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Abstract

This paper presents a novel algorithm that extends HARP to handle 3D tagged MRI images. HARP results were
regularized by an original regularization framework defined in an anatomical space of coordinates. In the meantime,
myocardium incompressibility was integrated in order to correct the radial strain which is reported to be more chal-
lenging to recover. Both the tracking and regularization of LV displacements were done on a volumetric mesh to be
computationally efficient. Also, a window-weighted regression method was extended to cardiac motion tracking which
helps maintain a low complexity even at finer scales. On healthy volunteers, the tracking accuracy was found to be as
accurate as the best candidates of a recent benchmark. Strain accuracy was evaluated on synthetic data, showing low
bias and strain errors under 5 percents (excluding outliers) for longitudinal and circumferential strains, while the second
and third quartiles of the radial strain errors are in the (−5%, 5%) range. In clinical data, strain dispersion was shown to
correlate with the extent of transmural fibrosis. Also, reduced deformation values were found inside infarcted segments.
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1. Introduction

The non invasive quantification of local myocardial me-
chanics remains a central challenge for diagnosing heart
diseases. Among motion and deformation indexes, strain
is a prominent measure. Indeed, strain is less sensitive to
tethering from surrounding segments, and is therefore pre-
ferred for detecting abnormal segments (Voigt and Flach-
skampf, 2004).

Tagged MR is a classical technique used to quantify
regional myocardial deformation. It creates non-invasive
markers that move with the myocardium along the car-
diac cycle. Tracking these markers (tags) allows precise
recovery of myocardial deformation. The introduction of
CSPAMM (Fischer et al., 1993) efficiently improved tag
fading issues that were traditionally hampering the anal-
ysis of tagged MR data in diastole. Breathing artifacts
producing unaligned slices have been corrected by the in-
troduction of navigator-driven protocols (Rutz et al., 2008)
and the move to fully 3D acquisitions. In (Rutz et al.,
2008), a rapid CSPAMM-based 3D protocol was proposed
by performing three acquisitions sequentially with line tag
preparation in each orthogonal direction. Each of these
three acquisitions is performed in a single breath-hold of
18 heartbeats duration and retrospectively corrected for
misalignment using a respiratory navigator.

1.1. State of the art in tagged MR quantification

Since its introduction in the late eighties, cardiac tagged
MR has triggered the development of a wide spectrum of
strain quantification methodologies. Some of them were
specifically tailored for tagged MR. Some others are generic
methodologies that were readily applied to tagged MR im-
ages.

1.1.1. Generic methods

Among generic methods, intensity-based registration
by optical flow or Free Form Deformation (FFD) were suc-
cessfully applied to tagged MR images. Chandrashekara et
al. (Chandrashekara et al., 2004) applied multilevel FFD
to the post-processing of tagged MR. De Craene et al. (De
Craene et al., 2012) applied temporal diffeomorphic FFD
to the analysis of tagged MR, resulting in a temporal
regularization of the motion field. Shi et al. (Shi et al.,
2012) proposed a FFD-based tracking method that com-
bines CINE and tagged MR images to analyze cardiac de-
formation, with the possibility of adding incompressibility
into the framework. Prince et al. (Prince and McVeigh,
1992) developed an optical flow method with considera-
tions about compensating the “tag fading” effect. Flo-
rack et al. (Florack et al., 2007) developed an optical flow
method on phase images that automatically selects an op-
timal scale.

Generic registration methods are robust and have been
applied to a large number of cardiac modalities. Most of
registration-based methods were applied to a grid tagged
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image combining all tagging acquisitions in a single se-
quence. However, they do not take advantage of separate
directional encodings often performed in tagged acquisi-
tions. Tagged MR images are acquired in several direc-
tions that provide different “channels” for recovering the
motion field. This feature can potentially overcome the
aperture problem inherent to monochannel optical flow or
any parametric registration method. By analogy, this is
equivalent to reducing a color image to a black-and-white
picture where any segmentation task will not exploit color
differences between the objects in the scene.

1.1.2. Tagged MR-specific methods

All methods that exploit tagged MR specificities can be
divided into four categories. These categories are rather
hermetic, opening up the possibility of combining their
respective advantages. Also, most of these methods were
only applied to 2D tagged MR and adaptations to 3D are
currently in an early stage (Wang et al., 2013)(Rutz et al.,
2008), or focus on multiplanar (Pan et al., 2005)(Liu et al.,
2012) rather than the volumetric acquisition protocol of
Rutz et al. (Rutz et al., 2008).

Detection-based methods. A first option retained by Young
et al. (Young et al., 1995) and Amini et al. (Amini et al.,
2001) was to first detect the tags planes or intersections
and then to track these extracted features. Amini et al. (Amini
et al., 2001) detected tag planes by B-spline surfaces and
tracked sparse myocardial beads. Young et al. (Young
et al., 1995) used an active contour model to track the
tag lines in images and then interpolated a 3D dense mo-
tion by a finite-element model. In (Young, 1999), the
tagging stripes were detected by a Gaussian-shaped filter
and matched by a line searching algorithm. The obtained
sparse displacements were further regularized by a finite-
element model defined in the local radial, longitudinal and
circumferential directions. Chen et al. (Chen et al., 2010)
applied Gabor filters to detect tag line intersections which
are further used to initialize a meshless deformable model.

HARP. HARP (Osman et al., 1999) is another tagged
MR-specific method that became a reference in this modal-
ity. A first step in HARP is to compute phase images.
They are computed by applying a band-pass filter in the
Fourier domain. Back to the spatial domain, the track-
ing is then performed on phase (rather than intensity)
images. The main rationale for substituting intensity by
phase is to improve robustness against tag fading. The
overall tracking procedure can be interpreted as an opti-
cal flow performed jointly on two “channels”, each channel
corresponding to one tagging direction. Because the num-
ber of tagging directions equals the number of components
of the displacement field, the aperture problem simply dis-
appears. The estimation of HARP displacements was fur-
ther improved when introducing the CSPAMM protocol,
enabling the use of a wider k-space HARP filter (Kuijer

et al., 2001). However, unlike traditional optical flow algo-
rithms, HARP does not integrate any spatial regulariza-
tion. As strain is computed from the spatial derivatives of
trajectories, one expects that outliers in the reconstructed
motion field will yield high errors in the strain field.
The HARP community also proposed several strategies for
addressing the limited capture range of tagged images.
Indeed, the periodicity of tagged images prevents to re-
cover displacements exceeding one-half of the tag spac-
ing. Osman (Osman et al., 1999) proposed an initializa-
tion scheme by sorting the list of points to be tracked.
Points with expected smaller motion are tracked first and
the tracking result is used as initialization to neighboring
points. This concept was further developed in (Liu and
Prince, 2010) where the order is optimized through solving
for the shortest path on a graph where each edge has a cost
related to phase continuity between neighboring voxels in
the image. However, the integration of an order to the
point-wise tracking is somehow dangerous. Indeed, “tag
jump” errors will be propagated to all subsequent points
in the list.

