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a b s t r a c t

The segmentation of the myocardium in echocardiographic images is an important task for the diagnosis
of heart disease. This task is difficult due to the inherent problems of echographic images (i.e. low con-
trast, speckle noise, signal dropout, presence of shadows). In this article, we propose a method to segment
the whole myocardium (endocardial and epicardial contours) in 2D echographic images. This is achieved
using a level-set model constrained by a new shape formulation that allows to model both contours. The
novelty of this work also lays in the fact that our framework allows to segment the whole myocardium for
the four main views used in clinical routine. The method is validated on a dataset of clinical images and
compared with expert segmentation.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction (2008), coupled segmentation of endo- and epicardial borders is per-
Echocardiography is widely used for the diagnosis of heart dis-
ease. This diagnosis is based on a visual inspection of the images by
an expert cardiologist and the extraction of quantitative measures
(such as the ejection fraction, strain and strain-rate). This latter
process involves a manual contouring step, which is time-consum-
ing and prone to errors. Indeed, the low SNR of ultrasound scans is
associated to subjective contouring from the experts, which results
in significant inter- and intra-observer variability in the delinea-
tion of the myocardial borders. In order to avoid this and to speed
up the exam analysis workflow, an automatic segmentation proce-
dure is highly desirable.

While great attention has been given to the segmentation of the
endocardial wall (Noble and Boukerroui, 2006; Mignotte et al., 2001;
Tao and Tagare, 2007; Duan et al., 2009; Carneiro et al., 2010), very
limited literature (Dias and Leitao, 1996; Chalana et al., 1996) deals
with the segmentation of the epicardial wall or the whole myocar-
dium in 2D echocardiography. Let us however note that epicardial
segmentation has recently received more attention in 3D echocardi-
ography. In Zhu et al. (2010), such 3D acquisitions allow constrain-
ing myocardial segmentation through an incompressibility
constraint. A subject-specific dynamical shape prior built from
MRI data is introduced in Zhu et al. (2009) in order to segment myo-
cardium from 3D echocardiographic sequences. In Orderud et al.
ll rights reserved.

on.fr (T. Dietenbeck).
formed by using a Kalman filter-based tracking framework.
The difficulty in segmenting the epicardial border is linked to the

fact that the Contrast to Noise Ratio (CNR) between the epicardium
and surrounding tissue is lower than the CNR between the endocar-
dium and the blood pool, which usually leads to high heterogene-
ities in the epicardial contour or missing boundaries. Another
difficulty relates to the presence of the papillary muscles on the
endocardial borders. Indeed the cardiologists usually do not take
these structures into account when delineating the endocardium.
Thus, while papillary muscles have similar properties as the myo-
cardium, they typically have to be excluded from the segmentation.

Shape priors have proven to be very efficient in dealing with
missing boundaries and papillary muscles (Bosch et al., 2002; Chen
et al., 2002; Taron et al., 2004; Paragios et al., 2005; Hamou and
El-Sakka, 2010; Alessandrini et al., 2010). As compared to 3D shape
constraints (Zhu et al., 2009), let us note that the introduction of
shape prior in 2D raises a specific problems, in the sense that the
shape of the cardiac structures varies a lot according to the
selected echographic acquisition view. As a consequence, segmen-
tation methods using shape prior are generally view dependent:
methods based on shape learning imply building a specific training
database for each view (Bosch et al., 2002; Chen et al., 2002;
Paragios et al., 2005), and methods based on geometric shape con-
straint are adapted to one specific view (Taron et al., 2004; Hamou
and El-Sakka, 2010; Alessandrini et al., 2010). One of the main inter-
ests of our approach is to provide a framework that can be used for
any of the usual 2D echographic views (i.e. parasternal short-axis,
parasternal long-axis, apical 4-chamber, and apical 2-chamber).

http://dx.doi.org/10.1016/j.media.2011.10.003
mailto:thomas.dietenbeck@creatis.insa-lyon.fr
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(Bosch et al., 2002) used an adaptation of the active appearance
model (AAM) approach that they called the active appearance mo-
tion model (AAMM) to represent the shape and appearance of the
endocardium, as well as its motion, but their method was only
tested on apical 4-chamber views.

(Paragios et al., 2005) proposed a parametric curve model dedi-
cated to the extraction of the endocardium for each frame of a cine-
loop cardiac cycle. First a training step was performed where the
shape model was built from a linear combination of a diastolic and
a systolic model obtained from a Principal Components Analysis
(PCA) applied to registered curves. Then the segmentation step con-
sisted of two main steps. First an approximate segmentation of the
left ventricle for each image in the sequence was performed. This al-
lowed registering the shape model in each frame by recovering the
parameters of a similarity transformation. The segmentation was
subsequently refined using the approximate segmentation as an ini-
tial solution. The ability of the method for the segmentation and
tracking of the endocardium was tested on apical 4-chamber views.

Based on their previous work (Chen et al., 2002, 2007) were able
to segment either the endocardium or the epicardium in apical
4-chamber views (A4C). They used the intensity gradient of the
B-mode images and a distance measure between the evolving con-
tour and a learned shape to drive the level-set function towards the
object boundaries. The shape prior was obtained by averaging
aligned contours drawn by an expert. Multiple segmentations of
the same images were performed, where the weighting parameter
between those two terms was changed. Finally, the intensity
profile along the segmentation result was compared to a learned
intensity profile in order to choose the best weighting parameter
and thus the best contour.

The main drawback of these techniques is that the shape
knowledge is often learned via an interactive training process.
Though this training process can take place off-line, this involves
considerable effort and expertise. More importantly, a learned
shape template can only be used to segment a specific class of
images with similar boundary shape and will therefore be highly
dependent on the probe orientation.

In order to avoid shape learning, (Taron et al., 2004) proposed a
method for the recovery of the endocardium in parasternal short-
axis view using a geometric model. This approach relies on the
assumption that the endocardial contour in a parasternal short-
axis view can be reliably modelled as an ellipse. The contour evo-
lution then corresponds to deforming an ellipse according to its
parameters, so it is attracted to the desired image features. Though
this method does not require any learning step, the shape prior
used might be too strong and cannot be applied to other views
where the myocardial border does not correspond to an ellipse.

(Lin et al., 2003) used a multiscale framework, where the result
at a coarse level was used as an initialisation and shape prior at a
finer level. The algorithm was then used to segment the endocar-
dium in apical 4-chamber images. More recently, (Hamou and El-
Sakka, 2010) used a geometrical model based on third-order
hyperbolas to constraint the shape of the evolving contour and im-
prove the segmentation of the endocardium in apical 4-chamber
images. (Alessandrini et al., 2010) improved the level-set method
of Alessandrini et al. (2009) by incorporating an annular shape
prior into the energy minimization in order to segment the whole
myocardium in parasternal short-axis views.

