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In this paper we address the segmentation of images exhibiting annular like shapes which may be
approximated by two elliptical contours. Such patterns are indeed recurrent in many image processing
applications. In this context, we develop a level-set framework specifically dedicated to the detection
of annular shapes. Thanks to a fast solution to the least-squares fitting problem of similar patterns, our
model handles the segmentation task efficiently with a single level-set function. The behavior of this
approach is illustrated on images from various fields. An evaluation is then performed for the myocar-
dium detection in MRI and ultrasound cardiac images.
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1. Introduction the evolving interface to particular image features. The second,
Segmentation is an important topic in image processing. Many
approaches have been proposed for this problem, among which le-
vel-set based methods have received an increasing attention (Case-
lles et al., 1997; Chan and Vese, 2001; Bernard et al., 2009). In this
context, many applications using only image information (i.e. im-
age gray levels, image gradient, image statistics) have been devel-
oped (Osher and Fedkiw, 2002). It is now well established that such
approaches fail to segment meaningful objects from images when
they are occluded, when some parts of them are in low contrast re-
gions or even missing. In these cases, higher-level prior knowledge
about the expected shape can be exploited in order to successfully
segment the desired target.

The introduction of general shape priors has been widely stud-
ied in level-set literature (Leventon et al., 2000; Rousson and Para-
gios, 2002; Chen et al., 2002; Pardo et al., 2004; Chan and Zhu,
2005; Cremers et al., 2007). Level-set-based methods correspond
to a class of deformable models where the object to be segmented
is captured by propagating an interface represented by the zero
level-set of a smooth function. The evolution of this interface is
derived through a variational formulation: the segmentation
problem is expressed as the minimization of an energy functional
that reflects the properties of the objects to be recovered. In this
context, the shape information is generally taken into account by
considering a linear combination of two terms in the energy
functional. The first one, referred as data attachment term, drives
ll rights reserved.
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referred as shape prior term, preserves the similarity between the
segmenting contour and a reference shape model.

The choice of the prior model is a fundamental issue: typically it
is derived from the statistical analysis of a set of training examples
(Leventon et al., 2000; Chen et al., 2002; Chan and Zhu, 2005).
Since orientation and scale are a priori unknown, a transformation
is performed at each iteration to align the segmented contour with
the prior shape for similarity measurement purposes. This step is
mainly addressed in a steepest gradient descent framework (Chen
et al., 2002; Chan and Zhu, 2005).

In this paper1 we focus on the segmentation of shapes which may
be approximated by two ellipses (an inner and an outer one), using a
variational level-set framework. For brevity sake, we will refer in the
sequel to the shape comprised between these two elliptical contours
as annular. Indeed, many natural scenes involve such pattern, as
shown in Fig. 1. While the use of one ellipse has been often exploited
in the field of image processing as a shape constraint (Pang et al.,
2005; Guerrero et al., 2007), the expression of an annular constraint
into a level-set framework has not been investigated yet. Using this
shape information may be a powerful tool to recognize these pat-
terns, particularly in the case of difficult images with occlusions or
low SNR. Starting from the framework developed in (Chen et al.,
2002), the approach presented in this paper brings the following
contributions:
1 A preliminary version of this work appeared in (Alessandrini et al., 2010). The
present paper describes in details the formal aspects and the behavior of the proposed
method, evaluates the performances from a data set including 115 medical images
and compares it to the shape prior-based algorithm of Chen et al. (2002).
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mailto:olivier.bernard@creatis.insa-lyon.fr
http://dx.doi.org/10.1016/j.patrec.2011.03.018
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec


Fig. 1. Natural images in which annular patterns occur: (a) iris and pupil recognition (Jang et al., 2008), (b) segmentation of zona pellucida (Karlsson et al., 2004), (c) detection
of the rings of Saturn.

Fig. 2. Example of level-set function used in this work. The zero level is represented
as a red bold line and provides the 2 contours corresponding to the boundary of the
annular target. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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� a parametric implicit function defining the distance from two
ellipses is introduced;
� an efficient solution to the least-squares fitting problem of

annular shapes is developed;
� thanks to its parametric representation, the shape prior may be

adjusted to the evolving contour through an efficient least
square strategy. Correspondingly, the computational cost asso-
ciated to the introduction of the prior shape information is
made essentially negligible.

This framework provides two additional benefits. First, since a
parametric representation is adopted, we avoid a training phase
for model selection, for which the availability of training samples
and their number are difficult issues. Secondly, the detection of
both contours is addressed with a single level-set function,
which is desirable in terms of memory consumption and compu-
tation. The resulting algorithm is derived on the base of the tra-
ditional variational level-set paradigm (Chen et al., 2002; Chan
and Vese, 2001). While the proposed method is applied to ellip-
tic annular shape in this paper, it should be noted that the
underlying framework may be applied to build a prior from
any shape that can be described as a pair of similar implicit
parametric contours and for which an efficient least squares fit-
ting can be derived.

