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bUniversité de Lyon 1, CREATIS, CNRS UMR5220, INSERM U630; INSA-Lyon, France

Abstract

In this manuscript a novel method is presented for left ventricle (LV) tracking in

three-dimensional ultrasound data using a hybrid approach combining segmentation

and tracking-based clues. This is accomplished by coupling an affine motion model

to an existing LV segmentation framework and introducing an energy term that pe-

nalizes the deviation to the affine motion estimated using a global Lucas-Kanade

algorithm. The hybrid nature of the proposed solution can be seen as using the es-

timated affine motion to enhance the temporal coherence of the segmented surfaces,

by enforcing the tracking of consistent patterns, while the underlying segmentation

algorithm allows to locally refine the estimated global motion. The proposed method

was tested on a dataset composed of 24 4D ultrasound sequences from both healthy

volunteers and diseased patients. The proposed hybrid tracking platform offers a

competitive solution for fast assessment of relevant LV volumetric indices, by com-

bining the robustness of affine motion tracking with the low computational burden

of the underlying segmentation algorithm.
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Introduction

Despite the existence of several functional indices, ejection fraction remains the

most widely used parameter to assess global cardiac function (Thomas and Popovic,

2006). While Cardiac Magnetic Resonance Imaging (CMRI) remains the gold stan-

dard to assess cardiac morphology and function, it is still impractical for large patient

throughput. Thanks to the technological maturation of 2D matrix array transducers,

3D ultrasonic imaging systems have been gradually introduced into clinical practice

over the past decade. When compared with the conventional 2D echocardiographic

(2DE) examination, real-time 3D echocardiography (RT3DE) offers some impor-

tant advantages. Indeed, it overcomes several known limitations of conventional 2D

echocardiographic imaging, since it avoids foreshortening, out-of-plane motion and

the need of geometric assumptions for volume estimation. As a result, it has already

been shown that RT3DE offers superior performance in the assessment of global

morphology and function than 2DE, when compared against CMRI measurements

(Muraru et al., 2010). Thus, the ability of combining accurate 3D volumetric assess-

ment of cardiac morphology and function with the intrinsic benefits of ultrasound

imaging makes RT3DE a very useful and promising tool for clinical daily routine.

It should be noticed that the added dimensionality of RT3DE data also poses

some challenges in the data analysis pipeline, when compared with conventional

2D echocardiography. The manual analysis of RT3DE data remains cumbersome

and time consuming, which has triggered the development of several software suites

in order to reduce the burden on the operating physician while extracting relevant

cardiac diagnostic information. However, even state-of-the-art commercial solutions

still require some degree of user interaction both at the initialization step and for

correction of the segmentation/tracking results (Muraru et al., 2010).
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Nonetheless, several relevant methods have been proposed in order to increase the

automation degree and decrease the total analysis time of RT3DE data. For instance,

Dikici and Orderud (2012) have recently extended the Kalman-based, computation-

ally efficient tracking framework initially introduced in Orderud et al. (2007), in

order to account for advanced edge detectors to track the position of the left ventric-

ular endocardial border throughout the cardiac cycle. Leung et al. (2010) proposed a

fully automatic method for 3D echocardiographic data segmentation based on 3D Ac-

tive Appearance Models (AAM). The same authors have equally proposed a tracking

framework able to take into account statistical cardiac motion models to improve the

performance of an optical flow based tracking algorithm (Leung et al., 2011). Yang

et al. (2011) have proposed a computational framework targeted to robust and fast

3D tracking of deformable objects without any user interaction, by combining the

input of multiple collaborative trackers. Different commercial solutions also exist in

the field, typically dependent on user interaction for single frame segmentation which

is then propagated throughout the heart cycle using different tracking strategies as

for example in Tomtec’s and Toshiba’s commercial tools (Pedrosa et al., 2016). On

the other hand, other approaches such as the newest available tools from Siemens

and Philips, use large statistical models to perform the segmentation in 4D.

