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The segmentation and tracking of the myocardium in echocardiographic sequences is an important task
for the diagnosis of heart disease. This task is difficult due to the inherent problems of echographic
images (i.e. low contrast, speckle noise, signal dropout, presence of shadows). In this article, we extend
a level-set method recently proposed in Dietenbeck et al. (2012) in order to track the whole myocardium
in echocardiographic sequences. To this end, we enforce temporal coherence by adding a new motion
prior energy to the existing framework. This motion prior term is expressed as new constraint that
enforces the conservation of the levels of the implicit function along the image sequence. Moreover,
the robustness of the proposed method is improved by adjusting the associated hyperparameters in a
spatially adaptive way, using the available strong a priori about the echocardiographic regions to be seg-
mented. The accuracy and robustness of the proposed method is evaluated by comparing the obtained
segmentation with experts references and to another state-of-the-art method on a dataset of 15
sequences (’ 900 images) acquired in three echocardiographic views. We show that the algorithm pro-
vides results that are consistent with the inter-observer variability and outperforms the state-of-the-art
method. We also carry out a complete study on the influence of the parameters settings. The obtained
results demonstrate the stability of our method according to those values.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Clinical assessment of the left-ventricular function is essential
for the diagnosis of heart diseases. Amongst other imaging tech-
niques, ultrasound imaging is a popular tool since it allows real-
time visualization of the heart motion through the cardiac cycle.
However the extraction of functional parameters often requires a
manual delineation of the heart boundaries by an expert cardiolo-
gist. The inherent problems linked to echocardiography (e.g. pres-
ence of speckle, signal dropouts) make this task prone to errors,
subjective and time-consuming. In order to speed up the analysis
and decrease the variability in the delineation, the automatic iden-
tification and tracking of the myocardial borders is thus a very ac-
tive research area (Noble and Boukerroui, 2006; Casero and Noble,
2008; Nascimento and Marques, 2008; Carneiro et al., 2012). De-
spite these important research efforts, segmentation and tracking
in echocardiography still face noticeable limitations: as shown in
Noble and Boukerroui (2006), most of the studies deal with the
segmentation of the endocardium only and operate in one particu-
lar echocardiographic view. As a consequence, very few papers
concern the tracking of the whole myocardium (Dias and Leitao,
1996; Chalana et al., 1996; Zhou et al., 2004, 2005) or of the endo-
cardium in multiple views (Comaniciu et al., 2004; Casero and
Noble, 2008). In this context, the main applicative originality of
this study is the design of a methodology which allows to segment
and track the whole myocardium (i.e. endo- and epicardium) in the
main echocardiographic planes (i.e. parasternal short-axis, apical
4-chamber and apical 2-chamber views).

While in this work we focus on 2D segmentation, let us how-
ever note that epicardial segmentation has recently received more
attention in 3D echocardiography. In Zhu et al. (2010), an incom-
pressibility constraint was introduced in an active contour frame-
work to segment the whole myocardium in 3D echography. In
Orderud et al. (2008), coupled segmentation of endo- and epicar-
dial borders in 3D echocardiography was performed by using a Kal-
man filter-based tracking framework. Although 3D imaging is
receiving increasing attention, its use in clinical routine is still lim-
ited and usually coupled to 2D acquisitions which provide a better
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1 A preliminary version of this work appeared in Dietenbeck et al. (2013). In the
present paper, we describe in detail the formal aspects of the method, propose an
original way to set the weight between the different energy term. We also evaluate
the performances from a data set including 900 medical images and study the
robustness of the algorithm with respect to the hyperparameters.
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in-plane resolution. As compared to 3D, it should be noted that the
segmentation and tracking of 2D echocardiographic sequences
raise specific problems: the shape of the cardiac structures indeed
varies considerably according to the selected echographic acquisi-
tion view, and through plane motion yields shape variations that
may result in partial occlusion.

When segmenting sequences and tracking an object over time,
the knowledge of the underlying motion may bring valuable infor-
mation and help improving segmentation results and speed. In-
deed parts of the object that are hidden in a frame might be
visible in another one; temporal coherence implies that contours
in successive frames have similar shapes. In the context of echocar-
diography, many techniques have been proposed to include the
motion information in the tracking process: motion model
(Chalana et al., 1996; Nascimento and Marques, 2008; Leung
et al., 2011), dynamical shape priors (Bosch et al., 2002; Casero
and Noble, 2008), Kalman filtering (Jacob et al., 1999; Comaniciu
et al., 2004).

In Chalana et al. (1996), the authors proposed a coupled active
contours technique based on snakes to segment the whole myocar-
dium in parasternal short-axis sequences. In order to segment the
myocardium over the whole sequence, the authors have suggested
to minimize an energy composed of 2 terms: a gradient based term
and a motion continuity term which enforces the contour to con-
tract during systole and to expand during diastole. Nascimento
and Marques (2008) presented an algorithm for the tracking of
the endocardial boundary in apical 4-chamber sequences. The evo-
lution of the shape and motion parameters is performed on an edge
map using a bank of switched dynamic systems. To deal with pos-
sible outliers and multiple dynamics, a filtering algorithm was pro-
posed, which propagates the a posteriori density of the unknown
shape and motion parameters using a tree of probability data asso-
ciation filters. In the context of endocardial segmentation in 3D
echocardiography, Leung et al. (2011) proposed a motion model
based on PCA. After an alignment step of the dataset, Procrustes
analysis is performed in order to obtain the inter-frame motion
for all frames of all the sequences. The cardiac motion is modeled
as an affine transformation and PCA is then applied on the affine
transformation in order to learn the motion model. This PCA mo-
tion model is then introduced in the optical flow equation with
the assumption that the PCA parameters are constant in small re-
gions around the contour.

Jacob et al. (1999) incorporated shape PCA and Kalman filtering
in an active contour framework. Hereto, PCA is applied to a dataset
that describes heart shape variation for one specific acquisition
view. The measurement step is performed using a combination of
spatio-temporal noise reduction filtering and feature detection
from phase information. Comaniciu et al. (2004) developed an
information fusion framework to track the endocardium in para-
sternal short-axis and apical 4-chamber views. They formulated
the tracking framework as an information fusion problem using
Kalman filtering and strongly-adapted PCA and compute an uncer-
tainty measure from the optical flow. This allows to discard flows
estimated from uncertain areas such as drop-out regions while giv-
ing more importance to flows with high confidence. This technique
was further extended to the tracking of the whole myocardium by
Zhou et al. (2004, 2005), where the two borders were modeled as a
single point in the shape space. The coupled evolution of the con-
tours proved to be more robust in the tracking process since more
information is considered in the evolution process.

Bosch et al. (2002) used an adaptation of the active appearance
model (AAM) approach referred to as the active appearance motion
model (AAMM) to represent the shape and appearance of the endo-
cardium, as well as its motion. However their method was only
tested on apical 4-chamber views. Casero and Noble (2008) pro-
posed a framework to take into account the cyclic dynamics of
the heart shape. In this framework, PCA is applied on the dataset
of sequences, where the pose parameters are estimated using a
modified Procrustes alignment in order not to remove temporal
variability inside a sequence. Temporal models of the whole
myocardium in parasternal short-axis, apical 4-chamber, apical
2-chamber and apical 3-chamber views are then learned using this
technique.

