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Abstract 

Machine learning (ML), a subset of artificial intelligence (AI) wherein computational algorithms 

acquire information by adapting their behavior to (large) databases, has been increasingly used 

within cardiology, particularly in the domain of cardiovascular imaging. Due to the inherent 

complexity and flexibility of ML algorithms, inconsistencies in the model validity and 

interpretation may occur. The goal of the PRIME guidelines is standardizing the application of 

AI and ML methods to allow the consistent and reproducible reporting of cardiovascular imaging 

study results. There have been several review articles recently published introducing basic 

principles of ML for general cardiologists. The PRIME guidelines is addressed towards 

investigators, data scientists, authors, editors, and reviewers involved in machine learning 

research with the intent of standardization. A multidisciplinary panel of ML experts, clinicians, 

and traditional statisticians were invited to contribute to a set of guidelines that consists of a list 

of pragmatic steps for reducing algorithmic errors and biases. Finally, the document provides a 

list of reporting items to be included to enable the correct application of ML models and the 

consistent reporting of model specifications and results in the field of cardiovascular imaging. 

 

Keywords: Machine Learning, Artificial Intelligence, Guidelines, Cardiovascular imaging 
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In 2016, during a two day Think Tank meeting, The American College of Cardiology's 

Executive Committee and Cardiovascular Imaging Section Leadership Council initiated a 

discussion regarding the future of cardiovascular imaging among thought leaders in the field (1). 

One of the goals was focused on machine learning (ML) tools and methods that allow us to go 

beyond a mere description of the data. This document stresses the creation and adoption of 

standards, the development of registries, and the use of new techniques in bioinformatics. The 

imaging community’s unfamiliarity with the approach was cited as a potential barrier. Since 

then, the field has seen a growing interest in the use of ML algorithms, demonstrating powerful 

and axiomatic algorithms that can analyze large and complex data; in contrast to conventional 

statistical methods, these algorithms deliver stellar performances and can be rapidly deployed. A 

standard protocol from modalities such as echocardiography, cardiac magnetic resonance 

imaging (MRI), cardiac computed tomography (CT), and nuclear imaging acquires large 

numbers of images and produces numerous multidimensional clinical and functional parameters, 

including quantitative variables, which have strengths and weaknesses (2). The availability of 

such rich information has the potential to advance cardiovascular imaging research and its 

translation into disease prediction (3). In conjunction with big data – that is robust, accurate, and 

clean – ML has the potential to mitigate missed diagnoses, reduce false-positives and other 

errors, and deliver precision medicine with individualized care (4–7). 

 

Several recent state-of-the-art review articles have focused on providing introductory concepts 

regarding ML algorithm applications for general cardiologists (4, 8–10). While ML is creating 

headlines in medical journals, congress, and on the web, considerable uncertainty and debate 

have arisen around topics such as problems with real-world data sources, the inconsistent 
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availability of labeled data and outcome information, bias injection, inaccurate measurements, 

reproducibility, lack of external validation, and insufficient reporting, which contribute to 

hindering the reliable assessment of prediction model studies and reliable interpretations of the 

results by clinicians. The Proposal for Reporting Items in Machine Learning Evaluation 

(PRIME) Guidelines for Cardiovascular Imaging aims to provide general framework as reference 

in guiding scientific work for investigators, data scientists, authors, editors, and reviewers 

involved in machine learning research in cardiovascular imaging. The goal of the PRIME 

guidelines document is to standardize the application of artificial intelligence (AI) and ML, 

including data preparation, model selection, performance assessment, to allow the reporting of 

consistent and reproducible results in cardiovascular imaging studies. 

 

Designing the study plan 

Determining the appropriateness of machine learning to the dataset  

The first question researchers should address is whether the ML approach could be applicable 

and beneficial to their study. There is overlap between traditional statistics and ML, but they 

differ regarding the extent of the assumptions and the formulation of the methods to either 

predict or make inferences. Although their task is performed by learning the patterns in the data, 

the model created using ML closely represents the behavior of the data via one of the following 

learning methods: supervised, unsupervised, or reinforcement learning. If the dataset used to 

train a complex model is relatively small, then overfitting becomes much more difficult for ML 

to avoid (11). In such cases, simple models with limited features, including traditional statistical 

analyses, may provide better insight, performance, and interpretability(12). Similarly, if variables 
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that are important to modeling the data are missing, the ML model may underfit the data, thus 

producing less than optimal results (11). Furthermore, ML may benefit situations where the data 

are unstructured or exploratory analyses are preferred. As such, the learning algorithm may find 

patterns in the data to generate a homogenous faction and identify relationships in a data-driven 

manner beyond the a priori knowledge or existing hypotheses (4). 

The abundant data may provide better performance using advance learning algorithms but at the 

cost of the interpretability, complexity, and the ability to draw a causal inference. Caution should 

be taken against causally interpreting results derived from models designed primarily for 

prediction. For tasks where the goal is to establish causality, the techniques that are commonly 

used in “traditional” biostatistics, including statistical analyses methods such as propensity score 

matching, or Bayesian inference, maybe better suited; however, newer methods involving ML 

algorithms are being developed for causal inferences (13, 14).   