The novelties introduced in this paper are the following.1 We
propose to segment the whole myocardium (endocardium and epi-
1 A preliminary version of this work appeared in Dietenbeck et al. (2011). The
present paper describes in detail the formal aspects and the behavior of the proposed
method, evaluates the performances from a data set including 80 medical images and
compares it to the shape prior-based algorithm of Hamou and El-Sakka (2010).
cardium) for all the four main clinical orientations of acquisition
(i.e. Parasternal short and long axis and Apical two and four cham-
ber views) using one single level-set. First, the level-set is con-
strained through a shape prior based on the combination of two
hyperquadrics. We indeed show from real data that this hyper-
quadrics prior is general enough to efficiently approximate the
shape of the myocardium in each clinical orientation, due to its
ability to handle asymmetries. This constraint is formalized in a
variational framework using the geodesic formulation initially de-
scribed by Caselles et al. (1997) for data attachment terms. The
interest of such formulation stems from the fact that the associated
minimization can be shown to correspond to a simple least-square
problem with respect to the parameters defining the prior. We then
show that the problem of performing the least-square fitting of a
pair of hyperquadrics is formally equivalent to solve two separate
simple fitting problems. An additional benefit of this approach is
that it does not involve any learning procedure, since the prior is
purely geometric. Secondly, the formulation of the whole myocar-
dium segmentation using one single level-set also allows introduc-
ing of a new thickness energy term in a variational framework. The
proposed formulation ensures that both contours of our single le-
vel-set function will not merge while still allowing the myocardium
thickness to vary.

The paper is organized as follows. In Section 2, we recall the
general level-set framework and describe the energy functional
that will be minimized. In Section 3, we detail the method to fit
the shape prior on the evolving contour. Implementation issues
are discussed in Section 4. Section 5 is devoted to the results ob-
tained from echocardiographic clinical images and a comparison
with Hamou’s method (Hamou and El-Sakka, 2010). We give the
main conclusions and perspectives in Section 6.
2. Proposed method

We now describe the framework used to segment the whole
myocardium in 2D echocardiography. Though many segmentation
techniques exist, we choose to focus on level-set s, which are now a
well-established and popular tool in the field of image processing.
Level-sets correspond to a class of deformable models where the
shape to be recovered is captured by propagating an interface rep-
resented by the zero level-set of a smooth function which is usu-
ally called the level-set function. The evolution of the interface is
generally derived through a variational formulation: the segmen-
tation problem is expressed as the minimization of an energy func-
tional that reflects the properties of the objects to be recovered
(Osher and Sethian, 1988). Moreover the segmentation process is
expressed in an Eulerian framework. This removes the problem
of contour self-intersections and the need for control point regrid-
ding mechanisms.
2.1. Level-set framework

Let X 2 R2 denotes the image space. In the level-set formalism,
the evolving interface C 2 R2 is represented as the zero level-set of
a Lipschitz-continuous function / : X! R. The problem of seg-
menting one object from the background is then handled by the
evolution of one level-set driven by the minimization of a specific
energy criterion; its steady state partitions the image into two re-
gions that delimit the boundaries of the object to be segmented.

Since we are addressing the segmentation of the whole myocar-
dium, which is bounded by two unconnected contours, we describe
in the sequel an approach which will yield one level-set having two
contours as shown in Fig. 1.
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2.2. Energy formulation

As mentioned in the introduction, many energy functionals
have been proposed in literature to incorporate shape priors into
the level-set formulation. Usually, the authors sum two energy
terms: a data attachment term and the shape prior one (Leventon
et al., 2000; Chen et al., 2002; Alessandrini et al., 2010). Here, since
we consider the simultaneous segmentation of two unconnected
contours, we also include an anti-collision term. We thus adopt
the following general expression for the energy functional:
E ¼ Edata þ Ethickness þ Eshape; ð1Þ
where Edata represents the chosen data attachment term, Ethickness is
a term that prevents the contours from merging by imposing a min-
imum thickness and Eshape embeds the shape prior.

2.3. Data attachment term

Intensity inhomogeneities often appear along the myocardial
boundaries as shown in Fig. 2. In Fig. 2a, due to a loss of contrast,
intensity inhomogeneity appears between the lateral wall (area 1)
and the anterior wall (area 2). In Fig. 2b, the apex (area 1) is blurred
and less contrasted than the septum wall (area 2) because it is lo-
cated in the near field of the probe.

In order to cope with these intensity inhomogeneities, (Lankton
and Tannenbaum, 2008) recently proposed a general framework to
localize the data attachment term. Though more sophisticated
attachment terms could be used, we adopt the localized version of
the Chan–Vese model (Chan and Vese, 2001), as data attachment
term Edata and computed directly from the B-mode scan. This formu-
lation handles local statistics and is therefore well suited for seg-
menting objects whose boundaries are discontinuous or
heterogeneous, where standard region based methods that use glo-
bal statistics fail.

Using the general framework described in Lankton and Tannen-
baum (2008), the data attachment term Edata can be written as

Edatað/Þ ¼
Z

X
dð/ðxÞÞ

Z
X

Bðx; yÞFðI;/; yÞdydx; ð2Þ
Fig. 1. Example of the level-set function used in this work. The zero level is represented
myocardium. (For interpretation of the references to colour in this figure legend, the re
where F(I,/,y) = H(/(y)) � (I(y) � ux)2 + (1 � H(/(y))) � (I(y) � vx)2

and d(�) is the Dirac function. The function B(�) is a binary mask de-
fined as

Bðx; yÞ ¼
1; if y 2 NðxÞ
0; otherwise

�
ð3Þ

where y is a spatial variable that represents a single point in X and
N(x) corresponds to a user-defined neighborhood of point x. The
quantities ux and vx correspond to the localized version of the inside
and outside average intensity values measured in the window N(x).

Minimizing Edata (2) with respect to / leads to the following
level-set equation:

@/
@t
ðxÞ ¼ �dð/ðxÞÞ �

Z
X

Bðx; yÞr/FðI;/; yÞdy: ð4Þ

From Eq. (4), it is apparent that, N(x) defines to which extent the
algorithm is localized: at each point x of the interface, the term
driving the evolution is computed only in the neighbourhood N(x)
surrounding x (instead of being computed from the whole image,
as in the usual level set formulation).

As indicated in Lankton and Tannenbaum (2008) the size of N(x)
is mainly linked to the size of the object to recover: it should be
small enough so that the interface is not attracted by nearby struc-
tures that are not to be detected (in the limit, if N(x) is very large,
the algorithm is then equivalent to the usual Chan–Vese algorithm
and will perform a global segmentation). Conversely if N(x) is too
small, there is a risk that the interface will not move since it is
too far from the object borders.

2.4. Thickness term

Since we are dealing with the evolution of a shape bounded by
two contours, it might happen that they are both attracted by the
same image feature, leading to the merging of both contours. In our
experiments, we observed that this happened in about 15% of the
segmentations. It is thus important to prevent both contours from
merging since this leads to results that are not meaningful. How-
as a red bold line and provides the contour corresponding to the boundary of the
ader is referred to the web version of this article.)



Fig. 2. Examples of the intensity inhomogeneities occurring along the myocardium borders. Top row: short-axis view (left) and apical 4-chamber view (right). Bottom row:
same images with the cardiologist’s reference epicardial (green) and endocardial contours (red). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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ever it is also important to ensure that this will not modify the
behavior of the algorithm when there is no merging problem. This
is done in our approach by locally constraining the level-set to
have a minimum thickness.