SinMod. The SinMod (Arts et al., 2010) algorithm has re-
cently emerged as an alternative to HARP. In the local en-
vironment of each pixel, the intensity distribution is mod-
eled as a sinusoid wave orthogonal to the tagging direction.
Then both the local frequency and the inter-frame phase
shift are computed. The ratio of these two quantities gives
an estimate of the displacement when combining the dif-
ferent tagging directions. SinMod was shown to be as fast
as HARP and have advantage in accuracy and robustness
to image noise. Yet, the ability of tracking large myocar-
dial motion (superior than half tag spacing) remains to be
further verified. Also, the absence of any spatial regular-
ization makes strain estimates very sensitive to tracking
errors when extracting spatial derivatives.

Gabor-based methods. Qian et al. (Qian et al., 2011) pro-
posed to compute strain directly from the image without
tracking the myocardial motion. The idea is to filter the
intensity images through a Gabor filter bank for retrieving
the local orientation and spacing of the tags. This gives a
direct access to the spatial derivatives of the displacement
field, without the need of computing displacements. This
concept was further extended by Kause et al. in (Kause
et al., 2014) where the deformation gradient was directly
evaluated from the frequency covector fields. The authors
claim that it makes their strain estimate independent to
any tracking result. However, they overlook that a track-
ing is always required for reporting strain evolution at all
time points per material point.

1.2. Open question and contributions of this paper

The extension and combination of 2D tagged MR quan-
tification methods to the 3D protocol of Rutz et al. (Rutz
et al., 2008) remains an open challenge in the tagged MR
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community. Several attempts have been made for extend-
ing HARP to 3D. They are all based on interpolating 2D
HARP results from sparse short- and long-axis images
(SLIs). Pan et al. (Pan et al., 2005) obtain 3D motion
by Gaussian diffusing 2D motions from SLIs on a mesh
model. Liang et al. (Liang et al., 2007) use a nonuniform
rational Bspline volumetric model to densely interpolate
the 2D motions from SLIs. Liu et al. (Liu et al., 2012) ap-
ply the divergence-free vector spline as the interpolation
kernel. Recently, SinMod was also extended to volumet-
ric tagged MR in a straightforward manner (Wang et al.,
2013), but without embedding any spatial regularization.

This calls for a novel method that integrates the bene-
fits of available strategies in the literature. From registration-
based approaches, regularization strategies have the po-
tential to extract robustly motion fields from noisy im-
age data. From tagged MR-specific techniques, extract-
ing phase images and taking full benefit from the multi-
channel nature of the input data are crucial aspects to
preserve in the design of novel 3D tagged MR quantifi-
cation tools. In this paper, we present a HARP-based
method suitable for fast quantification of 3D radial, lon-
gitudinal and circumferential strains on volumetric tagged
MR images (Rutz et al., 2008). Our main contributions
are twofold.

First, we propose to add a spatial regularization step
implemented in an anatomical space of coordinates to a
straight extension of HARP to 3D. This regularization
is performed on a volumetric mesh of the left ventricle
(LV) to maintain a low computational cost. The volumet-
ric mesh and anatomical coordinates follow the local di-
rections (radial, longitudinal and circumferential). Local
windows are defined on the LV myocardial domain, and
HARP results are regularized by affine transformations
in anatomical coordinates at a regional level. Heyde et
al. (Heyde et al., 2013) introduced the concept of anatom-
ical regularization in ultrasound but implemented it by
resampling the images and doing the tracking in anatomi-
cal coordinates. For this application, this would introduce
non-linear distortions in the shape of the tags.

Second, we propose to enforce myocardial incompress-
ibility by correcting strain values in the radial direction
only. Indeed, this direction is by experience the most chal-
lenging to recover meaningful strains. This is likely due
to the fact that the number of tags from endocardium to
epicardium is small in the radial direction compared to cir-
cumferential and longitudinal directions. The divergence-
free constraint is imposed at a regional level through the
direct application of the divergence theorem.

Besides, we quantitatively compared two phase compu-
tation schemes: the original HARP phase and the Mono-
genic phase (MP) as introduced by (Alessandrini et al.,
2012) to the field of tagged MR quantification. As ear-
lier, the impact of using HARP vs. MP was evaluated on
synthetic tagged MR images.

Additionally to synthetic images, our method has been
evaluated in vivo on healthy volunteers and patients. For

healthy volunteers, we compare our accuracy against man-
ually tracked trajectories on a public database (Tobon-
Gomez et al., 2013). This evaluation includes the com-
parison to state-of-the-art tracking algorithms as avail-
able from (Tobon-Gomez et al., 2013). On clinical cases,
we quantified the ability of our software to discriminate
healthy from diseased myocardium by comparing our re-
sults between a control group and an ischemic group show-
ing typical subendocardial late-enhancement MR.

2. Data Acquisition & Preprocessing

2.1. 3D Tagged MR acquisition

The 3D tagged MR images were acquired on a Philips
3T Achieva System (Philips Healthcare, Best, The Nether-
lands) and a 32-channel cardiac coil. A survey scan was
used to define the position and axis of the LV. The im-
ages were obtained using a 3D CSPAMM sequence (Rutz
et al., 2008) based on three volumetric datasets with si-
nusoidal line tagging preparation (tag distance=7 mm) in
three orthogonal directions (3DTAG, GyroTools, Zurich,
Swiss). The reader is referred to (Rutz et al., 2008) for
the details of the tag preparation pulse. For data acquisi-
tion, a modified hybrid multishot, segmented EPI sequence
was employed (TR/TE= 7.0/3.2 ms), with ramped flip
angles (19-25◦) to prevent tag fading during the cardiac
cycle. Images were acquired with a reduced field-of-view
(108x108x108 mm) enclosing the LV. The acquisition ma-
trix size was 28x14x14. The voxel size for each of the
three datasets was 0.96x0.96x7.71mm. The number of re-
constructed frames was 24, and the temporal resolution
ranged from 30ms to 45ms. An echo-navigator technique
was used to compensate for respiratory motion. As the
three orthogonal sequences are aligned, the whole acquisi-
tion can be interpreted as a multi-channel sequence of 3D
volumes where at each voxel, three intensities are available
(one for each direction).

2.2. Segmentation of LV

LV segmentation was done manually. The LV was seg-
mented at end-diastole only (last frame). Segmenting the
first frame is not feasible because tissue and blood are
both tagged and cannot be distinguished. For segmenta-
tion purposes, an untagged image was produced by tak-
ing modulo for the complex image obtained from HARP
bandpass filtering (described later in Sect. 3.3.3) on each
channel. Untagged images from the 3 channels were then
averaged to produce a single image with isotropic voxel
resolution. A template mesh was first positioned on the
untagged image by clicking landmarks: 1 landmark was
placed in the apex, 4 in the basal planes and 1 at mid-
level in the septum. The template mesh was rotated and
scaled to match the set of input landmarks. The mesh
was then converted to an implicit function and adjusted
by adding pointwise penalties to the algorithm described
in (Mory et al., 2012).
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2.3. Mesh model

The output of the segmentation is a closed surface mesh
that encompasses LV endocardium and epicardium. The
purpose of the resampling procedure (described in Section.
2.3.1) is twofold. First, the surface mesh is converted to
a volumetric dense mesh that also contains an inner layer
between endocardium and epicardium. Second, the LV do-
main is sampled regularly in radial, longitudinal and cir-
cumferential directions. This facilitates regularizing the
displacement field on the mesh topology.

