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Myocardial Motion Estimation from Medical
Images Using the Monogenic Signal
Martino Alessandrini, Adrian Basarab, Hervé Liebgott, and Olivier Bernard

Abstract— We present a method for the analysis of heart1

motion from medical images. The algorithm exploits monogenic2

signal theory, recently introduced as an N-dimensional gener-3

alization of the analytic signal. The displacement is computed4

locally by assuming the conservation of the monogenic phase5

over time. A local affine displacement model is considered to6

account for typical heart motions as contraction/expansion and7

shear. A coarse-to-fine B-spline scheme allows a robust and8

effective computation of the model’s parameters, and a pyramidal9

refinement scheme helps to handle large motions. Robustness10

against noise is increased by replacing the standard point-wise11

computation of the monogenic orientation with a robust least-12

squares orientation estimate. Given its general formulation, the13

algorithm is well suited for images from different modalities,14

in particular for those cases where time variant changes of15

local intensity invalidate the standard brightness constancy16

assumption. This paper evaluates the method’s feasibility on17

two emblematic cases: cardiac tagged magnetic resonance and18

cardiac ultrasound. In order to quantify the performance of the19

proposed method, we made use of realistic synthetic sequences20

from both modalities for which the benchmark motion is known.21

A comparison is presented with state-of-the-art methods for22

cardiac motion analysis. On the data considered, these conven-23

tional approaches are outperformed by the proposed algorithm.24

A recent global optical-flow estimation algorithm based on the25

monogenic curvature tensor is also considered in the comparison.26

With respect to the latter, the proposed framework provides,27

along with higher accuracy, superior robustness to noise and a28

considerably shorter computation time.29

Index Terms— Cardiac ultrasound, illumination changes,30

iterative refinement, monogenic signal, optical flow, optimal31

window size, tagged-magnetic resonance imaging (tMRI).32

I. INTRODUCTION33

THE MONOGENIC signal has been recently introduced34

by Felsberg [1] as an extension of the analytic signal35

concept to multiple dimensions. Like the latter, the monogenic36

signal provides the local amplitude and local phase signal37

features. Additionally, it also contains information on the38

local orientation. These three local features are pointwise39
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orthogonal, which means that they represent independent 40

information: the local amplitude represents the local intensity 41

or dynamics, the local phase describes the local symmetry or 42

grey value transition, and the local orientation describes the 43

direction of the highest signal variance. Decoupling the local 44

energy from the image structure, accounted for by phase and 45

orientation, has made it possible to derive effective solutions 46

to a number of image-processing problems, in particular when 47

the more traditional pixel intensity cannot be considered as a 48

reliable feature. 49

This situation is often encountered in medical imaging. 50

In cardiac ultrasound, the local brightness varies over time 51

due to the changes in the angle between the myocardial 52

fibers and the direction of propagation of the acoustic beam 53

or due to out-of-plane motions [2]. In magnetic resonance 54

imaging (MRI), intensity variations stem from magnetic field 55

inhomogeneities and scanner-related intensity artifacts [3]. In 56

tagged-MRI (tMRI) [4], tags fade exponentially over time 57

depending on the T1 relaxation time [5], [6]. Obviously, the 58

same problems are encountered when contrast agents are used, 59

such as in perfusion MRI [7] or when registration of images 60

from different modalities, such as computed tomography (CT) 61

and positron emission tomography (PET), is needed [8], [9]. 62

These considerations explain the rapidly growing interest 63

in monogenic signal analysis applied to medical imaging 64

problems over the last few years. For example, one could 65

cite successful applications of monogenic analysis in boundary 66

detection [10], [11], segmentation [12], multi-modal registra- 67

tion [8], [9], ultrasound image compounding [13], multi-view 68

image registration [14], wavelet filtering [15] and envelope 69

detection [16]. 70

In this context, the algorithm presented in this paper, 71

addresses a further fundamental problem in the field of medical 72

imaging, i.e. the estimation of myocardial motion. Assessment 73

of myocardial elasticity and contractility is indeed essential 74

in clinical practice to evaluate the degree of ischemia and 75

infraction as well as for surgical planning [17], [18]. 76

We compute the displacement estimate locally by assuming 77

the conservation of the monogenic phase in lieu of traditional 78

pixel brightness. The general formulation takes inspiration 79

from the work of Felsberg in [19]; nevertheless, the novelties 80

with respect to this study are manifold and substantial: 81

1) Locally, the size of the image window is selected in 82

order to have the most consistent motion estimate. This 83

operation is fully automatic and computationally effec- 84

tive because of an adaptation of the B-spline multires- 85

olution approach for the image moments computation 86

proposed by Sühling et al. in [20], [21]. By doing 87
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so, a common source of error in local techniques,88