The idea of using such a local thickness term to constrain level-
set segmentation has been initially proposed by Zeng et al. (1998)
for cortex segmentation in MR. This initial approach has then been
used for 2D cardiac images in US by Paragios (2002), in MR by
Lynch et al. (2006) and tested against incompressibility constraint
for 3D cardiac US data in Zhu et al. (2010). In these works, the ob-
ject to be segmented is modelled as two distinct level-set s and the
constraint is directly introduced in the evolution equation as a
term coupling the two level-set s. Our approach is different due
to the fact that the two contours are represented as a single impli-
cit function. This allows expressing the constraint as an energy to
be minimized and thus deriving the corresponding evolution in a
variational framework, which depends only on the level-set /.
Let us note that (Chen et al., 2008) also recently described a thick-
ness constraint as an energy to be minimized. However, in this for-
mulation the object is modelled as two distinct level-set s and the
constraint essentially acts as a global term minimizing the overall
deviation from the average thickness of the myocardium. In our
formulation the constraint is applied locally, stopping the evolu-
tion in the region of the interfaces where the minimum thickness
is not met.

Formally, we define the energy term such that it will allow the
level-set to evolve only if the distance between the inner and outer
contour is lower than a predefined thickness RT

Ethicknessð/Þ ¼
Z

X
/ðxþ RT NÞ � Hð/ðxþ RT NÞÞ � dð/ðxÞÞdx; ð5Þ
where N corresponds to the inward normal of a point x 2 C. From
(5), it is clear that this energy is null when all the point at a distance
RT along the inward normal of the contours are inside points. Min-
imizing this energy thus guarantees that the thickness of the con-
tour will be at least RT but do not put any constraint on the
maximal thickness between the two contours.

The evolution term is obtained by deriving the Eq. (5) with re-
spect to / and writes as:

@/
@t
ðxÞ ¼ �Hð/ðxþ RT NÞÞ � dð/ðxÞÞ: ð6Þ

The complete derivation of this term is given in Appendix A.
Fig. 3 illustrates the principle of this term. In Fig. 3a, we show a

simulated image composed of two disks, one inside the other. The
centers of the disks are not the same and thus the thickness of the
object is not homogeneous. The left part of the object has been oc-
cluded in order to mimic a loss of contrast that may occur in echo-
cardiographic scans. We also show the zero-level of / at a point in
the evolution process where the inner and outer contour are about
to merge. Fig. 3b shows a 1D profile of / along the yellow line seen
in Fig. 3a while Fig. 3c shows the corresponding Heavyside func-
tion H(/). In Fig. 3c, at point x2, the distance between the two con-
tours (red points) is higher than RT. Thus x2 + RTN is an inside point,
H(/(x2 + RTN)) is equal to 0 and so is the thickness evolution term
(6). On the opposite for the point x1, the two contours are too close,
the value of H(/(x2 + RTN)) is equal to 1, and the level-set will thus
evolve according to (6). It is therefore apparent that the energy (5),
will be minimized (and equal to 0) when the distance between the
contours is at least RT.

Fig. 4 shows the final segmentation of the image shown in
Fig. 3a. In this illustrative binary image example, we use the clas-



Fig. 3. Principle of the thickness term: (a) simulated image with the zero-level of an evolving level-set / shown in red; (b) 1D-profile of / along the yellow line of (a); (c) H(/).
In (b) and (c) the red dots corresponds to the zero-level of /. The blue points in (c) correspond to points at a distance R from x1 and x2 with their respective value of H(/)
shown as the green dots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Segmentation results on the same image as Fig. 3a, (a) without the thickness term and (b) with the thickness term. The initialisation is shown in yellow and the
segmentation result in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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sical Chan–Vese data attachment term (Chan and Vese, 2001) and
no shape prior. Fig. 4a gives the result obtained without the thick-
ness term. In that case, since the left part of the image is occluded,
the two evolving contours merge, leading to an unsatisfactory seg-
mentation result. On the contrary, by including the thickness term
in the evolution equation, the merging of the two contours does
not occur yielding the desired segmentation (Fig. 4b).

3. Shape prior term

Many shape prior energies have been proposed in the literature
to constrain the level-set function to remain close to a desired
shape. As mentioned in Section 1, the main drawback of most of
these techniques is that a training process is required in order to
obtain the shape prior. Moreover a learned shape can only be used
on a specific orientation, making the algorithm view dependent.

We are thus interested in finding a simple model that could be
applied to any view while reliably approximating the heart bound-
aries. In this context, (Hamou and El-Sakka, 2010) proposed a sim-
ple parametric representation to model the endocardium in apical
4-chamber views. The evolving contour is divided into an upper re-
gion and a lower region, which are then approximated by two sep-
arate third-order hyperbolas to build the shape prior. As will be
shown in Section 5, this model can only be applied reliably to api-
cal views and has difficulties to approximate contours drawn by
experts in the other orientations.

We thus propose to use a new shape model that can faithfully
approximate the myocardial shape whatever the view. This is
achieved by modelling each of the two contours by hyperquadrics.
Since the seminal work of Hanson (1988), hyperquadrics have been
often used in pattern recognition (Kumar et al., 1995; Cohen and
Cohen, 1996). In the particular field of biomedical image analysis
they have been used for segmentation of cell nuclei (Cong and
Parvin, 2000), human thorax (Lelieveldt et al., 1999) and the mod-
elling of the left ventricular shape (Robert, 1995; Cohen and Cohen,
1996; Abdallah et al., 2010). In these works hyperquadrics are used
to perform a shape fit on a fixed set of points or features that have
already been extracted. Moreover, these approaches do not address
the case of an object bounded by two hyperquadrics. In this con-
text, the contributions of our approach are the following:

1. We express the shape constraint through a variational energy
term, and we show that the minimization of this term formally
corresponds to a shape fitting problem. In contrast with the
above mentioned works this approach allows directly embed-
ding the hyperquadrics shape constraint in the level-set evolu-
tion process.

2. We then derive a solution to the problem simultaneously fitting
two hyperquadrics to a set of points. Based on the formulation
from (Berg, 1998), we express the two hyperquadrics as a single
implicit function and show that the fitting is formally equiva-
lent to solve two separate fitting problems.

3.1. Shape modelling using hyperquadrics

Hyperquadrics were first proposed for computer graphics appli-
cations by (Hanson, 1988). They are obtained by considering a sum
of an arbitrary number of linear terms raised to powers and gener-
ate convex shapes bounded by a polygon. While even a small num-
ber of terms allows to represent a large variety of shapes,
increasing this number allows to better approximate complex
shapes, making the model very flexible. Moreover hyperquadrics
can model shapes that are not necessarily symmetric. This prop-
erty is interesting in our application since the shape of the endo-
cardium or the epicardium may involve asymmetries (this is
illustrated in the results shown in Fig. 9).
In the case of a 2D shape, a hyperquadric implicit function is gi-
ven by

uðx; yÞ ¼
XNh

i¼1

jAixþ Biyþ Cijci ; ð7Þ

where k = {Ai,Bi,Ci,ci,"i = 1, . . . ,Nh} is the set of parameters to be fit-
ted and Nh is the number of hyperquadrics terms. The modelled
shape corresponds to the set of points (x,y) that satisfies
u(x,y) = 1 and can be represented as the zero level of the implicit
function

Wðx; kÞ ¼ uðxÞ � 1; ð8Þ

where W is the distance from a point to the hyperquadric.
To fit a hyperquadric to range data, we first define an error-of-

fit (EoF) function to measure the difference between a modelled
shape and the given data set. Though the distance defined in (8)
could be used, the minimization of this EoF function often leads
to incorrect results as the EoF function presents multiple global
or local minima. Thus, following the work of (Kumar et al., 1995),
the hyperquadrics’ parameters are fitted by minimizing the follow-
ing EoF function

EoF ¼
XNdata

i¼1

1

krFioðxi; yiÞk
2 ð1� Fioðxi; yiÞÞ

2 þ m
XN

i¼1

Pi; ð9Þ

where Fio(x,y) = (u(x,y))p, Pi is a penalty allowing to avoid degener-
ate solutions. Eq. (9) thus corresponds to a constrained minimiza-
tion problem including a data attachment term and a penalization
term weighted by m.