Understanding and Describing the Data 

Irrespective of whether ML tools or biostatistical analysis methods are used, it is crucial to 

understand and describe the data available for analysis to draw appropriate conclusions, whether 

it is tabular, images, time-series data, or a combination. Important considerations about the data 

include the availability of data that is representative of the target population, the method used to 

obtain data, and the resultant biases that may influence the conclusions that can be drawn from 

the data. Describing the data can also help understand the relevance to the target population. The 

method of data collection, including the sampling method, is also important, as bias may be 

introduced from systematic error, coverage error, or selection bias. Various guidelines and 

associated checklists for medical research have been established to aid in the reporting of 

relevant details about the data, depending on the study design (15). Clearly describing the data 
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preprocessing or data cleaning methods used is essential to enable reproducibility and validation 

of the results. 

 

It should be acknowledged that all ML or statistical algorithms are guided by basic data 

assumptions; an independent and identical distribution is an important assumption where the 

random variables are mutually independent and have the same statistical distribution and 

properties. Methods to check for the model assumptions, such as learning curve(16), diagnosing 

bias and variance(17) or error analyses, may be required. These assumptions may be violated in 

cardiovascular imaging research; however, some corrections and methods can be applied to 

confirm that the proper assumptions are applied (18–21).  

Defining the process 

When building ML models, it is crucial to specify the inputs (e.g., pixels in images, a set of 

parameter values, and patient information), labels (e.g., object categories and the presence or 

absence of disease), and desired outputs (an integer representing each category, the probability 

for each category, the prediction of a continuous outcome measurement, transformed pixel data) 

that are required. The optimal tuning of hyperparameters can often lead to higher accuracy in the 

appropriate model. While this is essential for supervised learning approaches, unsupervised 

learning approaches may also benefit from defining the output that is desired for the task to 

select an appropriate model. Some tasks, once well-defined, can only be achieved using certain 

types of algorithms. For example, image recognition tasks from raw pixel/image data may 

require the extraction of the optimal features from the data, which is intrinsically performed by 

deep neural networks and goes beyond the use of hand-crafted features as input. It is generally 
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preferable to start by selecting the simplest model necessary to accomplish the task of interest. 

Defining the problem or task as precisely as possible can also help to guide the data annotation 

strategy. Once the data analysis objective has been identified and the inputs/outputs have been 

defined for each task, it is easier to determine the appropriate models for the analysis pipeline 

(Figure 1).  

 

Summary: Defining the goal of the analysis is a key first step that informs many downstream decisions 

as to whether to use machine learning at all or to incorporate data labelling and can alter the approach to 

model training, model selection, development, and tuning. Similarly, in order to train machine learning 

models, each task in the process should be narrowly defined; if necessary, the overall broader analysis 

goal should be divided into smaller tasks. It is important to thoroughly understand and describe the data 

that will be used for training to accurately represent the target population and to identify potential biases 

that may affect the conclusions or performance. 

Recommendations: 

• Identify and assess if machine learning could be appropriate. 

• Define the pipeline necessary to achieve the overall goal. 

• Understand and describe the data. 

• Identify input and target variables. 

• Describe the baseline data and understand biases that may exist. 
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Data standardization, feature engineering and learning  

Data format   

To analyze the data of N patients (also called ‘observations’), each with M different 

measurements (also called ‘variables’ or ‘dimensions’), e.g., ejection fraction, body mass index 

(BMI), and image pixels/voxels, by using an ML algorithm, a matrix X should be first 

constructed such that the rows of this matrix correspond to the observations and the columns 

correspond to the variables (Figure 2). Depending on the database and the problem at hand, X 

can be either a ‘wide’ (Figure 2a) or a ‘tall’ (Figure 2b) matrix. In the former case, the number of 

observations is much smaller than the number of variables (N << M), while in the latter, there is 

a large group of observations, but each observation has only a few variables (N >> M). 

Generating a data matrix from cardiac images can be performed in two main ways, depending on 

the learning purpose. When the goal is to use a learning algorithm for modeling the global 

characteristics of the images, all the pixels of an image are considered to be the elements of one 

observation, which typically leads to a wide data matrix. To model regional image characteristics, 

however, a region of interest (ROI) or patch consisting of a small group of pixels is considered to 

be an observation, thus yielding a tall data matrix. Examples of wide and tall data matrices made 

by image pixels as variables are shown in Figures 2c and 2d, respectively. In Figure 2c, each image 

was considered an independent observation and its pixels formed the variables. Given that the 

number of variables is much larger than the number of observations, the resulting data matrix is 

wide. In Figure 2d, on the other hand, an ROI with 9 pixels was considered to be an observation 

resulting in a tall data matrix because of the many ROIs taken from the images and the small 

number of pixels (i.e., 9) that serve as the variables. 
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Data preparation 

To analyze cardiac images in an ML framework, some preprocessing stages are usually carried 

out. The irrelevant areas of the images can be removed in a ‘cropping’ stage to focus on learning 

from useful regions and to prevent learning from extraneous regions (which can also contribute to 

leakage, as discussed below). If the images that are acquired from a group of subjects have different 

sizes, they typically should be first ‘resized’ (22) to a reference image size to construct a data 

matrix with the same number of variables. More advanced techniques from computational atlases 

are also necessary to align the anatomy-based data of each subject to a common geometry and 

temporal dynamics (23, 24). Another common preprocessing stage is ‘noise removal’, which helps 

a learning algorithm to better model the essential characteristics of the images. When the acquired 

images have poor contrast, a ‘histogram equalization’ (22) technique can be used to adjust the 

intensities of the pixels and to increase the contrast of a low contrast region, thus facilitating its 

interpretation and analysis. The pixel intensities can also be manually adjusted during image 

acquisition. An example is the changing of the dynamic range of echocardiographic images by an 

operator. 