The paper is organized as follows. In Section 2 we recall the gen-
eral form of the level-set framework, describe our annular shape
prior and derive the minimization of the corresponding energy
functional. In Section 3, implementation issues are addressed. We
explain in particular how the level-set is initialized for each exper-
iment. In Section 4 we give insights on possible applications by
presenting results on natural images from several fields. We then
provide an evaluation of the method in the field of cardiac imaging
from MRI and ultrasound (US) data. A comparison with the shape
prior algorithm of Chen et al. (2002) is presented as well. The main
conclusions of this work are given in Section 5.

2. Proposed method

2.1. Level-set framework

Let X be a bounded open subset of Rd and let I : X! Rm be a
given d-dimensional image. In the level-set formalism, the evolv-
ing interface C � Rd is represented as the zero level-set of a Lips-
chitz-continuous function / of dimension d + 1 that satisfies

/ðxÞ < 0; 8x 2 Xin;

/ðxÞ > 0; 8x 2 Xout;

/ðxÞ ¼ 0; 8x 2 C;

8><
>: ð1Þ
where Xin is a region in X bounded by C = oXin. The region Xout is
defined as XnXin.

The problem of segmenting one object from the background is
then handled by the evolution of one level-set driven by the min-
imization of a specific energy criterion; its steady state partitions
the image into two regions that delimit the boundaries of the ob-
ject to be segmented. Since we are addressing the segmentation
of annular shapes, which are bounded by two unconnected
contours, we propose to adopt a level-set function / of the kind
depicted in Fig. 2.
2.2. Energy formulation

As mentioned in the introduction, we set our approach in a var-
iational level-set framework. Many energy functionals have been
proposed in literature to incorporate shape priors into level-set
formulation. As in (Leventon et al., 2000; Chan and Zhu, 2005;
Cremers et al., 2007) we adopt the following general expression
for the energy functional:

E ¼ Edata þ a � Eshape; ð2Þ

where Edata represents the chosen data attachment term and Eshape

embeds the shape prior. The weight a corresponds to a positive
hyper-parameter that balances the influence between the two
terms. The expression for the two energy terms adopted for the seg-
mentation task is derived in the following of this section, along with
the variational framework to address the optimization problem.
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2.3. Data attachment term

At this stage, Edata could be any of the data attachment terms
described in literature. In this work we adopt as data attachment
term the localized version of the Chan-Vese model, recently pro-
posed in (Lankton and Tannenbaum, 2008). This formulation han-
dles local statistics and is therefore well suited for segmenting
objects whose boundaries are discontinuous or heterogeneous,
where standard region based methods that use global statistics fail.
Using their general framework, the minimization of Edata with re-
spect to / leads to the following level-set equation:

@/
@s
ðxÞ ¼ f ðxÞ � dð/ðxÞÞ; ð3Þ

where d(�) is the Dirac delta function and:

f ðxÞ ¼
Z

X
Bðx; yÞdð/ðyÞÞ � ððIðyÞ � uxÞ2 � ðIðyÞ � vxÞ2Þdy: ð4Þ

The function B(�) is a binary mask defined as:

Bðx; yÞ ¼
1; if y 2 NðxÞ;
0; otherwise;

�
ð5Þ

where y is a spatial variable and NðxÞ corresponds to a user-defined
neighborhood at point x. The quantities ux and vx correspond to the
localized version of the inside and outside average intensity values
measured in the window NðxÞ. This data attachment term is inde-
pendent of the shape prior to be described in the next section, so
the user may in practice adopt any criterion which suits the image
features of his particular applications.

2.4. Main contribution: annular shape prior term

Inspired by the framework proposed in (Chen et al., 2002), we
introduce an annular shape constraint into our level-set frame-
work by minimizing the following energy criterion:

Eshapeð/; kÞ ¼
Z

X
W2ðx; kÞkr/ðxÞkdð/ðxÞÞdx; ð6Þ

where W(x,k) is the implicit function representing the distance of a
point x from the annular shape defined by the parameters k. Clearly
(6) reads as a measure of the distance between the active contour
and the shape prior, and therefore imposes a similarity between
Fig. 3. Illustration of the parametric implicit function W. The zero level is represented in
plan given in (a). (For interpretation of the references to colour in this figure legend, th
the segmentation result and the prior itself. We propose here to
adopt the following parametric expression for W:

Wðx; kÞ ¼maxfEðx; koutÞ;�Eðx; kinÞg; ð7Þ

where k = [kin,kout] and kin and kout represent the parameters of the
inner and outer ellipses. The function Eð�Þ corresponds to the alge-
braic distance of a point x ¼ ðx; yÞ to an ellipse, represented by the
standard quadratic equation for conic sections, and defined as:

Eðx; kiÞ ¼ ki1x2 þ ki2xyþ ki3y2 þ ki4xþ ki5yþ ki6; with k2
i2 < 4ki1ki3:

ð8Þ

Fig. 3 gives an illustration of the parametric implicit function W
adopted in the proposed framework. We note here that another,
more trivial, choice for W could be adopted, consisting in the
pointwise product between the two ellipse distance functions.
However, that choice would no longer represent a distance function
(Berg, 1998) and, further, it would not allow an optimized solution
to the least-squares fitting problem, as the one we are presenting in
the sequel. It is also to be noted that (8) corresponds to a represen-
tation of the ellipse through the algebraic distance. While
the Euclidean distance could also be used, the algebraic distance
has the advantages of yielding an analytical evaluation of (7) and
allowing the use of the fast elliptic fitting algorithm of Fitzgibbon
et al. (1999), as described in the next section. On the opposite, the
Euclidean distance implies numerically evaluation of (7) and thus
heavier iterative techniques (Faber and Fisher, 2001; Ahn et al.,
2001).