As shown in Kumar et al. (1995), Pi is directly related to the
minimum and maximum dimension of the object considered for
the fitting (the derivation of Pi is too long to be detailed here and
we refer the reader to (Kumar et al., 1995) for brevity sake). In
our application these dimensions have been chosen as the mini-
mum and maximum extent of the myocardium in the echographic
images.

Regarding the weighting term m, it can be shown that the solu-
tion to the constrained problem (9) coincides with the least square
problem when m tends to infinity. In practice, a correct result is
obtained for a sufficiently large value of m. In all our experiments,
m is set to 108 so that the penalization term is on the same order
than the data attachment term.

The minimization of (9) is accomplished by the Levenberg–
Marquardt non-linear optimization method (Press et al., 1992).

3.2. Shape modelling of the myocardium

As will be shown in Section 5.3, each of the myocardial bound-
aries (i.e. the endocardium and the epicardium) can be modelled by
a single hyperquadric. We are thus searching for a shape represen-
tation that allows: (1) to model these two contours through a sin-
gle implicit representation, (2) to solve efficiently the fitting
problem to update the shape parameters. Let us call w this repre-
sentation. A trivial choice for w could consist in the pointwise
product between two distance functions. However, the resulting
representation would no longer be a distance function (Berg,
1998) and, further, it would not allow an optimized solution to
the fitting problem, as the one we are presenting in the sequel.
Following the work presented in Berg (1998), the shape prior is
thus defined as:

wðx; kÞ ¼ maxðWðx; koutÞ;�Wðx; kinÞÞ; ð10Þ

where k = [kin,kout] and kin and kout represent the parameters of the
inner and outer shapes. The function W(�) corresponds to the dis-
tance from a point x = (x,y) to a hyperquadric (Eq. (8)). Fig. 5 gives
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an illustration of the parametric implicit function w adopted in the
proposed framework.

3.3. Shape prior energy

Inspired by the framework proposed in Caselles et al. (1997) and
Chen et al. (2002), we define a new shape constraint into our level-
set framework by minimizing the following shape prior energy:

Eshapeð/; kÞ ¼
Z

X
w2ðx; kÞ � kr/ðxÞk � dð/ðxÞÞdx; ð11Þ

where w(x,k) is the implicit function representing the distance of a
point x to the myocardial shape defined by the parameters k. Clearly
(11) reads as a measure of the distance between the active contour
and the shape prior, and therefore imposes a similarity between the
segmentation result and the prior itself.

The minimization of energy (11) may be interpreted as finding a
geodesic zero level-set in a Riemannian space derived from the
shape prior content. As compared to the initial work of (Caselles
et al., 1997) and derived approaches (Chen et al., 2002), the arc
length function of (11) is no longer weighted by an image based
information but by our shape prior term. From the observation that
the minimum of this expression is reached when the zero level of /
perfectly fits the zero level of the parametric implicit function w,
one can anticipate that the minimization of this energy criterion
will drive the level-set toward a shape composed of two
hyperquadrics.

The minimization of (11) is addressed in a two phase scheme.
Specifically, keeping k fixed, / is evolved according to the level-
set equation:

@/
@t
ðxÞ ¼ dð/ðxÞÞ � hrwðx; kÞ;r/ðxÞi

kr/ðxÞk þ w2ðx; kÞ � j
� �

; ð12Þ

where j is the curvature of the evolving interface and h�, �i denotes
the scalar product. Then, keeping / fixed, k is updated according to
the following fitting problem:

k ¼ arg min
k0

I
C

w2ðx; k0Þdx: ð13Þ

As detailed in the sequel, we impose / to be a signed distance
map (Osher and Fedkiw, 2002). Thus kr/k = 1 and (13) corre-
sponds to the exact minimization of (11) w.r.t. k. In the next sec-
tion, we propose a fast solution to the fitting problem in (13),
which can be employed for implementing efficiently the parame-
ters update step.
Fig. 5. Illustration of the parametric implicit function w. The zero level is represented in
color plane given in (a). (c) Visualization of the zero-level of w. (For interpretation of the
this article.)
Note that, as the image space is in practice discrete, Eq. (13) can
be rewritten as:

k ¼ arg min
k0

X
x2C

w2ðx; k0Þ: ð14Þ
3.4. Fast solution to the fitting problem

Considering (10), we can rewrite the sum in (14) as:

Jðx; kÞ ¼
X
x2Cin

W2ðx; kinÞ þ
X

x2Cout

W2ðx; koutÞ; ð15Þ

where the partition C = {Cin,Cout} has been introduced

Cinðkin; koutÞ ¼ fx 2 CjWðx; koutÞ < �Wðx; kinÞg; ð16Þ
Coutðkin; koutÞ ¼ fx 2 CjWðx; koutÞP �Wðx; kinÞg: ð17Þ

From this formulation, we observe that (15) can be minimized
by fitting two separate hyperquadrics on Cin and Cout, for which
fast direct solvers exist (Eq. (9)). Consequently we propose to min-
imize J by alternatively fitting the two hyperquadrics and updating
Cin and Cout according to (16) and (17). The resulting algorithm is
summarized in Algorithm 1. By doing so, the energy J is ensured to
decrease at each step. In Algorithm 1 we call fitHQ the function
performing the hyperquadric fitting as described in (Kumar et al.,
1995).

Algorithm 1. Hyperquadric fitting algorithm

Input data

k̂ð0Þin ; k̂ð0Þout ; tol ¼ 0:01; k ¼ 1

Initialization

Jð0Þ ¼ Jðk̂ð0Þin ; k̂ð0Þout Þ
Cð0Þin ¼ Cinðk̂ð0Þin ; k̂ð0Þout Þ; Cð0Þout ¼ Coutðk̂ð0Þin ; k̂ð0Þout Þ;

while � > tol do

k̂ðkÞin ¼ fitHQðCðk�1Þin Þ; k̂ðkÞout ¼ fitHQðCðk�1Þout Þ;
CðkÞin ¼ Cinðk̂ðkÞin ; k̂ðkÞout Þ; CðkÞout ¼ Coutðk̂ðkÞin ; k̂ðkÞout Þ;
JðkÞ ¼ Jðk̂ðkÞin ; k̂ðkÞout Þ
� ¼ kJðkÞ � Jðk�1Þk=kJðk�1Þk; k ¼ kþ 1

end while
red. (a) 3-D representation. (b) Visualization of a 2-D profile corresponding to the
references to colour in this figure legend, the reader is referred to the web version of



T. Dietenbeck et al. / Medical Image Analysis 16 (2012) 386–401 393
We remark that, within the segmentation flow, Algorithm 1 is
used to fit the points on the evolving contour. In this case, at every
time step, the adopted initialisation consists in the two hyperquad-
Fig. 6. Illustration of the evolution of a level-set when minimizing the proposed
shape prior energy and the classical Chan and Vese data attachment term (Chan and
Vese, 2001). In blue, the initial contour; in red, the final contour; in green, the shape
prior. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
rics obtained from fitting the active contour at the previous time
step. Since in this interval the displacement of the active contour
is expected to be small, such initialisation allows often the conver-
gence to be reached in one single iteration.