related to an inadequate choice of the window size, is89

avoided.90

2) Felsberg’s pure translation model is replaced with an91

affine model. The affine model, a part of translation,92

can account for rotation, expansion, compression and93

shear, and provides a realistic description of the motion94

patterns typical of the cardiac muscle [17]. Furthermore,95

as the first-order spatial derivatives of the displacement96

are also computed, it allows the direct computation of97

the cardiac strain, with no need for numerical differenc-98

ing [18].99

3) The robustness to noise is improved by employing a100

least squares estimate of the monogenic orientation in101

place of the standard point-wise estimate [22].102

4) An incremental coarse-to-fine pyramidal scheme is used103

to refine the precision of the final estimate.104

The general formulation makes the algorithm well suited105

for images from different modalities. In particular, this paper106

evaluates its performance on tagged magnetic resonance imag-107

ing (tMRI) [4] and cardiac ultrasound image sequences. In108

order to quantify performance, we made use of realistic syn-109

thetic sequences for both modalities, for which the benchmark110

motion was known. In each experiment, a comparison is pre-111

sented with state-of-the-art methods in the related field. They112

include SinMod [23] for tMRI images and the Sühling [21]113

and Felsberg [19] algorithms for ultrasound. In both cases,114

the recent algorithm reported in Zang et al. [24] is also115

considered in the comparison. Indeed, due to the monogenic116

signal formulation at its base, it can be considered a possible117

competitor to the algorithm proposed herein.118

The paper proceeds as follows. In Section II the monogenic119

signal theory is briefly summarized and the robust computation120

of the orientation is introduced. In Section III the proposed121

optical flow estimation algorithm is described. Section IV122

discusses some implementation details. In Section V the123

problem of cardiac motion analysis from tMRI and cardiac124

ultrasound is briefly summarized and the results are presented.125

Concluding remarks are left to Section VI.126

II. MONOGENIC SIGNAL COMPUTATION127

The most practical aspects of the monogenic signal compu-128

tation will be reviewed here. For further details, we address the129

interested reader to [1], [25] and to [22] for a more intuitive130

derivation.131

The monogenic signal provides an extension of the standard132

analytic signal for multidimensional data. Although the theory133

is valid for a general number N of dimensions (N > 1), we134

consider here the case at hand of 2D grayscale images I :135

� → R, � ⊂ R
2.136

The image model adopted in phase-based processing is137

[19], [26]138

I (x) = A(x) cos(ϕ(x)) (1)139

where x = [x, y] is the spatial coordinate vector, A(x) is140

the local amplitude and ϕ(x) is the local phase. Additionally,141

monogenic signal theory assumes a local intrinsic dimen-142

sionality one [19], [26], i.e., the local variations of I are143

concentrated along a single direction, defined by the local 144

orientation θ(x). 145

The monogenic signal computes the image features of 146

amplitude, phase and orientation from the responses to three 147

2D spherical quadrature filters (SQFs) [1]. The SQFs consist 148

of one even rotation invariant bandpass be(x; λ0) filter and two 149

odd bandpass filters bo1(x; λ0) and bo2(x; λ0), where λ0 is the 150

filter wavelength, defined as the reciprocal of the normalized 151

center frequency f0. Note that in the following the dependency 152

of the filter responses on the center frequency will be omitted 153

for the sake of simplicity. The odd filters are computed from 154

the Riesz transform of the even filter [1], [19]. In the frequency 155

domain it is 156

Bo1(ω) = − jωx

|ω| · Be(ω), Bo2(ω) = − jωy

|ω| · Be(ω) (2) 157

where capital letters denote the Fourier transformed quantities 158

and ω = [ωx , ωy]T is the normalized angular frequency. 159

Several SQF families have been employed in the literature: 160

a comparison of the most popular ones is presented in [27]. 161

A similar study is beyond the scope of this paper. Here, as 162

recommended in [25], [28], the difference of Poisson (DoP) 163

kernel is adopted: 164

Be(ω) = exp (−|ω|s1)− exp (−|ω|s2) (3) 165

where |ω| is the normalized angular frequency and s1 and 166

s2 > s1 are two scale parameters. It can be shown that the 167

wavelength is related to the two scales by: 168

λ0 = 2π
s1 − s2

log(s1)− log(s2)
. (4) 169

From the three filter responses, monogenic phase ϕ(x), 170

orientation θ(x) and amplitude A(x) of I are obtained as: 171

θ(x) = arctan

(
q2(x)
q1(x)

)
172

ϕ(x) = arctan

( |q(x)|
p(x)

)
173

A(x) =
√

p2(x)+ |q(x)|2 (5) 174

where p(x) = (I ∗ be)(x), q1(x) = (I ∗ bo1)(x), q2(x) = 175

(I ∗ bo2)(x), q(x) = [q1(x), q2(x)]T and “∗” denotes 2D 176

convolution. 177

From the filter responses, the local frequency feature, 178

defined as the derivative of the phase along n, can also be 179

computed as [19]: 180

f � (∇ϕ)T · n = p∇T q − qT ∇ p

p2 + |q|2 (6) 181

where ∇ = [∂x , ∂y]T . Dependency on x is implied. 182

Monogenic phase and orientation can be conveniently com- 183

bined in the phase vector r(x) = [r1(x), r2(x)] = ϕ(x) · n(x), 184

with n(x) = [cos(θ(x)), sin(θ(x))]T [1], [19]. The dependency 185

on x of all the aforementioned features will be omitted in the 186

sequel unless necessary. 187
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A. Robust Orientation Computation188

In order to improve the robustness against image noise, in189

this study we replace the classical point-wise estimate of θ (5),190

with a robust least-squares estimate, inspired by the structure191

tensor formalism [29]. The scheme presented was proposed192

by Unser et al. in [22].193

The least-squares orientation estimate is obtained by maxi-194

mizing the directional Hilbert transform Hθ I (x) averaged over195

a local neighborhood vσ196

θ̄ (x) = arg max
θ ′∈[−π,π]

∫
R2
vσ (x′ − x) · |Hθ ′ I (x′)|2dx′ (7)197

where vσ corresponds here to a Gaussian kernel with variance198

σ 2 and the directional Hilbert transform is defined in the199

frequency domain as200

Hθ (ω) = ωx cos(θ)+ ωy sin(θ)

|ω| . (8)201

It is shown in [22] that (7) corresponds to the classical202

solution (5) if vσ (x) = δ(x). The maximization problem (7)203

is solved by the eigenvector associated with the largest eigen-204

value of the 2 × 2 matrix T(x), with entries205

[T(x)]nm =
∫

R2
vσ (x′ − x)qn(x′)qm(x′)dx′ (9)206

with n,m = {1, 2}. The matrix T can be assimilated to a207

Riesz-transform counterpart of the standard structure tensor.208

The new estimate is then given by209

θ̄ (x) = 1

2
arctan

(
2[T(x)]12

T[(x)]22 − T[(x)]11

)
. (10)210

Due to the averaging operation in (7), this alternative211

estimate is expected to be less sensitive to image noise212

than the traditional estimate. An example of this property213

is given in Fig. 1. We conclude this section by noting that214

this different orientation definition also affects the monogenic215

phase computation. In particular, the |q| term appearing in216

the second equation of (5) must now be replaced with s(x) =217

q1 cos θ̄ + q2 sin θ̄ .218

III. MULTISCALE OPTICAL FLOW COMPUTATION219

FROM THE MONOGENIC PHASE220

As in [19], the displacement field d(x) = [d1(x), d2(x)]T
221

along x and y between two frames is estimated by replacing222

the traditional brightness constancy assumption with the more223

robust monogenic phase constancy assumption. This is conve-224

niently expressed in terms of the monogenic phase vector as225

r(x, t + 1) = r(x − d(x), t). Assuming small displacements,226

the first-order Taylor expansion can be used r(x − d(x), t) ≈227

r(x, t) − J(x, t) · d(x), where J is the Jacobian matrix of r.228

Then, assuming all points translate of the same quantity d0229

within a local window w centered in x0 = [x0, y0], the230

following linear system of equations is obtained:231

〈J〉w d0 = − 〈rt 〉w ,232

J(x, t) =
[

r1x(x, t) r1y(x, t)
r2x (x, t) r2y(x, t)

]
(11)233

TEST IMAGE

(a)

IDEAL ORIENTATION

−1.5

−1

−0.5

0

0.5

1

1.5

(b)

POINTWISE ESTIMATE

(c)

ROBUST ESTIMATE

(d)

Fig. 1. Monogenic orientation estimate in the presence of noise. (a) Noise-
free test image containing a full 360-degree range of orientations. (b) Ideal
orientation. (c) and (d) Pointwise and robust (σ = 2) estimates in the presence
of image noise (20 dB). Mean square error of the estimate is 1.2E-2 for (c) and
2.7E-4 for (d). Phases are wrapped in the [−π/2, π/2] interval.

where rt (x, t) = [r1t(x, t), r2t (x, t)] denotes the time deriva- 234

tive of r, approximated as r(x, t + 1)− r(x, t), 〈v〉w denotes 235

the weighted average
∫
� w(x − x0)v(x)dx and rik = ∂kri . 236

Dependency on (x, t) will be omitted in the following. 237

Assuming a 1D structure [19], J must have rank one. 238

It can be shown that its only eigenvalue corresponds to the 239

monogenic frequency f in (6) while the associated eigenvector 240

is n = [cos(θ), sin(θ)]T [19], [22], this leads to the expression 241

[19], [22] 242

J = f nnT = f

[
cos2(θ) sin(θ) cos(θ)

sin(θ) cos(θ) sin2(θ)

]
. (12) 243

The term rt is computed from the SQFs responses as [19]: 244

rt = ptqt+1 − qt pt+1

|ptqt+1 − qt pt+1| arctan

( |ptqt+1 − qt pt+1|
pt pt+1 + qT

t qt+1

)
(13) 245

where subscripts “t” and “t + 1” denote the time instant. 246

We conclude by noting that (11) represents the mono- 247

genic phase counterpart of the popular Lucas & Kanade 248

algorithm [30], where the matrix J replaces the image structure 249

tensor. 250

A. Affine Model 251

Clearly, the simple translation model employed by Felsberg 252

is too restrictive in a general context. Also, its validity is 253

heavily dependent on the choice of the size of w. The solution 254

we propose is to replace the constant motion assumption with 255

a more general model, such as the affine model [31], [32]. 256

A part of translations, this accounts for rotation, expansion, 257

compression and shear. In the context of this paper, the affine 258
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model is of major interest because it provides a realistic259