2.3.1. Resampling rules and directional indexes

The resampling is done by casting rays from the long
axis to the endocardial and epicardial surfaces as described
in Fig. 1. The mid part of the LV is discretized using a
cylindrical sampling. The long axis is sampled uniformly.
From each long axis point, Nc rays are then cast with equal
angular binning in the plane orthogonal to the long axis.
For each ray, the intersection with the surface mesh gives
two points: one at endocardium and one at epicardium.
The average of these two points produces the inner layer.
Similarly, apical and basal parts are sampled in a spher-
ical manner. Azimuth and elevation angles are binned
uniformly (see Fig. 1(a) and 1(b)).

Following this discretization scheme, each point in the
generated mesh can be associated to three indexes. First,
each point is either endocardial, mid or epicardial. Second,
each point is intercepted by a single ray in the circumfer-
ential direction. Finally, each ray is either casted from
one source point on the long axis, being indexed from the
sequential cylindrical discretization or angled with respect
to the long axis, being indexed from the sequential spher-
ical discretization (Fig. 1(a)). In this way, every node in
the mesh is related to three indexes (mr,ml,mc) where
md ∈ [1, Nd] and Nd (d=r,l,c) is the number of divisions
in each of the three directions (radial, longitudinal or cir-
cumferential). Then the spatial coordinates of every node
can be written as P(mr,ml,mc).

In our experiments, Nr = 3, Nl = 35 and Nc = 50.
As the number of tags is low in the radial direction, we
chose to use only three radial layers. Nl and Nc were
chosen to produce isotropic cells in the volumetric mesh,
which implies similar cell resolutions in longitudinal and
circumferential directions.

By convention, radial indexes are ordered from endo-
cardium to epicardium, longitudinal indexes are ordered
from apex to base, and circumferential indexes go counter-
clockwise when looking from the apex.

2.3.2. Local directions

Based on the mapping P (Sect. 2.3.1), local radial, lon-
gitudinal and circumferential directions êr(x), êl(x) and
êc(x) can be computed by normalizing the edges of the
volumetric mesh. However, this set of directions would not
be orthogonal. As it will later be seen that the orthogo-
nality assumption must be verified at all locations except

(a) Long axis view (b) Short axis view

Figure 1: Resampling of LV surface mesh to volumetric dense mesh

the purely apical ones during the regularization procedure
(Sect. 3.3.5), local directions were defined as follows.

For a non-apical mesh point x whose directional in-
dexes are (mr,ml,mc), its longitudinal direction can be
computed as:

el(x) = P(mr,ml,mc)− P(mr,ml − 1,mc) if ml > 1

êl(x) =
el(x)

‖el(x)‖
(1)

Its circumferential direction êc(x) was then computed sim-
ilarly but further corrected to be orthogonal to êl(x):

ec(x) = P(mr,ml,mod(mc + 1, Nc))− P(mr,ml,mc)

if ml > 1

êc(x) =
ec(x)−

(
ec(x) · êl(x)

)
êl(x)∥∥ec(x)−

(
ec(x) · êl(x)

)
êl(x)

∥∥
(2)

Finally, the radial direction êr(x) was obtained from the
cross product between êc(x) and êl(x).

êr(x) = êc(x)× êl(x) if ml > 1 (3)

For purely apical points (ml = 1), êc(x) has no defini-
tion due to the singularity on the apex. êr(x) was defined
in a similar manner by normalizing the edges in the radial
direction. êl(x) was computed by taking the mean of its
Nc nearest neighbors located in the same radial layer and
normalizing the result.

2.3.3. Anatomical coordinates

Our goal is to map Cartesian (x) to anatomical (r, l, c)
coordinates while satisfying the following properties:

∀x ∈ Ω, ∇r(x) = êr(x),

∇l(x) = êl(x),

∇c(x) =
1

ρ(x)
êc(x) .

(4)

where Ω is the LV myocardium domain, and ρ(x) is the
distance of point x to the LV long axis.

For each direction d ∈ {r, l, c}, we start from a group
of reference points {Xd

0} where the anatomical coordinates
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are set to be zero. For longitudinal coordinates, the apex is
taken as a reference point. In the circumferential direction,
points located at the center of the local windows (described
later in Sect. 3.3.2) are chosen as reference points. Finally,
for the radial direction, {Xd

0} is defined as the set of mid-
layer points. From {Xd

0}, the coordinates are obtained by
curvilinear integration. Taking one direction d ∈ {r, l, c},
d(x) is defined as

d(x) =

{
minCd(x)

∫
Cd(x)

êd(s) · ds, if d = r, l

minCd(x)

∫
Cd(x)

1
ρ(s) êd(s) · ds, if d = c .

(5)
where Cd(x) is a geodesic path on the mesh starting at a
node ∈ Xd

0 .
The r(x) and l(x) coordinates are computed globally

for the whole LV. However, practically, the c(i)(x) coordi-
nate is defined locally for each window i (described later
in Sect. 3.3.2) in order to ensure its continuity over the
window domain. Examples of r, l over the whole myocar-
dial domain and c(i) over the local window i are plotted in
Fig. 2.

(a) r(x) (b) l(x)

(c) c(i)(x)

Figure 2: Anatomical coordinates {r, l, c(i)} defined on the LV volu-
metric mesh (in (c), c(i)(x) has no definition in the surrounding grey
region since it is beyond the range of the current window i)

.

3. Tracking methodology

After the pre-processing step, the LV is tracked frame-
by-frame backwardly. As a first step, the HARP tracking
method is used to generate initial estimates of the mo-
tion field. HARP-based displacements are further regu-
larized following a parametric motion model defined in an
anatomical space of coordinates. Myocardial incompress-
ibility is integrated as a soft constraint that helps retrieve
robust radial strain estimations. For achieving fast conver-
gence of the optimization, a window-weighted regression

Figure 3: Pipeline of the proposed tracking method

technique is used to decompose the complex global prob-
lem into simpler local ones. Also, a multiscale framework
was developed where strong regularization is imposed at
first and gradually decreased.

3.1. HARP tracking

HARP (Osman et al., 1999) estimates the displace-
ments by first computing two phase image sequences and
then performing a non-regularized optical flow on these
two channels.

3.1.1. Phase computation

HARP (Osman et al., 1999) pre-processes the orignal
intensities and computes phase images. This pre-processing
is meant to compensate for tag fading artifacts inherent to
tagged MR images.

As a preliminary, it should be noted that the acquired
3D sequences do not have isotropic spacing (inter-slice
thickness is about seven times the in-plane pixel spacing).
Therefore, although the combination of the three channels
can be seen as 3D (since the three stacks are acquired in
orthogonal directions), we opted for computing phase im-
ages in 2D slice by slice.