In Fig. 6, we show an example of evolution of a level-set using
two evolution terms: a data attachment term and the one proposed
in (12). Since the image to be segmented is a binary mask with a
small gaussian noise, there is no need for a sophisticated data
attachment term and we thus use the classical Chan and Vese term
(Chan and Vese, 2001). The image contains an object whose bound-
aries correspond to two hyperquadrics. Though three parts of the
object were occluded, we can see that the evolving contour is able
to recover the whole object by filling the missing boundaries.

4. Implementation issues

4.1. Level-set evolution

We implemented our level-set evolution equation using stan-
dard finite difference scheme (Osher and Fedkiw, 2002), where
the implicit function is represented by a signed distance function
/. In order to improve efficiency, we only compute values of / in
a narrow band around the zero level-set.

Consequently, we re-initialize / every iteration using a fast
marching scheme (Sussman et al., 1998). In order to perform seg-
mentation with a shape prior, the level-set evolves according to
the following equation:

@/
@t
¼ f ðxÞ þ gðxÞ þ hðxÞ; ð18Þ

where f(�) is the data attachment term given in Eq. (4), g(�) is the
thickness term given in Eq. (6) and h(�) is the shape prior term given
in Eq. (12).

As in Lankton and Tannenbaum (2008) the neighbourhood N(x)
defining the localization of the algorithm is chosen in our case as a
circular neighbourhood, with radius RN (i.e. we assume isotropic
Fig. 7. Definition of the ROI mask. ROI mask for a parasternal short-axis (a), paraste
corresponding image (e), (f), (g) and (h). The evolving curve is shown in red, the ROI in g
dots. (For interpretation of the references to colour in this figure legend, the reader is re
image properties). Given that we use a close initialisation (i.e. as-
sumed to be on the order of RN pixels apart from the desired bor-
der), RN was thus chosen as the average thickness of the
myocardium, i.e. 15 pixels in our case. In the same way, the value
of RT in the thickness term (5) was chosen to be set to 15 pixels.

4.2. Choice of the number of hyperquadrics terms Nh

The number of hyperquadrics term Nh in Eq. (7) is linked to the
complexity of the shape that we want to represent. (Kumar et al.,
1995) also showed that, in order to have asymmetrical shapes,
Nh has to be greater than 2. We choose to set Nh = 4 since, as we
will show in Section 5.3, this allows to model the myocardial bor-
der with a good accuracy.

4.3. Image subdivision and ROI definition

In parasternal long-axis or apical images, the endocardium or
epicardium are not closed contours and are only defined on the left
rnal long-axis (b), apical 4-chamber (c) and apical 2-chamber (d) views and the
reen and the intersection points used for the fit of the two semi-circles are the blue
ferred to the web version of this article.)



Fig. 8. Example of initialisation. Yellow dots: Initial points; red: corresponding
ellipses; blue: ROI. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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or top side of the image respectively (see Fig. 7f–h). It is thus nec-
essary to define different regions according to the presence or ab-
sence of the left ventricle and of image information. The user is
thus asked to give two points corresponding to the position of
the valves and a mask is then created. This mask defines 3 regions
as follows:

� possible presence of the left ventricle and image information is
available (for example area 1 in Fig. 7b). In this region both the
data attachment term and the shape prior term are used for the
evolution of the level-set function.
� possible presence of the left ventricle but outside of the imaged

sector (for example area 2 in Fig. 7b). In this region only the
shape prior term is used for the evolution of the level-set
function.
� left ventricle is absent (for example area 3 in Fig. 7b). Two half

circles are fitted on the 4 intersection points between the evolv-
ing curve and the ROI (blue points in Fig. 7b), in order to get a
closed contour with similar shape as the left ventricle.

Note that in the particular case of parasternal short-axis views,
the area 3 is not used (as shown in Fig. 7a and e).
4.4. Initialization procedure

Finally, let us note that the adoption of a localized framework of
(Lankton and Tannenbaum, 2008) imposes an initialisation not too
far from the desired solution, in order to obtain meaningful results.
Table 1
Results of the fit of the different priors on the mean curve of the epicardial border in term
MAD are given in mm.

Hyperquadrics, Nh = 4 Hyperquadrics, Nh = 6

Dice MAD HD Dice MAD

Parasternal short-axis 0.991 0.244 0.731 0.994 0.168
(0.005) (0.189) (0.409) (0.002) (0.089)

Parasternal long-axis 0.995 0.11 1.15 0.992a 0.179a

(0.002) (0.058) (0.593) (0.005) (0.12)

Apical 4-chamber 0.991 0.266 1.73 0.984 0.498
(0.005) (0.119) (0.888) (0.024) (0.814)

Apical 2-chamber 0.991 0.258 1.54 0.986a 0.442a

(0.003) (0.078) (0.6) (0.016) (0.442)

a Difference was found significant (p < 0.001) when compared to hyperquadrics with
The following procedure is thus considered to initialize our algo-
rithm. The user is asked to position only six points. Five points
are first positioned near the epicardium. These 5 points are used
to fit an initial ellipse (one ellipse is uniquely defined by 5 points).
Note that for parasternal long-axis and apical views the two first
points are also used to define the ROI as explained in Section 4.3.
One last point is then positioned near the endocardium and is used
to obtain a second concentric ellipse. The accuracy to which these
initial points have to be placed to yield a satisfactory segmentation
corresponds to the size of the local data-attachment term of Lank-
ton’s energy functional and thus to the radius RN of the localizing
mask N(x). As mentioned in the previous sections, RN is set to 15
pixels in our application. These initial points are displayed in yel-
low in the segmentation examples given in the result section.
Fig. 8 shows an apical 4-chamber view with the 6 points given
by the user and the corresponding initial ellipses.