The main drawback of these techniques is that the motion
knowledge is often learned via an interactive training process.
Though this training process can take place off-line, it involves con-
siderable effort and expertise. More importantly, since we are
interested in tracking the myocardium in multiple orientations, it
is difficult to make use of these approaches due to the complexity
of the heart motion. It would thus require to learn a motion model
per view as in Casero and Noble (2008). Furthermore, during the
learning process, one has to deal with the tedious dilemma of con-
sidering both healthy and pathological subjects, since the general-
ization power of the statistical model depends ultimately on the
database used in the training phase.

The following novelties are thus introduced in this paper.1 We
extend the previously described level-set formalism (Dietenbeck
et al., 2012) to the tracking of the whole myocardium in multiple ori-
entations (i.e. parasternal short-axis, apical 4-chamber and apical 2-
chamber views). To this end, we propose to constrain the evolving
contour in order to satisfy a level conservation hypothesis. This
assumption ensures that the zero-level of the implicit function
evolves according to the underlying motion field throughout the car-
diac sequence. We then express this constraint as a motion energy
and include it into the variational framework described in Dieten-
beck et al. (2012). The interest of such formulation stems from the
fact that this constraint does not require any learning step since
we are not using a motion model. Compared to previous works that
also use this assumption (Papin et al., 2000; Unal et al., 2005), our
formulation is set in an energy minimization process, thus ensuring
the convergence of the algorithm to a minimum. Moreover, the mo-
tion being estimated prior to the tracking, this formulation allows to
choose the motion estimation algorithm that provides the best re-
sults while keeping the same tracking algorithm. Furthermore, we
demonstrate the importance of this energy term by comparing track-
ing results with and without this term showing an improvement of
the results by 25% in terms of Modified Dice, Mean Absolute Distance
and Hausdorff Distance (whose definitions are given in Section 6.1).

Another novelty introduced in this article concerns the setting
of the hyperparameters. Indeed, most segmentation methods for-
mally rely on different terms reflecting the different types of infor-
mation driving the segmentation process (e.g. data attachment
term, shape prior, motion model, etc.). Tuning the weighting of
these terms represents a difficult task and is often done empirically
and in a global way. However this implies that the same weights
are applied over the whole contour, in regions presenting different
properties (such as different contrast) where the influence of each
parameter could be needed in a different way. To tackle this prob-
lem, we propose in this paper an original approach that makes use
of a very stronga prioriabout the image properties based on the
heart anatomy. In this context, we introduce spatially varying
parameters that allows modeling the problems linked to the differ-
ent image properties depending on the position along the myocar-
dium. More specifically, we divide each frame according to the
AHA nomenclature (Cerqueira et al., 2002) and apply different
weighting in each segment in order to take into account regions
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where the data information can be trusted or in the contrary where
the prior should preponderate. We then show that the use of such
an anatomical prior for the hyperparameters makes the segmenta-
tion more adaptive and robust to hyperparameters changes.

The paper is organized as follows. In Section 2, we recall the
general level-set framework and describe the energy functional
that will be minimized. In Section 3, we detail the level conserva-
tion hypothesis and the corresponding energy term. In Section 4,
we describe the setting of the hyperparameters and the image sub-
division according to the anatomical properties of the sequence.
Implementation issues are further discussed in Section 5. Section 6
is devoted to the results obtained from echocardiographic clinical
sequences. More specifically, we compared our results with ex-
perts references and a recent method proposed by Hamou and
El-Sakka (2010). We also evaluate the robustness of our algorithm
with respect to the hyperparameters. We also show the generic
nature of our method by applying it on 10 cardiac cine-MRI se-
quences and compared the obtained results with the references
from one expert. The main conclusions and perspectives are given
in Section 7.

2. Context

In this Section, we recall the level-set framework and the meth-
od we recently proposed for the segmentation of 2D echocardio-
graphic images and describe the algorithm used for the motion
estimation. Level-sets correspond to a class of deformable models
where the shape to be recovered is captured by propagating an
interface represented by the zero level-set of a smooth function
which is usually called the level-set function. The evolution of
the interface is generally derived through a variational formula-
tion: the segmentation problem is expressed as the minimization
of an energy functional that reflects the properties of the objects
to be recovered (Osher and Sethian, 1988).

2.1. Level-set framework

Let X 2 R2 denote the image space. In the level-set formalism,
the evolving interface C 2 R2 is represented as the zero level-set
of a Lipschitz-continuous function / : X! R. The problem of seg-
menting one object from the background is then handled by the
evolution of one level-set driven by the minimization of a specific
energy criterion; its steady state partitions the image into two re-
gions that delimit the boundaries of the object to be segmented.

2.2. Starting point: segmentation of echocardiographic images

In Dietenbeck et al. (2012), in order to segment 2D echocardio-
graphic images, we proposed to minimize the following energy:

E ¼ Ed þ Et þ Es; ð1Þ

where Ed represents the data attachment term, Et is a term that pre-
vents the contours from merging by imposing a minimum thickness
and Es embeds the shape prior.

2.2.1. Data attachment term
In order to cope with intensity inhomogeneities, a localized ver-

sion of the Chan-Vese model (Chan and Vese, 2001; Lankton and
Tannenbaum, 2008) was adopted as data attachment term Ed

which can be written as

Edð/Þ ¼
Z

X
dð/ðpÞÞ

Z
X

Bðp;qÞFðI;/;qÞdqdp; ð2Þ

where
FðI;/;qÞ ¼ Hð/ðqÞÞ � ðIðqÞ � uxÞ2 þ ð1� Hð/ðqÞÞÞ � ðIðqÞ � vxÞ2; Hð�Þ
is the Heaviside function and dð�Þ is the Dirac distribution. The func-
tion Bð�Þ is a binary mask corresponding to a user-defined neighbor-
hood of point p. The quantities ux and vx correspond to the localized
version of the inside and outside average intensity values measured
in the window BðpÞ. Minimizing Ed (2) with respect to / leads to the
following evolution equation:

fdðpÞ ¼
@/
@t
ðpÞ ¼ �dð/ðpÞÞ

Z
X

Bðp;qÞGðI;/;qÞdq; ð3Þ

where GðI;/;qÞ ¼ dð/ðqÞÞ ðIðqÞ � uxÞ2 � ðIðqÞ � vxÞ2
� �

.