HARP phase is computed from the result of a band-
pass filter in the frequency domain. As in our case, the
tagging directions coincide with the m and n axes of each
2D slice, the 2D ellipsoid-shape bandpass filter fk(ω) used
in (Osman et al., 2000) is therefore defined as

fk(ω) =

{
1, if δk(ω) ≤ 1

e−(δk(ω)−1)2/(2σ2
h), otherwise

(6)

with

δk(ω) =


√

(ωm−ω0)2

(0.5ω0)2 +
ω2
n

ω2
0

, if m tagging direction√
(ωm)2

ω2
0

+ (ωn−ω0)2

(0.5ω0)2 , if n tagging direction

(7)
where ω = [ωm ωn]T , and ω0 is the spatial tagging fre-
quency. In essence, fk(ω) is an elliptic-shape bandpass
filter centered at the spatial tagging frequency, with a
smooth transition around the ellipse border as shown in
Fig. 4. In our experiments, we set σh to 0.05 as suggested
in (Osman et al., 2000). It can be seen from Eq. 7 that
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the filter keeps positive frequencies only, around the first
harmonic peak in the frequency domain (Osman et al.,
1999).

(a) (b)

(c) (d)

(e) (f)

Figure 4: Bandpass filter used in HARP and MP with vertical
line tagging (tagging direction in m-axis). ((a): Ik(m,n); (b):
|F{Ik(m,n)}|; (c): isovalues of δk(ω) in HARP; (d): fk(ω) along
ωm in HARP; (e): isovalues of δmono

k (ω) in MP; (f): fmono
k (ω)

along ωm in MP)

Back to the spatial domain, the phase ak(m,n) is then
computed as

ak(m,n) = arg(F−1{F{Ik(m,n)}fk(ω)}) . (8)

Since the 2D slices are sparsely distributed, the in-slice
phase needs to be interpolated to 3D. In our experiments,
the complex image F−1{F{Ik(m,n)}fk(ω)} was linearly
interpolated before extracting the phase. This avoids ar-
tifacts related to phase wrapping discontinuities.

In this paper, we compare the phase definition of HARP
with the alternative brought by the monogenic signal the-
ory (Alessandrini et al., 2013) with a proposed bandpass
filter. We opted for a symmetric ellipsoid-shape bandpass
filter similar to the one used in HARP except that it con-
sists of two ellipses centered at ±ω0 and therefore is sym-
metric. This profile is obtained by modifying the δk(ω)
distance function introduced in Eq. 6 by:

δmonok (ω) =


√

(|ωm|−ω0)2

(0.5ω0)2 +
ω2
n

ω2
0

, if m tagging direction√
(ωm)2

ω2
0

+ (|ωn|−ω0)2

(0.5ω0)2 , if n tagging direction

(9)

Replacing δk(ω) by δmonok (ω) in Eq. 6 produces the band-
pass filter as shown in Fig. 4(e) and 4(f). Both phase
definitions are compared experimentally in Sect. 5.1.

3.1.2. Dense motion estimation

HARP tracking can be seen as a multi-channel opti-
cal flow on the true phases (phases without wrapping arti-
facts) (Osman et al., 1999). Here we denote the true phase
by φk(x) with k = 1, 2, 3 in the 3D case where k indexes
the channel number (tagging direction). The tracking of a
material point from t → t−1 can be solved iteratively by
updating the displacement ũt

ũt ← ũt + vt (10)

where vt is computed by solving the following 3x3 linear
system:

A · vt = b (11)

A =

 ∇φt−1
1 (x + ũt)

T

∇φt−1
2 (x + ũt)

T

∇φt−1
3 (x + ũt)

T

 (12)

b =

 φt1(x)− φt−1
1 (x + ũt)

φt2(x)− φt−1
2 (x + ũt)

φt3(x)− φt−1
3 (x + ũt)

 (13)

Spatial derivatives were corrected when the phase gets
wrapped from −π to π (Osman et al., 1999). Similarly, b
was computed from the wrapped phases ak as in (Osman
et al., 1999).

3.2. Motion model

Let ut
(i)(x) be a local parametric motion within a win-

dow i (described later in Sect. 3.3.2) from t → t−1.
As tracking aims at recovering both motion and deforma-
tion values, we opted for an affine transformation in the
anatomical coordinates {r, l, c(i)} that combines transla-
tions, stretching (or shortening) and shearing. This 12-
parameter model was defined in the anatomical system of
coordinates introduced in Sect. 2.3.2 and 2.3.3:

u
(i)
t (x) = L(i)

r (x)êr(x) + L
(i)
l (x)êl(x) + L(i)

c (x)êc(x)

with L(i)
r (x) = arrr(x) + arll(x) + arcc

(i)(x) + br

L
(i)
l (x) = alrr(x) + alll(x) + alcc

(i)(x) + bl

L(i)
c (x) = (acrr(x) + acll(x) + accc

(i)(x) + bc)ρ(x)

(14)

The set of zero-order {br, bl, bc} (related to motion), first-
order {arr, all, acc} (related to radial, longitudinal and cir-
cumferential strains) and first-order {arl, arc, alr, alc, acr, acl}
(related to shearing) parameters fully define the motion in
the local window i.

The tracking accuracies between using the above mo-
tion model and a simplified one without the shearing el-
ements {arl, arc, alr, alc, acr, acl} will be further discussed
in Sect. 5.1.2.

6



3.3. Regularization by window-weighted regression

Mcleod et al. (McLeod et al., 2013) integrated local
window functions defined in prolate spheroidal coordinates
within the polyaffine registration framework. In this sec-
tion, we will explain how we define the window functions
similarly and further couple it with the motion model
(Sect. 3.2) for regularizing HARP results.

3.3.1. The Partition of unity method

As introduced in (Makram-Ebeid and Somphone, 2007),
a global regression problem can be simplified by solving a
set of local ones with the help of the Partition of unity
technique.

A partition of the LV domain is defined by a set of
control points {xi} and by window functions ϕ(i)(x) as-
sociated to each control point. The latter are assumed to
satisfy the following conditions:

arg max
x

ϕ(i)(x) = xi, ∀i

ϕ(i)(x) ≥ 0, ∀x ∈ Ω,∑
i

ϕ(i)(x) = 1 ∀x ∈ Ω.

(15)

where Ω is the LV myocardium. The computation of ϕ(i)(x)
is described later in Sect. 3.3.2. The regularized displace-
ment ut(x) is computed as

ut(x) =
∑
i

ϕ(i)(x)ut
(i)(x) (16)

where ut
(i)(x) is the motion model introduced in Sect. 3.2.

Under Eq. 15 and 16, if given certain measurement
motion estimates ũt(x) (HARP tracking results in Sect.
3.1.2) and confidence weight w̃t(x) (described later in Sect.
3.3.3), the sum of the local errors E(i) then gives an upper
bound to the global error E.

