic beamforming), in
most of soft tissues, h(r) can be assumed shift invariant.
Moreover, cyclic convolution is considered in this paper for
computational purpose, leading to a block circulant matrix of
circulant blocks (BCCB) H1. Note that the PSF is unknown
in practical applications and that its estimation has been
extensively explored in US imaging. A typical approach in
US imaging, also adopted in this paper, is to estimate the
PSF in a pre-processing step before applying the deconvolution
algorithm (see, e.g., [8], [11]).

B. Related Work

US image deconvolution aims at estimating the TRF x
from the RF data y, which is a typical ill-posed problem.
Imposing a regularization constraint is one traditional way to

1Some existing works [8], [10], [14], [15] assume that the PSF in US
imaging is shift-variant mainly along the axial direction. In this case, US
images are generally divided into several local regions along the axial
direction. In each region, the local PSF is assumed shift-invariant. The global
blurring matrix is built in this case by combining these local shift-invariant
PSFs.



1057-7149 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2016.2567074, IEEE
Transactions on Image Processing

2 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, 2016

cope with this problem. The regularization constraint usually
reflects the prior knowledge about x. In US imaging, Gaussian
and Laplacian distributions have been widely explored as prior
information for the TRF x, leading to `2-norm [16] and `1-
norm [13], [17] constrained optimization problems.

Due to the tight relationship between image deconvolu-
tion and segmentation, it is interesting to consider these
two operations jointly. This idea has been recently exploited
for piecewise homogeneous images using the Mumford-Shah
model [18]–[20], the Potts model [21], [22] or the generalized
linear models [23] in Bayesian or variational frameworks.
Moreover, segmentation-based regularizations have been con-
sidered in [24] to improve the image reconstruction perfor-
mance. However, due to the intrinsic granular appearance of
US data, these methods are not efficient to simultaneously
restore and segment US images. In order to develop US
image deconvolution and segmentation methods, it is common
to take advantage of the statistical properties of the TRF.
Except the traditional Gaussian and Laplace distributions
mentioned above, distributions that have been considered for
US images include the homodyned K [25], Nakagami [26] and
generalized Gaussian distributions [27]. Alessandrini et. al.
recently investigated a deconvolution method for US images
based on generalized Gaussian distributions (GGDs) using
the expectation maximization (EM) algorithm [8], [28]. This
method assumed that the US image can be divided into differ-
ent regions characterized by GDDs with different parameters.
Despite its accuracy when compared to several state-of-the-
art US image deconvolution methods, the framework in [28]
has two major drawbacks that we propose to tackle in this
paper. First, it is well-known that the EM algorithm can easily
converge to a local minimum of the cost function and is
sensible to the initial values of the parameters to be tuned,
which may lead to inaccurate estimates. Second, the EM
algorithm can only be applied to cases where a mask (or
label map) of the homogeneous regions is available. Note that
a US image deconvolution method based on Markov chain
Monte Carlo (MCMC) methods was recently investigated in
[29]. However, the proposed method was also using an a
priori label map for the different image regions. Due to the
tight relationships between segmentation and deconvolution,
we think that combining these two operations can increase
their performance, which is the objective of this paper.

C. Proposed method

Compared with the US image deconvolution method of [29],
this paper defines a Potts Markov random field for the hidden
image labels, assigns GGD priors to the image TRF, and
investigates a joint segmentation and deconvolution method
for US images. Thus, the proposed algorithm generalizes the
results of [29] to situations where a label map is unknown.
Additional motivations for the proposed model are provided
below. First, it uses a GGD-Potts model to regularize the ill-
posed joint deconvolution and segmentation problem. Second,
it exploits the local statistical properties of different image
regions, which are usually related with the anatomical image
structures. Finally, the proposed model is able to capture

the spatial correlations between neighboring pixels. To our
knowledge, the proposed method represents a first attempt
for a joint segmentation and deconvolution in US imaging.
The complicated form of the resulting posterior distribution
makes it too difficult to compute closed form expressions of
the corresponding Bayesian estimators. Therefore, a Markov
chain Monte Carlo (MCMC) method based on a Gibbs sampler
is investigated to sample the posterior distribution of interest
and build the estimators of its unknown parameters.

The rest of the paper is organized as follows. The statistical
hierarchical Bayesian model proposed for image segmentation
and deconvolution is introduced in Section II. Section III
studies a hybrid Gibbs sampler, which generates samples
asymptotically distributed according to the posterior distribu-
tion of this model. Simulation results obtained on synthetic
data, realistic simulated and in vivo US images are presented
in Section IV. Conclusions are finally reported in Section V.

II. BAYESIAN MODEL FOR JOINT DECONVOLUTION AND
SEGMENTATION

This section introduces the Bayesian model investigated in
this paper for the joint deconvolution and segmentation of US
images. We assume that the US TRF x = (x1, · · · , xN )T can
be divided into K statistical homogeneous regions, denoted
as {R1, ...,RK} and we introduce a hidden label field z =
(z1, · · · , zN )T ∈ RN mapping the image into these K regions.
More precisely, zi = k if and only if the corresponding pixel
xi belongs to the region Rk, where k ∈ {1, · · · ,K} and i ∈
{1, · · · , N}. The conditional distribution of pixel xi is then
defined as

xi|zi = k ∼ GGD(ξk, γk) (3)

where ξk and γk are the shape and scale parameters of
the GGD associated with the region Rk. We remind that a
univariate GGD with shape parameter ξ and scale parameter
γ denoted as GGD(ξ, γ) has the following pdf,

p(x) =
1

2γ1/ξΓ(1 + 1/ξ)
exp

(
−|x|

ξ

γ

)
, x ∈ R. (4)

Assuming that the pixels are independent conditionally
to the knowledge of their classes, the TRF is distributed
according to a mixture of GGDs with the following probability
density function (pdf)

p(xi) =
K∑
k=1

wkGGD(ξk, γk) with wk = P (zi = k). (5)

In addition, we assign a Potts model to the hidden field z to
exploit the dependencies between pixels that are nearby in the
image [7], [21], [30]. The resulting model is referred to as
GGD-Potts model. In the following, we define a hierarchical
Bayesian model based on this GGD-Potts model for the joint
segmentation and deconvolution of US images. Using the
Bayes rule for the joint posterior of the unknown parameters,
the following result can be obtained

p(x, z,θ|y) ∝ p(y|x,θ)p(x|z,θ)p(z|θ)p(θ) (6)

where ∝ means “proportional to”, θ is a parameter vector
containing all the model parameters and hyperparameters
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except x and z, i.e., the noise variance, the shape and scale
parameters. The likelihood p(y|x,θ) depending on the noise
model and the prior distributions p(x|z,θ), p(z|θ) based on
the GGD-Potts model are detailed hereinafter.