description of the motion patterns of the cardiac muscle [17].260

A further relevant point is that, as the first-order spatial deriv-261

atives of the displacement are also computed, the Lagrangian262

strain tensor can be directly obtained from the latter, with no263

need for further numerical differencing. The local analysis of264

cardiac contractility is indeed fundamental in the diagnosis of265

pathological situations such as ischemia [18], [33].266

Considering for simplicity a window w centered at267

(x0, y0) = (0, 0), the affine model is written:268

d(x) = A(x)u, A =
[

1 0 x y 0 0
0 1 0 0 x y

]
(14)269

where u = [d10, d20, d1x , d1y, d2x , d2y]T is the new unknown270

vector: d10 and d20 correspond to the translation of the window271

center and dik = ∂kdi .272

Plugging (14) into (11) leads to an underdetermined system273

of equations. The solution is obtained by pre-multiplying both274

terms by AT , hence275

〈M〉w u = 〈b〉w , M = AT JA, b = −AT rt . (15)276

Equation (15) represents the proposed monogenic phase277

version of the Lucas & Kanade algorithm with affine parame-278

trization of the displacement [21].279

It can be shown that the entries of M and b are the local280

moments of orders zero to two of the spatial and temporal281

derivatives of r1 and r2:282

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

r1x r1y xr1x yr1x xr1y yr1y

r2x r2y xr2x yr2x xr2y yr2y

xr1x xr1y x2r1x xyr1x x2r1y xyr1y

yr1x yr1y xyr1x y2r1x xyr1y y2r1y

xr2x xr2y x2r2x xyr2x x2r2y xyr2y

yr2x yr2y xyr2x y2r2x xyr2y y2r2y

⎤
⎥⎥⎥⎥⎥⎥⎦

283

b = − [
r1t r2t xr1t xr2t yr1t yr2t

]
. (16)284

Note that, according to (12), it is r1x = cos2(θ), r2y =285

sin2(θ) and r2x = r1y = sin(θ) cos(θ).286

B. Multiscale Choice of Window Size287

The choice of the window size is a tedious issue connected288

with local techniques: the assumed motion model (translational289

or affine) may not hold when the window is too big, otherwise,290

the adoption of an excessively small window may result in291

the well known aperture problem [34]. To circumvent this292

issue, in [20], [21] Sühling et al. proposed a multiscale strategy293

for locally choosing the most consistent window size. This is294

based on the possibility of computing the image moments, i.e.,295

the entries of the system matrix M and the vector b in (16), at296

multiple scales, by using an efficient B-spline coarse-to-fine297

strategy.298

In particular, they are obtained from window functions w299

that are progressively scaled and subsampled by a factor 2300

in each dimension. More precisely, at scale j , the window301

w j (x − x0) = w((x − 2 j x0)/2 j ) is employed, where w is302

written as the separable product of two B-spline functions.303

By doing so, at each scale J f ≤ j ≤ Jc (J f ≥ 0) a solu-304

tion u j can be computed. Among the scales considered, the305

Algorithm 1: Multiscale Monogenic Optical Flow
Input: two subsequent frames: I1, I2

parameters: λ0, J f , Jc, Np , k, σ .
Output: displacement between I1 and I2: d

d = 0; % initial displacement
for i = 1 : Np do % pyramidal refinement

[Be,Bo1,Bo2] = SQF (λ0); % see (2) and (3)

[p1,q1] = MonogenSignal (I1,Be, Bo1, Bo2)

[p2,q2] = MonogenSignal (I2,Be,Bo1, Bo2)

f = MonogenFreq (p1,q1); % see (6)

θ = MonogenOrient (q1,σ ); % see (10)

J = JcobianMatrix ( f ,θ ); % see (12)

rt = TimeDer (p1, p2, q1,q2); % see (13)

�d = MultiscaleMonogenicOF (J, rt , Jc,J f );

d = d +�d; % add increment

I2 = Interp (I2,x +�d); % warp second frame

λ0 = λ0/k; % decrease wavelength

u j producing the smallest residual error ||Mu j − b||�2/|w|�1 306

is retained as the final displacement estimate. Whenever nec- 307

essary, bi-cubic interpolation is employed to obtain a dense 308

motion field. With this strategy, the scale providing the most 309

consistent motion estimate is selected. 310

C. Iterative Displacement Refinement 311

The hypothesis of small displacements employed in differ- 312

ential techniques may be inadequate whenever the displace- 313

ment is substantial or the image intensity profile is non-linear. 314

A possible way to deal with this limitation is to implement 315

a form of Gauss-Newton optimization: the current estimate is 316

used to undo the motion, and then the estimator is reapplied to 317

the warped images to find the residual displacement [24], [31], 318

[35]. When applied iteratively, this procedure can improve the 319

estimation accuracy considerably. 320

We employed the aforementioned refinement scheme in 321

the algorithm presented. In particular, we found it to be 322

particularly effective when the degree of detail in the mono- 323

genic phase image progressively increases between subsequent 324

iterations. In practice, this is established by suitably tuning the 325

center frequency f0 of the SQF bank. By doing so, the coarsest 326

image is first employed to determine a rough estimate of the 327

displacement. This estimate is then adjusted on the finer detail 328

data, obtained from an higher value of center frequency. 329

IV. IMPLEMENTATION DETAILS 330

The pseudo-code of the proposed algorithm is pre- 331

sented in Algorithm 1. The pyramidal refinement scheme of 332

Section III-C was implemented by decreasing the filter wave- 333

length λ0 by a factor k = 1.5 at each iteration. The number 334

of iterations Np and the starting wavelength value have been 335

optimized in each of the experiments described in the next 336

session. 337
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(a) (b) (c)

Fig. 2. (a) Vertical, (b) horizontal, and (c) grid tags. Images from [6].

The multiscale window choice was implemented by consid-338

ering fifth-order B-splines and scales j = {2, 3, 4, 5}. We note339

that at scale j the motion is computed on square windows340

with sides 5 · 2 j − 1, with a spacing of 2 j pixels between341

neighboring estimates. A value σ = 2 was used for the robust342

computation of the monogenic orientation.343

The proposed algorithm has been implemented in344

MATLAB (R2011b, The Math-Works, Natick, MA). The code345

is made freely available at http://www.creatis.insa-lyon.fr/346

us-tagging/code.347

V. RESULTS348

The algorithm was tested on realistic simulated cardiac349

ultrasound and tagged cardiac MRI (tMRI) image sequences350

for which the benchmark motion was known. In each case,351

a comparison will be presented with state-of-the art algo-352

rithms for cardiac motion estimation and with the algorithm353

of Zang et al. [24], which, to the best of our knowledge,354

is the most closely related work to the study presented in355

this paper. The Zang algorithm is briefly summarized in356

Appendix VI.357

Concerning performance assessment, the most commonly358

used measurement in the literature is the angular error [36].359

Nevertheless, this metric has several shortcomings. At first,360

due to the arbitrary scaling constant (1.0) used to avoid the361

divide-by-zero problem, it penalizes small displacements more362

than large ones. Second, symmetrical deviations of estimated363

vectors from the true value result in different error values.364

For these reasons, we employ here the less conventional but365

more appropriate endpoint error (EE) [37], [38]:366

E E = ||d − d̄||2 (17)367

where d denotes the estimated displacement and d̄ the368

benchmark displacement.369

A. MRI Tagging370

1) Background: Tagged MRI is currently the gold-standard371

technique for quantification of myocardial contractility in vivo372

[23], [39]. With this technique, cardiac tissue is marked with373

magnetically saturated tagging lines or grids (cf. Fig. 2)374

that deform with the underlying tissue during the cardiac375

cycle, thus providing details on the myocardial motion.376

With time elapsing, the grid loses contrast and sharpness377

[cf. Fig. 3(a)–(c)]. This is the reason why state-of-the-art378

techniques for the estimation of myocardial motion from379

tMRI sequences exploit the image phase rather than the less380

(a) (b) (c)

(d) (e) (f)

Fig. 3. Tags fading effect on (a)–(c) a real tMRI sequence and (d)–(f) on a
simulated one.