B-Spline Explicit Active Surfaces (BEAS) is a segmentation framework able to

segment 3D data in real-time, introduced originally in Barbosa et al. (2012b). De-

spite the promising results of this approach on the segmentation of RT3DE data

in both end-diastolic and end-systolic frames shown in Barbosa et al. (2013a), the

direct application of this algorithm to track the left ventricle throughout the cardiac

cycle has some intrinsic flaws. Indeed, segmentation-oriented energy functionals are

designed to recover objects from a background in static images. Although they can

be used in multi-static scenarios to perform tracking on subsequent images, there
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is no guarantee that the temporal coherence of the patterns being tracked will be

captured.

With this in mind, a novel hybrid framework which combines both segmentation

as well as motion-oriented clues is proposed. This is accomplished by coupling an

affine motion model to the segmented LV surface and introducing an energy term that

penalizes the deviation to the affine motion estimated using a global Lucas-Kanade

algorithm. The hybrid nature of the proposed solution can be seen as using the

estimated affine motion to enhance the temporal coherence of the segmented surfaces,

by enforcing the tracking of consistent patterns, while the underlying segmentation

algorithm allows to locally refine the estimated global motion. The proposed solution

offers a competitive approach for fast assessment of relevant LV volumetric indices,

by combining the robustness of affine motion tracking with the low computational

burden of BEAS.

The present manuscript is structured as follows. First, a revision of the fun-

damental notions of image segmentation using BEAS is presented, while also in-

troducing the key novelty of our work, a hybrid tracking platform relying on both

segmentation-based energies and tracking-oriented clues. It is shown that this cou-

pling can be done via affine transformation of the coordinate system associated with

the segmented LV surface. The key parameter values chosen in the implementation

of the proposed algorithm are then addressed. In the Results section, an evaluation

of the performance of the method using a dataset composed of 24 4D ultrasound

exams is performed. In the Discussion, the main findings of the experiments are

discussed and the performance of the proposed algorithm is compared against the

most relevant prior work in literature. Finally, the Conclusions section gives the

main conclusions and perspectives of this work.
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Methodology

B-Spline Explicit Active Surfaces (BEAS)

The fundamental concept of the BEAS framework is to regard the boundary of

an object as an explicit function, where one of the coordinates of the points within

the surface, x1, is given explicitly as a function of the remaining coordinates, i.e.

x1 = ψ(x2, · · · , xn) = ψ(x∗). Following the mathematical formalism introduced in

the work of Barbosa et al. (2012b), ψ was defined as a linear combination of B-spline

basis functions:

ψ(x∗) =
∑

k∈Zn−1

c[k]βd
(

x∗

h
− k

)
, (1)

where x∗ is the point of coordinates {x2, ..., xn} and βd(·) the uniform (n− 1)-

dimensional B-spline of degree d. The knots of the B-splines are located on a rect-

angular grid defined on the chosen coordinate system, with a regular spacing given

by h. The coefficients of the B-spline representation are gathered in c[k].

In the present work, a modified version of the localized means separation energy

is used, which takes advantage of the darker appearance of blood with respect to the

myocardial tissue, introduced in Barbosa et al. (2013a), which is expressed as:

EL =

∫
Ω

δφ(x)

∫
Ω

B(x,y) (ux − vx) dy dx, (2)

where B(x,y) is a mask function where the local means inside and outside the

interface Γ, ux and vx respectively, are estimated. δφ(x) is the Dirac operator applied

to the level-set like function φ(x) = ψ(x∗) − x1, which is defined over the image

domain Ω. This segmentation functional can be directly minimized wrt. the B-
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spline coefficients c[k] according to:

∂EL
∂c[ki]

=

∫
Γ

((
Ī(x∗)− ux

)
Au

+

(
Ī(x∗)− vx

)
Av

)
βd
(

x∗

h
−ki

)
dx∗, (3)

where Au and Av are the areas inside and outside the interface Γ used to estimate

the local means ux and vx, respectively. For clarity sake, Ī(x∗) corresponds to the

image value at the position x = {ψ(x∗), x2, · · · , xn}. For the complete derivation of

equation (3) the reader is referred to the original paper by Barbosa et al. (2013a).

For the present work, ψ is defined in the spherical space, i.e. ρ = ψ(θ, ϕ). Further

details regarding the fundamental formalism of BEAS and the derivation of the

segmentation energy minimization strategy can be found in Barbosa et al. (2012b)

and Barbosa et al. (2013a) respectively.