The minimization of energy (6) leads to finding a geodesic zero
level-set (in our case two contours) in a Riemannian space derived
from the shape prior content. As compared to the initial work of
Caselles et al. (1997) and derived approaches (Chen et al., 2002),
the arc length function of (6) is no longer weighted by an image
based information but only by our shape prior term. From the
observation that the minimum of this expression is reached when
the zero level of / perfectly fits the zero level of the parametric im-
plicit function W, one can anticipate that the minimization of this
energy criterion will make the level-set evolve toward an annular
shape. The numerical minimization of (6) is addressed using a two
phase scheme (Chan and Vese, 2001; Chen et al., 2002). Specifi-
cally, keeping k fixed, the minimization of Eshape with respect to
/ leads to the following equation:
red. (a) 3D representation. (b) Visualization of a 2D slice corresponding to the color
e reader is referred to the web version of this article.)
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@/
@s
ðxÞ ¼ gðx; kÞ � dð/ðxÞÞ; ð9Þ

where

gðx; kÞ ¼ 2Wðx; kÞrWðx; kÞ � r/ðxÞ
kr/ðxÞk

þW2ðx; kÞdiv
r/ðxÞ
kr/ðxÞk

� �
: ð10Þ

Then, keeping / fixed, the minimization of Eshape with respect to k is
obtained as follows. By noting that kr/k = 1 because of the signed
distance property (Osher and Fedkiw, 2002) and that d(/) selects
the points that belong to the contour C, the optimal solution can
be written as:

k̂ ¼ argmink

I
C

W2ðs; kÞds ¼ argmink

X
xi2C

W2ðxi; kÞ: ð11Þ

The rightmost of (11) is justified by the fact that the image space is
in practice discrete. The parameters vector k is thus updated at each
iteration according to the direct least-squares fitting problem de-
fined by (11). To the best of author’s knowledge, no method for
the fitting of annular shapes has been yet proposed. We derive such
a solution in the following.

2.4.1. Least-squares fitting of annular shapes
Considering (7), we can rewrite the sum in (11) as:

Jðx; kÞ ¼
X
x2Cin

E2ðx; kinÞ þ
X

x2Cout

E2ðx; koutÞ; ð12Þ

where the partition C = {Cin,Cout} has been introduced:

Cinðkin; koutÞ ¼ fx 2 CjEðx; koutÞ < �Eðx; kinÞg; ð13Þ
Coutðkin; koutÞ ¼ fx 2 CjEðx; koutÞP �Eðx; kinÞg: ð14Þ

From this formulation, we observe that (12) can be minimized by
fitting two separate ellipses on Cin and Cout, for which fast direct
solvers exist (Fitzgibbon et al., 1999). Consequently we propose to
minimize J by alternatively fitting the two ellipses and updating
Cin and Cout according to (13) and (14). The resulting algorithm is
summarized in Algorithm 1. By doing so, the energy J is ensured
to decrease at each step. In Algorithm 1 we call fitLS the function
performing the direct least-squares ellipse fitting described in (Fitz-
gibbon et al., 1999).

Algorithm 1. Annular least square fitting algorithm

Input data

k̂
ð0Þ
in ; k̂

ð0Þ
out; tol ¼ 0:01; k ¼ 1

Initialization

Eð0Þ ¼ J k̂
ð0Þ
in ; k̂

ð0Þ
out

� �
Cð0Þin ¼ Cinðk̂ð0Þin ; k̂

ð0Þ
outÞ; Cð0Þout ¼ Cout k̂

ð0Þ
in ; k̂

ð0Þ
out

� �
while � > tol do

k̂
ðkÞ
in ¼ fitLSðCðk�1Þ

in Þ; k̂
ðkÞ
out ¼ fitLS Cðk�1Þ

out

� �
CðkÞin ¼ Cinðk̂ðkÞin ; k̂

ðkÞ
outÞ; CðkÞout ¼ Cout k̂

ðkÞ
in ; k̂

ðkÞ
out

� �
EðkÞ ¼ J k̂

ðkÞ
in ; k̂

ðkÞ
out

� �
� ¼ kEðkÞ � Eðk�1Þk=kEðk�1Þk; k ¼ kþ 1

end while
In Fig. 4, two examples are reported. In both cases, the two ini-

tial ellipses defined by k̂

ð0Þ
in and k̂

ð0Þ
out are coincident. We adopt at first

three different initializations from the same dataset (blue contours
in Fig. 4(a)). In each case, the algorithm converges to the same re-
sults after only 3 iterations, as shown in Fig. 4(b). This shows the
robustness of our method with respect to the initialization. We
then tested our fitting algorithm on a more challenging case, where
some of the points that describe both the inner and outer contours
are superimposed (Fig. 4(c)). Fig. 4(d) shows the good behavior of
our algorithm in such situation. In this case, convergence has been
reached after only 4 iterations.

