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Motion Compensated Dynamic MRI Reconstruction
with Local Affine Optical Flow Estimation

Ningning Zhao, Daniel O’Connor, Adrian Basarab, Dan Ruan, Ke Sheng

Abstract—This paper proposes a novel framework to recon-
struct the dynamic magnetic resonance images (DMRI) with mo-
tion compensation (MC). Specifically, by combining the intensity-
based optical flow (OF) constraint with the traditional CS
scheme, we are able to jointly reconstruct the DMRI sequences
and estimate the inter frame motion vectors. Then, the DMRI
reconstruction can be refined through MC with the estimated
motion field. By employing the coarse-to-fine multi-scale res-
olution strategy, we are able to update the motion field in
different spatial scales. The estimated motion vectors need to be
interpolated to the finest resolution scale to compensate the DMRI
reconstruction. Moreover, the proposed framework is capable
of handling a wide class of prior information (regularizations)
for DMRI reconstruction, such as sparsity, low rank and total
variation. The formulated optimization problem is solved by a
primal-dual algorithm with linesearch due to its efficiency when
dealing with non-differentiable problems. Experiments on various
DMRI datasets validate the reconstruction quality improvement
using the proposed scheme in comparison to several state-of-the-
art algorithms.

Index Terms—Dynamic MRI, compressed sensing, optimiza-
tion, primal-dual algorithm, line search, optical flow, multi-scale
strategy, motion estimation/compensation

I. INTRODUCTION

DYNAMIC magnetic resonance imaging (DMRI) plays
an important role in different clinical exams, e.g., car-

diovascular, pulmonary, abdominal, perfusion and functional
imaging. The reconstruction of DMRI aims at obtaining spatio-
temporal MRI sequences in x-t space, from their measure-
ments acquired in the k-t space. The trade-off between spatial
and temporal resolution in DMRI reconstruction is challenging
due to the physical constraints. Classical techniques to deal
with this issue include echo planar imaging, fast low-angle
shot imaging and parallel imaging [1].

In recent years, compressed sensing (CS) techniques have
demonstrated great success in reducing the acquisition time
without degrading image quality, see e.g.,[2]. CS theory guar-
antees an acceptable recovery of specific signals or images
from fewer measurements than the number predicted by the
Nyquist limit. Image reconstruction from undersampled ob-
servations is an ill-posed problem that consequently requires
prior information (regularization) to stabilize the solution.
The regularizations widely used for DMRI reconstruction
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include sparsity in transformed domains [3], total variation
(TV) penalties [4], low-rank property [5] or a combination
of several priors [6], [7]. Under the CS-based framework,
DMRI reconstruction methods can be broadly divided into two
categories: offline and online [8]. Similar to most of CS-based
DMRI reconstruction methods, we focus in this paper on the
offline approach.

Due to the presence of motion patterns in DMRI acquisi-
tion, combining the motion estimation/motion compenstaion
(ME/MC) with the DMRI reconstruction has been explored
in the literature, see e.g., [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18]. For instance, low rank plus sparse
(L+S) matrix decomposition employed in DMRI reconstruc-
tion decomposes the DMRI sequences into two parts, where L
models the temporally correlated background and S models the
dynamic information [11], [12]. Lingala et. al. [13] coupled the
DMRI reconstruction and the inter-frame motion estimation
using a variable splitting algorithm. MaSTER algorithm [9]
was proposed to reconstruct DMRI followed by MC using
motion vectors estimated with different strategies. In [18],
DMRI and motion estimation were conducted under multi-
scale resolution framework.

In this paper, we propose a novel DMRI reconstruction
framework with MC, which includes two stages. One is
variable updates, where the DMRI sequences and the inter-
frame motion vectors are estimated jointly by combining an
intensity-based optical flow (OF) constraint with the traditional
CS scheme. In the second stage, the DMRI reconstruction
is refined with the estimated motion vectors previously. By
employing the coarse-to-fine multi-scale resolution strategy,
we are able to estimate the motion vectors in different spatial
resolution scales. The estimated motion vectors in a coarse
scale are then interpolated to the finest scale in order to refine
the image reconstruction. By varying the resolution scale, the
two sub-problems are conducted alternately. Note that only the
motion vectors are estimated in different resolution scales in
the proposed algorithm, whereas both the image sequences and
motion vectors were updated in different resolution scales in
[18]. The formulated problems in the two stages are addressed
using the primal-dual algorithm with linesearch [19], known
to efficiently handle non-differentiable optimization problems.

The contributions of this work are threefold: i) The primal
dual algorithm with linesearch is explored to address the two
sub-problems; ii) A wide class of DMRI priors can be handled
in the general framework for jointly DMRI reconstruction and
ME in the first stage; iii) In order to model local tissue defor-
mations, an affine model is employed for the ME [20]. The
proposed algorithm is an extension of our previous work [21],



0018-9294 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2019.2900037, IEEE
Transactions on Biomedical Engineering

2

where a reference frame is considered for ME. Experiments
on three DMRI datasets demonstrate the superiority of the
proposed framework over several state-of-the-art algorithms.