Fast left ventricular affine motion estimation

Three-dimensional cardiac motion assessment is a very active research field and

different algorithms have been proposed. While block-matching is a very popular

approach in current commercial software suites (Jasaityte et al., 2013), the recent

trends in the research community show a tendency towards solutions based on elastic

registration and optical flow algorithms, as highlighted in the recent comparative

study by De Craene et al. (2013). In the present manuscript, a global 3D extension

of the method proposed by Sühling et al. (2004) for the estimation of the local affine

motion is used, as introduced in Barbosa et al. (2013b).

As noted in the seminal work of Lucas and Kanade (1981), the least squares

solution of the optical flow equation is equivalent to the first order Taylor expansion

of the minimization of the sum of squared differences between two subsequent frames.

Therefore, optical flow motion estimation algorithms build upon the assumption that
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the intensity of a particular point in a moving pattern does not change over time and

thus any difference in the local appearance of a region over a sequence is uniquely

defined by the underlying motion. Let I(x1, x2, x3, t) denote the pixel intensity at

location x = [x1, x2, x3] and time t in a 4D image dataset. This assumption can then

be formulated as (Horn and Schunck, 1981):

Ix1(x, t)u(x, t) + Ix2(x, t)v(x, t) + Ix3(x, t)w(x, t) + IT (x, t) = 0, (4)

where ∇I = [Ix1 , Ix2 , Ix3 ] is the local image spatial gradient and IT corresponds to

the temporal derivative. u, v and w are the x1-, x2- and x3-components of the optical

flow that we wish to estimate.

Taking the affine motion model as defined in Sühling et al. (2004), the 3D affine

motion on frame t can be estimated by minimizing the following energy term:

EM(t)=

∫
W(x1 − c1, x2 − c2, x3 − c3)(Ix1u+ Ix2v + Ix3w + IT )2dx, (5)

where W is a local window function centered in the position c = [c1, c2, c3] and

u(x, t)=u0 + u1(x1 − c1) + u2(x2 − c2) + u3(x3 − c3), (6)

v(x, t)=v0 + v1(x1 − c1) + v2(x2 − c2) + v3(x3 − c3), (7)

w(x, t)=w0+w1(x1 − c1)+w2(x2 − c2)+w3(x3 − c3), (8)

encode the local motion field along respectively x1, x2 and x3. Parameters u0, v0

and w0 correspond to the motion at the window center and u1, u2, u3, v1, v2, v3, w1,

w2 and w3 are respectively the first order spatial derivatives of u, v and w. These

parameters then define the affine transform for frame t associated with the local
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motion field [u, v, w] as expressed by the augmented matrix

Mt =


1 + u1 u2 u3 u0

v1 1 + v2 v3 v0

w1 w2 1 + w3 w0

0 0 0 1

 . (9)

By differentiating (5) with respect to the affine motion field components, it can

be shown that the minimization of the weighted least-squares criterion in (5) can be

expressed as the solution of ATWAd = ATWb, whose components are expanded

at the bottom of the page. Note that <a, b> denotes the continuous analogue of the

dot product, expressed as
∫
a(x)b(x)dx and that A, d and ATWb are functions of

(x, t) though this was ommitted for simplicity.

A global formulation of the algorithm introduced by Sühling et al. could be em-

ployed by considering W(p) = 1, ∀p. Such assumption would yield the global affine

transform between the two subsequent images. Nonetheless, increasing the span of

the window function W intrinsically hampers the underlying assumption that the

affine motion model is constant within this region. This is particularly problematic

in the case of echocardiographic data, since it is known that the motion patterns of

the blood and the surrounding tissues (e.g. pericardium and valves) are significantly

different from the ones within the myocardium, thus violating the fundamental as-

A =



Ix1

Ix2

Ix3

x1Ix1

x2Ix1

x3Ix1

x1Ix2

x2Ix2

x3Ix2

x1Ix3

x2Ix3

x3Ix3


, [ATWA]ij =<AiW, Aj>, d =



u0
v0
w0
u1
u2
u3
v1
v2
v3
w1
w2
w3


, ATWb = −



<W, Ix1
IT>

<W, Ix2
IT>

<W, Ix3
IT>

<x1W, Ix1
IT>

<x2W, Ix1
IT>

<x3W, Ix1
IT>

<x1W, Ix2
IT>

<x2W, Ix2IT>
<x3W, Ix2IT>
<x1W, Ix3IT>
<x2W, Ix3IT>
<x3W, Ix3IT>
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sumption of constant motion within the region of interest (ROI). In order to allow

estimating the global affine transformation of the LV between subsequent frames,

the existing segmentation framework will be used and the formalism introduced in

Barbosa et al. (2013b) to define a ROI only around the segmented surface from the

convolution expanded so that:

W(x) = δφ(x) ∗ N(x), (10)

where δφ(x) implicitly defines the segmented surface and N(x) is simply a neighbor-

hood function defined as a 3D cube centered in x. An example of the resultingW(x)

is shown in Figure 1.

Figure 1: Anatomical ROI for affine motion estimation.

Hybrid framework for fast left ventricle tracking

The integration of the motion information estimated with the aforementioned

optical flow algorithm within the existing segmentation framework will enhance its

tracking performance. This is achieved since the temporal coherence of the patterns

being tracked is the fundamental driver of affine motion estimation, whereas the

existing segmentation framework is mostly relying on the identification of salient

features in static images. By combining the two, a hybrid framework will allow
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Figure 2: Conceptual description of the proposed hybrid algorithm. The explicit function ψt−1 (A)
defining the LV surface St−1 through Tt−1 (B) is used to the estimate the affine transformation
Mt between two consecutive frames in the anatomical ROIW(x) (C). This gives Tt, the LV global
pose for frame t. This affine deformation is then applied to St−1 (shown in greater transparency)
giving S(Tt, ψt−1) (D). Hybrid energy segmentation is then applied to evolve ψt−1 according to
equation 15 to obtain ψt (E), which, through Tt, defines the final LV surface for frame t, St (F).

a synergistic collaboration between tracking-based and segmentation-based clues,

increasing the overall performance and robustness. In the present sub-section the

manner through which the hybrid tracking strategy can be implemented via affine

deformation of the coordinate system associated with the segmented LV surface is

described. A conceptual description of the proposed approach is illustrated in Figure

2.

First, the inherent characteristics of the BEAS segmentation framework should

be recalled: BEAS models the LV object (in 3D) through an explicit function ψt in

the spherical coordinate system, thus a function of azimuthal and elevation angles

θ and ϕ. As such, to translate this explicit function ψt into the LV surface St in
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the Cartesian coordinate system, not only does the spherical to Cartesian conversion

need to be performed, but the orientation and position of the spherical coordinate

system (in which the BEAS surface is defined) relative to the Cartesian system have

to be taken into account. The LV surface can thus be defined as:

St = S(Tt, ψt) = Tt


ψt(θ, ϕ)cos(θ)sin(ϕ)

ψt(θ, ϕ)sin(θ)sin(ϕ)

ψt(θ, ϕ)cos(ϕ)

 , (11)

where Tt is the augmented matrix comprising the orientation of the LV long axis

and its center position on frame t. This relationship is evident in Figure 2-A and B,

where the explicit function ψt−1 is transformed into St−1 by employing equation 11.

In this equation it is clear that, though ψt controls the local shape of the LV surface,

this surface can also be globally deformed through Tt.

Given that the estimated motion field can be expressed as an affine transforma-

tion, the estimated affine transformation between subsequent frames, Mt, will be

coupled to the underlying spherical to Cartesian transformation, using the recursive

formulation:

Tt = MtTt−1, (12)

where T1 is the augmented matrix of orientation and center position of the LV in

the end-diastolic frame. By applying the current estimate of Tt to the underlying

spherical to Cartesian transformation, the entire surface can be intrinsically deformed

according to the estimated affine transformation through both translation, rotation

and scaling. This is in fact the equivalent of deforming the original coordinate frame

of the LV object according to the global affine motion estimated with the anatomical

optical flow algorithm detailed previously, as illustrated in Figure 3. In the proposed
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Figure 3: Affine deformation of the left ventricular surface along time. For clarity sake, the coor-
dinate system associated with the LV object was translated to the corner of the bounding box to
facilitate its visualization.

hybrid framework, the LV surface St−1 (Figure 2-B) is used to determine W(x)

which in turn is used to estimate the affine transformation Mt and obtain the new

LV surface pose Tt (Figure 2-C). This augmented matrix Tt is then applied to ψt−1

to deform the LV surface according to the affine motion estimated as shown in Figure

2-D.