2.2.2. Thickness term
Since we are dealing with the evolution of a shape bounded by

two contours, they might be both attracted by the same image fea-
ture, leading to the merging of both contours. To prevent this situ-
ation, the level-set is constrained locally to have a minimum
thickness RT through the following energy:

Etð/Þ ¼
Z

X
/ðpþ RT NÞ � ð1� Hð/ðpþ RT NÞÞÞ � dð/ðpÞÞdp; ð4Þ

where N corresponds to the inward normal of a point p 2 C. The
evolution term is obtained by deriving the Eq. (4) with respect to
/ and writes as:

ftðpÞ ¼
@/
@t
ðpÞ ¼ ð1� Hð/ðpþ RT NÞÞÞ � dð/ðpÞÞ: ð5Þ
2.2.3. Shape prior term
In Dietenbeck et al. (2012), the shape constraint is defined by

the following shape prior energy:

Esð/; kÞ ¼
Z

X
w2ðp; kÞ � kr/ðpÞk � dð/ðpÞÞdp; ð6Þ

where wðp; kÞ is the implicit function representing the distance of a
point p to the myocardial shape defined by two hyperquadrics of
parameters k. The minimization of (6) is addressed in a two phase
scheme. First, keeping k fixed, / is evolved according to the level-
set equation:

fsðpÞ ¼
@/
@t
ðpÞ ¼ dð/ðpÞÞ � hrwðp; kÞ;r/ðpÞi

kr/ðpÞk þ w2ðp; kÞ � j
� �

; ð7Þ

where j is the curvature of the evolving interface and h�; �i denotes
the scalar product. Then, keeping / fixed, k is updated through a
least square fitting of hyperquadrics on each border.

2.3. Motion estimation

We chose to use the motion estimation technique recently pro-
posed by Alessandrini et al. (2013). It is based on the monogenic
signal which extends the concept of analytic signal to multiple
dimensions (Felsberg and Sommer, 2001). The brightness consis-
tency assumption usually used in motion estimation (Optical Flow)
is replaced by a monogenic phase consistency which has proven to
be more robust in ultrasound imaging. The authors proposed a
multi-scale approach in order to be able to estimate large motion.
The motion is assumed to be locally affine and estimated for sev-
eral neighborhood size using the monogenic phase. As such, the re-
tained displacement estimate corresponds to the one with the
smallest residual error. More details on this approach could be
found in Alessandrini et al. (2013).

3. Motion term

In this Section, we describe how we use the motion information
to guide the evolution of the active contour. Previous studies have
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generally dealt with this approach in two different ways: either
considering motion as a data or as a prior knowledge.

When considering motion as a data, one can either estimate the
motion prior to the segmentation (Papin et al., 2000; Unal et al.,
2005; Herbulot et al., 2006) or perform a joint motion estimation
and segmentation (Cremers and Soatto, 2005; Brox et al., 2006;
Ehrhardt et al., 2008). In the latter, the authors usually make the
assumption of the intensity conservation (optical flow OF): the
intensity of an object remains constant over time. Both methods
have complementary advantages and drawbacks. While relying
on a priori estimated motion allows to select the best motion esti-
mation algorithm independently from the segmentation approach,
the joint approach allows the segmentation step to improve mo-
tion estimation and vice versa.

Another way to take advantage of the motion is to use it as a
prior. In this case the constrain is implicit since motion is never
estimated and never appears in the evolution equation. This prior
can be introduced either through a dynamical shape prior
(Cremers, 2006; Kohlberger et al., 2006; Leung et al., 2011) or by
constraining the variations of the level-set function / (Zhang and
Pless, 2005; Lynch et al., 2008). When using dynamical shape prior,
the model is often obtained through a learning step (e.g. PCA or
deep learning) which can be time consuming and requires experts
to manually outline the target object in a dataset. Furthermore, one
has to be very careful in the dataset construction in order not to
give too much weight to a particular shape while ensuring that
the training set is representative enough to cope with the variabil-
ity of the shapes to be segmented. Finally, in contrary to the myo-
cardial borders where geometrical prior could be used, the heart
motion is difficult to model through mathematical functions and
it would thus require to learn a motion model per view as in Casero
and Noble (2008). Note that some authors (Zhu et al., 2010; Lynch
et al., 2008) proposed to use a framework based on the incom-
pressibility constraint but this prior cannot be used in our case
since we are working in 2D and not in 3D.

Therefore, we have chosen to consider motion as information
and assume it has been estimated prior to segmentation. Indeed
this solution is flexible since at any time, we can select the motion
estimation method that produces the best results, while keeping
the same tracking algorithm which will be described in the sequel.

3.1. Energy formulation

The proposed motion term enforces the conservation of the le-
vel of the implicit function along the sequence. This can be written
as

/xuþ /yv þ /t ¼ 0() $/ � V ¼ 0; ð8Þ

where / is the level-set, $ ¼ ð@=@x; @=@y; @=@tÞ; /a ¼ @/=@a and
V ¼ ðu;v ;1Þ is the motion expressed in homogeneous coordinates.

This constraint is then expressed as an energy in a variational
formalism as follows:

Emð/Þ ¼
1
2

Z
X
ð$/ðpÞ � VðpÞÞ2 dp ð9Þ

in order to impose the level conservation hypothesis (8). Indeed one
can clearly see that the minimum of (9) is achieved when the levels
of / satisfy the constraint.

Note however that if we minimize the energy (9), we will not be
able to keep the signed distance property for / and thus may have
numerical instabilities. To tackle this problem, we note that we
only need the zero-level of / to satisfy the level consistency
assumption. Thus we rewrite (9) as:

Emð/Þ ¼
1
2

Z
X

dð/ðpÞÞð$/ðpÞ � VðpÞÞ2 dp; ð10Þ
where dð�Þ is the Dirac distribution allowing to consider only the
zero-level of /. As detailed in the sequel, we reinitialize periodically
/ to a signed distance map (Osher and Fedkiw, 2002).

The evolution equation is obtained by minimizing (10) with re-
spect to / and is given by:

fmðpÞ ¼
@/
@s ðpÞ ¼ dð/ðpÞÞðVTHð/ÞVþ$/TJ ðVÞVþ TrðJ ðVÞÞ$/T VÞ;

ð11Þ

where Hð/Þ is the Hessian matrix of /; J ðVÞ the Jacobian matrix of
V and TrðAÞ is the trace of the matrix A. s is an artificial time param-
eter that does not correspond to the ‘‘real’’ time dimension t. Note
that the complete derivation is given in Appendix A.

To segment complete echocardiographic sequences, we propose
to add the motion term (10) to the energy (1) described in
Dietenbeck et al. (2012) yielding the following general expression
for the energy:

E ¼ mdEd þ mtEt þ msEs þ mmEm; ð12Þ

where Ed represents the chosen data attachment term (2), Et is the
anti-collision term (4), Es embeds the shape prior (6) and Em is the
motion term (10). mi with i ¼ fd; s; t;mg are hyperparameters
weighting the influence of the different terms.

The level-set then evolves according to the following equation:

@/
@s
ðpÞ ¼ mdfdðpÞ þ mtftðpÞ þ msfsðpÞ þ mmfmðpÞ; ð13Þ

where fdð�Þ is the data attachment term given in Eq. (3), fsð�Þ is the
shape prior term given in Eq. (5), ftð�Þ is the thickness term given
in Eq. (7) and fmð�Þ is the motion term given in Eq. (11).

3.2. Implementation of the evolution equation

In order to avoid numerical instabilities, the derivatives of /
should be computed using Upwind schemes (Osher and Sethian,
1988). Considering (11), it can be seen that we have to compute
the first and second order derivatives of / with respect to each
dimension (x; y and t). Spatial derivatives can be easily computed
though one may need to impose boundary conditions in order to
compute the backward/forward derivatives on @X. On the other
hand, temporal derivatives (forward and 2nd order) require to
use /ðt þ 1Þ which is not available when segmenting the frame t.