The remainder of this paper is organized as follows. In
Section II, we describe the background related with the
proposed framework. The variational problem is formulated in
Section III. Section IV details the proposed algorithm. Section
V gives the experimental results. Conclusions and perspectives
are reported in Section VI.

II. BACKGROUND

In this section, the DMRI formation model is expressed.
Moreover, the OF equation and its variants, the proximal op-
erator and the primal-dual algorithm are illustrated hereinafter
to facilitate the explanation of the proposed algorithm.

A. DMRI measurements

The DMRI measurements acquired in the k-t space are
denoted as bt(k), which can be modelled by

bt(k) =

∫
x

ft(x) exp(−jkTx)dx + nt(k) (1)

where ft(x) of size Nx × Ny is the tth frame of the DMRI
sequences, nt(k) represents the additive white Gaussian noise,
x = [x, y]T and t are the spatial and temporal coordinates, k
is the 2D frequency variable, t ∈ {1, · · · , Nt} with Nt as the
total number of temporal frames. Note that although the image
formation model is valid for any number of spatial dimensions,
to simplify the description, we only consider the 2D+ t case
in this paper [22]. Given the matrix f = [f1, · · · , fNt

] of size
(NxNy)×Nt whose column ft of size NxNy × 1 represents
the vectorized version of the tth temporal frame ft(x), we
rewrite the above expression in a matrix-vector form as below

b = A(f) + n (2)

where the measurement operator A represents the partial/
masked Fourier transform on specific sampling locations, the
observation b and additive noise n are vectors of size Nb× 1
where Nb � ((NxNy)×Nt).

B. Optical flow

Denoting ft(x) as a fixed image acquired at time t, the
brightness/intensity constancy in DMRI is formulated as

ft(x) = ft0(x− d(x, t)) (3)

where d(x, t) = [u(x, t),v(x, t)]T is the motion field between
the fixed image and the moving frame ft0(x), u(x, t) and
v(x, t) are the horizontal and vertical components of the
motion field. Under the hypothesis of small displacements,
the first-order Taylor approximation can be used to replace
the nonlinear intensity profile, i.e.,

ft0(x− d(x, t)) ≈ ft0 − ∂xft0u(x, t)− ∂yft0v(x, t) (4)

where the frame ft0 , ft0(x), ∂xft0 and ∂yft0 are the partial
derivatives of ft0 with respect to (w.r.t.) x and y. Combining
(3) and (4), the traditional OF equation is given by

ft(x)− ft0 + ∂xft0u(x, t) + ∂yft0v(x, t) = 0. (5)

To estimate the motion vectors d(x, t), a dedicated cost
function can be formulated globally (on the entire image) or
locally (by patches) using weighted OF [23], [24], [20], [25].

a) Weighted OF and multiscale approach: The weighted
OF equation can be expressed as below∫

x

w(x− x0) [ft(x)− ft0 + ∂xft0u(x, t) + ∂yft0v(x, t)] dx

(6)
where w is a window function centered at x0. Given the
weighted OF equation, the motion vectors are assumed con-
stant within a spatial neighbourhood. Moreover, B-spline
based windows, i.e., w(x) = βn(x)βn(y), where βn(·) is
a symmetrical B-spline function of degree n ∈ N, have been
shown to be adapted to medical images [20], [25]. The size
ofw is determined by the B-spline degree.

Varying the resolution scale where the motion is estimated
can be achieved by using a window function at different spatial
scales. Specifically, the window function at spatial scale j is
expressed as below

w(j)(x− x0) = w

(
x− 2jx0

2j

)
(7)

Since the window function at scale j is dilated by a factor 2j ,
the calculation of (6) at scale j corresponds to subsampling of
the inner product (6) by a factor 2j . The coarse-to-fine multi-
scale resolution approach has been demonstrated effective for
myocardial motion estimation [20], [25]

b) Affine model: It is important to note that the motion
patterns in medical images can be very complex due to tissue
deformations such as rotation, expansion, contraction and
shear. In order to accurately describe these motion patterns,
the affine model instead of the pure translation model has been
extensively used in the related literature, see e.g., [24], [20],
[25]. Based on the affine model, the motion vectors at position
(x, y) for the tth frame are expressed by

u(x, t) = u0(x, t) + u1(x, t)x+ u2(x, t)y
v(x, t) = v0(x, t) + v1(x, t)x+ v2(x, t)y

(8)

where u0, u1, u2 and v0, v1, v2 are the affine parameters
defining the motion of pixel at position (x, y) in frame t w.r.t.
the reference frame f0 [20].