In order to balance the contribution between tracking and segmentation-based

clues, a hybrid segmentation is then performed to this deformed surface. For that

purpose, an energy term that penalizes the deviation between the current surface

position, S(Tt, ψt), and the one initialized by applying the affine transformation to

the previous segmentation result, i.e. S(Tt, ψt−1), is proposed:

EA(t) =

∫
Γ

(S(Tt, ψt(θ, ϕ))− S(MtTt−1, ψt−1(θ, ϕ)))2 dx∗, (13)

which, because the global pose Tt = MtTt−1 is shared between the two LV surfaces,

can be simplified to:

EA(t) =

∫
Γ

(ψt(θ, ϕ)− ψt−1(θ, ϕ))2 dx∗, (14)
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The global energy term for optimization can then be defined as:

E(t) = EL(t) + λEA(t), (15)

where λ is a hyperparameter controlling the balance between the segmentation and

the tracking-based energies. This energy criterion can be minimized directly wrt.

the B-spline coefficients controlling the shape of ψt:

∂E(t)

∂c[ki]
=
∂EL(t)

∂c[ki]
+ λ

∂EA(t)

∂c[ki]
, (16)

where
∂EA(t)

∂c[ki]
=2

∫
Γ

(ψt(θ, ϕ)−ψt−1(θ, ϕ)) βd
(

x∗

h
− ki

)
dx∗, (17)

and ∂EL(t)/∂c[ki] is defined as in (3).

Note that even though the affine transform parameters are not explicitly stated

through E(t), these are present in the term EA(t) as shown in equation (13). This

term penalizes the deviation from the LV surface position after the affine deformation,

guaranteeing that the data attachment term from the segmentation energy functional

only modifies the segmented LV surface in regions where strong image content is

available. Thus, LV regions with reduced image content are preferably tracked with

the global affine deformations via optical flow estimation, while regions with rich

image content rely mostly on the image data. Therefore, there is an intrinsic trade-

off between global, robust tracking and localized, accurate surface positioning.

By performing this hybrid segmentation, the explicit function ψt is then obtained

(Figure 2-E), which, through Tt, defines the final LV surface for frame t, St (Figure

2-F) and thus enabling to restart the process for the next frame.

13



Implementation Details

In order to speed-up the estimation of W(x), the convolution expressed in (10)

defining the anatomical ROI where EM is evaluated was simplified by assuming that

δφ(x) is different from zero only in the positions of the discretized BEAS surface. N

was defined as a 11x11x11 cube centered in the target point. The image gradient

∇I was estimated using a gaussian derivative kernel with σ = 1, implemented as a

separable convolution operation. Since differential optical flow approaches are best

suited to estimate small displacements, the optimization of EM(t) was performed

using an iterative displacement refinement scheme to improve the accuracy and ro-

bustness of the affine motion Mt estimation (Bouguet, 1999). Five iterations were

used in all experiments.

The hyperparameter λ controlling the balance between the segmentation and

tracking-based terms in (15) was empirically set to 0.25. As in previous BEAS

implementations for the LV (Barbosa et al., 2013a), the angular discretization of the

boundary φ was set to 24 × 16 and the B-spline scale h to 21. The mask function

B(x,y) was restricted to the points along the normal direction of the surface at a

distance smaller than 16mm as in Barbosa et al. (2013a). The optimization of the

global segmentation energy E(t) was implemented in a modified gradient descent

with feedback step adjustment as in previous BEAS implementations (Barbosa et al.,

2013a).

Experiments and Results

Twenty-four RT3DE exams were acquired using a Siemens Acuson SC2000 rev.

1.5 (Siemens Ultrasound, Mountain View, CA) using a 4Z1c matrix transducer.