A. Likelihood
Assuming an additive white Gaussian noise (AWGN) with

a constant variance σ2
n, the likelihood function associated with

the linear model (2) is

p(y|x, σ2
n) =

1

(2πσ2
n)N/2

exp
(
− 1

2σ2
n

‖y −Hx‖22
)

(7)

where ‖ · ‖2 is the Euclidean `2-norm.

B. Prior Distributions
1) Tissue reflectivity function (TRF) x: As explained be-

forehand, a mixture of GGD priors is assigned to the TRF.
Assuming that the pixels are independent conditionally to the
knowledge of their classes, we obtain the following prior for
the target image

p(x|z, ξ,γ) =
K∏
k=1

Nk∏
i=1

1

2γ
1/ξk
k Γ(1 + 1/ξk)

exp

(
−|xi|

ξk

γk

)

=
K∏
k=1

1[
2γ

1/ξk
k Γ(1 + 1/ξk)

]Nk exp

(
−
∑Nk
i=1 |xi|ξk
γk

)

=

K∏
k=1

1[
2γ

1/ξk
k Γ(1 + 1/ξk)

]Nk exp

(
−
‖xk‖ξkξk
γk

)
(8)

where ξ = (ξ1, · · · , ξK)T and γ = (γ1, · · · , γK)T , ξk and
γk are the shape and scale parameters of the kth region Rk,
Nk is the number of pixels in Rk, xk contains all the pixels
assigned to Rk, Γ(·) is the gamma function and ‖xk‖ξ =

(
∑Nk
i=1 |xi|ξ)1/ξ denotes the `ξ-norm.

2) Noise variance σ2
n: In the presence of an AWGN, it is

standard to assign a conjugate inverse gamma (IG) prior to
the noise variance, i.e.,

p(σ2
n) ∼IG(α, ν)

=
να

Γ(α)
(σ2
n)−α−1 exp

(
− ν

σ2
n

)
IR+(σ2

n) (9)

where IA is the indicator function on the set A. This prior has
two adjustable parameters α, ν which make it very flexible and
thus appropriate to the variance of most statistical models. The
values of α and ν have been fixed by cross validation in our
experiments leading to (α, ν) = (0.1, 0.1).

3) Labels z: A Potts model (generalization of the Ising
model) is considered as prior for the hidden image label field.
The Potts Markov random field (MRF) has been shown to be
appropriate for image segmentation [30], [31]. It establishes
dependencies between pixels that are nearby in an image
[7], [30]. More specifically, adjacent labels of the image
are dependent and tend to belong to the same class. The
conditional distribution of zn (associated with pixel xn) for
the Potts MRF is defined as

p(zn|z−n) = p(zn|zV(n)) (10)

where z−n = (z1, ..., zn−1, zn+1, ..., zN ) and V(n) contains
the neighbors of label zn. In this paper, a first order neighbor-
hood structure (i.e., 4 nearest pixels) is considered. The whole
set of random variables z forms a random field.

Using the Hammersley-Clifford theorem [32], the prior of
z can be expressed as a Gibbs distribution, i.e.,

p(z) =
1

C(β)
exp

 N∑
n=1

∑
n′∈V(n)

βδ(zn − zn′)

 (11)

where β is the granularity coefficient or smooth parameter,
δ(·) is the Kronecker function and C(β) is the normalizing
constant (often referred to as partition function). The value of
β has been fixed by cross validation, leading to β = 1.

4) Shape and scale parameters: The prior used for the US
TRF defined in (8) depends on the shape and scale parameters
of the GGD, which are usually referred to as hyperparameters.
Following the works in [33], we have chosen the following
priors for these hyperparameters

p(ξ) =
K∏
k=1

p(ξk) =
K∏
k=1

1

3
I[0,3](ξk) (12)

p(γ) =

K∏
k=1

p(γk) =

K∏
k=1

1

γk
IR+(γk) (13)

where k ∈ {1, ...,K}. Note that the range [0, 3] covers all
the possible values of ξk and that p(γk) is the uninformative
Jeffreys prior for γk.

C. Joint posterior distribution

The joint posterior distribution of the unknown parameters
x, σ2

n, ξ,γ, z can be determined as follows

p(x, σ2
n, ξ,γ, z|y) ∝ p(y|x, σ2

n, ξ,γ, z)p(x, σ2
n, ξ,γ, z)

∝ p(y|x, σ2
n, ξ,γ, z)p(x|ξ,γ, z)p(σ2

n)

×p(ξ)p(γ)p(z)

∝
1

(2πσ2
n)N/2

exp

(
− 1

2σ2
n

‖y −Hx‖22
)

× 1

(σ2
n)α+1

exp
(
−ν/σ2

n

)
×

K∏
k=1

{
aNkk exp

(
−
‖xk‖ξkξk
γk

)

× exp

[ N∑
n=1

∑
n′∈V(n)

βδ(zn − zn′)

]

×1

3
I[0,3](ξk)

1

γk
IR+(γk)

}
(14)

where ak = 1

2γ
1/ξk
k Γ(1+1/ξk)

and the hyperparameters are

supposed to be a priori independent. Fig. 1 summarizes the
proposed hierarchical Bayesian model as a directed acyclic
graph (DAG), in which the relationships between the param-
eters and hyperparameters are indicated.
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Fig. 1. Hierarchical Bayesian model for the parameter and hyperparameter
priors, where the TRF x is modeled by a mixture of GGDs, the hidden label
field z follows a Potts MRF and the parameters appearing in the boxes are
fixed in advance.

III. SAMPLING THE POSTERIOR AND COMPUTING THE
BAYESIAN ESTIMATORS

Computing closed-form expressions of the MMSE or MAP
estimators for the unknown parameters x, σ2

n, ξ,γ, z from (14)
is clearly complicated. In this case, a possible solution is to
consider MCMC methods in order to generate samples asymp-
totically distributed according to the distribution of interest
and to use the generated samples to build estimators of the
unknown parameters. In this section, a hybrid Gibbs sampler
is investigated to generate samples asymptotically distributed
according to (14). These samples are used to compute the
Bayesian estimators of the US TRF x, hidden label field z,
noise variance σ2

n and GGD parameters ξ,γ.

A. Hybrid Gibbs sampler

The proposed hybrid Gibbs sampler is a 5-step algorithm
summarized in Algorithm 1. The algorithm is explained in
detail in what follows.

Algorithm 1: Hybrid Gibbs Sampler

1 Sampling the noise variance σ2
n according to the

conditional distribution (15).
2 Sampling the shape parameter ξ according to the

conditional distribution (17) with an RWMH algorithm.
3 Sampling the scale parameter γ using (19).
4 Sampling the labels z according to the normalized

conditional distribution (23).
5 Sampling the TRF x using an HMC method.