A first solution would be to segment the whole sequence con-
sidering a 3D level-set: / : R2 � Rþ # R. However, this solution
has several drawbacks. First, due to the local nature of the data
attachment term, the initial contour on each frame has to be close
to the true myocardial boundaries. However, such an initialization
is not a trivial task when considering 2D echocardiographic se-
quences. A second drawback is that we would need to acquire
the complete sequence before being able to process it making
the algorithm not usable for on-line analysis.

This issue is solved by computing an approximation of / at t and
t þ 1 from the knowledge of /ðt � 1Þ and the available motion
field: starting from the segmentation result at t � 1, we extract
the points belonging to the myocardial boundary and track them
using the estimated motion at t � 1 and t to obtain the predicted
contour at t þ 1. From this contour, a signed distance map is com-
puted and used for the derivatives computation.

Note that the first derivatives of the velocity V are computed
using standard centered derivatives. This only implies that we
need to compute the motion at time t þ 1 as well.

4. Spatially varying hyperparameters

A common problem of active contour methods is the setting of
the hyperparameters weighting the different energy terms and
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their evaluation. Indeed, their values are often chosen empirically
in order to give the same importance to all the terms or in the con-
trary to let one term preponderate over all the others. However, in
echocardiography, it is interesting to vary the parameter influence
according to some image information. Indeed in regions with a
good contrast (e.g. area 1 in Fig. 1(c), area 2 in Fig. 1(f)), one may
trust the data information and thus drastically decrease the weight
of the shape prior one. Inversely, in regions where the object is not
clearly visible (e.g. area 1 in Fig. 1(f)), the shape prior should be
more important than the data information in order to keep mean-
ingful results.

A first way to adjust the hyperparameters, would be to use an
uncertainty measure as proposed by some authors (Comaniciu
et al., 2004; Zhou et al., 2004, 2005; Bruhn and Weickert, 2006;
Brox et al., 2010). In Comaniciu et al. (2004) and Zhou et al.
(2004, 2005), this measure is derived from the motion estimated
through optical flow in an information fusion context. Bruhn and
Weickert (2006) proposed to use the inverse contribution of a
point to the motion estimation energy as a confidence measure
at this point. Thus a point satisfying the conditions imposed by
the minimized energy will have a high confidence value and con-
versely. Brox et al. (2010) further extended this work to combine
the information from 3 different trackers. In addition to the point
correspondences obtained through motion estimation, SIFT and ac-
tive contours were also used to track the position of an object. The
confidence in the active contour result was obtained by consider-
ing the difference of log-likelihood within a small region around
a point. Indeed since the algorithm tries to maximize this differ-
ence, a low confidence value should be given to points where it
is close to 0. However, designing such an uncertainty measure
for echocardiography raises several difficulties, linked to the spec-
ificities of the cardiac images and the segmentation task. First,
when segmenting the parasternal short-axis view, the papillary
muscles (area 2 in Fig. 1(c)) have to be excluded from the segmen-
Fig. 1. Spatial division of the image. Top row: parasternal short-axis view, bottom row:
division of the hyperparameter map with a reference contour in red; (c), (f) correspond
tation although they share similar intensity properties with the
myocardium (Duan et al., 2010). Thus the data information should
not be taken into account in this region despite the good contrast
with respect to the blood pool. Such behavior clearly corresponds
to a priori information and thus cannot be reflected through im-
age-based confidence measures. Moreover, since we are interested
in segmenting the whole myocardium in multiple orientations, an-
other difficulty corresponds to the fact that image properties are
not the same if the endocardial or epicardial border is considered.
Indeed when segmenting the endocardium, the intensity of the
myocardial muscle is generally higher than the one of the blood
pool (area 1 in Fig. 1(c)). However, if we consider the epicardium,
we can have areas where the myocardium is brighter than sur-
rounding tissue (area 2 in Fig. 1(f)) or in the contrary darker (area
3 in Fig. 1(c)). In order to cope with these difficulties we propose a
solution consisting in building and using an a priori defined from
the anatomical knowledge and image formation, as detailed in
the following.

To tackle this problem, we take advantage of the available
strong a priori about the echocardiographic regions to be seg-
mented, in order to adjust the associated hyperparameters in a
spatially adaptive way. We propose to divide each frame in regions
with different image properties according to a generic anatomic
model designed for echocardiography. This division is indeed
based on the AHA nomenclature (Cerqueira et al., 2002) and shown
in Fig. 1. Each segment is then classified into one of three prede-
fined region:

� Balanced (BA): same importance is given to all terms. The
weights are thus all set to 1.
� Motion dominant (MD): more importance is given to the

motion term than to the shape prior. To this end, mm is increased
by 50% and ms is decreased by 50% with respect to the value of
the balanced region.
apical views. (a), (d) AHA nomenclature (from Cerqueira et al., 2002); (b), (e) spatial
ing frame.
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� Shape dominant (SD): the shape prior should preponderate over
the other terms. Similarly to the MD region, ms is increased by
50% and md is decreased by 50% with respect to the value of
the balanced region.

The set of parameters ðmd; ms; mmÞ corresponding to this classifi-
cation is given in Table 1. Note that the hyperparameter of the
thickness term mt is still set in a global way. Indeed, the thickness
term is used to avoid merging situation and should thus prepon-
derate regardless of the region properties.

The labeling of a region as BA, MD or SD follows well accepted a
priori knowledge on how US image contents varies in clinical data.
For example, the segmentation of the apex (region 3 in Fig. 1(d)) or
the papillary muscles (region 4 to 6 in Fig. 1(b)) requires the use of
a strong shape prior because of the absence or of misleading image
information. These regions are thus considered as shape dominant.
On the other hand, regions such as the septum (region 1 and 2 in
Fig. 1(d)) or the anteroseptal wall (region 2 in Fig. 1(b)) offer a good
contrast between the myocardium and surrounding tissue or the
blood pool and are thus labeled as motion dominant.

Table 2 summarizes for each border and each region the corre-
sponding classification. The stability of the segmentation results
with respect to these parameters is moreover quantitatively stud-
ied in Section 6.4.

5. Implementation issues

5.1. Level-set evolution

The implicit function is represented by a signed distance func-
tion / and is re-initialized every iteration using a fast marching
scheme (Sussman et al., 1998). In order to improve efficiency, we
only compute values of / in a narrow band around the zero le-
vel-set. The neighborhood BðpÞ defining the localization of the data
attachment term is chosen in our case as a circular neighborhood,
with radius RN chosen as the average half thickness of the myocar-
dium, i.e. 8 pixels in our case. In the same way, the value of RT in
the thickness term (4) was chosen to be set to 5 pixels. The justifi-
cation of these values can be found in Dietenbeck et al. (2012). The
hyperparameters weighting the different evolution terms (given in
Table 1 and 2) are kept fixed in all experiments.

The following procedure is used to initialize the algorithm:

� The user is asked to input 5 points on the epicardium and 1 on
the endocardium from which two concentric ellipses are fitted.
� The algorithm described in Dietenbeck et al. (2012) is used to

segment the first frame of the sequence.
Table 1
Value of the hyperparameters according to the segment classification.