Volume sequences were acquired during apical scanning and the sonographer aimed

14



Figure 4: Tracking of the left ventricle in a RT3DE dataset using the proposed hybrid approach
(top: apical 4 chambers view, bottom: apical 2 chamber view).

at the inclusion of the entire LV within the pyramidal field of view. Volume rates

ranged from 20 to 40 volumes per second. Each sequence was analyzed by three

experts using eSie LVA pre-release software (Siemens, Mountain View), who provided

manual delineation of the left ventricular chamber at both end-diastolic and end-

systolic frames. From these, the corresponding end diastolic (ED) and end systolic

(ES) volumes were calculated. The stroke volume (SV) and ejection fraction (EF)

were posteriorly computed from the EDV and ESV. The mean value of the three

experts was taken as the reference for the aforementioned LV volumetric indices.

The described protocol was approved by the institutional review board and patients

signed an informed consent.

The proposed tracking framework was automatically initialized in the end-diastolic

frame with the algorithm introduced in Barbosa et al. (2013a). In order to demon-

strate the synergistic interaction of the segmentation and tracking-based clues, the

proposed solution was compared with the pure segmentation-based approach, by set-

ting λ to zero in (15), and also with a pure global tracking approach, by keeping ψ

fixed and adjusting Tt over time.

The summary of the results for the LV volumetric indices extracted using the

proposed hybrid framework against the manual references can be found in Table 1.

In the same table, the performances for both the pure affine tracking-based solution
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Table 1: LV volumetric indexes extracted using the proposed hybrid approach versus the pure
segmentation-based (PS) tracking and the pure global affine optical flow algorithm (LOA: limits of
agreement; ∗, p<0.05, paired t-test against zero).

Correlation Bland-Altman Analysis
Coefficient (R) LOA (bias± 1.96σ)

PS Affine Hybrid PS Affine Hybrid

EDV (ml) 0.964 0.966 0.971 -5.76∗±25.9 -3.68±26.2 -2.58±23.4
ESV (ml) 0.929 0.930 0.950 -8.40∗±26.6 2.43±26.0 -0.60±23.4
SV (ml) 0.904 0.906 0.934 2.64±25.6 -6.11±30.8 -1.99±24.8
EF (%) 0.734 0.776 0.833 5.35∗±16.3 -1.65±16.1 1.20±13.3

and the pure segmentation solution are also reported. An example of a RT3DE exam

segmented using the proposed hybrid tracking algorithm is given in Figure 4, for 2

consecutive cardiac cycles. The segmentation of the first frame, which included the

automatic initialization step, took approximately 1s , while the tracking between

subsequent frames was done in 30ms, in a C++ implementation running on an Intel

i7 laptop.

The key parameter to be tuned in the proposed algorithm is the hyperparameter

λ controlling the balance between the contribution of the segmentation-based and

tracking-based terms in equation (16). In order to test the sensitivity of the empir-

ically chosen value, i.e. λ = 0.25, the value of λ was varied between 0 and 0.5, in

steps of 0.05 and its corresponding LV tracking results observed. This allowed to

assess the influence of removing the tracking-based term from equation (16) on the

bottom side of the variation range, while the upper variation range corresponded

to doubling the influence of the tracking-based clues. Additionally, the pure global

tracking approach, where the influence the tracking-based clues tend to infinity, was

also tested. The results of this sensitivity analysis are given in Figure 5.
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Figure 5: Influence of the balance between the segmentation and tracking-based terms in the
overall performance of the proposed hybrid tracking algorithm (left to right: Pearson correlation
coefficient, Bland-Altman bias (µ) and limits of agreement (1.96σ); EDV: blue; ESV: red; SV: green;
EF: purple). The chosen value of λ is marked as a vertical gray line, while the range corresponding
to a ±50% variation of its numeric value is shaded in light gray. Note that the leftmost data
points in each plot correspond to a pure segmentation-based approach, while the rightmost ones
correspond to a pure tracking approach.

Discussion

The proposed hybrid tracking framework offers competitive performance for the

fully automatic quantification of relevant volumetric cardiac indices used in daily

practice for assessment of left ventricular morphology and global function. This is

supported by the strong correlation for all the estimated volumetric indices. Fur-

thermore, low, non-statistically significant bias and tight limits of agreement were

observed by Bland-Altman analysis. Comparing the results from the proposed hy-

brid approach to the pure segmentation and pure tracking strategies shown on Table

1 it becomes clear that the proposed hybrid approach outperforms both the pure

segmentation and the pure tracking approach. There is thus a significant advantage

on bringing together the segmentation- and tracking-based clues within the same

approach.