Note that providing 6 points is still a reasonable interaction,
since the cardiologist usually inputs 30 points (on average) to draw
the references. Thus this procedure divides the user inter-action by
5. Furthermore cardiologists do not have to be as accurate as they
would have to be if they were drawing the final contour. It can also
be noted that the proposed algorithm can be used as an initialisa-
tion for a tracking algorithm, such as the ones proposed in
Comaniciu et al. (2004) and Sühling et al. (2005), reducing thereby
the user-interaction (for instance 18 points are required to initial-
ize the tracking of the endocardium in Comaniciu et al., 2004).
5. Experiments

5.1. Experimental data

In this section, we will evaluate the performance of the pro-
posed algorithm on a dataset of echocardiographic images. The
dataset is composed of 80 images acquired from 20 healthy volun-
teers and taken at End-Diastole (ED) and End-Systole (ES), which
are the instants in the cardiac cycle used by cardiologists in routine
echocardiography for the diagnosis of pathologies. The data are
distributed as follows:

� 7 ED and 8 ES images in parasternal short-axis view,
� 13 ED and 11 ES images in parasternal long-axis view,
� 13 ED and 12 ES in apical 4-chamber view,
� 8 ED and 8 ES images in apical 2-chamber view.

The images in parasternal short-axis views were acquired using
a Toshiba Powervision 6000 (Toshiba Medical Systems Europe,
Zoetermeer, the Netherlands) equipped with a 3.75 MHz-probe,
while the scans from the other views were acquired using a GE
of Dice criteria, Hausdorff distance (HD) and Mean Absolute Distance (MAD). HD and

Ellipse 3rd order hyperbola

HD Dice MAD HD Dice MAD HD

0.599 0.988a 0.321a 0.974a 0.964a 0.963a 3.41a

(0.224) (0.004) (0.161) (0.379) (0.005) (0.386) (1.12)

1.7a 0.989a 0.269a 2.63a 0.986a 0.316a 2.29a

(0.968) (0.004) (0.104) (1.11) (0.004) (0.111) (0.75)

2.67 0.985 a 0.442a 2.3a 0.968a 0.91a 4.6a

(2.89) (0.005) (0.176) (1.08) (0.005) (0.207) (0.895)

2.4a 0.981a 0.573a 2.54a 0.966a 1a 5.86a

(2.16) (0.004) (0.118) (0.617) (0.006) (0.223) (1.29)

Nh = 4.



Table 2
Results of the fit of the different priors on the mean curve of the endocardial border in term of Dice criteria, Hausdorff distance (HD) and Mean Absolute Distance (MAD). HD and
MAD are given in mm.

Hyperquadrics, Nh = 4 Hyperquadrics, Nh = 6 Ellipse 3rd order hyperbola

Dice MAD HD Dice MAD HD Dice MAD HD Dice MAD HD

Parasternal short-axis 0.991 0.142 0.496 0.991 0.149 0.52a 0.984a 0.281a 0.872a 0.963a 0.604a 2.17a

(0.003) (0.063) (0.168) (0.002) (0.058) (0.128) (0.005) (0.157) (0.434) (0.004) (0.206) (0.84)

Parasternal long-axis 0.99 0.195 1.52 0.984a 0.309a 2.21a 0.984a 0.322a 2.65a 0.963a 0.674a 3.46a

(0.006) (0.115) (0.669) (0.012) (0.212) (1.08) (0.006) (0.137) (1.09) (0.029) (0.473) (1.97)

Apical 4-chamber 0.974 0.515 2.14 0.922a 1.62a 5.84a 0.974 0.514 2.18 0.961a 0.789a 4.23a

(0.018) (0.341) (1.17) (0.055) (1.1) (3.06) (0.009) (0.198) (0.597) (0.011) (0.296) (1.79)

Apical 2-chamber 0.96 0.809 3.1 0.906a 2.03a 6.8a 0.957 0.901 3.43a 0.933a 1.49a 8.7a

(0.019) (0.339) (1.21) (0.050) (0.951) (2.87) (0.010) (0.22) (0.866) (0.027) (0.706) (4.93)

a Difference was found significant (p < 0.001) when compared to hyperquadrics with Nh = 4.

Fig. 9. Example of results of fits of the different models with the mean expert curve for the 4 main views (from top to bottom: parasternal short-axis, parasternal long-axis,
apical 4-chamber, apical 2-chamber). The fitted model is (from left to right) a hyperquadric with Nh = 4, an ellipse and a 3rd order hyperbola. The blue contour corresponds to
the ROI, the green to the reference and the red to the fit result. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Vivid E9 system equipped with a 2.5 MHz M5S probe (GE Vingmed
Ultrasound, Horten, Norway).

5.2. Error measures

Manual segmentation drawn by three expert cardiologists was
used as reference. To evaluate segmentation results we measured
the correspondence between the detected contours and the man-
ual references given by the expert cardiologists. In particular we
adopt three different metrics, i.e. the Dice coefficient D (Dice,
1945), the Mean Absolute Distance MAD (expressed in mm)
(Comaniciu et al., 2004) and the Hausdorff distance HD (expressed
in mm) (Huttenlocher et al., 1993). If we call with R and S the ref-
erence contour and the detected one, and introduce the generic



Fig. 10. References from the two expert cardiologists in the different views. In red: expert 1, in green: expert 2, in cyan: expert 3 and in blue the region of interest. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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points r and s belonging to R and S respectively, then the Mean
Absolute Distance and the Hausdorff distance are defined as:

MADðR; SÞ ¼ 1
N

X
s

jdðs;RÞj; ð19Þ

and

HDðR; SÞ ¼maxðsupr2R dðr; SÞ; sups2S dðs;RÞÞ ð20Þ

where d(a,A) represents the shortest distance from the point a to
the curve A and N is the number of points in the contour. While
the MAD measures a global correspondence between the two con-
tours, the Hausdorff distance is well suited for evaluating the local
behavior of the algorithm. Moreover, by defining XS and XR the sets
of pixels within the segmented and the reference region, the Dice
coefficient writes as:

DiceðXR;XSÞ ¼
2AreaðXS \XRÞ

AreaðXRÞ þ AreaðXSÞ
: ð21Þ

This coefficient measures the correspondence between the two re-
gions, and varies from 0 to 1: it is 1 when the two regions are coin-
cident and 0 when they have null intersection. Note that all these
measures are only computed inside the ROI.

The method is also compared with a recent algorithm proposed
by (Hamou and El-Sakka, 2010), who uses optical flow and a shape
prior as external energies within a GVF snake framework. The prior
is obtained by fitting two 3rd order hyperbola, one on the 2/3
upper part of the contour and the other one on the 1/3 lower part.
This method was chosen for comparison purposes because it also
uses a geometrical shape prior that can thus be applied to any
view.
5.3. Shape prior validation

To validate the choice of our shape prior, we fitted four different
models (hyperquadrics with Nh = 4 and 6 terms, ellipses and the
3rd order hyperbola model of Hamou and El-Sakka (2010)) on
the mean curve of the manual references drawn by three expert
cardiologists on the dataset. The mean curve is obtained following
the method described in (Chalana and Kim, 1997). The results are
given in Tables 1 and 2 and some examples of fits are displayed in
Fig. 9.

From these two tables, we can see that the proposed hyperqua-
dric with Nh = 4 is able to model the heart boundaries with a good
accuracy. Indeed the MAD values are always below 0.9 mm for the
endocardial fit and below 0.3 mm for the epicardial fit, which
shows that the prior is on average really close to the cardiologist’s
references. If we consider the Hausdorff distance, which is more
sensitive to local errors, it can be observed that the maximal fitting
error is never larger than 3.1 mm for the endocardial border and
1.8 mm for the epicardial border. This indicates that even locally,
our model is close to the experts’ boundaries.