trustworthy pixel intensity. The popular algorithms HARP 381

(harmonic phase) [39] and SinMod (sine-wave modeling) [23] 382

belong to this family of methods. In particular, the latter was 383

shown to outperform HARP in [23]. 384

Both the aforementioned algorithms are derived from mod- 385

eling the tMRI image as the superposition of monochromatic 386

plane waves: 387

I (x) ≈ A(x) cos(ωT
0 x) (18) 388

where ω0 is fixed given tags direction and spacing. The 389

displacement is then computed in the Fourier domain from the 390

responses of a set of bandpass directional filters tuned accord- 391

ingly to ω0. More specifically, while HARP [39] employs 392

a phase-based disparity measure similar to the one by Fleet 393

and Jepson [40], SinMod estimates the displacement based on 394

an analytical expression for the cross-power spectrum of two 395

subsequent frames [23]. 396

It is interesting to observe (18) in relation with the work 397

presented here. At first, that model directly satisfies the 398

assumption of 1D local structures, at the base of the mono- 399

genic signal analysis. This makes the monogenic signal a 400

promising tool for the study of tMRI sequences. To our 401

knowledge, this is the first study investigating this possibility. 402

Second, (18) can be readily obtained from (1) by including the 403

first-order phase expression used in Section III. This reveals 404

that on tMRI images the assumption of small displacements 405

is no longer required. The upper-limit for the displacement is 406

now given by one-half of the tag spacing, beyond which the 407

motion estimation problem becomes undetermined. 408

2) Motion Estimation Results: The proposed algorithm 409

is compared with SinMod, available in the InTag plugin 410

for OsiriX.1 The evaluation was made on synthetic tMRI 411

sequences, generated with the ASSESS software [41]. The 412

synthetic motion is established on the basis of a 2D ana- 413

lytical model taking typical contraction, relaxation, torsion 414

and thickening of the cardiac muscle into account [42]. 415

The characteristic tag-fading effect, not considered in 416

ASSESS, was also taken into account in this study, as shown in 417

1Available at: http://www.creatis.insa-lyon.fr/inTag/.
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TABLE I

ENDPOINT ERROR (μ± σ ) IN PIXELS ON NINE SIMULATED SEQUENCES

Sequence Algorithm

Proposed SinMod Zang

D30 0.152 ± 0.121 0.215 ± 0.145 0.163 ± 0.137

D30F20 0.082 ± 0.072 0.128 ± 0.112 0.087 ± 0.079

D30R10T01P0 0.264 ± 0.149 0.363 ± 0.199 0.303 ± 0.202

D30R20T01P0 0.462 ± 0.239 0.970 ± 1.129 0.531 ± 0.328

D30R20T01P0F20 0.209 ± 0.139 0.344 ± 0.224 0.224 ± 0.174

D30R20T01P3 0.419 ± 0.228 0.911 ± 1.099 0.461 ± 0.301

R20F20 0.244 ± 0.164 0.416 ± 0.264 0.247 ± 0.191

R10 0.161 ± 0.087 0.220 ± 0.090 0.164 ± 0.104

R20 0.104 ± 0.072 0.174 ± 0.122 0.124 ± 0.079

Fig. 3(d)–(f). The effect was obtained by adjusting the image’s418

histogram limits on each frame so as to match those of a real419

sequence taken as a template. The algorithm of Zang et al.420

[24] was also considered in the comparison.421

The results obtained on nine simulated sequences are422

summarized in Table I. For each algorithm the parameters were423

optimized to return the smallest average error on the sequence424

D30R20T01P0F20. For the proposed algorithm, these values425

were λ0 = 4 for the initial wavelength and Np = 5 for426

the number of refinement steps. For the Zang algorithm,427

the values were α = 0.2 for the weight between the data428

and the smoothness term, γ = 0.1 for the weight between429

the monogenic signal and the monogenic curvature and a430

variance ρ2 of 2 pixels for the Gaussian localizing window431

(see Appendix VI for a clearer understanding of the parame-432

ters’ meaning). A multi-resolution refinement scheme was also433

employed [24] with four levels. SinMod required the tags type434

(grid), direction (45°) and spacing (six pixels). The name of435

each sequence reflects the values of the parameters used for436

its generation, namely: contraction/expansion (D), rotation (R),437

thickening (T), frame-rate (F) and healthy (P0) or pathological438

(P3) state. Greater detail on their meaning can be found439

in [42].440

These results show that the proposed algorithm system-441

atically returns the estimate with the smallest mean value442

and variance, which is a proof of precision and reliability.443

While the improvement with respect to SinMod is evident,444

the improvement with respect to the Zang algorithm is less445

pronounced. Nevertheless, the differences among all the algo-446

rithms were found to be statistically significant (p < 0.0001)447

for all sequences using the Friedman rank test (α = 0.05) in448

conjunction with the post-hoc test proposed by Daniel [43],449

as suggested in [44]. In order to avoid correlations among450

samples, we suitably subsample the error images prior to the451

statistical analysis.452

A clearer understanding of the algorithm’s performance is453

provided by Fig. 4 where the error dispersion on two of the454

simulated sequences is represented for the three algorithms455

considered. The sequences were considered in order to present456

two different kinds of motions, specifically pure rotation (a)457

and pure contraction/expansion (b). In both cases, the proposed458

algorithm and Zang’s algorithm outperform SinMod. It is also459
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Fig. 4. Boxplot of the errors for (a) R20F20 and (b) D30F20. The center of
each box represents the median while the body extends from the 25th to the
75th percentile.

clear how the proposed algorithm provides better estimates 460

than Zang’s in the first part of the sequence, i.e. when the 461

displacements are greater, while, in the final part, the two 462

estimates are almost equivalent. 463

To better appreciate the difference in performance, it is 464

useful to analyze the local behavior of each algorithm. This is 465

represented in Fig. 5, where the error images obtained on the 466

4-th frame of the two sequences considered above is displayed. 467

At that instant, the displacement reaches the maximum average 468

value and the greatest spatial variation in both cases: in the 469

first case (first row in the Figure) the angular velocity decreases 470

linearly, passing from the endocardial to the epicardial contour; 471

in the second (second row in the figure) the radial contraction 472

is null on the epicardium and maximal on the endocardium. 473

From the comparison between Fig. 5(c)–(g) and 474

Fig. 5(d)–(h) it is clear how the Zang algorithm suffers 475

more from these gradients of velocity than the proposed 476

algorithm. This is a consequence of its global nature. Indeed, 477

this method imposes a constraint on the gradient of the motion 478

field that turns out to be inadequate when the entity of the 479

displacement varies rapidly inside the image. At this point, 480

it is important to remember that these results correspond to 481

the optimal parameters’ configuration. In particular, smaller 482

values of the smoothness weight α, which could tentatively 483

be employed in order to avoid over-regularization effects, 484

lead instead to larger errors. For example, a reduction of 485

α from the optimal 0.2 to 0.05 leads to an increase in the 486

endpoint error from 0.45 to 0.68 pixels. As shown by the 487

previous results, SinMod is outperformed by both methods. 488

More generally, Zang’s algorithm appears to involve exces- 489

sively rigid priors on the displacement model, which makes it 490

unsuitable to dealing with more complex and inhomogeneous 491

motion patterns. In contrast, the proposed algorithm does not 492
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Error map for the fourth frame. (a)–(d) R20F20. (e)–(h) D30F20. The green arrows in (a) and (e) denote the benchmark field.
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Fig. 6. Sensitivity to noise of (a) proposed algorithm, (b) Zang’s algorithm, and (c) SinMod. Note that different scales have been adopted in the three plots
in order to optimize the error range visualization. Indeed, this is substantially different in the three cases. As an example, the average error variation in the
6-dB case is of 0.09 pixels for Zang’s algorithm, 0.04 pixels for SinMod, and 0.02 pixels for the proposed algorithm.