Furthermore, the proposed approach compares positively against the pure affine

motion estimation algorithm used to estimate the global LV deformation previously

introduced in Barbosa et al. (2013b). This clearly indicates the advantages of the re-
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finement stage using a hybrid combination of both segmentation and tracking-based

clues. Indeed, despite the small inter-frame differences between the pure affine track-

ing and the proposed hybrid approach, a cumulative effect over the entire cardiac

cycle leads to a significant improvement in tracking performance. Such observation

is supported by the appreciable reduction in both bias and limits of agreement of

stroke volume estimation, to which sums up the strong increase in the ejection frac-

tion correlation against the reference measurements. Therefore, even if visually the

added value of the proposed hybrid strategy is not strikingly evident between two

frames, the accumulation over the entire cycle improves significantly the tracking

performance. Furthermore, the comparison against the previously proposed strategy

based on sequential segmentation (Barbosa et al., 2012a), whose results are included

in the performance comparison in the following section, clearly highlights the syn-

ergistic effect between the tracking-oriented clues and segmentation-based energy

terms.

Interestingly, the proposed affine coupling allows to deform the spherical dis-

cretization grid used to represent the segmented surface according to the estimated

LV deformation. This enables capturing valuable information regarding both lon-

gitudinal and circumferential global motion of the heart which could not be prop-

erly evaluated with the previous segmentation framework. This opens the path

towards the extraction of other cardiac global functional indices, such as global lon-

gitudinal and circumferential strain. Furthermore, the inclusion of the longitudi-

nal/circumferential deformation via affine transformation of the coordinate system

associated with the segmented LV surface provides a seamless integration on the

previous formal framework, therefore not requiring any special modification to the

underlying mathematical foundations.

The results of the sensitivity analysis demonstrate its robustness towards the
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chosen value for the hyperparameter λ controlling the balance between the tracking-

based and segmentation-based terms in (16). Indeed, a modification of ±50% of its

nominal value does not lead to appreaciable modifications in the correlation values

for any of the LV volumetric indices considered in the present work. A similar trend is

observed for the width of the limits of agreement for the EDV, SV and EF estimates.

Nonetheless, the influence of λ is particularly visible in the performance of the ESV

estimation. Such observation is explained by the opposite bias of the pure tracking-

based and segmentation-based approaches. Indeed, while the pure segmentation-

based approach over-estimates the true ESV volume, the pure tracking-based affine

optical flow method underestimates it.

Performance comparison

Although the proposed hybrid tracking approach offers promising results, a care-

ful comparison with the values reported in the literature has been done in order

to evaluate its competitiveness against currently available solutions. This compari-

son does not aim to be extensive, but rather informative to the reader on how the

proposed fully automatic framework for LV volume analysis compares with exist-

ing relevant methods. An overview of the results of the proposed algorithm and

its comparison with other methods reported in the literature is shown in Table 2.

Nonetheless, it should be noted that a fair and quantitative comparison is not triv-

ial, due to differences in patient population and image quality and due to different

acquisition conditions and equipment. We have selected relevant algorithms rang-

ing from pure segmentation-based approaches to more oriented tracking strategies.

However, methods with a similar validation approach (i.e. where the segmentation

results were compared with manual segmentation of RT3DE data) were selected.
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Table 2 also shows that the proposed algorithm presents a competitive perfor-

mance when compared with the most relevant algorithms presented in the literature,

both in terms of accuracy and overall computational load. Indeed, performance-wise

only the algorithm of Leung et al. (2011) and Yang et al. (2011) provide clearly more

accurate results than the ones provided by the developed algorithms. Nonetheless,

both these algorithms are not able to run in real-time and rely on statistical shape

and motion models. While prior knowledge is a very powerful tool to deal with

missing information scenarios, which is often the case in RT3DE data where some

of the boundaries are missing, care should be taken to not infer wrong estimations

due to excessive influence of the priors. Furthermore, the ability to deal with unseen

data is typically related with the amount of different patterns included in the initial

learning phase, which implies very tedious and labor-intensive stages towards build-

ing such statistical databases. It should also be noted that the algorithm in Leung

et al. (2011) is tracking-oriented and, thus, requires LV delineation at ED. While the

same authors also propose an automatic ED segmentation algorithm in Leung et al.