Feature engineering and learning 

The next stage after data preparation is extracting a set of ‘features’ from the data matrix to be 

later used as the input to the learning methods. Feature extraction helps to overcome the following 

two main problems that can limit the efficient performance of a learning framework: 

(i) Curse of dimensionality: When the data matrix is wide, the variable/feature space of the data 

is called ‘high-dimensional’. This feature may lead an algorithm failing to learning essential 
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characteristics of the data due to its complexity and poor generalization power when dealing with 

unseen data — a phenomenon that is referred to as the ‘curse of dimensionality’ (25, 26). To tackle 

these problems, the number of observations should increase significantly with the data 

dimensionality (27). However, a significant increase in the number of observations is not always 

possible, especially for medical data/studies, given that it necessitates the collection of data from 

a large group of patients. This curse of dimensionality is one of the main reason why having a tall 

database is desirable to build an efficient learning algorithm. 

(ii) Correlated variables: When a database includes correlated variables, a subset of the variables 

that are mutually uncorrelated may be sufficient to learn the data characteristics effectively (25). 

Indeed, adding correlated variables to a database may only bring redundant information and would 

not help the learning algorithm to achieve a better understanding of the data. An example could be 

using BMI along with weight and height as variables. Given that BMI is comprised of weight and 

height, using BMI alone could lead to the same performance as using all three variables. For the 

image data, neighboring pixels typically have similar values and are highly correlated (28).  

Considering the problems associated with the curse of dimensionality and given that increasing 

the number of observations could be a challenging task, using the ‘feature extraction’ technique to 

discard the variables (i.e., dimensions) that do not carry relevant information and employing 

learning techniques that also reduce the dimensionality of wide data are efficient solutions for 

handling the learning problem (25–27). The result of the feature extraction process should be a 

compact set of (potentially uncorrelated) features in the form of a tall matrix that encodes the 

essential characteristics of the data. 

The available approaches for extracting features from the image data can be divided into the 

following three broad categories (Figure 3): (i) handcrafted methods (e.g., local binary patterns 
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(LBP) (29) and scale invariant feature transform (SIFT) (30)), (ii) classic ML methods for 

dimensionality reduction (e.g., principal component analysis (PCA) (31), independent component 

analysis (ICA) (32), and ISOMAP (33)) and (iii) deep learning methods (34). The methods of the 

first category are manually designed to extract specific types of features from the data, while in 

the second category of methods, the features are learned from the database itself. Nevertheless, the 

classical feature learning algorithms have some limitations in the data modeling approaches like 

linearity, sparsity, or lack of hierarchical representation. The deep learning techniques, on the other 

hand, can learn complex features from the data at multiple levels and do not have limitations of 

the classical algorithms. However, they need a large-scale database to achieve efficient learning 

of the data characteristics. To train a deep learning algorithm with a smaller database, the following 

two main strategies can be used: (i) data augmentation (e.g., by using different types of data/image 

transformations) (35) and (ii) transfer learning, which works by fine-tuning a deep network that 

has been pretrained with a different large database (e.g., natural images) (20, 35). 

Variable normalization 

For a database that is composed of several variables of different nature (e.g., anthropometric or 

imaging-derived measurements), the values of the variables lie in different ranges. Direct usage 

of these variables may bias the learning system towards the characteristics of the variables with 

larger values despite the usefulness of the variables with smaller values in solving a given 

problem. To deal with such challenges, a ‘variable normalization’ approach can be used to 

transform the variables such that they all lie in the same range prior to entering the learning 

phase (26, 27). Variable normalization is especially helpful for a deep learning algorithm, as it 

helps achieve faster convergence of a deep neural network (36).  
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Missing variable estimation 

A common issue that a learning method can face is the absence of some of the variables for a 

subset of the observations. Although these observations can be simply excluded from the 

analyses, the performance of the learning method could be degraded due to having a smaller 

database. An alternative is to use a ‘data imputation’ technique to estimate the missing variables 

of an observation. With this technique, similarities are sought between the available values of an 

incomplete observation and those of complete observations in the dataset from which the missing 

values are estimated (20, 37, 38). In cardiovascular imaging, 2D images are normally collected 

from multiple views, e.g., for volumetric measurements, and 3D images are composed of 

multiple 2D slices. These images can also be acquired throughout the cardiac cycle. When some 

of the 2D views are not accessible or when a group of 2D images at some points during the 

cardiac cycle or in a 3D volume are artifactual/missing, an imputation technique can estimate 

these images or the parameters extracted from them (38). Thanks to the development of the new 

deep learning algorithms, such as generative adversarial networks (GAN) (39), missing images 

can often be estimated (40) based on the available data. However, it should be acknowledged 

that most of the imputation methods assume that the missing observations occur at random, are 

missing completely at random, or are missing not at random (41). Researchers should consider 

whether the missing observations carry any specific biases (e.g., selection bias or immortal time 

bias).  