C. Proximal operator

The proximal operator of a lower semicontinuous (l.s.c.)
function g is defined as

proxsg(p) = arg min
x
g(x) +

1

2s
‖x− p‖2 (9)

Note that the proximal operator calculation (9) always has
a unique solution. One important property of the proximal
operator is the Moreau’s decomposition formula given by

proxsg∗(p) = p− sproxs−1g

(p
s

)
. (10)

where g∗ is the convex conjugate of function g. Moreau’s
decomposition builds the relationship between the proximal
operator of a l.s.c. function g and the proximal operator of its
conjugate [26], [27].
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D. Primal-dual algorithm

Primal-dual algorithms (PDAs) have been widely explored
for non-smooth convex optimization problems, see e.g., [28],
[29], [27], [30]. Given an optimization problem as below

min
y
g(Cy) + h(y) (11)

where g and h are proper, convex and l.s.c. functions, C
is a continuous linear operator, the corresponding primal-
dual/saddle-point problem is expressed by

min
y

max
z
〈Cy, z〉+ h(y)− g∗(z) (12)

where 〈·, ·〉 is the inner product, g∗ is the conjugate of function
g and z is the dual variable. PDA seeks a solution (ŷ, ẑ) of
the problem (12) by alternating proximal gradient steps w.r.t.
the primal and dual variables. Different variants of PDA have
been proposed more recently to tune the stepsize parameters
adaptively and/or speed up the existing algorithms, see e.g.,
[29], [19]. Algorithm 1 summarizes the PDA with linesearch
(PDAL), which accelerates the traditional PDA. C∗ represents
the adjoint of matrix C.

Algorithm 1 Primal Dual Algorithm with linesearch (PDAL)
Require: y0, z0, σ0, s, α > 0, ε ∈ (0, 1), ρ ∈ (0, 1)

1: Set θ0 = 1.
2: for k = 1 · · · do
3: yk = proxσk−1h(yk−1 − σk−1C∗zk−1)
4: Choose any σk ∈ [σk−1, σk−1

√
1 + θk−1]

5: Linesearch
6: θk = σk

σk−1

7: ȳk = yk + θk(yk − yk−1)
8: zk = proxασkg∗(zk−1 + ασkCȳk)

9: if
√
ασk‖C∗zk −C∗zk−1‖ ≤ ε‖zk − zk−1‖ then

10: Break linesearch
11: else
12: σk = σkρ and go to linesearch (step 5)
13: Until stopping criterion is satisfied.

III. PROBLEM FORMULATION

The problem can be divided into two stages, which are
detailed in this section.

A. Joint DMRI reconstruction and motion estimation

Given the matrix f̄ = [fNt
, f1, · · · , fNt−1], i.e., f̄ is f with

forward temporal shift by 1, the problem to joint reconstruct
the DMRI and estimate the motion field at resolution scale j
is formulated by the following variational framework

min
f ,d
‖A(f)− b‖2 + ηφ(T f) + τ‖Mw(j)(f , f̄ ,d)‖1 + γψ(d),

(13)
where φ(T f) is the regularization term incorporating prior
information about the DMRI, T represents a given transform,
Mw(j)(f , f̄ ,d) is the weighted OF constraint between image
sequences f and f̄ expressed in (14), d = [u,v] is the
displacement field between f and f̄ , ψ(d) is a regularization

term to smooth the displacement fields and η, τ and γ are
hyperparameters weighting the importance of each term.

Mw(j)(f , f̄ ,d)

=〈f − f̄〉w(j) + 〈∂xf̄〉w(j)u + 〈∂y f̄〉w(j)v

=〈f − f̄〉w(j) + 〈∂xf̄〉w(j)u0 + 〈x∂xf̄〉w(j)u1 + 〈y∂xf̄〉w(j)u2

+ 〈∂y f̄〉w(j)v0 + 〈x∂y f̄〉w(j)v1 + 〈y∂y f̄〉w(j)v2 (14)

where 〈r〉w(j) is the weighted average of variable r ∈ {f −
f̄ , ∂xf̄ , x∂xf̄ , y∂xf̄ , ∂y f̄ , x∂y f̄ , y∂y f̄} at scale j, which is given
by

〈r〉w(j) =

∫
x

w(j)(x− x0)r(x)dx. (15)

In order to smooth the displacement fields, the TV prior is
used to regularize the motion vectors. Considering anisotropic
TV, we have

ψ(d) =
2∑
i=0

‖∇ui‖1 +
2∑
i=0

‖∇vi‖1 (16)

where

‖∇ · ‖1 =
∑
i,j

∣∣(∇x·)i,j∣∣+
∣∣(∇y·)i,j∣∣ (17)

with

(∇x·)i,j =

{
(·)i+1,j − (·)i,j if i < Nx
0 if i = Nx

(18)

(∇y·)i,j =

{
(·)i,j+1 − (·)i,j if j < Ny
0 if i = Ny

(19)

Note that `2-norm prior can also be implemented to smooth the
motion field since the proposed algorithm can easily handle a
wide range of priors for the variables to be estimated.