(2010), the validation of their complete segmentation/tracking framework remains

to be done.

In terms of overall running time, only the work of Orderud et al. (2007); Or-

derud and Rabben (2008); Hansegard et al. (2007) and the framework of Duan et al.

(2010) are able to compete with the proposed algorithm, which yields an average

computing time of 30 ms per processed frame. On the other hand, level-set based

algorithms, such as the ones in Angelini et al. (2005) and Rajpoot et al. (2011),

require a significantly larger computational power due to the implicit representation

of the evolving interface, with a direct trade-off between shape topology freedom

and computational burden. Furthermore, in the current implementation of heart-

BEATS there are redundant computations introduced within the anatomical ROI in
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(10), since there are overlapping regions. This sums up to the high degree of paral-

lelism in the key algorithmic blocks of the proposed method, which opens the path

to further implementation optimizations which would allow to further reduce overall

computational time. Therefore, there is still a considerable margin to improve the

processing speed of heartBEATS, which will allow the method to be prepared to

deal with higher frame-rate 3D acquisitions, currently a hot topic in the ultrasound

community (Hasegawa and Kanai, 2011; Tong et al., 2013).

The comparison against the recent work of Zhang et al. (2013) also supports

the competitive performance of the proposed algorithm. Despite validating their

algorithm in a dataset composed of patients selected for cardiac resynchronization

therapy, Zhang et al. (2013) reports relative volume errors of 4.2±17.4% and −1.3+

16.8% (µ ± σ) for the segmented LV surfaces considering the input of two different

users. In the current study, the proposed algorithm yielded −4.7±14.1% considering

both EDV and ESV values. Thus, heartBEATS presents a competitive performance

when compared to the active shape model-based method of Zhang et al. (2013), while

doing so without any kind of user input.

Conclusions

The proposed hybrid segmentation/tracking framework (heartBEATS) combines

both segmentation-oriented image information with global tracking clues, for en-

hanced performance on the tracking of the left ventricular surface throughout the

cardiac cycle. Furthermore, it allows assessing the motion components tangential to

the LV boundaries, which was a limitation of the existing segmentation algorithm.

Lastly, the computational burden is low, pointing towards the feasibility of accurate

real-time online tracking.

21



Table 2: Proposed vs. state-of-the-art algorithms (#: number of exams; ∆Tf: average frame
processing time (s); R: correlation coefficient; BA: Bland-Altman analysis; FC: full cycle, NR: not
reported).

Study
Algorithm/Frames

# ∆Tf
R BA(µ± 2σ)

/ User Input EDV ESV EF EDV ESV EF

Prior work

Angelini et al. (2005) PS/ED+ES/I 10 NR 0.63 0.62 0.45 16.1±50 6.6±34 0.5±22

Hansegard et al. (2007) MSS/FC/0 21 0.008 0.91 0.91 0.74 -5.9±21 6.2±19 -7.7±12

Leung et al. (2010) PS/ED/0 99 NR 0.95 NR NR -1.47±40 NR NR

Leung et al. (2011) PT/FC/II 35 6 0.982 NR 1.9±14 NR

Yang et al. (2011) HST/FC/0 67 1.5 NR NR NR 1.32±12 1.0±10

Rajpoot et al. (2011) PS/ED+ES/I 34 NR NR NR NR -5.0±49 1.2±26 -0.7±14

Rajpoot et al. (2011) PT/FC/II 34 NR NR NR NR NR 4.0±40 -3.3±25

Barbosa et al. (2012a) MSS/FC/0 24 0.05 0.98 0.92 0.78 -3.9±22 -5.0±27 3.4±15

Zhang et al. (2013) MSS/FC/II 34 10 0.84 NR NR NR NR

Proposed

heartBEATS HST/FC/0 24 0.03 0.97 0.95 0.83 -2.6±23 -0.6±23 1.2±13

Note that PS, MSS, PT and HST stand for the algorithm class, namely pure segmentation,

multi-static segmentation, pure tracking and hybrid segmentation and tracking. Regarding user

input, 0 stands for a fully automatic method, I for minor user input (such as few anatomical

landmarks) and II for significant user input, such as manual contouring at the end-diastolic frame.
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