Feature selection 

An important phase in designing a classic ML system is to determine the optimal number of 

preserved features. This determination can be performed by using a ‘feature selection’ technique 
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where a larger than required set of features is first extracted and then a subset with discriminative 

information is selected (27, 42). When a deep learning algorithm is used, the optimal features are 

automatically learned during the end-to-end training of the algorithm, and utilizing an 

independent feature selection method is not required (34).  

Outliers 

An observation is considered as an outlier if its values deviate significantly from the average 

values of a database, which may be attributed to measurement error, variability in the 

measurement, or abnormalities due to disease (26, 27). Given that the outliers can negatively 

influence and mislead the training process, they can result in longer training times and less 

accurate models. Therefore, the outliers should be carefully removed from the analyses using an 

outlier detection approach (43). However, as outliers may also carry relevant information about 

the disease, a learning algorithm that is robust to outliers should be used as an alternative. 

Examples of methods that are robustness to outliers are decision trees and k-nearest neighbor 

(KNN) (26). 

Class imbalance 

A significant imbalance in data classes (e.g., healthy vs diseased) is quite common in medical 

datasets because, on the one hand, the majority of subjects in a database are usually healthy and, 

on the other hand, because collecting patient data for some rare diseases is difficult and is not 

always possible. As a result, the performance of the learning algorithm might be skewed, as it 

only learns the characteristics of the larger sized categories. This problem is referred to as ‘class 

imbalance’ and can be dealt with in the following three established ways: (i) rebalancing the 

categories using ‘under-sampling’ or ‘over-sampling’ (i.e., making the different classes similarly 
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sized by omitting samples from the larger class or by up-sampling the data in the smaller class), 

(ii) giving more importance (i.e., weight) to the samples of smaller categories during the learning 

process (27), and iii) utilizing synthetic data generation methods, such as the synthetic minority 

over-sampling technique (SMOTE) (44), that generate synthetic examples that are similar rather 

than oversampling by using replacements. Recent advances in deep generative techniques, such 

as GAN or variational autoencoders (45), have made it possible to tackle complicated 

imbalanced data based on the learning strategies.  

Data shift 

Data shift is a common problem that afflicts the ML models in cardiovascular imaging in which 

the distribution of the database that is used for testing the performance of the learning models or 

systems may differ from the distribution of the training data. This may occur when the data 

acquisition conditions or the systems that are used for collecting the test data change from when 

the training dataset was acquired, and could induce i) a covariate shift – a shift in the distribution 

in the covariates, ii) a prior probability shift – a difference in the distribution of the target 

variable, or iii) a domain shift – a change in measurement systems or methods. It is imperative to 

assess and treat the shifts that may occur in the dataset prior to evaluating a model (46).    

Data leakage 

Data leakage is a major problem in ML, in which data outside of the training set seeps into the 

model while building the model. This event could lead to error-prone or invalid ML models. 

Data leakage could occur if the same patient’s data is used in the training and testing sets and is 

generally a problem in complex datasets, such as time series, audio and images, or graph 

problems.  
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Recommendation 

• The data format for training a machine learning algorithm should be tall and the ratio of the 

observations/measurements (i.e., N/M) should be at least three. 

• When the data matrix is wide, a feature extraction/learning algorithm or dimensionality reduction techniques 

may be used. 

• Multicollinearity should be removed, and variables should be normalized if applicable. 

• Missing features and outliers should be addressed accordingly with relevant methods. 

• Dataset shift, leakage and class imbalance are common pitfalls and should be assessed and treated as needed. 

 

Summary 

Data preparation and feature extraction is key to the success of model development. It ensures that the data 

format is appropriate for machine intelligence, the utilized variables carry relevant information for solving 

the problem at hand and the learning system is not biased towards a subset of the variables or categories in 

the database. 
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Selection of Machine Learning Models 

Model selection is the process of identifying the model that yields the best resolution and 

generalizability for the project and can be defined in multiple levels, i.e., learning methods, 

algorithms, and tuning hyperparameters. Learning methods include supervised, unsupervised, and 

reinforcement learning. Supervised learning is a method that learns from labeled data, i.e., data 

with outcome information to develop a prediction model, while unsupervised learning aims to find 

patterns and rules in data that do not have labels. In contrast, reinforcement learning refers to the 

ML context, in which an agent learns the optimal action in the environment to gain a maximum 

reward (Figure 4).  

Common algorithms, such as regression or instance-based learning, often handle high-dimensional 

data well and tend to perform better or equivalent to complex algorithms on small datasets while 

retaining the interpretability of the model. To achieve better performance, simple algorithms, or 

weak learners, may be combined in various ways using ensemble methods, such as boosting, 

bagging, and stacking, which sacrifice the interpretability. More complex algorithms that are also 

difficult to interpret, including neural networks, can outperform simpler models given an adequate 

amount of data. A subset of neural networks, known as deep convolutional neural networks, are 

particularly useful for finding patterns in image data without the need for feature extraction (47–

50). The implementation of an algorithm can vary significantly in terms of the size and complexity 

(e.g., the size and number of features in a random forest decision tree, the number and complexity 

of kernels applied in an SVM, and the number and type of nodes and layers in a neural network) 

of the algorithms. Regardless of the choice of the algorithms, it may be imperative to perform 

hyperparameter tuning and model regularization to produce the optimal performance (51, 52). 
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These processes may be more important than selecting the types of algorithms that could impact 

the interpretability, simplicity, and accuracy. 