Motion dominant Balanced Shape dominant

md 1 1 1/2
ms 1/2 1 3/2
mm 3/2 1 1

Table 2
Type of region for each view and border. The number attributed to a region correspond to
shape dominant region.

Region Parasternal short-axis view

1 2 3 4 5

Endocardium BA MD BA SD SD
Epicardium BA MD BA BA MD
� The subsequent frames are then automatically segmented using
the proposed algorithm.

Note that for the first frame of the sequence, the motion infor-
mation is not available and we thus use the algorithm proposed in
Dietenbeck et al. (2012) for the segmentation of one image. For the
subsequent frames, the motion can be estimated using the method
of Alessandrini et al. (2013) and all terms are then considered in
the evolution equation (as given in Eq. (13)).

5.2. Creation of a dynamic ROI in apical views

When dealing with apical views, we proposed in Dietenbeck
et al. (2012) to define a region of interest (ROI) where the myocar-
dium may be present in the image. Since we are dealing with se-
quences, we need to update this ROI in order to make it
correspond to the part of the image where the myocardium is vis-
ible. This task is performed as follows:

1. the 4 intersection points pt between the segmentation result
and the ROI at time t are computed (green points in Fig. 2(a)
and (b));

2. the estimated motion is applied to these points to get their
approximate position at t þ 1 denoted as ptþ1 (yellow points
in Fig. 2);

3. least square fitting is used to estimate the closest line to ptþ1

(blue line in Fig. 2(c));
4. a mask is created and used as a ROI at t þ 1.

This procedure is illustrated in Fig. 2.

6. Experiments

6.1. Comparison protocol

6.1.1. Experimental data
The reference dataset is composed of 15 echocardiographic se-

quences (5 per view) acquired from 11 healthy volunteers. The se-
quences were recorded using a GE Vivid E9 system equipped with a
2.5 MHz M5S probe (GE Vingmed Ultrasound, Horten, Norway).
Two experts manually outlined the myocardium on one cardiac cy-
cle per sequence resulting in the following reference distribution:

� 290 frames in parasternal short-axis view,
� 300 frames in apical 4-chamber view,
� 300 frames in apical 2-chamber view.

6.1.2. Error measures
To evaluate the accuracy of the algorithm, we measured the cor-

respondence between the tracking results and the mean myocar-
dial shape of the two experts contour obtained using the
procedure described in Chalana and Kim (1997). In particular we
adopt three different metrics, i.e. the modified Dice coefficient D�

(Dice, 1945), the Mean Absolute Distance MAD (expressed in
mm) (Comaniciu et al., 2004) and the Hausdorff distance HD
(expressed in mm) (Huttenlocher et al., 1993). If we call with R
the number given in Fig. 1. MD: motion dominant region; BA: balanced region; SD:

Apical views

6 1 2 3 4 5

SD MD MD SD BA MD
BA BA BA SD BA BA



Fig. 2. Example of a tracking of the ROI: (a) the image at t. Red: segmentation result; Blue: ROI; Green dots: pt; Yellow dots: ptþ1 (b) Zoom of the region delineated red in (a).
(c) ROI at t þ 1; Yellow dots: ptþ1; Blue: closest line to ptþ1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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and S the reference contour and the fitted one, and introduce the
generic points r and s belonging to R and S respectively, then the
Mean Absolute Distance and the Hausdorff distance are defined as:

MADðR; SÞ ¼ 1
T

XT

t¼1

1
NS

X
s2SðtÞ

j dðs;RðtÞÞ j ð14Þ

and

HDðR; SÞ ¼ 1
T

XT

t¼1

max supr2RðtÞ dðr; SðtÞÞ; sups2SðtÞ dðs;RðtÞÞ
� �

; ð15Þ

where dððpÞ;AÞ is the Euclidian distance from a point p to the curve
A and T is the number of frames in a given sequence. By defining XR

and XS as the sets of pixels within the segmented and the reference
region, the modified Dice coefficient is given by:

D�ðXR;XSÞ ¼
1
T

XT

t¼1

1� 2AreaðXSðtÞ \XRðtÞÞ
AreaðXRðtÞÞ þ AreaðXSðtÞÞ

� �
: ð16Þ

Moreover, the Williams test (Chalana and Kim, 1997) was used
to assess whether the results from our algorithm are within the
agreement limits of the experts’ manual references. When the
Williams index (WI) is greater or equal to one, it indicates that
our tracking results differ from the manual references as much as
they differ from one expert to another. In fact, whenever the upper
bound of the 95% confidence interval of the WI (WI95%) is greater
than one, there is no statistical evidence that the agreement
between our method and the reference observers is less than the
reference interobserver agreement. Further details regarding this
test can be found in the original work of Chalana and Kim (1997).

The method is also compared with a recent algorithm proposed
by Hamou and El-Sakka (2010). This method is close to ours since it
uses both a motion and a shape term in a GVF-based snake frame-
work. More specifically two edge maps are computed and used
alternatively to evolve the curve: the first one is based on the opti-
cal flow computed between two subsequent frames while the sec-
ond one is a shape prior based on 3rd order hyperbolas. The
parameters of the method were set to the value given by the
authors in their article.
6.2. Importance of the motion information

In order to show the efficiency of motion information in
improving segmentation results, we segmented the whole dataset
using three different methods:

1. Pure tracking: the contour points are displaced using the esti-
mated motion to track the myocardial border.

2. Multistatic segmentation: the algorithm described in Dieten-
beck et al. (2012) is used successively on each frame. The initial
contour at t þ 1 corresponds to the contour obtained after
tracking of the segmentation result t.

3. Our proposed method.

In all the methods, the monogenic motion estimation described
in Section 2.3 was used. The results obtained on the whole dataset
using these methods are given in Table 3 and a Friedman rank test
(p < 0:005, Chalana and Kim, 1997) was applied to compare the re-
sults obtained using the proposed method and the two other ones.

From these figures, we can see that the proposed method out-
performs the multistatic one because of the use of the motion term
which imposes a temporal coherence in the tracking. Indeed, the
motion can provide reliable information to follow moving struc-
tures or intensity changes in structures. Since this information is
not taken into account in the static segmentation algorithm de-
scribed in Dietenbeck et al. (2012), the proposed method manages
to segment these structures more robustly. Compared to the track-
ing algorithm, our method provides better results for all measures
with differences that are statistically significant. This improvement



Table 3
Results of the tracking of the myocardial border on the whole datase in term of modified Dice criterion (D�), Mean Absolute Distance (MAD) and Hausdorff distance (HD). The
values are given as mean (Standard deviation). HD and MAD are given in mm.

Epicardium Endocardium

D� MAD HD D� MAD HD

Tracking 3.57 � 10�2� 1.35� 4.38� 5.85 � 10�2� 1.47� 4.4�

(1.41 � 10�2) (0.545) (1.73) (2.14 � 10�2) (0.583) (1.7)

Multistatic segmentation 13.4 � 10�2� 4.41� 12.9� 17 � 10�2� 4.09� 12.9�

(12.1 � 10�2) (3.76) (10.6) (14.6 � 10�2) (3.2) (11.1)

Proposed method 3.11 � 10�2 1.16 3.48 5.19 � 10�2 1.33 3.68
(1.68 � 10�2) (0.577) (1.54) (2.26 � 10�2) (0.625) (1.51)

� The difference was found significant (p < 0:005) when compared to the proposed method.