B. Refining DMRI reconstruction by MC

The inter-frame motion vectors estimated at spatial resolu-
tion j are interpolated to the finest scale (the same as the image
resolution scale). We then refine the reconstructed DMRI
sequences by solving the following optimization problem.

min
f

∑
t

‖At(ft)− bt‖2 + λ‖Mt−1ft−1 − ft‖1, (20)

where ft is the tth temporal frame of DMRI and Mt−1 is the
motion operator that uses the motion vectors to interpolate the
pixels in MRI frame ft−1 to displaced locations in ft [9].

IV. PROPOSED ALGORITHM

Note that both the formulated sub-problems can be solved
using primal-dual algorithm. Hereinafter, we summarize the
proposed algorithm.
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C =



C1

C2

C3

C4

C5

C6

C7

C8

C9


=



A 0 0 0 0 0 0
T 0 0 0 0 0 0
〈·〉w(j) 〈∂xf̄〉w(j) 〈x∂xf̄〉w(j) 〈y∂xf̄〉w(j) 〈∂y f̄〉w(j) 〈x∂y f̄〉w(j) 〈y∂y f̄〉w(j)

0 ∇ 0 0 0 0 0
0 0 ∇ 0 0 0 0
0 0 0 ∇ 0 0 0
0 0 0 0 ∇ 0 0
0 0 0 0 0 ∇ 0
0 0 0 0 0 0 ∇


, (22)


g1(Ω1) = 1

2‖Ω1 − b‖2,
g2(Ω2) = ηφ(Ω2),

g3(Ω3) = τ‖Ω3 − 〈f̄〉w(j)‖1,
gl(Ωd) = γ‖Ωl‖1, for l = 4, . . . , 9.

(23)

By introducing the dual variables z = [z1, . . . , z9]T , the PDA
iteration for problem (21) can be summarized as follows

For k = 0, . . . , yk = yk−1 − σ
(∑9

l=1 C∗l z
k−1
l

)
,

zkl = proxsg∗l (z̃k−1l ),

= proxsg∗l (zk−1l + sCl(2yk − yk−1)),

(24)

where C∗l is the adjoint of the matrix Cl. The derivation of
proxsg∗2 (·) is related to the expression of DMRI regularization
functions. The calculation of the rest proximal operator of g∗l
(l 6= 2) is given as below

proxsg∗1 (z̃1) = z̃1−sb
1+s ,

proxsg∗3 (z̃3) = ProjτP
(
z̃3 − s〈Ī0〉w(j)

)
,

proxsg∗l (z̃d) = ProjγP (z̃l), for l = 4, . . . , 9,

(25)

where ProjτP is a projector onto the convex set (Euclidean
`2-ball) τP = {‖p‖∞ ≤ τ}, where ‖p‖∞ = maxi,j |pi,j |. In
practice, this projector can be computed using the straightfor-
ward formula

ProjτP (p) =
p

max{τ, |p|}
. (26)

In order to speed up (24), a variant of PDA with linesearch
[19] is employed. The resulting algorithm for jointly recon-
structing DMRI and estimating the motion vectors at spatial
scale j, denoted as (JPDAL), is summarized in Algorithm 2.
The stopping criterion employed is given by

|L(yk+1)− L(yk)|
L(yk)

< ε (27)

where L(y) is the cost function. The stopping tolerance ε =
10−4 in this paper.

B. Proposed algorithm

The proposed motion compensated DMRI reconstruction
framework is summarized in Algorithm 3, denoted as MC-
JPDAL. The proposed method alternates between two steps.
In the first step, the MRI images and the inter-frame motion
vectors (at specific resolution scale) are estimated jointly.

Algorithm 2 Joint MRI reconstruction and motion estimation
using PDAL (JPDAL)
Require: y0 = [f0,u0

0,u
0
1,u

0
2,v

0
0,v

0
1,v

0
2], z0l , l ∈ {1 · · · 9},

σ0 > 0, α > 0, ε ∈ (0, 1), ρ ∈ (0, 1)
1: Set θ0 = 1
2: for k = 1 . . . do . Update y = [f ,u0,u1,u2,v0,v1,v2]

3: yk = yk−1 − σk−1
(∑9

l=1 C∗l z
k−1
l

)
4: Choose any σk ∈ [σk−1, σk−1

√
1 + θk−1]

5: Linesearch
6: ȳk = yk + θk(yk − yk−1)
7: for l=1, . . ., 9 do
8: zkl = proxασkg∗l

(zk−1l + sClȳ
k)

9: if
√
ασk‖CT zk −CT zk−1‖ ≤ ε‖zk − zk−1‖ then

10: break the linesearch
11: else
12: σk = σkρ and go to linesearch
13: f̄ = [f̂Nt , f̂1, · · · , f̂Nt−1]
14: Until stopping criterion is satisfied.