imply any hypothesis on the motion field, and therefore it can493

handle similar situations with superior flexibility.494

The sensitivity to noise was also evaluated. To this end, we495

contaminated the frames of sequence R20F20 with additive496

Rician noise [5]. Fig. 6 reports the endpoint error variation497

due to noise, i.e. the value |E En − E Ere f |, where E Ere f is498

the average endpoint error measured in the noise-free case499

(cf. Fig. 4), while E En is the value in the presence of500

noise. The results are based on 15 independent noise realiza-501

tions. While the performance of the Zang algorithm decreases502

considerably, especially for large motions, the performance503

of the proposed algorithm remains virtually unchanged. The504

good robustness against noise stems from two factors: the505

multiscale window choice of Section III-B and the robust506

monogenic orientation of Section II-A. The first guarantees507

that the integration scale is optimized locally so as to minimize508

the noise effect on the velocity determination, while the second509

ensures a more robust computation of the monogenic features.510

We also note that sensitivity to noise is a known drawback511

of global techniques as compared to local techniques [45].512

SinMod also shows better noise robustness as compared to the513

Zang algorithm. Nevertheless, it should be noted that SinMod 514

also returned the worst results in terms of accuracy. 515

Here we note that the computation of the monogenic signal 516

involves pre-filtering the data, and this can produce some 517

noise suppression. Nevertheless, this fact does not explain the 518

superiority with respect to Zang’s algorithm given that the 519

latter makes use of the same set of SQF filters that we employ 520

in the proposed method. Instead, the actual difference comes 521

due to the fact that the proposed is a local method, therefore 522

intrinsically less sensitive to noise. Moreover, as previously 523

mentioned, noise robustness is further improved by the use of a 524

multiscale window choice and a robust monogenic orientation 525

computation. 526

A further fundamental point concerns computational time. 527

For the optimal parameters’ configuration, it was 0.55 s/image 528

for the proposed algorithm (image size, 256 × 256 pixels2) 529

and 17 s/image for Zang’s algorithm. Both these values refer 530

to MATLAB implementations executed on a desktop PC 531

with a 3.47 GHz Intel Xeon X5690 processor, 12 Gb of 532

RAM and running Windows 7. Although unoptimized for 533

definition, given that MATLAB was used, these results give 534
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(a) (b)

(c) (d)

Fig. 7. Color encoding of the radial component of the estimated displacement.
Red color encodes inward motion and blue color outward one. No color
denotes no motion. The displacement value is expressed in pixel. (a) and
(b) present the results on a systolic and diastolic frame on a healthy
subject. (c) and (d) present the results on a systolic and diastolic frame
on a post-infarction subject. (a) Systole healthy. (b) Diastole healthy.
(c) Systole post infarct. (d) Diastole post infarct.

a clear vision on the relation between the complexity of the535

two algorithms. The increased computational burden of the536

Zang algorithm is readily explained by its global formulation,537

demanding the employment of iterative optimization routines,538

cf. Appendix VI. On the contrary, the proposed algorithm539

reaches a sub-second speed with its efficient B-spline formal-540

ism (even in this unoptimized version). It is worth pointing541

out that fast computation is primal as far as medical imaging542

is concerned.543

Finally, the feasibility of the algorithm presented in a544

clinical setting was qualitatively assessed by considering two545

real acquisitions. The first came from a healthy subject546

(Siemens MAGNETOM Avanto 1.5T, 6 mm tag-spacing,547

0° tag-orientation), the second from a patient who underwent548

inferior cardiac infarction due to the occlusion of the left549

anterior descending artery (LAD). This latter acquisition refers550

to two days after reperfusion (Siemens MAGNETOM Avanto551

1.5T, 6 mm tag-spacing, 45° tag-orientation). A qualitative552

representation of the results is given in Fig. 7. The color map553

superimposed on the tMRI image encodes the radial com-554

ponent of the estimated displacement computed with respect555

to the center of the myocardium, represented by a white556

cross. Red and blue denote inward and outward displacement,557

respectively.558

The first line of figures corresponds to a systolic and dias-559

tolic frame on the healthy subject: the estimated displacement560

reflects the physiological contraction and dilatation of the left561

ventricle in these two phases of the heart cycle. In contrast,562

on the post-infarct patient, the color notation reflects the563

reduced mobility of the heart regions involved in the infarction.564

More than that, Fig. 7(c) demonstrates a dyskinetic behavior,565

represented by an non physiological outward motion during 566

systole [21]. 567

In the experiments illustrated in Fig. 7, the heart mask was 568

drawn manually by a cardiologist and the center point was 569

computed as its center of mass. Several ways for automatizing 570

myocardium tracking on tMRI sequences have been proposed 571

in the literature and could be employed here in lieu of manual 572

contouring. Reviewing them is beyond the scope of this paper. 573

Clearly, the evaluation proposed above is far from being 574

an exhaustive clinical evaluation of the proposed algorithm. 575

Still, it gives insights into the meaningfulness of the estimates 576

it returns. A deeper evaluation on diagnostic cases is left to 577

further studies. 578

We conclude this section by noting that, even though the 579

model (18) is adequate for line-tags, otherwise, in the case 580

of grid-tags, a second wave roughly perpendicular to the first 581

should be included in the image model. This would suggest 582

investigating the use of 2D extensions of the monogenic signal. 583

In particular the signal multi-vector [28] shows excellent fit 584

with the grid-tag image model. Similar considerations deserve 585

to be investigated more in depth in future studies. Nonetheless, 586

the results presented here show that, even in the grid-tag case, 587

the monogenic-phase-based algorithm presented still produces 588

relevant estimates. 589

B. Cardiac Ultrasound 590

1) Background: Quantitative analysis of cardiac ultrasound 591

sequences can provide important mechanical measurements 592

such as muscle strain and twist, wall thickness and ejection 593

fraction [18]. Compared to MRI, medical ultrasound has a 594

higher spatio-temporal resolution, requires no infrastructures, 595

low budgets and involves no discomfort for the patients. For 596

these reasons it is currently the most widespread medical 597

imaging exam [46]. These factors explain the high clinical 598

interest in the development of tools for the determination of 599

cardiac function from cardiac ultrasound images [18]. 600

While tissue Doppler offers a powerful instrument to 601

evaluate cardiac deformation [47], it suffers from the major 602

limitation that only the velocity component in the direction of 603

the ultrasound beam can be determined. This has motivated 604

a growing interest in the development of non-Doppler 605

techniques. They include speckle-tracking [48], frame-to- 606

frame [49] or group-wise elastic registration [33] and optical 607

flow [21]. In particular, the algorithm of Sühling et al. [21] 608

achieves an excellent compromise between accuracy and 609

computational complexity. Moreover, its clinical feasibility 610

has been attested in thorough studies [17]. 611

The Sühling algorithm improves the Lucas & Kanade [30] 612

formalism by including the multiscale window choice strat- 613

egy of Section III-B. As in [30], motion is computed on 614

the basis of the brightness conservation between subsequent 615

frames. Nevertheless, as mentioned in the introduction, this 616

can be a misleading assumption as far as cardiac ultrasound 617

is concerned. This is also proved by the increasing interest in 618

phase-based solutions [11], [14]. 619

The following compares the proposed multiscale monogenic 620

optical-flow algorithm presented in this paper, the Sühling 621



IE
EE

Pr
oo

f

ALESSANDRINI et al.: MYOCARDIAL MOTION ESTIMATION FROM MEDICAL IMAGES 9

(a) (b)

(c) (d)

Fig. 8. (a) and (b) Diastolic and systolic frames from a synthetic short axis
sequence. The motion estimated with the proposed algorithm is superimposed
as green arrows. (c) and (d) Diastolic and systolic frames from a synthetic
apical four chambers sequence.