The computational complexity of Algorithm 1 is dominated by
the few single ellipse least-squares fitting operations involved,
indicated by the function fitLS. As shown in (Fitzgibbon et al.,
1999), such a problem is equivalent to an eigenvalue problem for
a 6 � 6 matrix, which can be efficiently solved with Oðn3Þ floating
point operations (Golub and Van Loan, 1996). As an example, the
solution of Fig. 4 is obtained in 13 ms in a MATLAB (R2010b, The
Math Works) implementation of the algorithm, executed on a
2.27 GHz Intel Core i5 laptop equipped with 4 GB of RAM and run-
ning Windows 7 64-bit.

As detailed in the sequel, the segmentation method consists in a
two stage procedure, i.e. alternating the fit of the annular shape to
the level-set described in Algorithm 1 and the constrained evolu-
tion of the level-set through (9). It is then to be noted that the fit-
ting stage can be made very fast by initializing Algorithm 1 with
the fitting result computed in the previous iteration. In practice,
the experiments showed that this strategy allows performing the
fitting stage in one single iteration.

As a further remark, it should be noted that, although the
framework has been specialized for annular shapes, the proposed
formalism is general. In particular it can be extended to geometric
primitives for which an efficient solution to the least squares fit-
ting problem can be individuated, to be used in place of FitLS in
Algorithm 1.

We conclude this section by pointing out that the penalty term
in (6) is not new in literature: Chen et al. introduced an analogous
one (Chen et al., 2002), in order to embed a shape constraint in
the geodesic active contour flow (Caselles et al., 1997). Neverthe-
less, the difference between the presented framework and the
one in (Chen et al., 2002) is substantial: in (Chen et al., 2002)
W represents the distance, computed numerically, of a point to
an arbitrary shape, and consequently a similarity transformation
between the segmenting contour and the prior shape has to be
searched in a steepest descent scheme. In our work, we develop
an analytic representation for W, expressed by (7), allowing
thereby to express the parameters update step as a direct
least squares fitting. As a consequence, this stage of the algorithm
avoids slow steepest descent iterative procedures. These
aspects will be further stressed in the results section, where a
comparison of the proposed algorithm with the one by Chen is
presented, both in terms of segmentation accuracy and execution
time.

3. Implementation issues

We implemented our level-set evolution equation using stan-
dard finite difference scheme (Osher and Fedkiw, 2002), where
the implicit function is represented by a signed distance function
/. In order to improve efficiency, we only compute values of / in
a narrow band around the zero level set. Consequently, we re-ini-
tialize / every iteration using a fast marching scheme (Osher and
Fedkiw, 2002). In order to perform segmentation with an annular
shape prior, the level-set evolves according to the following
equation:



Fig. 4. Illustration of the use of annular least square fitting. In both cases, the two initial ellipses are coincident. First row: illustration on a simple case. (a) Initialization: the
three ellipses corresponds to three different initializations. (b) Results obtained at convergence: the final annular contours are identical. Second row: illustration on a more
challenging case. (c) Initialization. (d) Results obtained at convergence after only 4 iterations.
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@/
@s
ðxÞ ¼ dð/ðxÞÞ½f ðxÞ þ a � gðx; kÞ�; ð15Þ

where f(�) is the data attachment term given in (4) and g(�) is the
shape prior term given in (10). The choice of the weight term a is
dependent on the specific application. For instance, when the qual-
ity of the image is poor, it is recommended to use higher value of a
in order to put more importance on the shape prior term. When
presenting results in the experiments section, we will adopt the a
value which produces the best segmentation result. The experimen-
tal a values obtained are in the range [0.5;1.5].

Concerning the initialization, let us note that the localized
framework of Lankton and Tannenbaum (2008) requires that it
must be made close to the desired solution. Indeed while such a lo-
cal data attachment term allows making the algorithm more ro-
bust to the variation of image properties, it makes it more
sensitive to initialization. This is thus an inherent trade-off of this
type of data attachment term. For applications where a fully auto-
matic procedure is needed, note however that this limitation
maybe tackled by using a preprocessing step providing a rough
detection of the object (see e.g. Dias and Leitao, 1996 or Paragios
et al., 2005). Such a strategy is however inherently application-
dependent and is thus out of the scope of this paper. In the
experiments described in the next sections, the following simple
procedure is thus considered. The user is asked to position six
points, as this is the minimum number of points needed to define
2 concentric ellipses. The five first points are used to set an ellipse
(one ellipse being uniquely defined by 5 points) and the last point
is used to obtain the second concentric ellipse (see Fig. 5). For each
experiment, the initial points used to achieve the given results are
displayed in green.