E =

∫
Ω

w̃t(x)

∥∥∥∥∥ũt(x)−
∑
i

ϕ(i)(x)ut
(i)(x)

∥∥∥∥∥
2

dx

≤
∑
i

∫
Ω

w̃t(x)ϕ(i)(x)
∥∥∥ũt(x)− ut

(i)(x)
∥∥∥2

dx =
∑
i

E(i)

(17)

The reader is referred to (Makram-Ebeid and Somphone,
2007) for further details. Bounding all E(i) to a small
enough quantity also minimizes the global error, thus mak-
ing it possible to decompose a global optimization problem
into regional ones that are easier to solve.

3.3.2. Window functions

The LV domain was first divided into small windows
as illustrated in Fig. 5. The purpose of this section is to
define how ϕ(i) functions are defined for a given partition
of the LV domain. This partition is obtained using a multi-
resolution strategy as explained in Section 3.5.

Given a partition of the LV, control points were de-
fined as the center of these windows. Window functions
are centered at each control point and must decrease when
the distance to the control point increases. Since we opted
for tracking a volumetric mesh and defined a system of
coordinates on the mesh, the geodesic distance was chosen
rather than the Cartesian one for computing the window
function. Considering a standard Gaussian kernel involv-
ing the geodesic distance ξ between x and the center of
the window xi

g(i)(x) =
1

2πσi
e
− ξ(x,xi)

2

2σi
2 (18)

To use a single σ parameter for various window sizes, we
expressed σi as

σi = σχi (19)

where χi is computed for each window by averaging its
circumferential and longitudinal extents. In Eq. 19, σ is an
auxiliary parameter named as kernel bandpass. It controls
how neighboring windows will overlap for producing the
final displacement estimate in Eq. 16. The influence of σ
on the final tracking accuracy is further discussed in Sect.
5.1.1. Note that the σ parameter is normalized and can
thus be used across several window resolutions (see Sect.
3.5).

Window functions are defined by normalizing g(i) val-
ues for summing to 1:

ϕ(i)(x) =
g(i)(x)∑
j g

(j)(x)
. (20)

As seen in Sect. 2.3.2, êc(x) is not defined for purely
apical points. Therefore these points should be excluded
from the regularization process. This is done by setting
all ϕ(i)(x) to 0 for those points.

3.3.3. Confidence weight

It was shown in Eq. 8 that the HARP phase is com-
puted by taking the argument of the complex signal. In
fact, computing its amplitude

∣∣F−1{F{Ik(m,n)}fk(ω)}
∣∣

(note asMk) corresponds to untagging the original image
(Osman et al., 1999). This information can be used as a
confidence weight map w̃t(x) : a high value of Mk indi-
cates a higher probability of belonging to the myocardium,
hence an increased confidence in the HARP result ũt(x).
In our implementation, the confidence weights w̃t(x) were
obtained by averaging the three channels and taking the
geometric mean over the two frames t and t− 1:

w̃t(x) =

√√√√1

3

(
3∑
k=1

Mt
k(x)

)
· 1

3

(
3∑
k=1

Mt−1
k (x + ũt(x))

)
,

(21)

3.3.4. Incompressibility constraint

Imposing a zero divergence is a classical way of en-
forcing incompressibility. This constraint can be imposed
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either as a soft (global) or hard (local) level. In our case,
computing the divergence locally would require complex
spatial derivations of the r(x), l(x) and c(i)(x) functions.
Therefore, we preferred to impose incompressibility within
each window, enforcing the overall volume change to be
zero. For doing so, we applied the divergence theorem. If
∂S(i) stands for the surface enclosing the window i, the
outward flow of ut

(i)(x) through ∂S(i) equals the volume
integral of the divergence over that window. Therefore im-
posing myocardial incompressibility is equivalent to forc-
ing the flow through ∂S(i) to be zero. For each local win-
dow i defined on the volumetric mesh, ∂S(i) consists of
quadrilaterals. Each of the quadrilateral j can be repre-
sented by its center xj , its normal (pointing outward) ~nj
and its area Aj . The flow of ut

(i)(x) through ∂S(i) can
then be written as

Qt
(i) =

∑
j∈∂S(i)

ut
(i)(xj) ·Aj~nj

=
∑

j∈∂S(i)

∑
d=r,l,c

L
(i)
d (xj) (êd(xj) ·Aj~nj)

(22)

Because L
(i)
d (xj) is linear in {bd, ard, ald, acd} (d = r, l, c),

so is Qt
(i). Imposing Qt

(i) = 0 amounts to add a linear
equality constraint. In other words, arr can be written as a
linear combination of all other parameters {br, bl, bc, arl, arc,
alr, all, alc, acr, acl, acc}.

3.3.5. Solving local system and reforming global motion

Let us show how, with the motion model defined in
Sect. 3.2, we can obtain a quadratic form for the local
E(i) errors. As {êr(x), êl(x), êc(x)} define an orthogonal
basis, we can project HARP displacements ũt(x) on this
basis:

ũt(x) =
∑
d=r,l,c

pd(x)êd(x)

with pd(x) = ũt(x) · êd(x)

(23)

From Eq. 14 and 23, E(i) in Eq. 17 can be expanded as:

E(i) =

∫
Ω

ϕ(i)(x)w̃t(x)

∥∥∥∥∥∥
∑
d=r,l,c

(
L

(i)
d (x)− pd(x)

)
êd(x)

∥∥∥∥∥∥
2

dx

(24)

Using orthogonality between {êr(x), êl(x), êc(x)}, it is easy
to further obtain:

E(i) =

∫
Ω

ϕ(i)(x)w̃t(x)
∑
d=r,l,c

(
L

(i)
d (x)− pd(x)

)2

dx (25)

Because L
(i)
d (x) is linear in bd, adr, adl and adc (d =

r, l, c), E(i) is a quadratic form and can be minimized by
solving a linear system. Since the radial strain is reported
to be the most challenging to recover, we integrated the in-
compressibility constraint and in Eq. 25 we substituted arr

by the linear combination of {br, bl, bc, arl, arc, alr, all, alc,
acr, acl, acc}. The minimization of E(i) then gives a 11x11
linear system which is solved by pseudo-inverse. As a fi-
nal step, arr was computed from the linear combination
mentioned above. Once the local motions ut

(i)(x) are com-
puted, the global motion is reformed by Eq. 16.

3.4. Computing apex motion a posteriori

Since purely apical points do not take part in the reg-
ularization process (see Sect. 3.3.2), we need to compute
their motions by other ways. For each of the Nr purely
apical points, its displacement was computed by averaging
the final motions ut(x) of its Nc nearest neighbors located
in the same radial layer.

3.5. Multi-resolution framework

Figure 5: Definition of LV local windows and an example of the
window function for the red-circled window

We need to define a partition of the LV domain at in-
creasing levels of resolutions. For simplification purposes,
we partitioned the LV using a single parameter: the num-
ber of divisions in the circumferential and longitudinal di-
rections.

Additionally, to obtain a more homogeneous mix be-
tween windows, they were shifted by half their circumfer-
ential extent over contiguous longitudinal layers (see Fig.
5 for an illustration).

For improving the convergence of the motion and de-
formation coefficients, we started with 3 divisions in lon-
gitudinal and circumferential directions. This number was
then doubled over the two next resolutions.