Table 4
Results of the segmentation of the epicardial border. The results of our method and the one described in Hamou and El-Sakka (2010) as well as the Inter-Observers Distance (IOD)
are shown in term of modified Dice criterion (D�), Mean Absolute Distance (MAD) and Hausdorff distance (HD). The values are given as mean (Standard deviation). HD and MAD
are given in mm.

IOD Our method Hamou

D� MAD HD D� MAD HD D� MAD HD

Parasternal short-axis 2.71 � 10�2 0.77 2.30 3.76 � 10�2 1.07 2.96 9.43 � 10�2 � 2.48� 5.72�

(1.17 � 10�2) (0.34) (0.77) (1.64 � 10�2) (0.49) (1.10) (9.60 � 10�2) (2.45) (4.53)

Apical 4-chamber 3.22 � 10�2 1.50 4.27 2.92 � 10�2 1.25 3.84 10.6 � 10�2� 4.02� 10.1�

(1.12 � 10�2) (0.52) (1.49) (1.69 � 10�2) (0.63) (1.64) (7.16 � 10�2) (2.48) (6.1)

Apical 2-chamber 3.47 � 10�2 1.54 3.78 2.67 � 10�2 1.15 3.62 8.59 � 10�2� 3.28� 7.69�

(1.10 � 10�2) (0.41) (0.97) (1.52 � 10�2) (0.59) (1.65) (6.78 � 10�2) (2.14) (4.97)

� The difference was found significant (p < 0:005) when compared to our method.

Table 5
Results of the segmentation of the endocardial border. The results of our method and the one described in Hamou and El-Sakka (2010) as well as the Inter-Observers Distance
(IOD) are shown in term of modified Dice criterion (D�), Mean Absolute Distance (MAD) and Hausdorff distance (HD). The values are given as mean (Standard deviation). HD and
MAD are given in mm.

IOD Our method Hamou

D� MAD HD D� MAD HD D� MAD HD

Parasternal short-axis 7.32 � 10�2 1.53 3.38 5.03 � 10�2 0.99 2.66 10 � 10�2 � 1.81� 4.27�

(3.17 � 10�2) (0.70) (1.23) (1.85 � 10�2) (0.36) (0.87) (10.1 � 10�2) (1.62) (3.44)

Apical 4-chamber 6.33 � 10�2 1.80 4.86 5.61 � 10�2 1.61 4.31 13.3 � 10�2� 3.63� 10.8�

(2.80 � 10�2) (0.76) (1.54) (2.31 � 10�2) (0.66) (1.44) (7.09 � 10�2) (1.67) (5.69)

Apical 2-chamber 5.53 � 10�2 1.57 3.89 4.93 � 10�2 1.39 4.02 12.2 � 10�2� 3.33� 9.94�

(1.87 � 10�2) (0.47) (0.88) (2.51 � 10�2) (0.64) (1.58) (13.5 � 10�2) (3.15) (9.22)

� The difference was found significant (p < 0:005) when compared to our method.
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is particularly pronounced for the Hausdorff distance (HD) which is
improved by 1 mm and 0.7 mm for the epicardium and the endo-
cardium respectively. This is due to the fact that our method has
the advantage of using more information (i.e. intensity and shape)
which allows it to deal better with areas where the motion is not a
source of reliable information (such as low contrast or near-field
areas).

6.3. Myocardial tracking results

We evaluate in this section the performance of our segmenta-
tion algorithm. The comparison protocol is the one described in
6.1 and the inter-observer distance (IOD) reported in the tables
corresponds to the mean of the distances computed between the
references of each expert. Tables 4 and 5 provide the mean and
standard deviation of the error measures obtained for the complete
data set on epicardial and endocardial borders, respectively. In
each table, we give for each measure (D�;MAD;HD) the IOD (three
first columns), the error measures associated to the proposed
method (three middle columns) and to Hamou’s method (three last
columns). To illustrate the quality of our results, we show exam-
ples of good tracking results and the associated mean reference
contour of the cardiologists for parasternal short-axis (Fig. 3) and
apical (Fig. 4 and 5) views. We also give some of the worst tracking
results we obtained in Fig. 6 as well as the experts references on
these images.

Considering, in a first step, the segmentation of the epicardium
in parasternal short-axis view (first line in Table 4, Fig. 3), it may be
observed that our method provides small values for all the criteria
(D� = 3.76 � 10�2, MAD = 1.07 mm and HD = 2.96 mm). This means
that our segmentation results are close to the reference contours
both on a global (D� and MAD) and a local (HD) scale for this orien-
tation. When compared to the corresponding IOD (three first col-
umns in Table 4), it may be observed that the values obtained
with the proposed method are close but slightly higher than the in-
ter-observer ones (2.71 � 10�2, 0.77 mm and 2.3 mm for the mod-
ified Dice, the MAD and the HD respectively). This indicates that
the segmentation provides consistent results in the sense that
the difference with the experts reference is comparable to the dis-
tance between experts.



Fig. 3. Results of the tracking of the whole myocardium at 7 time points in the cardiac cycle in parasternal short-axis views. Green: mean reference of the cardiologists; Red:
our contour. For each sequence, the MAD (HD) computed between the segmentation result and the mean contour is given. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Results of the tracking of the whole myocardium at 7 time points in the cardiac cycle in apical 4-chamber views. Green: mean reference of the cardiologists; Red: our
contour and Blue: region of interest. For each sequence, the MAD (HD) computed between the segmentation result and the mean contour is given. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Results of the tracking of the whole myocardium at 7 time points in the cardiac cycle in apical 2-chamber views. Green: mean reference of the cardiologists; Red: our
contour and Blue: region of interest. For each sequence, the MAD (HD) computed between the segmentation result and the mean contour is given. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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The results associated with the endocardial borders in the same
parasternal short-axis view (first line in Table 5), show that the er-
rors are in the same order and slightly lower: 5.03 � 10�2 for the
modified Dice, 0.99 mm for the MAD and 2.66 mm for the HD. This
shows that due to the spatially varying weighting, we are able to
deal with both highly and poorly contrasted regions. Indeed, in
the septum, anteroseptal and anterior walls, the contrast between
the myocardium and the blood pool is usually high and we thus set
a higher importance to the data attachment term and the motion
term than to the shape prior. On the other hand, the papillary mus-
cle present intensity properties similar to the myocardium making
them difficult to separate using the data attachment term. More-
over they also have a through-plane motion which means that they
may not be present during the whole sequence. This, in turn, may



Fig. 6. Example of some of the worst case of tracking of the whole myocardium. Left column: references of the two experts; Right column: tracking result with our contour in
red, the mean cardiologist in green and the region of interest in blue. For each image, the MAD (HD) computed between the two experts references or between the
segmentation result and the mean contour is given. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 6
Williams Index (IW) and Confidence Interval (CI) for the epicardial border.