4. Results

4.1. Application to natural images from several fields

Annular-like patterns are recurrent in images from several
fields: medicine, biology and astronomy are some examples. In
all these cases the proposed methodology may be exploited in or-
der to detect structures of interest. Fig. 5 illustrates the application
of the proposed method for the segmentation of the pupil and iris
in human eye, of the zona pellucida in human embryo, and the
rings of Saturn. We used for these experiments the same a value
equal to 0.8. We observe that in all those situations gray scale
information alone is not sufficient for obtaining correct results. In
the eye image (Fig. 5(a)), the eyelash hinders a correct iris
detection, moreover the variations in the iris color make pupil



Fig. 5. Segmentation results obtained on natural scene images. The green points correspond to the initialization. Images (a)–(c) show the result obtained when the proposed
approach is applied without the shape constraint. Images (d)–(f) show the result obtained when the shape prior is applied. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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segmentation imprecise. A similar effect can be observed in the
embryo image (Fig. 5(b)) where the segmentation is inaccurate
due to low contrast profiles and to proximity of the cell to the
internal boundary of the zona pellucida. In the Saturn image, the
ring portion hidden by the planet body cannot be followed without
a shape prior approach (Fig. 5(c)).

The results obtained using the shape prior term are given in the
second row. In the 3 cases, they are in good agreement with the ex-
pected shapes. They illustrate the usefulness of the proposed annu-
lar shape prior for such images. Regarding the computational cost,
Table 1 provides the cpu times corresponding to the segmentations
performed with our approach and shown in Fig. 5(d) to Fig. 5(f).
Note that the 3 images share the same size of 200 � 200 pixels.
In order to give an insight on the impact of the shape prior term
on the overall computational burden, Table 1 also reports the
cpu time corresponding to the fitting step of the algorithm, as per-
formed through Algorithm 1. These results confirm that the
improvement in segmentation accuracy ascribable to the shape
prior term comes at a substantially negligible price in terms of
computational complexity.

4.2. Evaluation on cardiac images

A remarkable case in which annular-like patterns are present is
cardiology imaging. Indeed both endo- and epicardial borders of
Table 1
Cpu times corresponding to the segmentation with the proposed approach on natural
images.

Eye image Embryo image Saturn image
(Fig. 5(d)) (Fig. 5(e)) (Fig. 5(f))

Overall cpu time(s) 8.31 17.93 13.86
Cpu time for the shape 0.12 0.36 0.33
Prior fitting(s)
the left ventricle (the innermost and the outer layers of tissue sur-
rounding the cardiac muscle), when visualized in a short axis view
can be well approximated by ellipses. The joint segmentation of
endo- and epicardium has a high clinical relevance, since it allows
some critical indices of heart functionality to be evaluated. Never-
theless, especially in the case of ultrasound, due to its intrinsic
complexity, this issue has been addressed in a very limited number
of works (Noble and Boukerroui, 2006).

In order to evaluate the performance of our algorithm in accom-
plishing this task, a set of 56 cardiac MRI images and 59 ultrasound
images were considered. The size of MRI images was 141 � 141
pixels, and the size of the ultrasound images was 249 � 168 pixels.
Pixel size was equal to 1 � 1 mm2 for MRI and 0.27 � 0.27 mm2 for
US. Segmentation result was assessed by measuring the correspon-
dence between the detected contours and the manual reference gi-
ven by an expert cardiologist. The algorithm was initialized as
described in Section 3 by a non expert but experienced user. Three
error metrics were adopted, i.e. the Dice coefficient D, the Haus-
dorff distance HD and the Root Mean Square Distance RMSD, all ex-
pressed in pixels and defined in the next section.

4.2.1. Definition of the error metrics
LetR be the reference contour and S the detected one. Denoting

as r and s a point belonging to R and S respectively, the Hausdorff
distance and Root Mean Square Distance are then defined as:

HDðS;RÞ ¼maxfsup
s

dðs;RÞ; sup
r

dðr;SÞg ð16Þ

and

RMSDðS;RÞ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

LðSÞ
X
S

d2ðs;RÞ
s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
LðRÞ

X
R

d2ðr;SÞ
s( )

;

ð17Þ

where dða;AÞ represents the distance from the point a to the con-
tour A and LðAÞ is the contour length. Finally, defining XS and XR
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as the sets of pixels contained inside the segmented and the refer-
ence region, the Dice coefficient writes as:

DðXS;XRÞ ¼
2AreaðXS

T
XRÞ

AreaðXSÞ þ AreaðXRÞ
: ð18Þ

This coefficient thus measures the correspondence between the two
regions, and varies from 0) to 1: it is 1 when the two regions are
coincident and 0 when they have null intersection.
Table 2
Performance metrics value (MEAN ± STANDARD DEVIATION) for the proposed algorithm on 56
cardiac MRI images (a) and 59 US images (b). The percentage between brackets shows
the relative difference between the mean values of the corresponding metric.