Since the image sequences are estimated at the finest resolution
scale, the estimated vectors are interpolated into the finest scale
for the MC, i.e., the refinement of MRI reconstruction. In
this paper, the range of the resolution scales where the motion
vectors are estimated is fixed at [Jc : Jf ] with Jc = 5 and
Jf = 3. The parameters of the proposed algorithm are divided
into two groups. One group includes the parameters related to
the PDAL, such as the step-size. They were fixed to σ0 = 1,
α = 0.5, ε = 0.99 [19]. The second category composes
the regularization parameters. In this paper, the regularization
parameters η and τ are tuned one-by-one in terms of quality
of the reconstructed MRI by cross validation. In addition, the
regularization terms for different dataset are chosen according
to the reconstruction quality in this paper.

Algorithm 3 Multi-scale Motion Compensated DMRI recon-
struction using JPDAL (MC-JPDAL)

1: for j = Jc : Jf do
2: Variable estimation: Solving (13) using Algorithm 2;
. Joint motion estimation and DMRI reconstruction.

3: MC: Solving (20) using Algorithm 1.
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V. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed algo-
rithm, three MRI datasets were employed in this section: i)
coronal lung image, ii) short-axis cardiac cine 1 and iii) two-
chamber cardiac cine 2. All three datasets were collected as
fully-sampled data and retrospectively undersampled from sin-
gle or multiple receiver coils according to a desired sampling
pattern.

A comparison between the proposed MC-JPDAL and dif-
ferent state-of-the-art algorithms, including ktSLR [6], L+S
[11] and MaSTER [9] was conducted in terms of the image
reconstruction quality. The quantitative performance of differ-
ent algorithms was evaluated using the root mean square error
(RMSE) and the image structure similarity index (SSIM) [31].
The two metrics are expressed as below

RMSE =

√
E(‖f̂ − f‖22) (28)

SSIM =
(2µf̂µf + c1)(2σf̂ f + c2)

(µ2
f̂

+ µ2
f + c1)(σ2

f̂
+ σ2

f + c2)
(29)

where f , f̂ are the ground truth and the estimated MRI
sequences respectively, E(·) is the arithmetic mean, µa and
σ2
a are the average and variance of variable a (a ∈ {f̂ , f}),
σf̂ f is the covariance between f̂ and f , c1 and c2 are two
constants to stabilize the division with small denominator.

In order to evaluate how much each stage in MC-JPDAL
contributes to the final reconstruction quality, we also com-
pared the DMRI reconstruction performance using JPDAL and
MC-JPDAL. The initial guess of all the algorithms imple-
mented in this paper was chosen by f0 = AT (b). Experiments
in this section were performed using MATLAB 2017b on a
64 bit Linux platform with Intel(R) Core(TM) i7-6700K CPU
@4.00GHz and 48 GB RAM.

A. Coronal lung data

The coronal lung data was acquired with a 1.5T Siemens
Sonata Vision using spin echo (SE) sequences. The coronal
lung data is of size 192×192×40 with pixel-size 2.08×2.08
mm per frame and 40 temporal frames. The slice thickness
is 7 mm. In this experiment, a golden angle radial sampling
pattern [32] was implemented.

Fig. 1 displays the reconstruction comparison with different
reduction factors for the coronal lung data using algorithms
ktSLR, L+S, MaSTER and the proposed MC-JPDAL. We
observed that the proposed algorithm is superior to the others
at different reduction scales in terms of RMSE.

Fig. 2 shows the reconstruction comparison of the proposed
JPDAL using different priors w.r.t. RMSE and SSIM. The
reconstruction with prior “l+s” (low rank and sparsity in
temporal domain) outperforms the others according to Fig.
2. Thus, the regularization term for the coronal lung dataset
is chosen as “l+s” in the proposed algorithms for further
comparison.

Fig. 3 includes three example frames and the temporal
profiles of the reconstructed DMRI using different algorithms

1The data was downloaded using the link https://github.com/js3611/
Deep-MRI-Reconstruction/tree/master/data

2The data was downloaded using the link http://www.ece.ucr.edu/∼sasif/
dynamicMRI/index.html

Fig. 1. RMSE comparison using different reduction factors for the coronal
lung data with algorithms ktSLR, L+S, MaSTER and MC-JPDAL.