1) Sampling the noise variance: The conditional distri-
bution of σ2

n|y,x, ξ,γ, z is the following inverse gamma
distribution whose expression is derived in Appendix A

p(σ2
n|y,x, ξ,γ, z) ∝ p(y|x, σ2

n, ξ,γ, z)p(σ2
n)

= IG
(
α+N/2, θ +

1

2
‖y −Hx‖22

)
. (15)

Generating samples according to (15) is straightforward.

2) Sampling the shape parameter vector ξ: The conditional
distribution of the shape parameter vector ξ satisfies the
following relation

p(ξ|y,x, σ2
n,γ, z) ∝ p(y|x, σ2

n, ξ,γ, z)p(x|ξ,γ, z)p(ξ)

∝ p(x|ξ,γ, z)p(ξ). (16)

Assuming that the shape parameters are a priori independent,
we have

p(ξk|x,γ, z, ξ−k) ∝ p(xk|ξk, γk, zk)p(ξk)

∝ aNkk exp

(
−
‖xk‖ξkξk
γk

)
I[0,3](ξk) (17)

where ξ−k = (ξ1, ..., ξk−1, ξk+1, ..., ξK) for k ∈ {1, ...,K},
xk contains the pixels belonging to class k and zk is built
from the corresponding labels. Unfortunately, the conditional
distribution (17) is not easy to sample directly. Thus, we pro-
pose to consider a random walk Metropolis Hastings (RWMH)
move [34]. More implementation details about this move and
the resulting algorithm are given in Appendix B.

3) Sampling the scale parameter vector γ: The conditional
distribution of the scale parameter vector γ satisfies the
following relation

p(γ|y,x, σ2
n, ξ, z) ∝ p(y|x, σ2

n, ξ,γ, z)p(x|ξ,γ, z)p(γ)

∝ p(x|ξ,γ, z)p(γ). (18)

Assuming that the scale parameters are independent, we have

p(γk|x, ξ, z,γ−k) ∝ p(xk|ξk, γk, zk)p(γk)

∝ IG
(
Nk
ξk
, ‖xk‖ξkξk

)
(19)

where γ−k = (γ1, ..., γk−1, γk+1, ..., γK) for k ∈ {1, ...,K}.
Drawing samples from the inverse gamma distribution (19) is
straightforward. More details about the derivation of (19) are
provided in Appendix A.

4) Sampling the labels z: The conditional distribution of
the labels z can be computed using Bayes rule

p(z|y,x, σ2
n, ξ,γ) ∝ p(y|x, σ2

n, ξ,γ, z)p(x|ξ,γ, z)p(z)

∝ p(x|ξ,γ, z)p(z). (20)

Considering the dependency between a label and its neighbors,
the conditional distribution of the label zn (corresponding to
the image pixel xn) is given as follows

p(zn = k|z−n,x, ξ,γ) ∝ p(xn|zn = k, ξ,γ)p(zn = k|zV(n))
(21)

where z−n is the vector z whose nth element has been
removed and zV(n) represents the neighbors of label zn. Note
that a 4-pixel neighborhood structure has been adopted in this
paper. Denoting the left hand side of (21) as πn,k, we have

πn,k ∝ ak exp

(
−|xn|

ξk

γk

)
exp

 ∑
n′∈V(n)

βδ(k − zn′)

 .

(22)
The normalized conditional probability of the label zn is
defined as

π̃n,k =
πn,k∑K
k=1 πn,k

. (23)
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Finally, the label zn can be drawn from the set {1, ...,K} with
the respective probabilities {π̃n,1, ..., π̃n,K}.

5) Sampling the TRF x: The conditional distribution of the
target image we want to estimate is defined as follows

p(x|y, σ2
n, ξ,γ, z) ∝ exp

(
−‖y −Hx‖22

2σ2
n

−
K∑
k=1

‖xk‖ξkξk
γk

)
.

(24)
Sampling according to (24) is the critical point of the proposed
algorithm. Due to the high dimensionality of x, classical Gibbs
or MH moves are inefficient. Thus we propose to implement an
efficient sampling strategy referred to as Hamiltonian Monte
Carlo (HMC) method. The principles of this method have
been presented in [35] with an application to neural networks.
It is widely reported that HMC generally outperforms other
standard Metropolis-Hastings algorithms, particularly in high-
dimensional scenarios [36]. This empirical observation is in
agreement with recent theoretical studies showing that HMC
has better scaling properties than the Metropolis adjusted
Langevin algorithm (MALA) and RWMH [37]. The main steps
of the HMC method with details about the way to adjust its
parameters are reported in Appendix C.

B. Parameter estimation

Bayesian estimators of the unknown parameters are com-
puted using the generated samples obtained by the hybrid
Gibbs sampler. Since the labels are discrete variables, marginal
MAP estimators are chosen for the labels. The MMSE esti-
mators for the other variables (the TRF x, noise variance σ2

n

and GGD parameters ξ, γ) are calculated. For example, the
MMSE estimator of the TRF x is computed by

x̂MMSE|ẑMAP , E{x|z = ẑMAP} =

∫
p(x|z = ẑMAP)dx.

(25)
For each pixel, we can approximate this estimator as follows

x̂n,MMSE|ẑn,MAP '
1

M

M∑
i=1

x(i)
n |z(i)

n = ẑn,MAP (26)

where M is the number of iterations after the so-called burn-in
period (see Section IV-B devoted to the sampler convergence
for more details) that satisfy z

(i)
n = ẑn,MAP, the superscript

i represents the ith generated sample and the subscript n is
used for the nth pixel. Note that ẑMAP is the marginal MAP
estimator of the label map and that x̂MMSE is the MMSE
estimator of the reflectivity. Note also that a similar estimator
was implemented in [38] for image blind deconvolution.

C. Computational Complexity

The computational cost of the proposed Gibbs sampler is
mainly due to the generation of the TRF x and the label map
z. In each sampling iteration, the computational complexity
for sampling the TRF x using the HMC is of the order
O((L + 1)N logN), where L is the number of Leapfrog
iterations and N is the number of image pixels. The computa-
tional complexity for sampling the label map z is of the order

O(KN), where K is the number of label classes. Thus, in to-
tal, the computation complexity for drawing a cycle of samples
in the Gibbs sampler is of the order O((K+(L+1) logN)N).
Note that in general (L+ 1) logN � K. Thus, the most time
consuming step is for sampling the TRF.

IV. EXPERIMENTAL RESULTS

This section presents several experiments conducted on
simulated and real data using our algorithm. We have also
compared our approach with several existing deconvolution
algorithms previously applied in US imaging. All the exper-
iments have been conducted using MATLAB R2013a on a
computer with Intel(R) Core(TM) i7-4770 CPU @3.40GHz
and 8 GB RAM.