At each resolution, the HARP tracking (Sect. 3.1.2)
was initialized with the result of the previous resolution
before proceeding to the regularization described earlier
in this Section.

The influence of the number of resolutions n on the
final tracking accuracy is further discussed in Sect. 5.1.1.

4. Generation of synthetic images

For evaluating the impact of several parameters on
tracking and strain accuracy, a simple strategy was imple-
memented for generating synthetic images. The pipeline
is shown in Fig. 6 and detailed in this Section. The re-
quired inputs are 1) one sequence of 3D+t tetrahedral LV
meshes (noted as St where t is the frame index) as made
publicly available from (De Craene et al., 2013); and 2)
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Figure 6: Pipeline for generating synthetic tagged MR sequence

three CSPAMM images with orthogonal tagging orienta-
tions (noted as IN−1

k where N is the number of frames
and k ∈ {1, 2, 3}), as made publicly available from (Tobon-
Gomez et al., 2013). The LV meshes used here come from
an electro-mechanical model (Marchesseau et al., 2013)
which takes into account fiber distribution. Fibers have a
varying orientation from endocardium to epicardium that
follows values published in the literature. The quasi in-
compressibility of the myocardial motion is ensured. How-
ever, on the simultation generated in (De Craene et al.,
2013), the apex was fixed using a hard constraint on dis-
placements. This limits torsion on this simulation.

4.1. Registering LV meshes to real tagged MR images

We assume that the last frame in the image sequence
and the last electro-mechanical mesh both correspond to
the end of diastole. As described in Sect. 2.2, the un-
tagged images were computed for the last frame and aver-
aged to an isotropic volume. This volume was segmented
by first extracting the surface of the last mesh of the
electro-mechanical model as the template and manually
position/deform it through the same segmentation tech-
nique as in Sect. 2.2. The segmentation result will be
noted as R. A Thin plate spline (TPS) (Bookstein, 1989)
transformation T was then computed between the tem-
plate and R. This transformation was then applied to
all meshes St, creating a new sequence of tetrahedral LV
meshes S̃t = T (St).

4.2. Warping real tagged MR images by forces computed
from meshes

Synthetic images were obtained by deforming the last
frame images IN−1

k to match the sequence of S̃t meshes.
This was done in two steps. First, a TPS transformation
T ′

: S̃N−1 7→ S̃t was computed for extending displace-
ments defined at the mesh nodes only to the whole volume
and warping the IN−1

k image. Second, this image was cor-
rected inside the myocardial for removing TPS-induced

artifacts as follows. For every voxel in Itk, we checked if

it belonged to the myocardial domain S̃t. If it did, we
found the corresponding tetrahedral cell and the barycen-
tric coordinates of the voxel within that cell. We then
interpolated the intensity of IN−1

k for the same cell and
barycentric coordinates. This intensity was used instead
of the one obtained through TPS warping.

5. Results

5.1. Synthetic images

A synthetic tagged MR image sequence was generated
for a normal geometry using the approach described in
Sect. 4. Fig. 7 shows the ground truth meshes and the
synthetic images. The grid pattern was obtained by mul-
tiplying the three input channels (with orthogonal line tag-
ging pattern) in a single image after resampling. This re-
sampled image is used for visualization only and not for
processing.

The tetrahedral simulation mesh at the last frame was
resampled to a hexahedral mesh as described in Sect. 2.3.
Over this procedure, special attention was paid to have
all nodes of the resampled mesh within the elements of
the original mesh. Using barycentric coordinates of the
simulation meshes, node displacements can be interpo-
lated at all times on the resampled mesh, hence provid-
ing ground truth displacement values. After propagating
the last mesh through tracking, measured displacements
can be compared to ground truth for quantifying tracking
accuracy.

Ground truth strain values were computed on the set
of resampled meshes. Our mesh model makes the com-
putation of 1D engineering strain trivial since all edges
are following radial, longitudinal and circumferential di-
rections. Relative length changes were computed for each
hexahedral cell according to

εd =
1

4

4∑
j=1

ltdj
l0dj
− 1 (26)

where ltdj is the length of edge j in the d direction (be-
ing either radial, longitudinal or circumferential) at time
t. Strain values were then averaged per AHA segment for
all cells belonging to that segment. Similarly to tracking
accuracy, strain accuracy was measured by doing the same
computation on tracked meshes and comparing ground
truth with measured values.

Tracking and strain accuracies on the synthetic sequence
were used as a reference for tuning key parameters, com-
paring the two phase computation techniques (HARP and
MP) and discussing the influence of shearing elements.
Fig. 8 and 9 show the evolution of motion and circumfer-
ential strain errors when spanning different n (Sect. 3.5)
and σ (Sect. 3.3.2) values. Results for longitudinal and
radial strains are provided as supplementary material at
http://bit.ly/1xsreCa.
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Figure 7: Ground truth meshes and short- and long-axis slices of synthetic tagged MR images (3 sequences of tagged MR images with line
tagging patterns are multiplied for better visualization)

5.1.1. Tuning the regularization parameters

From Fig. 8 and 9, it can be seen that for both HARP
and MP, setting either n = 3 and σ = 0.2, or n = 3 and
σ = 0.3 outperform other configurations with tracking er-
rors below 1.5mm. When also considering strain accuracy,
n = 3 and σ = 0.3 is the best choice on the synthetic data.
Bland Altman plots of radial, longitudinal and circumfer-
ential strains of this case are shown in Fig. 10.
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Figure 8: Quartile plots showing the evolution of tracking accuracy
with the number of resolutions n and the kernel bandwidth σ when
using HARP (a) and MP (b) on synthetic images (each data point
represents the motion error of certain AHA segment at certain time
frame).
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Figure 9: Quartile plots showing the evolution of circumferential
strain accuracy with the number of resolutions n and the kernel
bandwidth σ when using HARP (a) and MP (b) on synthetic images
(each data point represents the circ. strain error of certain AHA
segment at certain time frame).

5.1.2. Comparison of HARP and MP

Fig. 11 summarizes the comparison between MP and
HARP in terms of tracking and strain accuracies. One can
see that both phase computation methods give very similar
results. We computed the point-wise end-systolic motion
and strain accuracies when using HARP and MP, and ap-
plied the two sample t-test (Cressie and Whitford, 1986)
on them. The returned p-values are all above 0.05 when
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(c) Rad. strain

Figure 10: Bland Altman plots on Circ. Long. and Rad. strains
when n = 3 and σ = 0.3 using MP on synthetic images (each data
point represents the strain of certain AHA segment at certain time
frame)

comparing motion, radial, longitudinal and circumferen-
tial strain accuracies. Therefore no significant differences
were found between HARP and MP.