The size and complexity of algorithms should be chosen carefully to minimize the bias, the model 

error on the training dataset, and the variance, the model error on the validation dataset. Simpler 

models may underfit the data; they may generalize better (lower variance) at the cost of lower 

accuracy (higher bias). Further, overfitting (high variance and low bias) may come from a too 

complex model or insufficient representative training samples. Several rules of thumb exist to 

guide the choice of the initial algorithm size/complexity based on the number of features in the 

dataset, but the final algorithm design is determined empirically. 

Finally, an essential factor in algorithm selection is the need for the interpretability of the model’s 

decisions, i.e., an understanding of which input features caused the model to make the decision it 

made. Interpretability may be extremely important for certain learning tasks and less important for 

others. Regression, decision trees, and instance-based learning methods are generally highly 

interpretable, while methods to interpret the function of deep neural networks are still evolving; 

saliency mapping, class activation, and attention mapping are some examples of methods for 

neural network interpretation(53, 54). 

 

Summary:  

Design of a model and selection of machine learning algorithm(s) flows directly from the 

experimental task at hand and the size, complexity, and available labeling of a given dataset. 

Bias and variance help guide choices of size and complexity of a machine learning algorithm. 
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Model assessment   

The next step after selecting a learning model is to evaluate the generalizability by applying it to 

new data, i.e., assessment of its performance on unseen data. Ideally, model assessment should 

be performed by randomly dividing the dataset into a ‘training set’ for learning the data 

characteristics, a ‘validation set’ for tuning the parameters of the learning model, and a ‘test set’ 

for estimating its generalization error, where all the three sets have the same probability 

distribution (i.e., the statistical characteristics of the data in these three sets are identical). 

However, in many domains, including cardiovascular imaging, having access to a large dataset is 

often difficult, thus preventing model assessment using three independent data subsets. As 

mentioned in the previous section, the ratio of the training samples to the number of measured 

variables should be at least three (27) to learn the data characteristics properly. If this criterion is 

not met, the data are called scarce. In this situation, the data may be divided into two subsets for 

Recommendations: 

• For the initial model development, select the simplest algorithm that is appropriate for 

the available data. 

• Complex algorithms must be benchmarked to the performance of the initial model 

across several metrics. 

• Tune the hyperparameters to optimize the models and increase performance.  
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training and final validation of the learning algorithm. However, the results may depend on the 

random selection of the samples. Therefore, the training set can then be further partitioned into 

two subsets, but this process is repeated several times by selecting different training and testing 

subjects to obtain a good estimate of the generalization performance of the learning algorithm 

(26). This method of model assessment can be performed via ‘cross-validation’ or 

‘bootstrapping’, as further explained below. These techniques ensure that (i) the learning model 

is trained properly given that the majority of the data samples can be used in the training process, 

(ii) the learning model is not biased towards the characteristics of a subset of the data and (iii) the 

optimal values of the hyperparameters of the learning model (e.g., the number of layers in a 

neural network and the neurons in each layer) can be determined (26). 

Cross-validation 

This technique works by dividing the data into multiple nonoverlapping training and testing 

subsets (also called folds) and using the majority of the folds for training a learning model and 

the remaining folds for evaluating its performance (25–27). The cross-validation process can be 

implemented in one of the following ways. 

i. k-fold cross-validation: The data is randomly partitioned into k folds of roughly equal 

sizes, and in each round of the cross-validation process, one of the folds is used for 

testing the learning algorithm and the rest of the folds are used for its training (Figure 5). 

This process is repeated k times such that all folds are used in the testing phase and the 

average performance on the testing folds is computed as an unbiased estimate of the 

overall performance of the algorithm (25, 26).  
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ii. Leave-one-out cross-validation: In this technique, the number of the folds is equal to 

the number of the observations in the database, and in each round, only one observation 

is used for testing the learning algorithm.  

iii. Monte-Carlo cross-validation: In this method of cross-validation, there is no limit to the 

number of the folds, and a database can be randomly partitioned into multiple training 

and testing sets. The training samples are randomly selected ‘without replacement’, and 

the remaining samples are used for the testing group (Figure 6 I) (55).  

Bootstrapping  

This method works by randomly sampling observations from a database ‘with replacement’ to 

form a training set whose size is equal to the original database. As a result, some of the 

observations can appear several times in the training set, while some may never be selected. The 

latter observations are called ‘out-of-bag’ and are used to test the learning algorithm. This 

process is repeated multiple times to estimate the learning method’s generalization performance 

(Figure 6 II) (26, 55).     

 

Summary  

The basic concept of training and evaluating an ML model is to split the data into the subset where 

model is trained (training set), the subset where it is evaluated and tuned (validation set), and the 

holdout set, i.e., where the performance of the established model is tested (test set). When data is 

scarce, the model assessment should be performed by creating multiple training and testing sets from 

the database to obtain a good estimate of the generalization performance of the learning algorithm. 

The two main techniques that can be used for this purpose are cross-validation and bootstrapping. 
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Model Evaluation 

The reporting of accuracy in ML is closely linked to the reporting of summary statistics, and the 

same background and assumptions apply. While a review of statistical theory is out of scope for 

the PRIME guidelines, we encourage the readers to obtain a clear understanding of the statistics 

for classification and prediction (56–62). Most of the following section applies to supervised 

learning algorithms, for which labels are used in the definition of the performance measures. 