A. Evaluation metrics

Different evaluation metrics were considered for simulated
and in vivo US images since the TRF ground truth is only
available for simulated images. These metrics are presented
below.

1) Simulated US images:
a) Image deconvolution: The performance of the TRF

estimation is assessed in terms of improvement in SNR
(ISNR), normalized root mean square error (NRMSE), peak
signal-to-noise ratio (PSNR) and image structural similarity
(MSSIM). The metrics are defined as follows

ISNR = 10 log10

‖x− y‖2

‖x− x̂‖2
, (27)

NRMSE =

√
‖x− x̂‖2
‖x‖2

, (28)

PSNR = 10 log10

max(x, x̂)2

MSE
, (29)

MSSIM(x, x̂) =
1

W

W∑
j=1

SSIM(xj , x̂j) (30)

where the vectors x,y, x̂ are the ground truth of the TRF,
the RF image and the restored TRF, respectively. Note that
W is the number of local windows, xj and x̂j represent the
local reflectivities of x and x̂ located in one of these windows
and SSIM is the structural similarity measure of each window
(defined in [39]).

b) Image segmentation: The performance of the label
estimator is assessed using the overall accuracy (OA), defined
as the ratio between the number of correctly estimated labels
over the total number of labels.

2) In vivo US images: Since the ground truth of the TRF
and the label map are not available for in vivo US data, the
quality of the deconvolution results is evaluated using two
other metrics commonly used in US imaging: the resolution
gain (RG) [17] and the contrast-to-noise ratio (CNR) [40],
[41]. The resolution gain (RG) is the ratio of the normalized
autocorrelation (higher than −3 dB) of the original RF US
image to the normalized autocorrelation (higher than −3 dB)
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of the deconvolved image/restored TRF. The definition of the
CNR is given by

CNR =
|µ1 − µ2|√
σ2

1 + σ2
2

(31)

where µ1, µ2, σ1 and σ2 are the means and standard deviations
of pixels located in two regions extracted from the image.
The two regions are manually chosen so that they belong to
different tissue structures. Moreover, as in most US studies,
they are at the same depth in order to avoid issues related to
wave attenuation. Note that the higher the values of RG and
CNR, the better the deconvolution performance.

B. Sampler convergence

The convergence of the proposed Gibbs sampler can be
monitored by determining the so-called burn-in period which
refers to the first elements of the Markov chain that are dis-
carded and not used to compute the estimators. The potential
scale reduction factor (PSRF) [42] requires to define several
chains in parallel with different initializations. It is defined by

PSRFv =
M − 1

M
+
C + 1

CM

Bv
Wv

(32)

where C is the number of Markov chains considered, M is
the number of iterations after the burn-in period, Bv and Wv

are the intra-chain and inter-chain variances of the variable v,
whose definitions are given by

Bv =
M

C − 1

C∑
c=1

(v̄ − v̄c)2
, (33)

Wv =
1

C

C∑
c=1

1

M − 1

M∑
i=1

(
v̄c − v(i)

c

)2

(34)

where v̄ = 1
C

∑C
c=1 v̄c, v̄c = 1

M

∑M
i=1 v

(i)
c and v

(i)
c is the

ith sample of the variable v in the cth chain. Values of the
PSRF below 1.2 indicate a good convergence of the sampler
as suggested in [42]. In this work, we checked that the PSRFs
of all the variables of interest were below 1.2.

C. Synthetic data

1) Deconvolution: We first study the deconvolution perfor-
mance on synthetic data with controlled ground truth, which
allows the quality of the different estimators to be appreciated.
Precisely, three groups of 2D synthetic images with the same
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Fig. 2. Deconvolution results for one column of the synthetic image (the
red curves are the observed lines, the blue curves are the ground truth and
the green curves are the restored signals using the proposed method).

image size N = 50 × 50 are generated assuming that the
image pixels are independent and identically distributed (i.i.d.)
according to GGDs with different shape and scale parameters,
as reported in Table I. Each image has been corrupted by a
5 × 5 Gaussian blurring kernel with variance σb = 3 and an
AWGN. The level of AWGN is characterized by the blurred
signal-to-noise ratio (BSNR) expressed in decibels as follows

BSNR = 10 log10

(
‖Hx− E(Hx)‖22

Nσ2
n

)
(35)

where E(·) is the empirical average and N is the total number
of image pixels. The BSNR was set to 40 dB for the synthetic
data. Regarding the MCMC algorithm, 50 chains of 6000
iterations including a burn-in period of 2000 iterations were
run for each simulation scenario. In each Monte Carlo chain,
the stepsize was initialized to ε = 10−5 and the number of
leapfrog steps was uniformly sampled in the interval [50, 70].
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Fig. 3. Estimated marginal posterior distributions (histograms) of the noise
variance σ2

n (a)-(c), the hyperparameters ξ (d)-(f) and γ (g)-(j). The vertical
lines represent the ground truths of the corresponding parameters. Each
column corresponds to a given image.

TABLE I
PARAMETER ESTIMATIONS FOR THE SYNTHETIC DATA

Group Parameters True values MMSE Standard
deviation

Group 1
σ2
n (×10−5) 3.72 3.65 0.35

ξ 2 1.98 0.04
γ 2 2.00 0.05

Group 2
σ2
n (×10−5) 3.22 3.63 0.61

ξ 1.50 1.41 0.09
γ 1.26 1.16 0.09

Group 3
σ2
n (×10−5) 3.13 4.15 0.60

ξ 0.60 0.59 0.03
γ 0.37 0.37 0.02

The typical deconvolution performance for one column of
each of the three observed images is depicted in Fig. 2.
These results show a good performance of the proposed image
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deconvolution algorithm. Fig. 3 shows the histograms of the
generated samples from one single Markov chain for the noise
variance, the GGD parameters and the hyperparameters of
three synthetic images. These histograms are clearly in good
agreement with the true values of the parameters indicated by
the vertical lines. More quantitative results of the parameter
estimation are reported in Table I.

2) Segmentation: This section evaluates the performance of
our method for the segmentation of two regions of the same
size (128 × 64) using the overall accuracy (OA). Given that
pixels in both regions have a zero-mean GGD, the difference
between the two regions is controlled by the ratios of the
shape or scale parameters in the two regions. The values
of OAs obtained for different ratios of GGD parameters are
displayed in Fig. 4. Comparing the two graphs in Fig. 4, the
variations of OA are clearly sharper for the left figure, showing
that the segmentation accuracy is more sensitive to the shape
parameters.
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Fig. 4. OA versus the ratios of the GGD parameters (left: scale parameters
γ1 = γ2 = 20, right: shape parameters ξ1 = ξ2 = 1).