DICE HD (PIXELS) RMSD (PIXELS)

(a) MRI Images

WITH SHAPE PRIOR (a = 0.8) 0.82 ± 0.05 3.63 ± 0.73 1.46 ± 0.21

WITHOUT SHAPE PRIOR 0.80 ± 0.05 4.62 ± 0.82
(+27%)

1.72 ± 0.27
(+18%)

(b) US Images

WITH SHAPE PRIOR (a = 1.2) 0.89 ± 0.02 5.57 ± 1.18 2.22 ± 0.46

WITHOUT SHAPE PRIOR 0.87 ± 0.03 7.78 ± 2.12
(+39%)

2.55 ± 0.49
(+15%)

REFERENCE
RESULT
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Fig. 6. Example results on cardiac MRI ((a)–(b)) and US ((c)–(d)). In the MRI case the shap
in (a)) and allows to cope with the low contrast of the endocardium (lower arrow in (a)). I
principally ascribable to the papillary muscles. On all images, much regular results are o
cardiologist reference. Error metrics for those images are: (a) HD = 5 pixels, RMSD = 1.5
pixels, RMSD = 2.72 pixels, D = 0.87; (d) HD = 3.61 pixels, RMSD = 1.62 pixels, D = 0.91.
The RMSD measures the average distance between the two con-
tours, and is thus suited for evaluating the global performance of
the algorithm. On the opposite, the Hausdorff metric represents
the maximum distance between the contours, and is therefore a lo-
cal index of performance (Huttenlocher et al., 1993; Chalana and
Kim, 1997). More specifically, the HD keeps trace of the localized
discrepancies which are largely hidden in the average operation in-
volved in the RMSD computation. While RMSD and HD depend on
the image size, the Dice coefficient returns instead an intrinsic in-
dex of performance, since it measures the superposition in per-
centage between the two enclosed areas. These three metrics are
adopted to provide an exhaustive evaluation of the behavior of
the proposed algorithm.
4.2.2. Evaluation of shape prior contribution
In order to evaluate the effect of the shape prior information we

ran our algorithm with and without using the shape prior term.
When the shape information was taken into account a value
a = 0.8 was used for MRI images and a = 1.2 for ultrasound images.
This difference is due to the fact that ultrasound images quality is
intrinsically low and high values of a must be used in order to deal
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e constraint prevents the contour from adhering to the right ventricle (upper arrow
n the US case, it avoids irregularities in the endocardial contour (white arrow in (c)),
btained with the shape prior approach, with an improved correspondence with the
2 pixels, D = 0.83; (b) HD = 2.23 pixels, RMSD = 0.99 pixel, D = 0.89; (c) HD = 10.7
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Fig. 7. Prior contour computation for (a) MRI and (b) US images. The cluster of reference curves is represented as thin contours and the corresponding average shape as a bold
red contour. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Performance metrics value (MEAN ± STANDARD DEVIATION) for the proposed algorithm and
Chen’s one on MRI (a) and US images (b). Training images are eliminated from the
data set before evaluation. The total number of testing images is 46 for MRI and 49 for
US. The percentage between brackets shows the relative difference between the mean
values of the corresponding metric.

DICE HD (PIXELS) RMSD (PIXELS)

(a) MRI Images
PROPOSED ALGORITHM 0.82 ± 0.05 3.59 ± 0.74 1.45 ± 0.26

CHEN’S ALGORITHM 0.76 ± 0.18 4.89 ± 1.06 (+36%) 1.74 ± 0.45 (+20%)

(b) US Images
WITH SHAPE PRIOR 0.89 ± 0.02 5.63 ± 1.23 2.23 ± 0.47
CHEN’S ALGORITHM 0.86 ± 0.03 7.05 ± 1.55 (+25%) 2.50 ± 0.72 (+12%)
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with this feature. The complete set of results for MRI and ultra-
sound images is reported in Table 2.2 These results clearly show
that the introduction of the shape prior yields an improvement of
the segmentation, yielding a slightly higher Dice and smaller HD
and RMSD.

Fig. 6 provides segmentation examples allowing a finer inter-
pretation of these results. It may be observed that the shape prior
allows to avoid the local irregularities, linked to the attraction of
the active contours to small scale noisy structures. This explains
in particular the large decrease of HD associated with the shape
information.

4.2.3. Comparison with Chen algorithm
We compare in this section the performance of our algorithm

with the approach described by Chen et al. (2002). The basic equa-
tions for Chen algorithm are reported in Appendix A. The use of
Chen’s approach implies the learning of the shape prior through
a training phase performed on a set of manually segmented con-
tours. In this experiment, the prior contour was obtained for each
modality from a training image set, built by randomly selecting ref-
erence contours. Specifically, 10 images out of 56 were used for the
MRI case and 10 out of 59 for the US case. For each of these two
training sets, the prior contour was obtained by averaging the ref-
erence contours drawn by the physician (see Chalana and Kim
(1997)). Due to potential misalignment among the references, a
registration step must precede the averaging operation, as detailed
in Chen et al. (2002). The so obtained prior contours are illustrated
in Fig. 7. From this figure it can also be clearly seen that ellipses
represent a reliable approximation of myocardial contours.

The complete set of results for MRI and US images is reported in
Table 3. These results show that the proposed algorithm outper-
forms Chen’s approach for the present application. Let us note that
the difference in performance is particularly pronounced for the
Hausdorff distance. This behavior is linked to the fact that in Chen’s
approach, the only non-rigid degree of freedom applied to the
shape prior in the course of the segmentation is a uniform scaling.
On the opposite, our approach performs a complete fit of the prior
2 Note that HD and RMSD have intrinsically larger values when computed on
ultrasound images due to the bigger size of the latter.
at each iteration, thus yielding a better adjustment to the myocar-
dial shape variations. This aspect is illustrated in Fig. 8.