D� MAD HD

WI CI WI CI WI CI

Parasternal short-axis 0.734 [0.731; 0.736] 0.729 [0.727; 0.731] 0.755 [0.754; 0.757]
Apical 4-chamber 0.946 [0.942; 0.949] 0.989 [0.985; 0.993] 0.939 [0.936; 0.941]
Apical 2-chamber 1.187 [1.184; 1.190] 1.215 [1.212; 1.219] 0.938 [0.935; 0.941]

Table 7
Index of Williams (IW) and Confidence Interval (CI) for the endocardial border.

D� MAD HD

IW CI IW CI IW CI

Parasternal short-axis 1.045 [1.041; 1.048] 1.074 [1.071; 1.078] 0.99 [0.987; 0.992]
Apical 4-chamber 1.077 [1.074; 1.080] 1.060 [1.058; 1.063] 1.003 [1; 1.006]
Apical 2-chamber 1.11 [1.107; 1.113] 1.108 [1.105; 1.111] 0.916 [0.913; 0.919]
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imply a wrong motion estimation when these structures (dis)ap-
pear, making them difficult to follow with the motion term. By let-
ting the shape prior preponderate in this region, we are thus able
to cope with these difficulties. Note also that our results are still
in the same order and slightly lower than the corresponding IOD
(7.32 � 10�2 for D�, 1.53 mm for the MAD and 3.38 mm for the
HD).

If we now consider the other views (two last lines of Tables 4
and 5), we observe that in the parasternal short-axis view, the
myocardium is better tracked than in apical views (e.g. the MAD



Fig. 7. Influence of the algorithm’s parameters variation on the epicardial tracking performance. On the x-axis, 1 corresponds to the nominal value of the parameter and 0:5
(resp. 1.5) corresponds to a variation of �50% (resp. 50%) of the nominal value. Green: Data dominant region; Blue: Balanced region; Red: Shape dominant region. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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for the endocardial border is 0.7 mm smaller in parasternal short-
axis than in apical 4-chamber view). This can be explained by a
better image quality achieved in parasternal views, where the
myocardium is well-defined. On the other hand in apical views,
the apex, commonly located in the near field of the probe, is usu-
ally blurred and the lateral wall is often poorly contrasted, yielding
missing boundaries of significant size. In these cases, the multi-
scale motion estimator based on monogenic signal captures tex-
ture information at a coarse scale which combined to the shape
prior, allows to cope with this missing information and provides
meaningful results but induces a lower accuracy. It can also be
noted that the values obtained using the proposed method for
the apical views are slightly lower than the inter-observer ones:
here again the segmentation provides consistent results since the
difference with the experts reference is comparable to the distance
between experts.

The standard deviation for the epicardial border varies between
1.52 � 10�2 and 1.69 � 10�2 for D�;0:49 and 0:63 for the MAD and
1:1 and 1:65 for the HD. Though slightly higher, these values are in
the same order as the standard deviation obtained for the experts
outline boundaries, showing that the segmentation results do not
deviate from the mean value more than the experts’ outlined
boundaries do. The same conclusion can be drawn for the endocar-
dial detection where the standard deviation varies between
1.85 � 10�2 and 2.51 � 10�2 for D�;0:36 and 0:66 for the MAD
and 0:87 and 1:58 for the HD.

The figures provided in the last three columns of Tables 4 and 5
allow comparing the performance of the proposed method and Ha-
mou’s method (Hamou and El-Sakka, 2010). The results show that
our method yields better results (difference statistically significant
at a level p < 0:005 for the Friedman rank test). Considering the
mean differences between the error measures associated with
the two approaches, D� is on the average 6 � 10�2 (6.7 � 10�2)
lower, the MAD is 2.1 mm (1.6 mm) lower and the HD 4.6 mm
(4.7 mm) lower which corresponds to at least a 50% (30%) improve-
ment of the result for the epicardium (endocardium). This can be
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Fig. 8. Influence of the algorithm’s parameters variation on the endocardial tracking performance. On the x-axis, 1 corresponds to the nominal value of the parameter and 0:5
(resp. 1.5) corresponds to a variation of �50% (resp. 50%) of the nominal value. Green: Data dominant region; Blue: Balanced region; Red: Shape dominant region. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 8
Results of the segmentation on cardiac MRI sequences. The results of our method are
shown in term of modified Dice criterion (D⁄), Mean Absolute Distance (MAD) and
Hausdorff distance (HD). The values are given as mean (Standard deviation). HD and
MAD are given in mm.

D� MAD HD

Epicardium 3.2 � 10�2 (1.8 � 10�2) 1.05 (0.30) 3.28 (0.57)
Endocardium 6.1 � 10�2 (0.7 � 10�2) 1.29 (0.29) 3.58 (0.67)
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explained by the fact that our motion term is more accurate than
the classical OF hypothesis applied to B-mode images.

Tables 6 and 7 give the Williams Index (WI) and the 95% confi-
dence interval (CI) for the epicardial and endocardial borders
respectively. From these figures, we can see that except for the
tracking of the epicardial border in parasternal short-axis views,
the upper bound of the CI is always either higher than 1 or very
close. This shows that our algorithm is able to produce results that
differ from the manual references as much as they differ from one
expert to the other. Regarding the results of tracking of the epicar-
dium in parasternal short-axis views, several reasons can explain
these values. First, we can note that the experts are really close
to one another since the MAD value (0.77 mm) is halved when
compared to apical views (1.5 and 1.54 mm) with a low standard
deviation. The same trend can also be seen with the HD, showing
that the experts agree with each other on both a global and local
scale. Moreover, the mean difference between the IOD HD and
the one obtained with our method is 0.7 mm which roughly corre-
sponds to one pixel (the mean pixel size of the dataset is equal to
0.58 mm/pixel).

Fig. 6 shows some of the worst tracking results and illustrates
the difficulties encountered when tracking the myocardium. A
problem corresponds to the missing boundaries that are frequent
in apical views. For example in Fig. 6(b) and (d), the apex is blurred
and part of the epicardium is out of the field of view. Thus no image
or motion information can reliably drive the active contour, and



Fig. 9. Results of the tracking of the whole myocardium at 6 time points in the cardiac cycle in a cardiac MRI sequence. Green: experts reference; Red: our contour. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the contour evolves using only the shape prior. This, in turn, in-
duces a lower accuracy.

6.4. Hyperparameters study

The stability of the proposed algorithm was tested by studying
its robustness with respect to the variation of its parameters. The
model parameters considered in this study were the 9 hyperpa-
rameters given in Table 1. The range where the parameter influ-
ence is evaluated was defined as a �50% variation around the
aforementioned optimal parameters values. The whole dataset
was then segmented using the new value of one parameter while
keeping the others fixed to their optimal value. Fig. 7 and 8 show
the upper limit of the 95% confidence interval WI95% for each
parameter and for each view.

From these graphs, we can see that, except for the epicardial
border in parasternal short-axis view, WI95% is always either higher
than or close to one and remains stable according to the variation
of each of the parameters. This shows that the results from our
algorithm differ from the manual references as much as the ex-
perts do. Moreover we can see that WI95% is relatively constant
when varying a parameter value from �50% showing the robust-
ness of our algorithm. This can be explained by the fact that in con-
trary to the methods where the weight is the same on the whole
image, we only apply the hyperparameter locally. Thus a variation
of this value only impacts a few segment of the myocardium, leav-
ing the other segments unchanged.