D. Joint Deconvolution and Segmentation
1) Comparison with existing methods:

a) Simulated US images: The proposed joint deconvolu-
tion and segmentation algorithm (denoted as “JointMCMC”)
was compared to the technique proposed in [28] (that per-
forms US deconvolution with GGD priors using the EM
algorithm, denoted here by “DeconvEM”) on simulated data.
Since “DeconvEM” was proposed for statistical homogeneous
regions, we assumed that the labels associated with the statis-
tically homogeneous regions were known for “DeconvEM”. In
order to test the robustness of our method to label estimation
errors, we also implemented the proposed algorithm using
the true labels (denoted as “DeconvMCMC”). In this case,
similar to “DeconvEM”, only the deconvolution process was
performed, without label estimation. Finally, we compared
our results with the `2 and `1 norm constrained optimization
solutions. For the `2-norm optimization problem, a numerical
solution is given by

x̂ = (HTH + λI)−1HTy (36)

where λ is the regularization parameter. Concerning the `1
norm optimization problem, numerous dedicated algorithms,
e.g., ISTA [43], FISTA [43], TwIST [44] or GEM [45] are
available in the literature. The conjugate gradient (CG) method
was considered in this work. Note that the regularization
parameters were fixed manually by cross validation for the
`2 and `1 norm constraint optimization problems.

b) In vivo US images: Due to the fact that the ground
truth for the label map is not available for in vivo US
data, we were not able to test the methods “DeconvEM”
and “DeconvMCMC” for these images. Instead, we considered
Gaussian and Laplacian priors that have been extensively used
in the US image deconvolution literature [13], [16], [17].
The analytical solution for the `2-norm optimization problem
is given by (36). The GPSR (gradient projection for sparse
reconstruction) [46] algorithm is implemented for the `1 norm
constrained optimization problem for the real data, where
the regularization parameter is chosen as 0.1‖HTy‖∞, as
suggested in [46].

2) Joint deconvolution and segmentation for simulated US
images: Experiments were first conducted on three groups
of simulated US images with a simulation scenario inspired
by [10]. The PSF was simulated with a realistic state-of-
the-art ultrasound simulator Field II [47] corresponding to
a 3.5 MHz linear probe as shown in Fig. 6(a). All images
were simulated with the same PSF. All the simulation results
presented hereinafter were obtained using 6000 Monte Carlo
iterations, including a burn-in period of 2000 iterations.

a) Group 1: The TRF x mimicking a hyperechoic
(bright) round inclusion into an homogeneous medium was
blurred by the simulated PSF and contaminated by an AWGN
with BSNR = 30 dB. The simulated images are of size
128 × 128. The pixels located inside and outside the inclu-
sion, indicated by the label map in Fig. 6(c), are distributed
according to GGDs with parameters (ξ, γ) = (0.6,1) (inside)
and (ξ, γ) = (1.8,2) (outside) as highlighted in Fig. 6(b). The
simulated observed B-mode image (log-compressed envelop
image of the corresponding beamformed RF data which is
commonly used for visualization purpose in US imaging) is
shown in Fig. 6(d). The quality of the deconvolution can
be appreciated by comparing the estimated TRFs shown in
Figs. 6(e)-6(i) obtained with the methods `2, `1, DeconvEM,
DeconvMCMC and the proposed JointMCMC. The quality of
the segmentation can be observed in Fig. 6(j), which shows
the estimated label map obtained with the method JointMCMC.
Finally, the performance of the GGD parameter estimators is
illustrated by the histograms of the generated GGD parameters
(ξ,γ) displayed in Fig. 5, where the red and green vertical
lines indicate the MMSE estimates and the true values of the
parameters, respectively.

b) Group 2: The TRF x is an homogeneous medium with
two hypoechoic (dark) round inclusions (see Fig. 7(a)) that was
blurred by the same simulated PSF and contaminated by an
AWGN. The size of the US reflectivity image is 100 × 100
and BSNR = 30 dB. The pixels located inside and outside the
inclusions are distributed according to GGDs with parameter
vectors (ξ, γ) = (0.8,10) (inside) and (ξ, γ) = (1.5,1) (outside)
as highlighted in Fig. 7(a). The simulated observed B-mode
image is shown in Fig. 7(c) whereas the ground truth of the
label map is given in Fig. 7(b). Figs. 7(d)-7(h) show the
estimated TRFs obtained with the methods `2, `1, DeconvEM,
DeconvMCMC and the proposed JointMCMC, confirming the
good performance of JointMCMC for the deconvolution of US
images. The estimated label map obtained with the method
JointMCMC is shown in Fig. 7(i), confirming its good segmen-
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Fig. 5. Group 1: (a) and (b) are the histograms of shape parameters ξ for
the pixels inside and outside the inclusion; (c) and (d) are the histograms of
scale parameters γ for the pixels inside and outside the inclusion; The red
and green vertical lines are the MMSE estimates and the true values of the
parameters ξ, γ, respectively.

tation performance. Finally, the hyperparameter estimates of
Group 2 are shown in Table II, confirming the good estimation
performance.

TABLE II
HYPERPARAMETER ESTIMATIONS FOR SIMULATED DATA (GROUP 2)

Method ξ1 ξ2 γ1 γ2
Ground truth 0.8 1.5 10 1
DeconvEM 0.60 0.96 21.10 0.42

DeconvMCMC 0.80 2.15 10.05 1.50
JointMCMC 0.82 1.37 11.24 0.82

c) Group 3: The third simulated image was obtained
by using a clean TRF x of size 275 × 75 (see Fig. 8(a))
blurred by the same simulated PSF and contaminated by an
AWGN such that BSNR = 30 dB. A more realistic geometry
of the simulated tissues was considered, inspired by one of
the in vivo results provided in the next section (see Fig.
10(i)). Three different structures were generated mimicking
the skin, the tumor and the surrounding tissue (green, red and
blue regions in Fig. 8(b)). The pixels in the different regions
are distributed according to GGDs with different parameters:
(ξ, γ) = (0.5, 1) for the blue region, (ξ, γ) = (1, 30) for
the green region and (ξ, γ) = (1.8, 2) for the red region.
Figs. 8(d)-8(h) show the estimated TRFs obtained with the
methods `2, `1, DeconvEM, DeconvMCMC and JointMCMC.
The estimated label map obtained with the method JointMCMC

is also shown in Fig. 8(i). Visually, we remark that all the
three methods provide images with better object boundary
definition (better spatial resolution) than the observed B-mode
images. The quantitative results reported in Table III confirm
that given the same conditions (knowledge of the true label
map), our approach “DeconvMCMC” is more accurate than
the existing “DeconvEM”. Moreover, we can note that the

TABLE III
DECONVOLUTION QUALITY ASSESSMENT FOR SIMULATED DATA

G[ Method ISNR NRMSE PSNR MSSIM OA
(dB) (dB)