TABLE II

ENDPOINT ERROR (μ± σ )

Algorithm Sequence

Apical 4 Chambers Short Axis

Sühling 0.395 ± 0.338 0.396 ± 0.346

Felsberg 0.315 ± 0.257 0.364 ± 0.293

Zang 0.294 ± 0.217 0.324 ± 0.256

Proposed 0.264 ± 0.190 0.313 ± 0.242

algorithm, the Zang algorithm and the Felsberg algorithm,622

which has been recently applied to medical ultrasound in [50].623

2) Motion Estimation Results: In order to provide a624

quantitative evaluation of the algorithms considered, we use625

synthetic echocardiographic sequences. The simulation frame-626

work is described in [51]. The simulated sequences along627

with the benchmark fields are available for download at628

http://www.creatis.insa-lyon.fr/us-tagging/news. In this study,629

we assessed two simulated sequences: one Short Axis (SAx)630

and one Apical 4 Chambers (A4C). These are two of the most631

frequently adopted orientations in the clinical procedure [52].632

A representation of the estimated motion fields with the633

proposed algorithm is given in Fig. 8. These fields show how634

the estimates are qualitatively consistent with physiological635

cardiac motion: indeed the motion vectors point inward during636

systole and outward during diastole.637

Table II reports the average errors obtained on the entire638

simulated sequences. For all the algorithms, the parameters639

have been optimized to obtain the smallest average error on the640

SAx sequence. For the proposed algorithm these are λ0 = 2641

and Np = 5. For the Zang algorithm they are instead γ = 0.2,642

α = 0.2, ρ = 2 and five pyramidal refinements. The Felsberg643

algorithm employed a fixed window w given by the tensor644
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Fig. 9. Endpoint error (in pixels) for the four algorithms on the synthetic
A4C sequence (a) mean value and (b) standard deviation.

product of two B-spline functions of order 5 at scale J = 4, 645

while the optimal wavelength for the SQF was 3 pixels. The 646

Sühling algorithm employed the multiscale window choice 647

by testing the same scales j = {2, 3, 4, 5} as the pro- 648

posed algorithm. Neither Felsberg’s nor Sühling’s algorithm 649

applied any refinement scheme like the one in Section III-C 650

(cf. [19], [21]). 651

From Table II all the three monogenic phase-based algo- 652

rithms considered perform better than Sühling’s algorithm. 653

This confirms that the monogenic phase is a more reliable 654

feature than pixel intensity as far as medical ultrasound is 655

concerned [8], [11], [14]. Also, both the Zang algorithm and 656

the proposed algorithm outperform the Felbsberg algorithm 657

due to their more sophisticated formulation. As in the tMRI 658

case, the improvement with respect to the Zang algorithm is 659

less pronounced than with respect to the other two algorithms. 660

Nevertheless, in this case as well, the differences were found 661

to be statistically significant according to a Friedman rank test 662

(p < 0.0001, α = 0.05). 663

A more detailed performance analysis is illustrated in Fig. 9, 664

where the four algorithms are compared on the A4C sequence. 665

The four curves represent the mean value (a) and standard 666

deviation (b) of the endpoint error on each frame of the 667

sequence. As in the tMRI case, the improvement of our 668

algorithm with respect to the Zang algorithm is more relevant 669

for large displacements. In particular, they occur during the 670

diastolic expansion, roughly comprised between frame 10 and 671

frame 22 of the simulated sequence. Again, this superiority can 672
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(a) (b) (c)

Fig. 10. Color map illustrating the multiscale window choice. Pixels are
colored according to the scale determining their velocity. At the initial step
(a) only scale J = 5 is used, then scale J = 4 is tested and (b) displacements
are updated where requested by the error criterion. The window choice
procedure ends at scale J = 3. The title of each figure reports the endpoint
error at that step.

be explained by the major flexibility involved by the proposed673

formalism, which makes it more suitable for following com-674

plex motion patterns. The frames between 22 and 44 instead675

represent the end of diastole. In this interval, the displacement676

is minimal and the Fesberg, Zang and the proposed algorithm677

return close results. Finally, the last frames correspond to the678

systolic contraction. Here the Zang algorithm and the one679

proposed herein still give close estimates, while the error for680

the Felsberg algorithm increases. This flaw results from the681

absence in the latter of any strategy to account for large682

displacements, as the pyramidal refinement adopted in the683

Zang algorithm and the proposed algorithm.684

Finally, Fig. 10 shows the benefits derived from the mul-685

tiscale window choice of Section III-B. The color display686

represents the scale retained in the velocity computation687

while the title reports the corresponding endpoint error. The688

progressive error reduction shows how the window selection689

procedure allows the computation of more consistent velocity690

estimates. The block-like appearance of the color maps results691

from the estimate stopping at scale j = 3, so that one velocity692

is computed every 23 pixels. A pixel-wise map is then obtained693

by nearest-neighbor interpolation.694

With respect to Fig. 10, it is also interesting to note that,695

while the scale j = 2 was also considered, it was never696

selected in the velocity computation. This reveals that the697

automatic window selection procedure makes the algorithm698

almost independent on the chosen range [J f , Jc].699

Again, besides being more precise, the proposed algorithm700

is somewhat more computationally effective than the Zang701

algorithm. As an example, the computation time for one A4C702

image (size, 271 × 333 pixels2) with the optimal parameters703

was 0.68 s while it was 18.6 s for the Zang algorithm. This704

point is even more important here than with MRI. Indeed,705

although off-line processing is considered acceptable in the706

latter case, it would not be for ultrasound, where the real-time707

aspect is one of the major attractions.708

VI. CONCLUSION709

We have described a novel algorithm for the analysis710

of heart motion from medical images. The displacement is711

estimated from the monogenic phase and is therefore robust712

to possible variations of the local image energy. A local affine 713

model accounts for the typical contraction, torsion and shear 714

of myocardial fibers. An effective B-spline multiresolution 715

strategy automatically selects the scale returning the most con- 716

sistent velocity estimate. The multiresolution strategy together 717

with a least-squares estimate of the monogenic orientation 718

make the algorithm robust under image noise. 719

Due to its general formulation, the proposed algorithm is 720

well suited for measuring myocardial motion from images 721

from different modalities. In particular, we have presented 722

an evaluation on cardiac tagged MRI and echocardiographic 723

sequences. The results have shown that the proposed algorithm 724

is a valid alternative to state-of-the-art techniques in the two 725

fields. Moreover, it was shown to be more accurate and 726

considerably less computation-demanding than another recent 727

algorithm based on the monogenic signal [24]. 728

A potentially valuable application is motion compensation 729

of myocardial perfusion MRI images [7]. Indeed, the major 730

challenge in correcting the motion problem is that the local 731

tissue contrast in the image sequence changes locally with 732

time, especially in the region of interest, the left ventricular 733

myocardium. Due to the low sensitivity to alterations in the 734

brightness profile, we believe the application of the proposed 735

algorithm to this problem could lead to beneficial results. 736

APPENDIX 737

ZANG ALGORITHM FOR OPTICAL FLOW COMPUTATION 738

The Zang algorithm, reported in [24], is based on an 739

extension of the monogenic signal for intrinsically 2D struc- 740

tures, called monogenic curvature tensor. The motion estimate 741

is then obtained by plugging this new feature in the popular 742

non-linear energy function of Bruhn et al. [36]: 743

E(w) =
∫
�

(
ψ1

(
wT Jρ (∇3ϕ + γ∇3�)w

))
dxdy 744

+α
∫
�
ψ2

(
|∇w|2

)
dxdy. (19) 745

where w = [d1, d2, 1], ∇3 = [∂x , ∂y, ∂t ], Jρ (∇3 f ) = 746

Kρ ∗ (∇3 f ∇3 f T
)
, ψi (z) = 2βi

√
1 + z/βi , α, γ and β are 747

constant parameters and Kρ is a Gaussian kernel with standard 748

deviation ρ. The two terms ϕ and � are the monogenic signal 749

and monogenic curvature phases, respectively. 750

The minimization of (19) is carried out as in [24], [36] with 751

two nested iterative procedures. An outer fixed point cycle in 752

ψ1, ψ2 to remove the non-linearity and an inner successive 753

over-relaxation method (SOR) to solve the resulting linear 754

problem. A pyramidal refinement scheme is also employed, 755

as in [24], [36]. 756
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Myocardial Motion Estimation from Medical
Images Using the Monogenic Signal
Martino Alessandrini, Adrian Basarab, Hervé Liebgott, and Olivier Bernard