Unsupervised learning is more difficult to evaluate but should also evaluate the relevance of the 

output data representation and the stability of the results against the data and model parameters. 

For classification tasks, the accuracy is the percentage of data that is correctly classified by the 

model, which could be influenced by the quality of the expert annotations. The balance of classes 

in the training data is also a known source of bias. As such, a prerequisite for reporting accuracy 

measures is to provide a clear description of the data material used for training and validation. 

Recommendations  

• The size of the dataset and the complexity of the employed learning algorithm should be 

considered to achieve a good compromise between ‘bias’ and ‘variance’ in the estimations. 

• Bootstrapping yields a lower variance in the performance estimation than cross-validation but 

at the expense of a higher bias for small databases. 

• Typical numbers for k in a k-fold cross-validation are 5 and 10. 

• Leave-one-out cross validation is an appropriate choice when the data is small.   
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We further recommend balancing the class data according to prevalence when possible, or that 

balanced accuracy measures are reported (63).  

The model parameters (e.g., initialization scheme, number of feature maps, and loss function), 

regularization strategies (e.g., smoothness and dropouts), and hyperparameters (e.g., optimizer, 

learning rate, and stopping criterion) also play a part in the model performance. A second 

prerequisite is, therefore, to provide a clear description of how the ML model was generated. We 

further recommend that the certainty of the accuracy measure is reported where applicable, for 

instance, by estimating the ensemble average and variance from several models generated with 

random initialization. Additionally, cross-validation analysis should be added to underline the 

robustness of the model, especially for limited training and test data (see the previous section). 

Furthermore, to assess the generalizability of the algorithm, it is recommended to report the 

accuracy of the model by testing the data from different geographical locations with similar 

statistical properties and distributions (64). 

A report of the accuracy for ML algorithms in cardiovascular imaging will depend on the method 

and problem. For instance, the classification of disease from image features differs from the 

classification of image pixels in semantic segmentation, both in terms of the measures reported 

and of the risk in use.  

For multiclass/label classification, we recommend using a statistical language close to the 

clinical standard. For instance, the report sensitivity, specificity, and odds ratio should be used 

instead of the precision, recall, and F1 score. This will also ensure that true negative outcomes 

are considered (65). Nonetheless, for classification tasks, the confusion matrix should normally 

be included but could be supplementary material. For image segmentation problems, we 

recommend reporting several measures to summarize both the global and local deviations, such 
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as the mean absolute error (MAE), the Dice score to summarize the average performance and the 

Hausdorff distance metric to capture local outliers. 

When the output of the regression or segmentation algorithms are linked to clinical 

measurements (e.g., ejection fraction), we recommend Bland-Altman plots as for conventional 

evaluation of the image measurements, and we stress the importance of comparing the 

performance with several expert observers for both intra- and inter- expert variability.  

For the classification of disease from image features, the cost of misclassification should be 

clearly conveyed, e.g., rare diseases may not be properly represented in the dataset. The balance 

of classes should reflect the prevalence of the disease of interest, and scoring rules based on 

estimated probability distributions should be used for the accuracy reporting when possible, 

instead of direct classification. The choice of the scoring rule used for the decision, e.g., mean 

squared error, Brier score, and log-loss, should be rationalized. The common classification scores 

(sensitivity, specificity) should include a full ROC analysis to provide a more in-depth evaluation 

of the detection performance. It is also relevant to include benchmark results from alternative 

ML methods as well as more traditional techniques, such as logistic regression.  
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Summary: 

For classification problems in cardiovascular imaging, we require a clear description of the data and the 

machine learning setup. The certainty of the accuracy measure (e.g., variance) should be estimated and 

reported, and ten-fold cross-validation should be used to validate the model. Use a statistical language 

close to the standard in medicine and add ROC analysis where applicable. For the measurements, 

include Bland-Altmann plots and inter-/intra-observer reference values. Use relevant scoring rules 

instead of direct classification where possible. 

Recommendations: 

• Provide a clear description of the data used for training, validation and testing and a summary of 

the model parameters and training setup. 

• Use a statistical language close to the clinical standard and introduce new measures only when 

needed. 

• Balance the classes according to prevalence where available or report balanced accuracy 

measures. 

• Estimate the accuracy certainty, e.g., from an ensemble of models, to strengthen the confidence 

in the values reported. 

• Include Bland-Altman plots when machine learning is linked to clinical measurements. 

• Include an inter-/ intra-observer variability measures as a reference where possible. 

• The risk of misclassification should be conveyed, and appropriate scoring rules for decisions 

may be needed for the classification of a disease. 
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Software Engineering Best Practices and Data Availability for 

Reproducibility 

The reproducibility of scientific results is essential to make progress in cardiac medicine. The 

ability to reproduce findings helps to ensure the validity and correctness, as well as enabling 

others to translate the results into clinically actionable scenarios. However, there are several 

complementary definitions of reproducibility. We focus here primarily upon computational 

reproducibility; i.e., the ability to independently confirm published results by inspecting and 

executing data and code. Computational reproducibility is especially important in ML projects, 

which often involve custom software scripts, the use of external libraries, and intensive or 

expensive computation. Actions taken at any point in an ML workflow, from quality control and 

data preparation into suitable data structures to algorithm development to the visualization of 

results, are often based upon heuristic judgments, and there are potentially numerous justifiable 

analytic options. Ultimately, these selections may significantly alter the results and conclusions. 