1

`2 12.83 0.52 33.19 0.98 N/A
`1 12.83 0.52 33.19 0.98 N/A

DeconvEM 13.04 0.46 33.74 0.98 N/A
DeconvMCMC 16.21 0.35 36.57 0.99 N/A
JointMCMC 16.01 0.36 36.37 0.99 0.99

2

`2 10.63 0.69 21.02 0.61 N/A
`1 12.75 0.54 23.30 0.79 N/A

DeconvEM 14.31 0.45 24.70 0.82 N/A
DeconvMCMC 15.09 0.41 25.39 0.88 N/A
JointMCMC 15.00 0.42 25.26 0.88 0.99

3

`2 9.96 0.70 21.92 0.64 N/A
`1 11.49 0.59 23.45 0.76 N/A

DeconvEM 12.21 0.54 24.16 0.78 N/A
DeconvMCMC 12.40 0.52 24.40 0.80 N/A
JointMCMC 12.38 0.53 24.37 0.79 0.98

[Represents Group.

proposed technique “JointMCMC” is able to estimate the label
map with a precision of more than 98% and with a small
quality loss for the estimated TRF.

d) Influence of the number of classes: While most of the
hyperparameters are automatically estimated in our Bayesian
method, the number of classes K has to be tuned manually.
This section studies the influence of the parameter K on
the segmentation and deconvolution. For this purpose, we
reconsider the simulated image of Group 2 by setting K = 3,
while the TRF only contains two classes of pixels. The
corresponding estimated TRFs and label maps are shown in
Fig. 9. A visual inspection as well as the obtained ISNR show
that the restored TRF in Fig. 9 (left) is similar to the result
in Fig. 7(h) that was obtained by setting K = 2. A slight
degradation of the estimated label field can be observed, as
highlighted by the OA that decreases from 0.99 to 0.8.

Fig. 9. Estimated TRF (left) and label map (right) for a two-class image
with K = 3 (ISNR = 14.46 and OA = 0.8).

3) Joint deconvolution and segmentation for in vivo US
images: Three groups of experiments have been conducted to
evaluate the performance of the proposed method for in vivo
US images. The images were acquired with a 20 MHz single-
element US probe. In contrast to the simulation scenarios
studied previously, the PSF and the TRF were not available for
in vivo experiments. For this reason, the PSF was estimated
from the RF image using the method of [14]. The regions
selected for the computation of CNR are shown in the red rect-
angles in Figs. 10(a), 10(e), 10(i). All the estimated TRFs are
shown in B-mode like form, after envelope detection and log-
compression. The envelope detection is generally performed
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(a) PSF (b) TRF (c) Label (d) B-mode (e) `2

(f) `1 (g) DeconvEM (h) DeconvMCMC (i) JointMCMC (j) JointMCMC

Fig. 6. Group 1: (a) Simulated PSF; (b) Ground truth of the TRF; (c) Ground truth for label map; (d) Observed B-mode image; (e)-(i) Estimated TRFs in
B-mode form obtained with methods `2, `1, DeconvEM, DeconvMCMC and the proposed JointMCMC; (j) Estimated label map obtained with the proposed
method (regularization parameters for the `2 and `1 methods set to 0.01 and 0.1).

(a) TRF (b) Label (c) B-mode (d) `2

(e) `1 (f) DeconvEM (g) DeconvMCMC (h) JointMCMC (i) JointMCMC

Fig. 7. Group 2: (a) Ground truth of the TRF; (b) Ground truth for label map; (c) Observed B-mode image; (d)-(h) Estimated TRFs in B-mode form
obtained with the methods `2, `1, DeconvEM, DeconvMCMC and the proposed JointMCMC; (i) Estimated label map obtained with the proposed method
(regularization parameters for the `2 and `1 methods set to 0.1 and 1).

(a) TRF (b) Label (c) B-mode (d) `2

(e) `1 (f) DeconvEM (g) DeconvMCMC (h) JointMCMC (i) JointMCMC

Fig. 8. Group 3: (a) Ground truth of the TRF; (b) Ground truth for label map; (c) Observed B-mode image; (d)-(h) Estimated TRFs in B-mode form obtained
with methods `2, `1, DeconvEM, DeconvMCMC and the proposed JointMCMC; (i) Estimated label map obtained with the proposed method (regularization
parameters for the `2 and `1 methods set to 0.1 and 1).
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by considering the magnitude of the analytic signal in US
imaging. While it is adapted to bandlimited modulated RF
signals, this envelope detector may generate artifacts on TRFs.
To avoid this phenomenon, we have used a different envelope
detection method for the restored TRF, i.e., the method of [48]
based on the detection and interpolation of local maxima.

a) Group 1 - Mouse bladder: The observed B-mode
image of size 400 × 256 is shown in Fig. 10(a) and displays
a mouse bladder. The US transducer was placed into a small
water container to ensure an efficient transmission of the US
waves into the tissues. As there is no US scatterer in the
water, the region located in the upper part of the image in
Fig. 10(a) appears dark (no signal). It is also the case for
the region located inside the bladder that also contains a
fluid with poor reflection for the US waves. The number of
homogeneous regions was set to K = 3 in this experiment,
which is sufficient to represent the anatomical structures of
the image. The number of Monte Carlo iterations was fixed
to 10 000 (including 5 000 burn-in iterations). The parameters
of the HMC method for the in vivo data were adjusted to the
same values as in the previous experiments. The regularization
parameters for the `2-norm and `1-norm constraint optimiza-
tion problems were set to 10 and 54.39 by cross-validation.
Figs. 10(b)-10(d) display the restored TRFs obtained with the
`2, `1 optimization algorithms and the proposed method. The
proposed method provides good restoration results, especially
with clearer boundaries. Fig. 12(a) shows the marginal MAP
estimates of the labels, which segment the estimated image
into several statistically homogeneous regions. The different
anatomical structures of the image can be clearly recovered.
Note that the two regions corresponding to fluids are identified
with the same estimated label.

b) Group 2 - Skin melanoma: The second in vivo image
(of size 400×298) represents a skin melanoma tumor acquired
in the same conditions as previously, shown in Fig. 10(e).
Water-based gel was placed between the US probe and the skin
of the patient. It represents the dark regions in the upper part of
the image in Fig. 10(e). The rest of the tissues corresponds to
the skin layers. The number of homogeneous regions was fixed
to K = 4. The number of Monte Carlo iterations was fixed
to 20000 (including 10000 burn-in period) for this example.
The regularization parameters for the `2-norm and `1-norm
constraint optimization problems were set to 1 and 1.2×103 by
cross-validation. Figs. 10(f)-10(h) display the restored TRFs
with the different methods (`2, `1 optimization algorithms and
proposed method). Note that Fig. 10(h) shows an improved
contrast between the tumor and the healthy skin tissue when
compared to the observed B-mode image in Fig. 10(e). The
tumor boundaries are better defined on the deconvolved image
with the proposed method compared to the observed B-mode
image. To better visualize the improved transition between
the tumor and the healthy skin tissue, we show in Fig. 11
two vertical profiles passing through the tumor, corresponding
to the blue line in Fig. 10(e), extracted from our result
and observation. One can remark the sharper slopes obtained
on the deconvolved image in the neighbourhood of tumor
boundaries, i.e. around positions 200 and 300. The marginal
MAP estimates of the labels for this image are shown in Fig.
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Fig. 11. Vertical profiles passing through the skin tumor, extracted from the
observed and restored images of Fig. 10(e) and 10(h).