Abstract— We present a method for the analysis of heart1

motion from medical images. The algorithm exploits monogenic2

signal theory, recently introduced as an N-dimensional gener-3

alization of the analytic signal. The displacement is computed4

locally by assuming the conservation of the monogenic phase5

over time. A local affine displacement model is considered to6

account for typical heart motions as contraction/expansion and7

shear. A coarse-to-fine B-spline scheme allows a robust and8

effective computation of the model’s parameters, and a pyramidal9

refinement scheme helps to handle large motions. Robustness10

against noise is increased by replacing the standard point-wise11

computation of the monogenic orientation with a robust least-12

squares orientation estimate. Given its general formulation, the13

algorithm is well suited for images from different modalities,14

in particular for those cases where time variant changes of15

local intensity invalidate the standard brightness constancy16

assumption. This paper evaluates the method’s feasibility on17

two emblematic cases: cardiac tagged magnetic resonance and18

cardiac ultrasound. In order to quantify the performance of the19

proposed method, we made use of realistic synthetic sequences20

from both modalities for which the benchmark motion is known.21

A comparison is presented with state-of-the-art methods for22

cardiac motion analysis. On the data considered, these conven-23

tional approaches are outperformed by the proposed algorithm.24

A recent global optical-flow estimation algorithm based on the25

monogenic curvature tensor is also considered in the comparison.26

With respect to the latter, the proposed framework provides,27

along with higher accuracy, superior robustness to noise and a28

considerably shorter computation time.29

Index Terms— Cardiac ultrasound, illumination changes,30

iterative refinement, monogenic signal, optical flow, optimal31

window size, tagged-magnetic resonance imaging (tMRI).32

I. INTRODUCTION33

THE MONOGENIC signal has been recently introduced34

by Felsberg [1] as an extension of the analytic signal35

concept to multiple dimensions. Like the latter, the monogenic36

signal provides the local amplitude and local phase signal37

features. Additionally, it also contains information on the38

local orientation. These three local features are pointwise39
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orthogonal, which means that they represent independent 40

information: the local amplitude represents the local intensity 41

or dynamics, the local phase describes the local symmetry or 42

grey value transition, and the local orientation describes the 43

direction of the highest signal variance. Decoupling the local 44

energy from the image structure, accounted for by phase and 45

orientation, has made it possible to derive effective solutions 46

to a number of image-processing problems, in particular when 47

the more traditional pixel intensity cannot be considered as a 48

reliable feature. 49

This situation is often encountered in medical imaging. 50

In cardiac ultrasound, the local brightness varies over time 51

due to the changes in the angle between the myocardial 52

fibers and the direction of propagation of the acoustic beam 53

or due to out-of-plane motions [2]. In magnetic resonance 54

imaging (MRI), intensity variations stem from magnetic field 55

inhomogeneities and scanner-related intensity artifacts [3]. In 56

tagged-MRI (tMRI) [4], tags fade exponentially over time 57

depending on the T1 relaxation time [5], [6]. Obviously, the 58

same problems are encountered when contrast agents are used, 59

such as in perfusion MRI [7] or when registration of images 60

from different modalities, such as computed tomography (CT) 61

and positron emission tomography (PET), is needed [8], [9]. 62

These considerations explain the rapidly growing interest 63

in monogenic signal analysis applied to medical imaging 64

problems over the last few years. For example, one could 65

cite successful applications of monogenic analysis in boundary 66

detection [10], [11], segmentation [12], multi-modal registra- 67

tion [8], [9], ultrasound image compounding [13], multi-view 68

image registration [14], wavelet filtering [15] and envelope 69

detection [16]. 70

In this context, the algorithm presented in this paper, 71

addresses a further fundamental problem in the field of medical 72

imaging, i.e. the estimation of myocardial motion. Assessment 73

of myocardial elasticity and contractility is indeed essential 74

in clinical practice to evaluate the degree of ischemia and 75

infraction as well as for surgical planning [17], [18]. 76

We compute the displacement estimate locally by assuming 77

the conservation of the monogenic phase in lieu of traditional 78

pixel brightness. The general formulation takes inspiration 79

from the work of Felsberg in [19]; nevertheless, the novelties 80

with respect to this study are manifold and substantial: 81

1) Locally, the size of the image window is selected in 82

order to have the most consistent motion estimate. This 83

operation is fully automatic and computationally effec- 84

tive because of an adaptation of the B-spline multires- 85

olution approach for the image moments computation 86

proposed by Sühling et al. in [20], [21]. By doing 87

1057–7149/$31.00 © 2012 IEEE
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so, a common source of error in local techniques,88