Fig. 2. RMSE comparison for the coronal lung MRI dataset using the
proposed JPDAL with different priors: “`1+tv” (sparsity plus TV), “l+tv”
(low rank plus TV), “tv” (TV), “`1” (sparsity), “l+s” (low rank plus sparsity).

at reduction factor 9. The first row shows the fully sampled
coronal lung data at temporal frames 1, 10 and 19 and the
temporal profile in y-t space (from left to right). The location
where the temporal profile extracted is indicated using a blue
vertical line. The region of interest (ROI) are contoured using
a red dashed rectangle. The zoomed ROIs and their corre-
sponding difference images (i.e., f − f̂ ) of the reconstructed
MRI frames using algorithms ktSLR, L+S, MaSTER, and MC-
JPDAL are displayed from 2nd to 5th rows. According to Fig.
3, the magnitudes of the difference images obtained with the
proposed algorithm MC-JPDAL is darker than the others.

The quantitative measurements calculated over the whole
MRI frames are displayed in Fig. 4. The proposed algorithm
is superior to other algorithms in terms of the two RMSE and
SSIM, which is consistent with the visual inspection. We also
observe that MC-JPDAL improves the DMRI reconstruction
quality slightly comparing with JPDAL in Fig. 4.

B. Short-axis cardiac cine data

The cardiac cine data was used in [33], which is of size
256× 256 per frame and contains 30 temporal frames. In this
simulation, a golden angle radial down-sampling pattern with
24 rays per frame was performed. The corresponding down-
sampling factor is 12. After comparing different priors for the
reconstruction of the cardiac cine MRI sequences, the prior
for this dataset is the combination of sparsity and TV prior
(denoted as “`1+tv”) in the proposed algorithms for further
comparison.

The reconstruction results are displayed in Fig. 5. The 1st
row shows the fully sampled cardiac cine data at temporal

https://github.com/js3611/Deep-MRI-Reconstruction/tree/master/data
https://github.com/js3611/Deep-MRI-Reconstruction/tree/master/data
http://www.ece.ucr.edu/~sasif/dynamicMRI/index.html
http://www.ece.ucr.edu/~sasif/dynamicMRI/index.html
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Fig. 3. Reconstruction of the coronal lung MRI scan using different algorithms: frame 1, 10 and 19 and the temporal profile (left to right). Top row: fully
sampled MRI sequence with ROI contoured using red dashed rectangle and the location of the extracted temporal profile indicated using blue vertical line.
Bottom rows: zoomed spatial ROI of the reconstructed MRI scans using ktSLR, L+S, MaSTER and the proposed MC-JPDAL.

Fig. 4. Quantitative comparison of the lung coronal MRI sequences using the algorithms: ktSLR, L+S, MaSTER, the proposed JPDAL and MC-JPDAL.
Left: RMSEs over the whole image; Right: SSIMs over the whole image.

frames 3, 16 and 27 and the temporal profile in y-t space
(from left to right). The ROIs are contoured by a red dashed
rectangle. The location where the temporal profile extracted
is indicated using a blue vertical line. From 2nd to 5th rows,
the enlarged ROIs and their corresponding difference images
(f − f̂ ) of the reconstructed MRI frames using algorithms
ktSLR, L+S, MaSTER and MC-PDAL are displayed. Visually,
the proposed MC-JPDAL outperforms the others since the
reconstructed frames with the proposed algorithm are darker
in terms of the magnitude of the difference images.

Fig. 6 shows the quantitative measurements RMSE (left)
and SSIM (right) calculated over the whole MRI frames. The
proposed algorithm MC-JPDAL outperforms the algorithms

ktSLR, L+S and MaSTER in terms of the SSIM, which is
consistent with the visual inspection. The algorithms MC-
JPDAL and MaSTER have comparable performance in terms
of RMSE, which are superior the algorithms L+S and ktSLR.
The proposed MC-JPDAL also improves the image reconstruc-
tion quality compared with JPDAL in terms of RMSE and
SSIM.

C. Two-chamber cardiac cine data
The two-chamber cine MRI sequences were acquired using

a Philips Intera 1.5T scanner with a 5-element cardiac synergy
coil and a balanced fast field echo study-state free precession
sequence. More details on the scan parameters can be found
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Fig. 5. Reconstruction of cardiac cine MRI scan using different algorithms: frame 3, 16 and 27 and the temporal profile (left to right). Top row: fully
sampled MRI sequence with ROI contoured using red dashed rectangle and the location of the extracted temporal profile indicated using blue vertical line.
Bottom rows: zoomed spatial ROI of the reconstructed MRI scans using ktSLR, L+S, MaSTER and the proposed MC-JPDAL.

Fig. 6. Quantitative comparison of cardiac cine MRI sequences using the algorithms: ktSLR, L+S, MaSTER, the proposed JPDAL and MC-JPDAL. Left:
RMSEs over the whole image; Right: SSIMs over the whole image.

in [9]. The sensitivity maps were estimated in advance. In this
experiment, a 2D Cartesian down-sampling pattern with a fully
sampled low-frequency region and a randomly sampled high-
frequency region. The down-sampling/reduction factor was 10.
After comparing different priors for the reconstruction of the
cardiac cine MRI sequences, the prior for this dataset is the
combination of sparsity and TV prior (denoted as “`1+tv”) in
the proposed algorithms for further comparison.