Another important issue concerns the computational speed. The
average cpu time required for segmenting one MRI image was 2.1 s
for the proposed algorithm versus 11.1 s for Chen’s one. When con-
sidering ultrasound images, these values were 13.5 s for our meth-
od and 36.7 s for Chen’s one. This speed-up is a consequence of the
availability of a parametric representation for the prior, combined
with the existence of a fast fitting procedure for such a geometry,
as detailed in Section 2.4.1. In particular, the most costly step in
Chen’s algorithm is the initial alignment of the prior shape onto
the initial contour (cf. Appendix A). For the considered images, this
step can take up to several thousands of iterations. On the opposite,
in our approach the initial registration corresponds to fitting the
initial contour with an annular shape, which is typically done in
few iterations as detailed in Section 2.4.1.

4.3. Dependence on the initialization

As previously mentioned, the adoption of the localized frame-
work of Lankton and Tannenbaum (2008) imposes a good initiali-
zation in order to guarantee adequate results. In practice, this
implies that the distance between the initial contour and the object
to be detected should be on the order of the extent of the mask B(�)
in (5). In this section, we thus propose to study the influence of
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Fig. 8. Comparison between the proposed (a) and Chen (b) algorithm applied to an MRI image. The prior shape for Chen algorithm is not appropriate for this particular frame
and compensates for the lack of data information in a way which is not consistent with the real image content, as shown by the arrows in (b) and (c). Differently, the adopted
parametric formulation easily allows to second myocardial shape. Error measures are: (a) D = 0.87, HD = 3.60 pixels and RMSD = 1.42 pixels; (b) D = 0.76, HD = 5.88 pixels and
RMSD = 2.09 pixels.

Fig. 9. Evaluation of the influence of the initialization points. (a) Regions where the initial points are randomly positioned with two particular derived contours. (b)
Segmentation results obtained from 10 different initializations.
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initialization by applying a random variation to the location of the
6 points used in our initialization procedure.

This experiment is illustrated in Fig. 9 and is done as follows.
We delineate from a specific MRI image six regions in which initial
points are randomly positioned (red disk in Fig. 9(a)). Each region
corresponds to a disk with a radius of 3 pixels. This dimension has
been chosen to simulate the uncertainty in the positioning of the
points by the user. In order to show the influence of such random
scheme in the initialization, we display in Fig. 9(a) two particular
initial contours obtained from the proposed random initializations
and Fig. 9(b) shows the final contours obtained from 10 different
initializations. In order to evaluate the variability of the resulting
segmentations, we compute the similarity measures by consider-
ing all the possible combinations of two final contours. We ob-
tained mean values of D = 0.98, HD = 1.1 pixels and RMSD = 0.3
pixels. These values illustrate the robustness of the proposed
method with respect to the initialization phase.

As a conclusion, although the local data attachment term im-
plies an initialization close to the desired contour, within this limit,
this initialization thus needs not to be very accurate.
5. Conclusion

In this paper we addressed the segmentation of shapes which
may be approximated by two elliptical contours by introducing
an annular shape prior. By defining the distance from two ellipses
as a parametric implicit function, we have shown that an efficient
solution to the least-squares fitting problem of annular shapes can
be developed, avoiding iterative strategies like steepest gradient
descent and yielding an efficient algorithm. The application of
the method has been illustrated on several images from different
fields and an evaluation on MRI and ultrasound cardiac data has
been performed.
Appendix A. Chen algorithm

We briefly recall here the basics of Chen’s algorithm.
The interested reader is refered to the original paper (Chen et al.,
2002) for a detailed description. The segmentation process is
defined by:
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min
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where W is the distance from a reference shape, obtained from a
training phase, e(�) is an edge indicator function, while l, h and T
represent scale, rotation and translation for the optimal registration
of the prior shape onto the active contour. R is the rotation matrix
associated to the angle h. W can be computed with numerical meth-
ods as fast marching. The optimization is handled using the gradient
descent method:
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where W must be evaluated at lRxþ T.
Since at time zero the reference shape and the initial contour

may be substantially misaligned, a registration step must precede
the segmentation flow. This is implemented by iterating Eqs. (A.3)
to (A.5) until W2 reaches a minimum bound.

We observe that image gradient, exploited for edges location, is
not a reliable indicator in low SNR situations, as in ultrasound
images. For this reason, and for comparison purpose, we use in
all the experiments the localized framework described in Section
2.3 as data attachment term. This implies that the left hand side
of (A.2) is in practice replaced by Eq. (4).

References

Ahn, S.J., Rauh, W., Warnecke, H.J., 2001. Least-squares orthogonal distances fitting
of circle, sphere, ellipse, hyperbola, and parabola. Pattern Recognit. 34, 2283–
2303.

Alessandrini, M., Dietenbeck, T., Basset, O., Friboulet, D., Bernard, O. 2010. Using a
geometric formulation of annular-like shape priors for constraining variational
level-sets. In: Proc. IEEE Internat. Conf. Image Process. (ICIP2010), Hong Kong,
pp. 669–672.