Tables 1 and 2 also indicate that the hyperquadrics with Nh = 4
always performs better than the one proposed by Hamou and
El-Sakka (2010). The Hausdorff distance and MAD values
associated to the proposed prior are on average 30% lower, which
shows that our prior is better suited for the modelling of heart
boundaries. This can be explained by the fact that hyperquadrics
can model asymmetries which is not the case for the 3rd order
hyperbola as it can be observed in Fig. 9. Note that the above
mentioned differences were found to be statistically significant
for any view with a level p = 0.001 using the Friedman rank test.

If we now compare hyperquadrics with Nh = 4 to ellipses, we can
draw almost the same conclusion except for the endocardial border



Fig. 11. Results of segmentation of our method on end-diastolic images. In blue the region of interest, in green the mean reference of the cardiologist, in red our contour. The
yellow dots are the 6 points given by a third expert. For each view, the MAD (in mm) computed between the segmentation result and the mean contour is given. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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in apical 2 and 4-chamber views, where hyperquadrics and ellipse
yield almost the same results. In particular, it may be noted that
even in parasternal short-axis views, where the heart boundaries
are usually approximated by ellipses, our model provides better re-
sults than ellipses. Since even in this view the expert contours are
not exactly ellipses, an elliptical prior will not be able to exactly
fit the small deviation from this model while hyperquadrics will.

Finally we can see that using hyperquadrics with Nh = 4 allows
to better model the heart shape than when using Nh = 6: the results
are indeed either very close (i.e. no significant statistical difference
at a level p = 0.001) or hyperquadrics with Nh = 4 performs better
when the difference is significant. Note also that Nh = 6 has the
drawback to yield a higher computational load since more param-
eters have to be estimated.

As a conclusion, we will set Nh = 4 for the segmentation exper-
iments to be described in the next sections, which is a good com-
promise between approximation accuracy and the computational
load of the algorithm.

5.4. Myocardial segmentation

We evaluate in this section the performance of our segmenta-
tion algorithm. The segmentation was performed using the param-
eters given in Section 4 and the 6 points required for the
initialisation were provided by a fourth cardiologist.

In Fig. 10, we show an example of the references from the three
experts in order to illustrate the inter-observer variability. We
show in Figs. 11 and 12 the corresponding segmentation results,
the reference contour and the error measures on end-diastolic
(ED) and end-systolic (ES) images respectively.

Tables 3 and 4 provide the mean and standard deviation of the
error measures obtained for the complete data set on epicardial
and endocardial borders, respectively. In each table, we give the er-
ror measures associated to the Inter-observer Distance (IOD, three
first columns), the proposed method (three middle columns) and
the error measures obtained by using Hamou’s method (three last
columns).

Concerning the proposed approach, the segmentation of the
epicardial border in the parasternal short-axis view (first line in
Table 3) yields a large value for the Dice (0.961) and accordingly
a small value for the MAD (1.07 mm). While the Dice and MAD
allow evaluating the global quality of the segmentation, the HD
provides an upper bound on the error and is 2.96 mm for this ori-
entation. The comparison of these values with the corresponding
IOD (three first columns in Table 3) allows interpreting them in a
relative perspective. For the parasternal short-axis view, it may
be observed that the Dice obtained using the proposed method is
slightly larger than the inter-observer Dice (0.952) and that the
MAD and HD are slightly lower than the corresponding inter-ob-
server values (1.41 mm and 3.62 mm, respectively). This thus indi-
cates that the segmentation provides consistent results in the
sense that the difference with the experts’ reference is comparable
to or even smaller than the distance between experts.

The results associated with the endocardial borders in the same
parasternal short-axis view (first line in Table 4), show that the
errors are in the same order and slightly larger: 0.926 for the Dice,



Fig. 12. Results of segmentation of our method on end-systolic images. In blue the region of interest, in green the mean reference of the cardiologist, in red our contour. The
yellow dots are the 6 points given by a third expert. For each view, the MAD (in mm) computed between the segmentation result and the mean contour is given. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Results of the segmentation of the epicardial border. The results of our method and the one described in Hamou and El-Sakka (2010) as well as the Inter-Observers Distance (IOD)
are shown in term of Dice criteria, Mean Absolute Distance (MAD) and Hausdorff distance (HD). The given values correspond to the mean (Standard deviation). HD and MAD are
given in mm.

IOD Our method Hamou

Dice MAD HD Dice MAD HD Dice MAD HD

Parasternal short-axis 0.952 1.41 3.62 0.961 1.07 2.96 0.936a 1.51a 4.35a

(0.017) (0.754) (1.86) (0.011) (0.518) (1.23) (0.028) (0.387) (1.23)
Parasternal long-axis 0.98 0.484 3.77 0.982 0.418 2.75 0.958a 0.991a 4.98a

(0.008) (0.197) (1.96) (0.006) (0.13) (0.686) (0.032) (0.651) (2.43)

Apical 4-chamber 0.952 1.41 4.64 0.959 1.18 4.41 0.948a 1.54a 6.23a

(0.023) (0.679) (2.06) (0.011) (0.287) (1.15) (0.015) (0.435) (1.59)

Apical 2-chamber 0.949 1.59 5.78 0.941 1.85 6.06 0.935a 2.06a 7.74
(0.024) (0.691) (1.83) (0.022) (0.694) (1.38) (0.019) (0.543) (2.02)

a Difference was found significant (p < 0.05) when compared to our method.
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1.25 mm for the MAD and 2.87 mm for the HD. These values are
also in the same order and slightly better than the corresponding
IOD (0.917 for the Dice, 1.46 mm for the MAD and 3.28 mm for
the HD). This is linked to the fact that the segmentation of the
endocardial border is generally less smooth than the epicardial
one and moreover implies exclusion of the papillary muscles pres-
ent in the image.

Considering now the 3 other orientations (lines 2–4 in Tables 3
and 4), a variation in the performances may be observed. The
results obtained for the parasternal views are better than the re-
sults corresponding to the apical view: considering the MAD and
the epicardial border (Table 3, fifth column), the observed values
are 1.07 mm and 0.418 mm for the parasternal short-axis and
long-axis views, whereas they are 1.18 mm and 1.85 mm for the
apical 4-chambers and 2-chambers views. The same trend holds
for the endocardial border (Table 4, fifth column) and the other er-
ror measures (Dice and HD, fourth and sixth columns). This situa-
tion is linked to the variations in image quality and content, as
illustrated in Figs. 11 and 12: while the regions corresponding to
the myocardium are well-defined in parasternal views (Fig. 11a
and b, Fig. 12a and b), in the apical views the region of the apex
is commonly located in the near field of the probe (Fig. 11c and



Table 4
Results of the segmentation of the endocardial border. The results of our method and the one described in Hamou and El-Sakka (2010) as well as the Inter-Observers Distance
(IOD) are shown in term of Dice criteria, Mean Absolute Distance (MAD) and Hausdorff distance (HD). The given values correspond to the mean (standard deviation). HD and MAD
are given in mm.