12(b). The four estimated labels correspond to the water-gel
(light blue), the tumor (yellow) and the skin tissues (the two
shades of red).

c) Group 3 - Healthy skin tissue: The last in vivo US
data represents a healthy skin image shown in Fig. 10(i),
which is of size 832 × 299. The number of homogeneous
regions was set to K = 2. The number of Monte Carlo
iterations was fixed to 6000 including a burn-in period of 2000
iterations). The regularization parameters for the `2-norm and
`1-norm constraint optimization problems were set to 10 and
1.5 × 104 by cross-validation. The restored TRFs obtained
with the different methods (`2, `1 optimization algorithms and
the proposed method) are displayed in Figs. 10(j)-10(l). The
marginal MAP estimation of the label field is shown in Fig.
12(c).

In addition to the visual inspection, the deconvolution results
were evaluated using the RG and CNR criteria and the CPU
time, as reported in Table IV. Despite its higher computational
complexity, the visual impression and the numerical results
confirm that a better contrast and more defined boundaries
between the different tissues is achieved with our method. It
is interesting to note that in addition to the restored image,
our algorithm also provides a segmentation result. To our
knowledge, there is no other existing method in US imaging
able to achieve this joint segmentation and deconvolution
performance.

V. DISCUSSIONS

The main drawback of the proposed method is its com-
putational complexity, which limits its use in real-time ap-
plications. However, the proposed algorithm is interesting for
numerous off-line applications. For example, improving the
readability of US images (e.g., spatial resolution, contrast,
SNR) off-line allows the clinician to better appreciate the
anatomical structures, especially when very accurate mea-
surements are required (e.g., for cancer detection) or when
very small structures must be identified (e.g., vessel walls).
Computer-aided detection, often performed off-line and based
on a quantitative analysis of the images, could also take
advantage from the deconvolved images provided by our
approach, see, e.g., [8]. Finally, we would like to emphasize
that the main objective of this paper is to validate the proposed
joint segmentation and detection strategy on simulated images



1057-7149 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2016.2567074, IEEE
Transactions on Image Processing

ZHAO et al.: JOINT SEGMENTATION AND DECONVOLUTION OF ULTRASOUND IMAGES 11

TABLE IV
DECONVOLUTION QUALITY FOR THE REAL US DATA

Group group 1 - Mouse bladder group 2 - Skin melanoma group 3 - Healthy skin tissue
Metrics RG CNR Time (s) RG CNR Time (s) RG CNR Time (s)

Observation - 1.08 - - 1.17 - - 1.30 -
`2 3.82 1.00 0.006 3.01 1.09 0.007 1.07 3.01 0.007
`1 3.29 1.11 5.07 4.63 1.19 3.53 2.09 2.47 22.30

Proposed 3.94 0.94 3904.8 10.01 1.35 1303.4 2.59 2.23 6585.8

(a) Observation (b) `2 (c) `1 (d) Proposed

(e) Observation (f) `2 (g) `1 (h) Proposed

(i) Observation (j) `2 (k) `1 (l) Proposed

Fig. 10. From up to down: 1st row corresponds to the mouse bladder; 2nd row is for the skin melanoma; 3rd row is for the healthy skin tissue. From left
to right: Observed B-mode image, Restored B-mode images with `2-norm, `1-norm and the proposed method. The regions selected for computing CNR are
shown in the red boxes in the observed B-mode images, i.e., (a), (e), (i).
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Fig. 12. Marginal MAP estimates of labels. (a) is the label map for the mouse bladder. The labels in red correspond to liquid regions whereas the other
labels represent tissue regions with different statistical properties. (b) is the label map for the skin melanoma. The yellow region shows the water-based gel
ensuring an efficient contact between the US probe and the skin, the red pixels correspond to the tumor and the healthy skin tissues appear in blue. (c) is the
label map for the healthy skin tissue. The skin tissue appears in red.
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with a controlled ground truth and to show its applicability to
clinical examples. Performing a deeper clinical evaluation is
obviously an interesting and essential perspective that will be
conducted in future work.

VI. CONCLUSIONS

This paper proposed a Bayesian method for the joint
deconvolution and segmentation of ultrasound images. This
method assumed that the ultrasound image can be divided into
regions with statistical homogeneous properties. Based on this
assumption, a Potts model was introduced for the image labels.
Independent generalized Gaussian priors were also assigned to
the tissue reflectivity functions of each homogeneous region
of the image. According to the author’s knowledge, it is the
first time a joint segmentation and deconvolution method is
proposed for ultrasound images. The proposed method showed
very interesting restoration results when compared to more
classical optimization methods based on `2-norm or `1-norm
regularizations.

Future work includes the estimation of the point spread
function within the Bayesian algorithm, resulting into a blind
segmentation and deconvolution approach. The spatially vary-
ing nature of the PSF could also be considered with more
sophisticated block-wise techniques ensuring the continuity
and regularity of the estimated tissue reflectivities. The auto-
matic estimation of the number of classes, which is manually
tuned in this work, is also an interesting perspective that
could be addressed using a Bayesian non-parametric approach.
Finally, combining our MCMC approach with deterministic
optimization methods (such as the PMALA approach [49]–
[51]), exploring parallel techniques such as [52] and applying
the algorithm to demodulated I/Q data are interesting research
areas, which should allow the computational cost of our
algorithm to be reduced.
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APPENDIX A
DEVIATIONS OF THE CONDITIONAL DISTRIBUTIONS OF THE

NOISE VARIANCE AND SCALE PARAMETERS

a) Inverse gamma distribution: A univariate inverse
gamma distribution with shape parameter α and scale param-
eter β denoted as IG(α, β) has the following pdf

p(x) =
βα

Γ(α)
x−α−1 exp

(
−β
x

)
, x ∈ R+. (37)

The conditional distribution of the noise variance and of the
GGD scale parameters of the joint posterior distribution, i.e.,
(15) and (19) are inverse gamma distributions that are derived
hereinafter.

b) Conditional distribution of the noise variance:

p(σ2
n|y,x, ξ,γ, z)

∝ p(y|x, σ2
n, ξ,γ, z)p(σ2

n)

∝
1

(2πσ2
n)

N
2

exp

(
−‖y −Hx‖22

2σ2
n

)
×
να exp

(
−ν/σ2

n

)
Γ(α)(σ2

n)α+1

∝ (σ2
n)−α−N/2−1 × exp

[
− 1

σ2
n

(
ν +

1

2
‖y −Hx‖22

)]
.