Fig. 7 illustrates the comparison of the reconstruction results
using algorithms ktSLR, L+S, MaSTER and the proposed MC-
JPDAL. The top row shows the frames 3, 10 and 14 out
of 16 frames, constructed from fully sampled k-space data
and the temporal profile in y-t space (from left to right). The
ROIs are contoured by a red dashed rectangle. The location
where the temporal profile extracted is indicated using a blue
vertical line. From 2nd to 5th rows, the enlarged ROIs and
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their corresponding difference images (f − f̂ ) extracted from
the reconstructed MRI sequences using ktSLR, L+S, MaSTER
and the proposed MC-JPDAL are displayed. In terms of the
magnitude of the difference images, the proposed MC-JPDAL
outperforms the others.

Fig. 8 shows the quantitative comparison in terms of RMSE
and SSIM calculated over the entire MRI sequences using the
algorithms ktSLR, L+S, MaSTER, JPAL and MC-JPDAL. The
proposed algorithms JPDAL and MC-JPDAL outperforms the
others in terms of RMSE and SSIM. We also observe that MC-
JPDAL improves the reconstruction quality compared with
JPDAL in terms of RMSE and SSIM.

TABLE I
COMPUTATIONAL TIME (MIN) ACQUIRED WITH DIFFERENT METHODS FOR

THE THREE DATASETS
`````````Dataset

Method ktSLR L+S MaSTER JPDAL MC-JDPAL

Coronal Lung 9.14 0.13 17.99 18.44 17.61
Short-axis cardiac 15.93 0.35 58.85 57.94 39.05
Two-chamber cardiac 34.80 32.68 26.70 49.37 36.40

Table I summarizes the computational time for the three
datasets in this section, where L+S outperforms the others in
terms of computational time for the first and second datasets.
We also note that the proposed algorithm MC-JPDAL is able
to improve the image reconstruction quality of JPDAL without
further computational burden.

Compared with other DMRI reconstruction algorithms, the
proposed algorithm estimate the motion vectors and the image
sequence jointly, which is one of the main contributions of this
work. It is also interesting to note that both forward and back-
ward motion patterns were considered for MC in MaSTER.
The image reconstruction performance of the proposed method
is comparable to MaSTER with only the forward motion.

VI. CONCLUSIONS

This paper proposed a novel framework to reconstruct
DMRI using motion compensation, which alternates between
two stages. One is to jointly estimate the DMRI frames and
the motion vectors by combining the intensity based optical
flow constraint with the compressed sensing framework, which
is one of the main contribution of the proposed MC-JPDAL.
Then, the estimated motion vectors are employed to refine the
reconstructed DMRI sequence through motion compensation.
By employing the coarse-to-fine multiscale strategy, the mo-
tion vectors can be estimated at different resolution scales.
The formulated problem is addressed using a primal dual
algorithm with linesearch. In addition, the proposed scheme
is able to deal with a wide class of image priors for DMRI
reconstruction. We demonstrated that the proposed algorithm
can obtain state-of-the-art DMRI reconstruction performance
without necessarily to be the global minimum.

ACKNOWLEDGEMENTS

This work has been supported by NIH grant R01CA188300.

REFERENCES

[1] J. Tsao and S. Kozerke, “MRI temporal acceleration techniques,” J.
Magn. Reson. Imaging, vol. 36, no. 3, pp. 543–560, 2012.

[2] M. Lustig et al., “Sparse MRI: The application of compressed sensing
for rapid MR imaging,” Magn. Reson. Med., vol. 58, no. 6, pp. 1182–
1195, 2007.

[3] H. Jung et al., “K-t FOCUSS: A general compressed sensing framework
for high resolution dynamic MRI,” Magn. Reson. Med., vol. 61, no. 1,
pp. 103–116, 2009.

[4] F. Knoll et al., “Parallel imaging with nonlinear reconstruction using
variational penalties,” Magn. Reson. Med., vol. 67, no. 1, pp. 34–41,
2012.

[5] X. Miao et al., “Accelerated cardiac cine MRI using locally
low rank and finite difference constraints,” Magn. Reson. Imaging,
vol. 34, no. 6, pp. 707–714, 2016. [Online]. Available: http:
//dx.doi.org/10.1016/j.mri.2016.03.007

[6] S. G. Lingala et al., “Accelerated dynamic MRI exploiting sparsity and
low-rank structure: k-t SLR,” IEEE Trans. Med. Imag., vol. 30, no. 5,