 

The first step for making ML projects reproducible could be the release of all the original code 

written for a project. Academic research code may be released to the academic community under 

a permissive open-source license, which allows reviewers and other scientists to utilize and build 

upon the code in their own projects. Although there are numerous open source licenses available, 

in most cases, either of two licenses will suffice: the Massachusetts Institute of 

Technology/Berkeley Software Distribution (MIT/BSD) licenses 

(https://opensource.org/licenses/MIT) (the MIT and BSD licenses are essentially equivalent) and 

the GNU General Public License (GNU GPLv3). The MIT/BSD licenses allow published code to 

https://opensource.org/licenses/MIT
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be distributed, modified, and executed freely without liability or warranty; the GNU GPLv3 

license allows the same with the additional restriction that all software-based upon the original 

code must also be freely available under the GNU GPLv3 license, meaning others cannot reuse 

the original code in a closed-source product. Researchers who wish to commercialize their code 

or software projects are free to issue their code under any license to commercial, non-academic 

entities.  

 

There are several options for the publication of code. When possible, we recommend uploading 

source code with software and packages’ version information as supplementary material 

alongside the manuscript. Other options include permanent archival on a lab website, or per-

project archival on commercial or open source and public source code repositories, such as 

GitHub, Bitbucket, or protocols.io. The use of version control software, such as Git, allows easy 

inspection and auditing of the progress of algorithm development. Manuscripts should explicitly 

state where and how the code may be downloaded and under what license. All software must 

come with a license.  

 

Although the availability of code is required for computational reproducibility, equally important 

is the availability of the data used in the project. Clinical data should be anonymized, or if 

anonymization is not possible (as in the case of some genetic data), then data should be made 

available to other researchers with appropriate IRB approval. Other options include the 

generation of synthetic datasets with the same statistical properties as the original dataset, a field 

of study called differential privacy. Manuscripts must state where both the raw and 
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manipulated/transformed data may be obtained and justify any restrictions to data availability. 

All data should also be accompanied by a codebook (also known as a data dictionary) containing 

clear and succinct explanations of all variables. 

Additionally, it is highly recommended that the original methods and pipelines used in a clinical 

publication are previously detailed in a technical publication that better justifies the originality 

and soundness of the technical contribution, while the clinical reviewing process focuses more 

on the application. Depending on the application, a variety of open challenges with publicly 

available data are increasingly available, as recently demonstrated for supervised tasks, such as 

the automatic estimation of ventricular volumes (https://www.kaggle.com/c/second-annual-data-

science-bowl) and for left- and right-ventricular automatic segmentation (66). We strongly 

encourage researchers to benchmark their algorithms on these types of challenges when relevant 

and available.  

Finally, we note that even in the case of freely available data and open-source code, it can be 

difficult to reproduce the results of published work due to the complexities of software package 

versioning and interactions between different computing environments. We, thus, recommend 

that authors make the entire analyses automatically reproducible through the use of software 

environments (e.g., Docker containers, https://www.docker.com/). Analyses in software 

containers may be freely downloaded and run from beginning to end by other scientists, greatly 

improving the computational reproducibility. 

 

https://www.kaggle.com/c/second-annual-data-science-bowl
https://www.kaggle.com/c/second-annual-data-science-bowl
https://www.docker.com/
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Summary 

Computational reproducibility of machine learning efforts is essential. Scientists must release their 

code under an open source license to other scientists. The code should be archived with the journal, 

on personal websites, or in commercial repositories. The data used in a project should also be made 

available to the scientific community with minimal restrictions. When possible, the entire analyses 

should be made reproducible via scripts or containers. 

Recommendations 

• Use the MIT/BSD or GPLv3 license to release open-source code. 

• Upload the code and data as supplementary information alongside the manuscript when 

possible; otherwise, make the code and data available via an academic website or in 

commercial repositories. 

• Release a codebook (data dictionary) with clear and succinct explanations of all variables. 

• Document the exact version of all external libraries and software environments. 

• Consider the use of Docker containers or similar fully automated analysis for straightforward 

computational reproducibility. 
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Reporting limitations, bias, alternative/additional analyses  

“All models are wrong, but some are useful” is a well-known statistical aphorism attributed to 

George Box. Accurate reporting and acknowledgement of limitations are required for 

manuscripts incorporating ML (ML). Any statistical model or ML algorithm incorporates some 

assumptions regarding the data. All model assumptions should be affirmatively identified and 

checked with the dataset utilized in the manuscript, and the results should be reported in the 

manuscript or supplementary material. The algorithms used in computational research efforts 

span a large spectrum of complexity. Generally, more basic models and algorithms should first 

be investigated before additional complexity is incorporated into models or different algorithms 

are selected. Deep learning models should be benchmarked against more simplistic models 

whenever possible, especially when applied to tabular data. Statistical or ML models 

incorporating large numbers of variables (e.g., polygenic risk score models) should be 

benchmarked against standard clinical risk prediction models using more traditional clinical 

variables. 