5.1.3. Influence of the shearing elements in the motion
model

In our previously defined motion model (Sect. 3.2),
{arl, arc, alr, alc, acr, acl} are parameters related to shear-
ing. To understand the role they play in the tracking,
we also considered the use of a simplified model where all
shearing coefficients are set to zero. With this 6-parameter
motion model, we regenerated the tracking on synthetic
images. The magnitude of displacement errors are com-
pared to those obtained by the original model (Eq. 14)
in Fig. 12. As seen from Fig. 12, both the median and
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Figure 11: Comparisons of HARP and MP with respect to end-
systolic tracking, rad. strain, long. strain and circ. strain accuracies
for n = 3 and σ = 0.3 on synthetic images (each data point represents
the motion, rad. strain, long. strain or circ. strain errors of certain
AHA segment at the end-systole).

the dispersion of the displacement errors are reduced when
taking into account the shearing elements. This result is
further confirmed by two statistical tests. Applying the
Levene’s test (Miller Jr, 1997) to these two datasets of
displacement errors returns a p-value below 0.05, rejecting
the null hypothesis that their variances are equal. Also,
the Wilcoxon signed-rank (Woolson, 2007) test on these
two datasets reveals that their median values are statisti-
cally different.
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Figure 12: End-systolic motion error magnitudes with/without
shearing elements using MP (parameters n = 3, σ = 0.3) on synthetic
images (The data points represent the motion error magnitudes of
all mesh points at end-systole)

5.2. Volunteer data sets

This section compares quantitatively our method to
other state-of-the-art tagged MR algorithms. For doing
so, we used the data provided by (Tobon-Gomez et al.,
2013) to compare our tracking accuracy using manually
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tracked landmarks located in the basal, mid and apical
myocardium. In total, 15 volunteer datasets were used for
the evaluation. The 12 landmarks were warped forwardly
in time by computing barycentric coordinates in the first
frame and propagating them through the sequence of vol-
umetric meshes. This could slightly penalize our method
in this evaluation as image-based tracking was performed
backward in time. Fig. 13 shows box plots of motion
tracking accuracy for all the 15 volunteers at end-systole.
It can can be seen that our method matches accuracies
obtained using MEVIS and UPF algorithms while having
less outliers. However, it should be noted, that the compu-
tation time of our method is in the range of minutes while
UPF and MEVIS are in the range of hours as reported in
(Tobon-Gomez et al., 2013) for this same dataset.
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Figure 13: Motion tracking accuracy using MP (parameters n =
3, σ = 0.3) on volunteer data sets compared to four other state-of-
art methods: INRIA, IUCL, MEVIS and UPF (for details of these
methods please refer to (Tobon-Gomez et al., 2013)).

5.3. Patient data sets

In this paper, we show quantification results for four
patients showing grading levels of fibrosis confirmed by late
gadolinium-enhanced MR images. The patient datasets
were acquired at GIP Cyceron. All patients gave an in-
formed consent and the study was approved by the re-
gional ethics committee (CPP Nord Ouest III). For com-
parison purposes, we also quantified three healthy volun-
teers acquired at the same institution and enrolled in the
same study. Fig. 14 plots the dispersion of end-systolic
circumferential strain values for the volunteers (v1 to v5)
and the four patients (p1 to p4). The two first volun-
teers were taken from (Tobon-Gomez et al., 2013) while
the others were scanned at Caen-CHU/Cyceron. The four
patients were ordered by the number of segments where
transmural fibrosis was visible on late-enhancement MR.
It is expected that for diseased cases with grading levels of
infarction, more segments with abnormally low deforma-
tion values will coexist with segments overcompensating
for infarcted segments. Therefore, the overall dispersion of
strain values should increase for more extreme cases of in-
farction. Fig. 14 shows that this tendency can be observed
in our database: the circ. strain dispersion increases from
healthy volunteers (v1-v5) to patients (p1-p4) classified

by degree of fibrosis. Also, the median circ. strain de-
creases from volunteers (around -20%) to patients (around
-15%). We took the example of circumferential strain as
we observed this component to be more robust when image
quality is lower. Indeed, the four patients we report here
showed very different image qualities, mainly depending
on their ability to hold their breath over all acquisitions in
a similar manner.
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Figure 14: End-systolic Circ. strain at AHA 17 segment level, v1
and v2 are healthy volunteers from Sect. 5.2, v3,v4,v5 are healthy
volunteers from GIP Cyceron, and p1, p2, p3, p4 are patients from
GIP Cyceron increasingly classified by the myocardial fibrosis degree
(results obtained using MP)

To look at strain at a more detailed level, in Fig. 15
we plot for the second patient p2 end-systolic circum-
ferential strain as a colormap and display circ. strain
curves at a segmental level. This patient had myocardial
fibrosis at the entire inferior wall, basal and mid levels of
the inferolateral wall, and basal inferoseptal wall (differ-
ent degrees of fibrosis at AHA segments 3,4,5,10,11,15).
Fig. 15(a)(left) and Fig. 15(b)(left) show a clear differ-
ence of circ. strain values between the inferior wall (in-
farcted) and the anterior wall (normal). This is coherent
with the results by late-enhancement MR, as shown in
Fig. 15(a)(right) and Fig. 15(b)(right) where high gray
levels indicate the existence of fibrosis. A clear correlation
could be seen between the low deformation regions and
the infacted areas (those with brighter image intensities).
However, here the observed correlation is quite qualita-
tive and limited because the two modalities were merely
manually aligned. Indeed, these two kinds of images had
different spatial resolutions, making their registration a
difficult task. Besides, from the strain curves in Fig. 15(c)
infarcted segments can be easily distinguished from the
healthy ones.

6. Discussion

The concept of anatomical regularization applied to
cardiac motion tracking was directly or implicitly intro-
duced in several previous publications (Young and Axel,
1992; Young, 1999; McLeod et al., 2013; Heyde et al., 2013;
Pan et al., 2005). We here discuss the differences between
those methods and the proposed one.

Young et al. (Young and Axel, 1992; Young, 1999) em-
ployed a finite-element model for regularizing the sparse
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(a) End-systolic Circ. strain colormap displayed on a LA slice
and late-enhancement MR image of the same location

(b) End-systolic Circ. strain colormap displayed on a mid-level SA
slice and late-enhancement MR image of the same location
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(c) Circ. strain evolution of 17 AHA segs

Figure 15: Circ. strain plotted as a colormap {(a),(b)} and over
time {(c)} for patient p2 in Fig. 14. This patient had fibrosis at
the entire inferior wall, part of the inferolateral wall and part of the
inferoseptal wall (corresponding to AHA segments 3,4,5,10,11,15).
The colormap is shown at end of systole. Circ. strain curves are
shown for all 17 segments: solid lines display normal segments while
curves with markers show segments with fibrosis (results obtained
using MP)

image-based displacements. The variation of the deforma-
tion gradient tensor in radial, longitudinal and circumfer-
ential directions was used as the penalty term. The model
was recently used to improve registration of a generic tem-
plate to patient specific biventricular geometry (Gilbert
et al., 2014). Although the mesh is defined in anatomical
coordinates, the projection of sparse input displacements
on the mesh is done in Cartesian coordinates. Our ap-
proach differs by projecting displacements in anatomical
coordinates which we supposed to be more appropriate for
the proposed regularization scheme.