pp. 1042–1054, 2011.

[7] A. Majumdar, “Real-time Dynamic MRI Reconstruction using
Stacked Denoising Autoencoder,” 2015. [Online]. Available: http:
//arxiv.org/abs/1503.06383

[8] A. Majumdar et al., “Compressed sensing based real-time dynamic MRI
reconstruction,” IEEE Trans. Med. Imag., vol. 31, no. 12, pp. 2253–2266,
2012.

[9] M. S. Asif et al., “Motion-adaptive spatio-temporal regularization for
accelerated dynamic MRI,” Magn. Reson. Med., vol. 70, pp. 800–812,
2013.

[10] M. Usman et al., “Motion corrected compressed sensing for free-
breathing dynamic cardiac MRI,” Magn. Reson. Med., vol. 70, pp. 504–
516, 2013.

[11] R. Otazo et al., “Low-rank plus sparse matrix decomposition for
accelerated dynamic MRI with separation of background and dynamic
components,” Magn. Reson. Med., vol. 73, no. 3, pp. 1125–1136, 2015.

[12] B. Tremoulheac et al., “Dynamic MR image reconstruction-separation
from undersampled (k,t)-Space via low-rank plus sparse prior,” IEEE
Trans. Med. Imag., vol. 33, no. 8, pp. 1689–1701, 2014.

[13] S. G. Lingala et al., “( DC-CS ): A Novel Framework for Accelerated
Dynamic MRI,” IEEE Trans. Med. Imag., vol. 34, no. 1, pp. 72–85,
2015.

[14] L. Cordero-Grande et al., “Three-dimensional motion corrected sensitiv-
ity encoding reconstruction for multi-shot multi-slice MRI: Application
to neonatal brain imaging,” Magn. Reson. Med., 2017.

[15] C. Prieto et al., “Reconstruction of undersampled dynamic images by
modeling the motion of object elements,” Magn. Reson. Med., vol. 57,
pp. 939–949, 2007.

[16] H. Jung and J. C. Ye, “Motion estimated and compensated compressed
sensing dynamic magnetic resonance imaging: What we can learn from
video compression techniques,” Int. J. Imaging Syst. Technol., vol. 20,
no. 2, pp. 81–98, 2010.

[17] L. Feng et al., “XD-GRASP: Golden-angle radial MRI with reconstruc-
tion of extra motion-state dimensions using compressed sensing,” Magn.
Reson. Med., vol. 75, no. 2, pp. 775–788, 2016.

[18] C. M. Rank et al., “4d respiratory motion-compensated image recon-
struction of free-breathing radial mr data with very high undersampling,”
Magn. Reson. Med., vol. 77, no. 3, pp. 1170–1183, 2017.

[19] Y. Malitsky and T. Pock, “A first-order primal-dual algorithm with
linesearch,” pp. 1–24, 2016. [Online]. Available: http://arxiv.org/abs/
1608.08883

[20] M. Sühling et al., “Myocardial motion analysis from B-mode echocar-
diograms,” IEEE Trans. Image Process., vol. 14, no. 4, pp. 525–536,
2005.

[21] N. Zhao et al., “Coupling reconstruction and motion estimation for dy-
namic MRI through optical flow constraint,” Proceedings SPIE Medical
Imaging, vol. 10574, 2018.

[22] M. A. Bernstein et al., Handbook of MRI Pulse Sequences. Elsevier
Academic Press, 2004.

[23] D. Sun et al., “Secrets of optical flow estimation and their principles,”
in Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), San Francisco, CA, USA, 2010.

[24] Y. Altunbasak et al., “A fast parametric motion estimation algorithm
with illumination and lens distortion correction,” IEEE Trans. Image
Process., vol. 12, no. 4, pp. 395–408, 2003.

[25] M. Alessandrini et al., “Myocardial Motion Estimation from Medical
Images Using the Monogenic Signal,” IEEE Trans. Image Process.,
vol. 22, no. 3, pp. 1084–1095, 2013.

http://dx.doi.org/10.1016/j.mri.2016.03.007
http://dx.doi.org/10.1016/j.mri.2016.03.007
http://arxiv.org/abs/1503.06383
http://arxiv.org/abs/1503.06383
http://arxiv.org/abs/1608.08883
http://arxiv.org/abs/1608.08883


0018-9294 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2019.2900037, IEEE
Transactions on Biomedical Engineering

9
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sampled MRI sequence with ROI contoured using red dashed rectangle and the location of the extracted temporal profile indicated using blue vertical line.
Bottom rows: zoomed spatial ROI of the reconstructed MRI scans using ktSLR, L+S, MaSTER and the proposed MC-JPDAL.

Fig. 8. Quantitative comparison of the two-chamber MRI sequences using the algorithms: ktSLR, L+S, MaSTER, the proposed JPDAL and MC-JPDAL.
Left: RMSEs over the whole image; Right: SSIMs over the whole image.
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