6.5. Application to the segmentation of cardiac cine-MRI sequences

To show the generic nature of our motion prior term, the pro-
posed algorithm was also applied on 10 short axis cardiac MRI se-
quences chosen randomly from the public dataset of the
DETERMINE study (Kadish et al., 2009), available in the Cardiac
Atlas Project platform (http://www.cardiacatlas.org/, Fonseca
et al. (2011))’’. These sequences were acquired in different research
center on 1.5T MRI (Philips Medical Systems Achieva or Intera and
Siemens Avanto or Espree) and are based on steady-state free pre-
cession (SSFP) using a phased-array cardiac coil during repeated
breath holds. The exams were performed on patients with coro-
nary artery disease, mild-to-moderate left ventricle dysfunction
and infarct size of 10% of LV mass. One expert manually outlined
the myocardium on the whole dataset (225 images).

The proposed algorithm was then used to segment and track
the myocardium on the whole dataset and the obtained results
were compared to the manual reference. Table 8 provides the
mean and standard deviation of the error measures obtained for
the MRI data set on the epicardial and endocardial borders. Addi-
tionally, some tracking examples are shown in Fig. 9.

From this Table, we can see that the error measures are of the
same order as the one obtained on US sequences. Moreover if we
compare to the results reported in Table 3 of the review article
of Petitjean and Dacher (2011), we can see that we perform better
than most of the state of the art method (except for (Lelieveldt
et al., 2001) for both borders and for (Lynch et al., 2006a,b; Berbari
et al., 2007) for the endocardial border only). This shows that our
method is general enough to be able to handle both US and MRI
cardiac sequences thanks to the motion prior and the spatially var-
iable hyperparameters.

7. Conclusion

In this article, we have described a new motion prior energy
that when minimized imposes a level consistency to the level-set
function. This energy is then added to a recently proposed frame-
work for the segmentation and tracking of the whole myocardium
in multiple orientations. We have also proposed to take advantage
of the anatomical and image properties of echocardiographic data
to adjust the hyperparameters spatially in order to make the meth-
od more robust. The algorithm is then evaluated on a dataset of 15
sequences (’ 900 images) where the manual references of two ex-
perts are available and compared favorably to another recent
method (Hamou and El-Sakka, 2010) as well as on a dataset of
10 cine-MRI sequences to show its generic nature. We have also
shown that our method was robust to variations of the hyperpa-
rameters. Future work will focus on the tracking of the myocar-
dium in pathological cases and the extraction of clinical
parameters (e.g. strain, strain rate).
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Appendix A. Derivation of the motion term

A.1. Notation

Let $/ ¼ @/
@x ;

@/
@y ;

@/
@t

� �T
and V ¼ ðu;v ;1ÞT be the estimated motion

(in homogeneous coordinates), where T denotes the transposition.

In the following, the derivative will be noted as fa ¼ @f
@a. Let us

also define the Hessian matrix of / as

Hð/Þ ¼
/xx /xy /xt

/xy /yy /yt

/xt /yt /tt

0
B@

1
CA;

and the Jacobian matrix of V as

J ðVÞ ¼
ux uy ut

vx vy v t

0 0 0

0
B@

1
CA:
A.2. Derivation of the motion term

Let us recall the motion prior term (10):
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Emð/Þ ¼
1
2

Z
X

dð/ðpÞÞð$/ � VÞ2 dp

¼ 1
2

Z
X

dð/ðpÞÞð/t þ u/x þ v/yÞ
2 dp: ðA:1Þ

The evolution equation of the level-set is obtained by deriving
(A.1) with respect to / using the Euler–Lagrange method (Gout
et al., 2005). Considering a functional

Eð/Þ ¼
Z

X
Lðx; y; t; /;/x;/y;/tÞdp; ðA:2Þ

its derivative with respect to / is given by:

@E
@/
ð/Þ ¼ @L

@/
� @

@x
@L
@/x
þ @

@y
@L
@/y
þ @

@t
@L
@/t

 !
: ðA:3Þ

Here we have L ¼ 1
2 dð/Þð/t þ u/x þ v/yÞ

2 ¼ 1
2 dð/Þð/2

t þ u2/2
xþ

v2/2
y þ 2ðu/x/t þ v/y/t þ uv/x/yÞÞ. Thus

@L
@/
¼ 1

2
d0ð/Þð/t þ u/x þ v/yÞ

2 ’ 0; ðA:4Þ

@L
@/x
¼ dð/Þðu2/x þ u/t þ uv/yÞ; ðA:5Þ

@L
@/y
¼ dð/Þðv2/y þ v/t þ uv/xÞ; ðA:6Þ

@L
@/t
¼ dð/Þð/t þ u/x þ v/yÞ ðA:7Þ

and

@

@x
@L
@/x
¼ dð/Þðu2/xx þ u/xt þ uv/xy þ 2uxu/x þ ux/t

þ uxv/y þ uvx/yÞ; ðA:8Þ

@

@y
@L
@/y
¼ dð/Þðv2/yy þ v/yt þ uv/xy þ 2vyv/y þ vy/t

þ uyv/x þ uvy/xÞ; ðA:9Þ

@

@t
@L
@/t
¼ dð/Þð/tt þ u/xt þ v/yt þ ut/x þ v t/yÞ: ðA:10Þ

where the assumption is made that @
@/ dð/Þ ’ 0 near the zero-level

and thus should not affect the evolution process (as in Lankton
and Tannenbaum, 2008).

The derivative of (A.1) with respect to / thus writes

@Em

@/
ð/Þ ¼ �dð/Þðu2/xx þ u/xt þ uv/xy þ 2uxu/x þ ux/t

þ uxv/y þ uvx/y þ v2/yy þ v/yt þ uv/xy

þ 2vyv/y þ vy/t þ uyv/x þ uvy/x þ /tt þ u/xt

þ v/yt þ ut/x þ v t/yÞ ðA:11Þ

@Em

@/
ð/Þ ¼ �dð/Þðu2/xx þ 2uv/xy þ v2/yy þ 2u/xt þ 2v/yt

þ /tt þ uðux/x þ vx/yÞ þ vðuy/x þ vy/yÞ þ ut/x

þ v t/y þ ðux þ vyÞð/t þ u/x þ v/yÞÞ: ðA:12Þ

@Em

@/
ð/Þ ¼ �dð/Þ VTHð/ÞV þ $/TJ ðVÞV þ TrðJ ðVÞÞ$/T V

� �
;

ðA:13Þ

where TrðJ ðVÞÞ denotes the trace of the matrix J ðVÞ.
The evolution equation is then given by:

fm ¼
@/
@s
¼ � @Em

@/
¼ dð/Þ VTHð/ÞV þ $/TJ ðVÞV þ TrðJ ðVÞÞ$/T V

� �
ðA:14Þ
where s is an artificial time parameter (that does not correspond to
the ‘‘real’’ time dimension t).
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