 

Concordant findings from multiple, independent datasets dramatically increase the scientific 

value of manuscripts, since it decreases the likelihood that the algorithms have been erroneously 

overfit to the idiosyncratic features of a certain dataset. Deep learning models are especially 

notorious for harnessing spurious or confounding features of the dataset to perform well. For 

example, Zech and Badgeley et al. reported a case where a convolutional neural network trained 

on a health system’s chest X-rays used the presence of a “PORTABLE” label on X-ray images to 

predict cardiomegaly with high accuracy (67). Furthermore, in the case of supervised ML 
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involving human-annotated variables or outcomes, it should be noted that ML algorithms will 

recapitulate the underlying biases of the humans who constructed the dataset. 

 

 

  

Summary 

Accurate reporting and acknowledgement of limitations are required for manuscripts incorporating 

machine learning. All models make some assumptions of their data, and these assumptions should 

be identified and checked. Begin with simpler models over more complex models and justify the 

use of more complex models. Benchmark models against alternative data sources and obtain 

external validation in independent datasets. 

Recommendations 

• Affirmatively identify and check relevant model assumptions and report the findings. 

• Benchmark complex algorithms against simpler algorithms. 

• Benchmark algorithms incorporating high-dimensional data or novel data sources against 

other data sources. 

• Obtain external validation in independent datasets using the same algorithm. 
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Summary and Future Directions 

As artificial intelligence and ML technologies continue to grow, three specific areas of 

opportunities will need further consideration for future standardization. First, there has been 

growing enthusiasm in the use of automated machine learning (auto-ML) platforms that 

democratize machine-learning strategies. Together with the use of affordable computational 

resources and cloud computing-based platforms, such auto-ML strategies will reduce the 

encumbrance on researchers to execute learning algorithms. Second, the competition between 

and improvement in mobile devices have presented pathways for numerous sensors and 

physiological biomarkers. Using the ‘multiomics-approach’, such a data set would need to be 

integrated with imaging variables and can potentially provide more algorithmic sophistication 

and objectivity to the existing taxonomy of risk factors and cardiac diseases (68–70). Finally, 

sophisticated algorithms and variations of GAN will be increasingly used to synthesize data that 

closely resemble the distribution of the input data (71–73). This approach may be particularly 

fruitful for the field of simulation and in-silico clinical trials, which were recently recognized by 

the Food and Drug Administration (FDA) as key new directions to validate novel devices and 

therapies (74). In this context, recent studies have combined computational modeling with ML 

for synthetic data generation or tracking a disease course (75). The ML research presents 

disparate idiosyncratic methods that may be challenging to apply in medicine and software as 

medical devices, but the integration of intelligent software using ML algorithms is on the verge 

of restructuring the industry, research, and medical alliance. This fact is well recognized by the 

FDA, which has produced guidelines that mandate the standardization and applications of 

software as medical devices (76). With the advancement of organizations and cardiac medicine 

and imaging towards the actualization of precision medicine, the recommendations provided in 
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the PRIME guidelines may need to be updated continuously as ML algorithms continue to 

transform cardiovascular imaging practice over the next decade. 

.  
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Figure 1 – Machine learning pipeline 

Schematic diagram of a general ML pipeline. The data section consists of project planning, data 

collection, cleaning, and exploration. The modelling section describes the model building, in 

which hyperparameter tuning and the dimensionality reduction process, such as feature selection 

and engineering, model optimization and selection, and evaluation, are included. Finally, the 

reporting segment consists of the reporting mechanisms of the analysis, including reproducibility 

and maintenance, and a description of the limitations and alternatives.  

  

Figure 2: Schematic demonstration of wide (a) and tall (b) data matrices and the way that they 

can be created from the image data. In a wide data matrix, the number of observations is much 

smaller than the number of variables (N<<M). Considering the whole image as one observation 

and all its pixels as variables may lead to a wide data matrix, as the number of images is typically 

smaller than the number of pixels (c). To make a tall data matrix from the image data, an image 

can be divided to many (overlapping) ROIs or patches, each with a small number of pixels (d). 

 

Figure 3: The main approaches for feature engineering and learning. The hand-engineering 

approaches are manually designed to extract certain types of features from the data. The classic 

learning techniques use data samples to learn their characteristics, but they have limitations in their 

data modeling techniques, such as linearity, sparsity or lack of hierarchical representation. Deep 

learning methods, however, can learn complex features from the data at multiple levels. 
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Figure 4: Model selection process 

Illustration of the model selection process, which consists of identifying the three classes of ML. 

A) Supervised learning method, in which the data are used for classification or regression. B) 

Unsupervised learning method, in which the data are either utilized for clustering, topical 

modeling, or representing the data distribution while reducing the dimensionality of the data 

according to the problem to be solved. Finally, C) the reinforcement learning technique, in which 

an agent receives feedback from the environment to adjust the policy with which it learns.  

 

 

Figure 5: Schematic illustration of the k-fold cross-validation process. Data are randomly 

partitioned into k distinct folds, and in each round, (k-1) folds are used for training the learning 

algorithm, and the kth fold is used for testing its performance. This process is repeated k times 

such that all folds are used in the testing phase. 

 

Figure 6: I) The process of Monte-Carlo cross-validation, which can be performed in B rounds. 

In each round, the training and testing samples are randomly selected without replacement from 

the original data. II) The bootstrapping process, which can be performed in B rounds. In each 

round, the training data is generated by randomly sampling from the original data with 

replacement. The samples that are not included in the training set (i.e., out-of-bag samples) form 

the testing group. 