McLeod et al.(McLeod et al., 2013) used an affine re-
gional approximation of displacements. Affine transfor-
mations were mixed through weight functions that are fol-
lowing anatomy. However, the affine transformations were
defined in the Cartesian space, rather than exploiting the
anatomical system of coordinates. We preferred to use

anatomical coordinates for both defining window functions
and the transformation model. This allows to regularize
and constrain the motion field in the system used for re-
porting strain values. In our model, first order parameters
are directly linked to radial, longitudinal and circumferen-
tial strains. Pan et al.(Pan et al., 2005) interpolated 2D
HARP displacements by a Gaussian kernel defined using
the geodesic distance on the mesh. This is quite similar to
our window function. However, as mentioned above, we
differ in not only defining window functions that are fol-
lowing the anatomy, but also regularizing and constraining
HARP displacements in anatomical coordinates. Besides,
we processed the recent 3D CSPAMM data introduced in
(Rutz et al., 2008). Compared with the tagging data used
in both (Pan et al., 2005) and (Young, 1999), each volume
has more slices and images have better in-plane resolution.

Heyde et al.(Heyde et al., 2013) performed the tracking
of ultrasound images in anatomical coordinates. However,
this was achieved by resampling all images in this space
prior to the tracking. Such a resampling would introduce
non-linear distortion in image intensities. Also, it would
modify the spectrum of tagged MR images, modifying the
band-pass nature of the signal. This would violate HARP
assumptions. Thus, we preferred to use anatomical coor-
dinates in the representation of the transformation.

This study has several technical limitations that are
listed and discussed hereafter. First, the method is depen-
dent of the segmentation of the LV done on the last frame
as it serves both for defining the set of points to track and
a local coordinate system used for regularization. This
limitation also exists in the original HARP algorithm and
in any method using an LV mask as region of interest.
Second, we assumed the phase images to be available as
3D information while each image stack has a low inter-
slice spatial resolution. However, each stack has a higher
voxel spacing in a different dimension, hence reducing the
overall impact of this low resolution. Also, since the local
windows have a full transmural extent, the motion model
will not capture the increase in circumferential shorten-
ing and radial thickening occuring from epicardium to en-
docardium (Clark et al., 1991; Rademakers et al., 1994).
Such a choice is justified by the limits of the acquisition
scheme where the number of tags is low from endocardium
to epicardium, making the information contained in the
radial direction too poor for capturing radial deformation.
Admittedly, defining multiple windows from endocardium
to epicardium would allow to quantify transmural changes
in deformation thanks to the good tagging resolution in
the circumferential direction. Transmural changes in cir-
cumferential strain would then propagate to radial strain
with the incompressibility constraint. This would require
a more detailed validation and is currently left to future
work.

Besides, our method depends on HARP accuracy and
could be prone to tag jumps. We observed that tag jumps
mostly occur in the longitudinal direction and that the
multiscale strategy helps limiting tag jumps. Furthermore,
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at the end of systole, the myocardial incompressibility does
not hold anymore due mainly to blood being squeezed
out of the myocardium. The myocardial volume conser-
vation is therefore an approximation (of about 8%) at the
end of systole. Nonetheless, as explained earlier in this
section, image intensities only will not suffice to capture
the radial deformation. The incompressibility constraint
was therefore used to “help” estimating the radial defor-
mation, rather than as a hard constraint influencing all
the deformation components. Moreover, using engineer-
ing strains as obtained from length changes in the volu-
metric mesh edges neglects shear-induced rotations. How-
ever, note that this approximation is standard in clinical
echocardiography as reported by (Voigt et al., 2014). It
results from applying 1D concepts, that are more intuitive
to the clinician. In addition, for simplifying the parameter
tuning, σ was set to be homogeneous for all resolutions.
Nonetheless, σ is multiplied by the window extent to ob-
tain σi (Eq. 19). As the window extent decreases with
the resolution, so does σi. Finally, the tagged images were
not apodized before computing the Fourier transform. As
a result, some artifacts (the vertical lines) appear in Fig.
4(b). However, those artifacts’ influence on the tracking is
rather limited because most of them will be filtered out by
the bandpass filter (Fig. 4(c),4(e)). Nonetheless, a study
of the apodization’s impact on the tracking would help to
determine its benefits. It is currently left for future work.

There are also several limitations with respect to the
validation. We performed a comparison to the state-of-
the-art on a reduced number of cases and landmarks, bench-
marking tracking accuracy only. Besides the relatively
limited number of methods present in this evaluation, we
also see the need for a tagged MR validation framework
yielding dense ground truth displacement and strain val-
ues. Clearly, comparing the accuracy on displacements
only overlooks many challenges related to strain, includ-
ing the impact of the regularization method on strain ac-
curacy and sensitivity. Besides, our strategy for generating
synthetic images was too simplistic for being representa-
tive of challenges inherent to clinical images. Images were
produced through warping of a single frame, ignoring ar-
tifacts induced by valve motion or tag contrast variations
over the cardiac cycle. Moreover, regarding simulation
aspects, an electromechanical simulation should be done
specifically on the patient geometry. Also, MR simulators
would likely be more realistic than simple image warping.
Finally, the experiments performed in this paper are pre-
liminary and only aim at demonstrating the applicability
of our method to process clinical images. Image quality
for patient datasets was found to be more heterogeneous
than volunteer data. Evaluating the clinical impact of 3D
tagged MR in general - and this method in particular -
requires a thorough study on the correlation between the
low deformation regions quantified by our method with
the fibrosis areas revealed by late-enhancement MR. The
interaction mechanisms between the fibrosed and the sur-
rounding contracting regions need to be further studied on

a larger patient population, taking into account the differ-
ent tissue properties.

7. Conclusion

This paper introduced a novel algorithm that extends
HARP to handle 3D tagged MR data. While doing so,
we proposed an original regularization method done in
an anatomical space of coordinates. HARP results were
regularized according to a windows-weighted regression
method that maintains a low computational complexity.
Our implementation performs LV tracking and strain com-
putation in less than a minute, a time range compatible
with clinical practice requirements. The algorithm was
evaluated at three levels: on synthetic, healthy volunteers
and patient data. On healthy volunteers, tracking accu-
racy was found to be similar to the best candidates of
a recent benchmark. Strain accuracy was evaluated on
synthetic data (as no public data for strain was avail-
able), showing low bias and strain errors under 5 percents
(excluding outliers) for longitudinal and circumferential
strains. As reported in the literature, radial strain was
found to be more challenging but had the second and third
quartiles of strain errors in the (−5%, 5%) range, thanks to
an implementation of the incompressibility constraint that
solely corrects this strain component. Our method was
shown to be applicable to clinical data by first correlating
strain dispersion with the extent of transmural fibrosis.
Lower deformation values were also observed inside and
around the infarcted region. In synthetic data, we also
compared the effectiveness of tracking the HARP phase
and MP, although no significant differences were found be-
tween them. As future work, we aim at extending clinical
findings by applying this algorithm to more patients. We
will also develop a more elaborated validation framework
for the validation of tagged MR tracking algorithms by
extending our pipeline for the generation of synthetic im-
ages.
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