Berg, J.M., 1998. On parameter estimation using level sets. SIAM J. Control Optim.
37, 1372–1393.

Bernard, O., Friboulet, D., Thevenaz, P., Unser, M., 2009. Variational b-spline level-
set: A linear filtering approach for fast deformable model evolution. IEEE Trans.
Image Imag. 18, 1179–1191.
Caselles, V., Kimmel, R., Sapiro, G., 1997. Geodesic active contours. Int. J. Comput.
Vision 22, 61–79.

Chalana, V., Kim, Y., 1997. A methodology for evaluation of boundary detection
algorithms on medical images. IEEE Trans. Med. Imag. 16, 642–652.

Chan, T., Vese, L., 2001. Active contours without edges. IEEE Trans. Image Imag. 10,
266–277.

Chan, T., Zhu, W. 2005. Level set based shape prior segmentation. In: IEEE Comput.
Soc. Conf. Comput. Vision Pattern Recognit., CVPR 2005, vol. 2, pp. 1164–
1170.

Chen, Y., Tagare, H.D., Thiruvenkadam, S., Huang, F., Wilson, D., Gopinath, K.S.,
Briggs, R.W., Geiser, E.A., 2002. Using prior shapes in geometric active contours
in a variational framework. Int. J. Comput. Vision 50, 315–328.

Cremers, D., Rousson, M., Deriche, R., 2007. A review of statistical approaches to
level set segmentation: Integrating color, texture, motion and shape. Int. J.
Comput. Vision 72, 195–215.

Dias, J., Leitao, J., 1996. Wall position and thickness estimation from sequences of
echocardiographic images. IEEE Trans. Med. Imag. 15, 25–38.

Faber, P., Fisher, R., 2001. Euclidean fitting revisited. In: Arcelli, C., Cordella, L., di
Baja, G. (Eds.), Visual form 2001, Lect. Notes Comput. Sci., vol. 2059. Springer,
Berlin/Heidelberg, pp. 165–175.

Fitzgibbon, A., Pilu, M., Fisher, R., 1999. Direct least square fitting of ellipses. IEEE
Trans. Pattern Anal. Mach. Intell. 21, 476–480.

Golub, G.H., Van Loan, C.F., 1996. In: Matrix computations, 3rd ed. Johns Hopkins
University Press, Baltimore, MD, USA.

Guerrero, J., Salcudean, S., McEwen, J., Masri, B., Nicolaou, S., 2007. Real-time vessel
segmentation and tracking for ultrasound imaging applications. IEEE Trans.
Med. Imag. 26, 1079–1090.

Huttenlocher, D., Klanderman, G., Rucklidge, W., 1993. Comparing images
using the hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15, 850–
863.

Jang, Y.K., Kang, B.J., Park, K.R., 2008. A study on eyelid localization
considering image focus for iris recognition. Pattern Recognit. Lett. 29, 1698–
1704.

Karlsson, A., Overgaard, N.C., Heyden, A., 2004. Automatic segmentation of zona
pellucida in HMC images of human embryos. In: Internat. Conf. Pattern
Recognit., vol. 3, pp. 518–521.

Lankton, S., Tannenbaum, A., 2008. Localizing region-based active contours. IEEE
Trans. Image Imag. 17, 2029–2039.

Leventon, M.E., Eric, W., Grimson, L., Faugeras, O. 2000. Statistical shape influence in
geodesic active contours. In: IEEE Comput. Soc. Conf. Comput. Vision Pattern
Recognit., CVPR 2000, p. 1316.

Noble, A., Boukerroui, D., 2006. Ultrasound image segmentation: A survey. IEEE
Trans. Med. Imag. 25, 987–1010.

Osher, S.J., Fedkiw, R.P., 2002. Level Set Methods and Dynamic Implicit Surfaces, 1st
ed. Springer.

Pang, B., Zhang, D., Wang, K., 2005. The bi-elliptical deformable contour and its
application to automated tongue segmentation in chinese medicine. IEEE Trans.
Med. Imag. 24, 946–956.

Paragios, N., Jolly, M.P., Taron, M., Ramaraj, R. 2005. Active shape models and
segmentation of the left ventricle in echocardiography. In: Internat. Conf. Scale
Space Theories PDEs Methods Comput. Vision, pp. 131–142.

Pardo, X.M., Leborán, V., Dosil, R., 2004. Integrating prior shape models into level-
set approaches. Pattern Recognit. Lett. 25, 631–639.

Rousson, M., Paragios, N., 2002. Shape priors for level set representations. Proc. 7th
Eur. Conf. Comput. Vision-Part II. Springer-Verlag, London, UK, pp. 78–92.


	Using a geometric formulation of annular-like shape priors for constraining variational level-sets
	Introduction
	Proposed method
	Level-set framework
	Energy formulation
	Data attachment term
	Main contribution: annular shape prior term
	Least-squares fitting of annular shapes


	Implementation issues
	Results
	Application to natural images from several fields
	Evaluation on cardiac images
	Definition of the error metrics
	Evaluation of shape prior contribution
	Comparison with Chen algorithm

	Dependence on the initialization

	Conclusion
	Chen algorithm
	References