IOD Our method Hamou

Dice MAD HD Dice MAD HD Dice MAD HD

Parasternal short-axis 0.917 1.46 3.28 0.926 1.25 2.87 0.869a 2.01a 4.33a

(0.032) (0.658) (1.35) (0.040) (0.693) (1.4) (0.090) (1.24) (1.71)

Parasternal long-axis 0.959 0.792 3.85 0.955 0.818 3.32 0.918a 1.6a 6.13a

(0.023) (0.41) (1.62) (0.035) (0.559) (1.49) (0.050) (0.778) (2.08)

Apical 4-chamber 0.938 1.27 4.66 0.929 1.48 4.88 0.9a 2.2a 7.82a

(0.031) (0.535) (2) (0.026) (0.554) (1.47) (0.045) (1) (3.46)

Apical 2-chamber 0.907 1.9 5.91 0.887 2.44 6.77 0.836a 3.83a 10.6a

(0.051) (0.871) (2.16) (0.046) (0.946) (1.71) (0.065) (1.53) (4.31)

a Difference was found significant (p < 0.05) when compared to our method.

Fig. 13. Top row: long-axis and apical 2-chamber view images; bottom row: segmentation result on the same image as (a) and (b). Red: segmentation result; green: mean
reference contour; blue ROI. For each segmentation result, we give the MAD (HD) value in mm for the proposed method and the cardiologists. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

T. Dietenbeck et al. / Medical Image Analysis 16 (2012) 386–401 399
d, Fig. 12c and d) and is thus usually blurred, yielding missing
boundaries of significant size. In these cases, the shape prior is able
to cope with this missing information and to provide meaningful
results, but induces a lower accuracy.

The standard deviation for the epicardial border varies between
6 � 10�3 and 0.022 for the Dice criterion, 0.13 and 0.694 for the
MAD and 0.686 and 1.38 for the HD. These values are in the same
order than the standard deviation obtained for the experts’ outline
boundaries, showing that the segmentation results do not deviate
from the mean value more than the experts’ outlined boundaries
do. The same conclusion can be drawn for the endocardial detection
where the standard deviation varies between 0.026 and 0.046 for
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the Dice criterion, 0.554 and 0.946 for the MAD and 1.4 and 1.71 for
the HD.

To illustrate the quality of the results, we show in Fig. 13 one of
the best and one of the worst results of the algorithm, along with
the corresponding error measures (MAD and Hausdorff) and the in-
ter-observer variability. The good result was obtained from a par-
asternal long-axis image with a good image quality and where
both borders can clearly be seen. Indeed the contrast between
the myocardium muscle and the blood pool or the surrounding tis-
sue is very high (area 1 of Fig. 13a), there is no shadowing artifact,
yielding a proper segmentation.

On the other hand, when dealing with an image of bad quality,
where part of the myocardium is occluded (area 1 of Fig. 13b) or in
the near field area of the probe (area 2 of Fig. 13b), the segmenta-
tion is worsened as can be seen in the apical 2-chamber view
(Fig. 13d). Indeed in those area, the statistics of the inside and out-
side are identical and thus the level set does not evolve. Moreover,
the contour has been attracted to an intensity variation inside the
septum wall (area 3 of Fig. 13b), that is greater than the intensity
difference between the septum wall and the blood pool.

Consistently, it may be observed that the errors measures are
higher for the bad quality image. It is also to be noted that these
errors are on the same order than the inter-observer variability,
confirming the difficulty of such image and showing that the algo-
rithm provides results with an accuracy comparable to the one
associated to the cardiologists.

The results provided in the last three columns in Tables 3
and 4 allow comparing the performance of the proposed method
and Hamou’s method. These results show that our method
always yields better performance. Considering the mean differ-
ences between the error measures associated with the two ap-
proaches, the HD of our method is 1.5 mm lower and the
MAD is 0.5 mm lower which corresponds to at least a 25%
improvement of the result. This can be explained by the fact
that our shape prior is better suited for the modelling of the
heart boundaries as was shown in Section 5.3. This allows our
segmentation algorithm to better handle missing boundaries or
intensity inhomogeneities inside the myocardium. Note that all
these differences has been found to be statistically significant
at a level p = 0.05 using the Friedman rank test, except for the
Hausdorff distance evaluated on the epicardial contour in the
apical 2-chamber view, where the two methods performs
similarly.

It has to be noted that the six points used for the initialisation of
the algorithm often belong to the segmentation results (as shown
in Figs. 11 and 12). This can be simply explained by the fact that
the initial points are generally put by experts in regions where it
is easy to delineate the myocardial border, which corresponds to
regions with high contrast. Thus the evolving contour does not
move far away from those points.

As a final remark, let us note that the computational time
required for one segmentation varies between 30 s and 1 min, with
a non-optimized Matlab implementation ran on a 3.06 GHz Core
Duo laptop, with 3.9 GB RAM running Fedora 14.
6. Conclusion

In this work, we presented a new algorithm that allows seg-
menting the whole myocardium for the four main views used in
clinical routine. We approximated the heart boundaries by two
hyperquadrics that are then used as a shape prior for the evolving
contour. Our method showed good results when compared with
expert segmentation on a database composed of 80 images with
clinical interest. Further work will focus on the use of this algo-
rithm to segment whole sequences.
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Appendix A. Derivation of the Thickness term

Let us first recall our thickness energy:

Eð/Þ ¼
Z

X
/ðxþ RT NÞ � Hð/ðxþ RT NÞÞ � dð/ðxÞÞdx

¼
Z

X
Lðx;/ðxÞÞdx: ðA:1Þ

To minimize this energy and obtain the evolution term, we derive L
with respect to /, using variational calculus and the Euler–Lagrange
theorem:

@Lð/Þ
@/

¼ @

@/
/ðx�Þ � Hð/ðx�ÞÞ � dð/ðxÞÞ þ /ðx�Þ � @

@/
Hð/ðx�ÞÞ

� dð/ðxÞÞ þ /ðx�Þ � Hð/ðx�ÞÞ � @
@/

dð/ðxÞÞ; ðA:2Þ

where x⁄ = x + RTN.
As in Lankton and Tannenbaum (2008), we made the assump-

tion that @
@/ dð/ðxÞÞ ’ 0 near the zero-level and thus should not af-

fect the evolution process. Thus Eq. (A.2) rewrites as:

@Lð/Þ
@/

¼ @

@/
/ðx�Þ � dð/ðxÞÞ � ½Hð/ðx�ÞÞ þ /ðx�Þ � dð/ðx�ÞÞ�: ðA:3Þ

Since @
@/ /ðx�Þ ¼ 1 and

dð/ðx�ÞÞ ¼ 1; if /ðx�Þ ¼ 0
dð/ðx�ÞÞ ¼ 0; otherwise

�
() /ðx�Þ � dð/ðx�ÞÞ ¼ 0;8x� ðA:4Þ

we obtain

@Lð/Þ
@/

¼ Hð/ðxþ RT NÞÞ � dð/ðxÞÞ: ðA:5Þ

Thus we get

@Lð/Þ
@/

¼ 0 () Hð/ðxþ RT NÞÞ � dð/ðxÞÞ ¼ 0; ðA:6Þ

and the related evolution equation is thus given by

@/
@s
¼ �Hð/ðxþ RT NÞÞ � dð/ðxÞÞ: ðA:7Þ
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