We can recognize the following inverse gamma distribution

IG
(
α+N/2, θ +

1

2
‖y −Hx‖22

)
.

c) Conditional distribution of the scale parameters:

p(γk|x, ξ, z,γ−k) ∝ p(xk|ξk, γk, zk)p(γk)

∝ aNkk exp

(
−
‖xk‖ξkξk
γk

)
1

γk
IR+(γk)

∝ γ
−Nk/ξk−1
k exp

(
−
‖xk‖ξkξk
γk

)
.

We can recognize the following inverse gamma distribution

IG
(
Nk
ξk
, ‖xk‖ξkξk

)
.

APPENDIX B
SAMPLING THE SHAPE PARAMETERS WITH AN RWMH

ALGORITHM

In order to sample the shape parameter ξk following (17),
we generate a candidate using a proposal and accept or
reject this candidate with an appropriate acceptance ratio. The
proposal used in this paper is a truncated Gaussian distribution
whose mean is ξ(t)

k (the value of the parameter generated at the
previous iteration) and whose variance δ is adjusted in order
to obtain a suitable average acceptance ratio, i.e.,

ξ∗k ∼ N (ξ
(t)
k , δ)I(0,3)(ξ

∗
k). (38)

This candidate is then accepted or rejected according to the
following ratio

ρ = min

{
p(ξ∗k|x,γ, z, ξ−k)

p(ξtk|x,γ, z, ξ−k)
, 1

}
. (39)

We propose to adjust the stepsize δ every 100 iterations
to achieve a reasonable acceptance rate (30% − 90%) [49].
Specifically, if the acceptance ratio during the previous 100
iterations is larger than 90% (respectively smaller than 30%),
than the variance δ is decreased (respectively increased) of
20% compared to its previous value. Note that to ensure the
homogeneity of the Markov chain after the burn-in period, this
tuning procedure is only executed during the burn-in period.
The stepsize is then fixed during the following iterations.

The algorithm used to sample ξk is finally divided into three
procedures that are summarized in Algo. 2.
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Algorithm 2: Adjusted RWMH Algorithm

/* Initialization */
1 Choose an initial value ξ0;
/* Candidate Generation */

2 for t = 1 : NMC do
3 ξ∗k ∼ N (ξ

(t)
k , δ)I(0,3)(ξ

∗
k);

/* Accept/Reject Procedure */
4 if rand 6 ρ then
5 ξ

(t+1)
k = ξ∗k;

6 else
7 ξ

(t+1)
k = ξ

(t)
k ;

8 end
9 Adjust δ in order to obtain a suitable acceptance rate.

10 end

APPENDIX C
SAMPLING THE TRF USING AN HMC ALGORITHM

A. HMC Algorithm

The main idea of the HMC algorithm is to introduce a vector
of momentum variables p ∈ RN that is independent of x
and to sample the pair (x,p) instead of just sampling x. The
conditional distribution of (x,p) can be written

p(x,p|y, σ2
n, ξ,γ, z) = p(x|y, σ2

n, ξ,γ, z)p(p).

The Hamiltonian of the system is defined as

H(x,p) , − log p(x,p|y, σ2
n, ξ,γ, z) = U(x) + V (p)

where V (p) and U(x) are the kinetic and potential energies
of the Hamiltonian system. They are defined as

V (p) =
1

2
pTp and U(x) = − log[p(x|y, σ2

n, ξ,γ, z)].

At the iteration #t, the HMC consists of two steps:
• generate a candidate pair (p(?),x(?)) from the current

state (p(t),x(t)) using a discretizing method, such as the
leapfrog and Euler methods;

• accept or reject the candidate with the probability ρ

ρ = min{exp[H(p(t),x(t))−H(p(?),x(?))], 1}. (40)

In our experiments, we have considered the leapfrog discretiz-
ing method due to its better performance compared to the Euler
method, also noticed in [35]. The three steps of the leapfrog
method are defined as

pi(t+ ε/2) = pi(t)−
ε

2

∂U

∂xi
[x(t)]

xi(t+ ε) = xi(t) + εpi(t+ ε/2)

pi(t+ ε) = pi(t+ ε/2)− ε

2

∂U

∂xi
[x(t+ ε)]

where ε is a so-called stepsize and L is the number of leapfrog
iterations. We should note that U(x) is not differentiable
when ξk 6 1. To deal with this problem, a smoothing
approximation has been considered, i.e., | · | ≈

√
·2 + ε, with

ε� 1. The algorithm based on the leapfrog discretization and
this approximation is summarized in Algo. 3. Compared to

other MCMC algorithms, the HMC method has the noticeable
advantage to generate efficiently a candidate x even in the case
of a high dimensional and complicated distribution.

Algorithm 3: Adjusted HMC Algorithm

/* Initialization */
1 x(0) = y;
2 for t = 1 : NMC do

/* Candidate generation */
3 p(t,0) ∼ N(0, IN×N );

/* Leapfrog Method */
4 for i = 1 : L do
5 Set p(t,i) = p(t,i) − ε

2
∂U

∂x(t,i)x
(t,i);

6 Set x(t,i) = x(t,i) + εp(t,i);
7 Set p(t,i) = p(t,i) − ε

2
∂U
∂x x

(t,i);
8 end
9 p(∗) = p(t,L);

10 x(∗) = x(t,L);
/* Accept/Reject Procedure */

11 Compute ρ with (40)
12 if rand 6 ρ then
13 x(t+1) = x(∗);
14 else
15 x(t+1) = x(t);
16 end
17 Adjust ε in order to obtain a suitable acceptance rate.
18 end

B. Tuning the parameters ε and L

The performance of the HMC algorithm mainly depends
on the values of the parameters ε (stepsize) and L (number
of leapfrog steps). Fortunately, these two parameters can be
tuned independently in most applications [35]. It is recom-
mended to select a random number of leapfrog steps L to
avoid possible periodic trajectories [35]. In our algorithm, L
is sampled uniformly in the interval [50, 70]. The leapfrog
stepsize ε has been adjusted in order to ensure a reasonable
average acceptance rate any 100 iterations. Specifically, when
the acceptance rate is too large, ε should be decreased and
vice versa. The range of the acceptance rate has been set to
30%− 90% in the burn-in period. Note that the tuning of ε is
just carried out during the burn-in period to ensure the Markov
chain is homogeneous after the burn-in period. The acceptance
rate generally belongs to the interval 60% − 80% when the
Markov chain has converged, while the acceptance rate is
around 25% in standard MH moves for high dimensional target
distributions [53].
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