related to an inadequate choice of the window size, is89

avoided.90

2) Felsberg’s pure translation model is replaced with an91

affine model. The affine model, a part of translation,92

can account for rotation, expansion, compression and93

shear, and provides a realistic description of the motion94

patterns typical of the cardiac muscle [17]. Furthermore,95

as the first-order spatial derivatives of the displacement96

are also computed, it allows the direct computation of97

the cardiac strain, with no need for numerical differenc-98

ing [18].99

3) The robustness to noise is improved by employing a100

least squares estimate of the monogenic orientation in101

place of the standard point-wise estimate [22].102

4) An incremental coarse-to-fine pyramidal scheme is used103

to refine the precision of the final estimate.104

The general formulation makes the algorithm well suited105

for images from different modalities. In particular, this paper106

evaluates its performance on tagged magnetic resonance imag-107

ing (tMRI) [4] and cardiac ultrasound image sequences. In108

order to quantify performance, we made use of realistic syn-109

thetic sequences for both modalities, for which the benchmark110

motion was known. In each experiment, a comparison is pre-111

sented with state-of-the-art methods in the related field. They112

include SinMod [23] for tMRI images and the Sühling [21]113

and Felsberg [19] algorithms for ultrasound. In both cases,114

the recent algorithm reported in Zang et al. [24] is also115

considered in the comparison. Indeed, due to the monogenic116

signal formulation at its base, it can be considered a possible117

competitor to the algorithm proposed herein.118

The paper proceeds as follows. In Section II the monogenic119

signal theory is briefly summarized and the robust computation120

of the orientation is introduced. In Section III the proposed121

optical flow estimation algorithm is described. Section IV122

discusses some implementation details. In Section V the123

problem of cardiac motion analysis from tMRI and cardiac124

ultrasound is briefly summarized and the results are presented.125

Concluding remarks are left to Section VI.126

II. MONOGENIC SIGNAL COMPUTATION127

The most practical aspects of the monogenic signal compu-128

tation will be reviewed here. For further details, we address the129

interested reader to [1], [25] and to [22] for a more intuitive130

derivation.131

The monogenic signal provides an extension of the standard132

analytic signal for multidimensional data. Although the theory133

is valid for a general number N of dimensions (N > 1), we134

consider here the case at hand of 2D grayscale images I :135

� → R, � ⊂ R
2.136

The image model adopted in phase-based processing is137

[19], [26]138

I (x) = A(x) cos(ϕ(x)) (1)139

where x = [x, y] is the spatial coordinate vector, A(x) is140

the local amplitude and ϕ(x) is the local phase. Additionally,141

monogenic signal theory assumes a local intrinsic dimen-142

sionality one [19], [26], i.e., the local variations of I are143

concentrated along a single direction, defined by the local 144

orientation θ(x). 145

The monogenic signal computes the image features of 146

amplitude, phase and orientation from the responses to three 147

2D spherical quadrature filters (SQFs) [1]. The SQFs consist 148

of one even rotation invariant bandpass be(x; λ0) filter and two 149

odd bandpass filters bo1(x; λ0) and bo2(x; λ0), where λ0 is the 150

filter wavelength, defined as the reciprocal of the normalized 151

center frequency f0. Note that in the following the dependency 152

of the filter responses on the center frequency will be omitted 153

for the sake of simplicity. The odd filters are computed from 154

the Riesz transform of the even filter [1], [19]. In the frequency 155

domain it is 156

Bo1(ω) = − jωx

|ω| · Be(ω), Bo2(ω) = − jωy

|ω| · Be(ω) (2) 157

where capital letters denote the Fourier transformed quantities 158

and ω = [ωx , ωy]T is the normalized angular frequency. 159

Several SQF families have been employed in the literature: 160

a comparison of the most popular ones is presented in [27]. 161

A similar study is beyond the scope of this paper. Here, as 162

recommended in [25], [28], the difference of Poisson (DoP) 163

kernel is adopted: 164

Be(ω) = exp (−|ω|s1)− exp (−|ω|s2) (3) 165

where |ω| is the normalized angular frequency and s1 and 166

s2 > s1 are two scale parameters. It can be shown that the 167

wavelength is related to the two scales by: 168

λ0 = 2π
s1 − s2

log(s1)− log(s2)
. (4) 169

From the three filter responses, monogenic phase ϕ(x), 170

orientation θ(x) and amplitude A(x) of I are obtained as: 171

θ(x) = arctan

(
q2(x)
q1(x)

)
172

ϕ(x) = arctan

( |q(x)|
p(x)

)
173

A(x) =
√

p2(x)+ |q(x)|2 (5) 174

where p(x) = (I ∗ be)(x), q1(x) = (I ∗ bo1)(x), q2(x) = 175

(I ∗ bo2)(x), q(x) = [q1(x), q2(x)]T and “∗” denotes 2D 176

convolution. 177

From the filter responses, the local frequency feature, 178

defined as the derivative of the phase along n, can also be 179

computed as [19]: 180

f � (∇ϕ)T · n = p∇T q − qT ∇ p

p2 + |q|2 (6) 181

where ∇ = [∂x , ∂y]T . Dependency on x is implied. 182

Monogenic phase and orientation can be conveniently com- 183

bined in the phase vector r(x) = [r1(x), r2(x)] = ϕ(x) · n(x), 184

with n(x) = [cos(θ(x)), sin(θ(x))]T [1], [19]. The dependency 185

on x of all the aforementioned features will be omitted in the 186

sequel unless necessary. 187
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A. Robust Orientation Computation188

In order to improve the robustness against image noise, in189

this study we replace the classical point-wise estimate of θ (5),190

with a robust least-squares estimate, inspired by the structure191

tensor formalism [29]. The scheme presented was proposed192

by Unser et al. in [22].193

The least-squares orientation estimate is obtained by maxi-194

mizing the directional Hilbert transform Hθ I (x) averaged over195

a local neighborhood vσ196

θ̄ (x) = arg max
θ ′∈[−π,π]

∫
R2
vσ (x′ − x) · |Hθ ′ I (x′)|2dx′ (7)197

where vσ corresponds here to a Gaussian kernel with variance198

σ 2 and the directional Hilbert transform is defined in the199

frequency domain as200

Hθ (ω) = ωx cos(θ)+ ωy sin(θ)

|ω| . (8)201

It is shown in [22] that (7) corresponds to the classical202

solution (5) if vσ (x) = δ(x). The maximization problem (7)203

is solved by the eigenvector associated with the largest eigen-204

value of the 2 × 2 matrix T(x), with entries205

[T(x)]nm =
∫

R2
vσ (x′ − x)qn(x′)qm(x′)dx′ (9)206

with n,m = {1, 2}. The matrix T can be assimilated to a207

Riesz-transform counterpart of the standard structure tensor.208

The new estimate is then given by209

θ̄ (x) = 1

2
arctan

(
2[T(x)]12

T[(x)]22 − T[(x)]11

)
. (10)210

Due to the averaging operation in (7), this alternative211

estimate is expected to be less sensitive to image noise212

than the traditional estimate. An example of this property213

is given in Fig. 1. We conclude this section by noting that214

this different orientation definition also affects the monogenic215

phase computation. In particular, the |q| term appearing in216

the second equation of (5) must now be replaced with s(x) =217

q1 cos θ̄ + q2 sin θ̄ .218

III. MULTISCALE OPTICAL FLOW COMPUTATION219

FROM THE MONOGENIC PHASE220

As in [19], the displacement field d(x) = [d1(x), d2(x)]T
221

along x and y between two frames is estimated by replacing222

the traditional brightness constancy assumption with the more223

robust monogenic phase constancy assumption. This is conve-224

niently expressed in terms of the monogenic phase vector as225

r(x, t + 1) = r(x − d(x), t). Assuming small displacements,226

the first-order Taylor expansion can be used r(x − d(x), t) ≈227

r(x, t) − J(x, t) · d(x), where J is the Jacobian matrix of r.228

Then, assuming all points translate of the same quantity d0229

within a local window w centered in x0 = [x0, y0], the230

following linear system of equations is obtained:231

〈J〉w d0 = − 〈rt 〉w ,232

J(x, t) =
[

r1x(x, t) r1y(x, t)
r2x (x, t) r2y(x, t)

]
(11)233

TEST IMAGE

(a)

IDEAL ORIENTATION

−1.5

−1

−0.5

0

0.5

1

1.5

(b)

POINTWISE ESTIMATE

(c)

ROBUST ESTIMATE

(d)

Fig. 1. Monogenic orientation estimate in the presence of noise. (a) Noise-
free test image containing a full 360-degree range of orientations. (b) Ideal
orientation. (c) and (d) Pointwise and robust (σ = 2) estimates in the presence
of image noise (20 dB). Mean square error of the estimate is 1.2E-2 for (c) and
2.7E-4 for (d). Phases are wrapped in the [−π/2, π/2] interval.

where rt (x, t) = [r1t(x, t), r2t (x, t)] denotes the time deriva- 234

tive of r, approximated as r(x, t + 1)− r(x, t), 〈v〉w denotes 235

the weighted average
∫
� w(x − x0)v(x)dx and rik = ∂kri . 236

Dependency on (x, t) will be omitted in the following. 237

Assuming a 1D structure [19], J must have rank one. 238

It can be shown that its only eigenvalue corresponds to the 239

monogenic frequency f in (6) while the associated eigenvector 240

is n = [cos(θ), sin(θ)]T [19], [22], this leads to the expression 241

[19], [22] 242

J = f nnT = f

[
cos2(θ) sin(θ) cos(θ)

sin(θ) cos(θ) sin2(θ)

]
. (12) 243

The term rt is computed from the SQFs responses as [19]: 244

rt = ptqt+1 − qt pt+1

|ptqt+1 − qt pt+1| arctan

( |ptqt+1 − qt pt+1|
pt pt+1 + qT

t qt+1

)
(13) 245

where subscripts “t” and “t + 1” denote the time instant. 246

We conclude by noting that (11) represents the mono- 247

genic phase counterpart of the popular Lucas & Kanade 248

algorithm [30], where the matrix J replaces the image structure 249

tensor. 250

A. Affine Model 251

Clearly, the simple translation model employed by Felsberg 252

is too restrictive in a general context. Also, its validity is 253

heavily dependent on the choice of the size of w. The solution 254

we propose is to replace the constant motion assumption with 255

a more general model, such as the affine model [31], [32]. 256

A part of translations, this accounts for rotation, expansion, 257

compression and shear. In the context of this paper, the affine 258
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model is of major interest because it provides a realistic259

description of the motion patterns of the cardiac muscle [17].260

A further relevant point is that, as the first-order spatial deriv-261

atives of the displacement are also computed, the Lagrangian262

strain tensor can be directly obtained from the latter, with no263

need for further numerical differencing. The local analysis of264

cardiac contractility is indeed fundamental in the diagnosis of265

pathological situations such as ischemia [18], [33].266

Considering for simplicity a window w centered at267

(x0, y0) = (0, 0), the affine model is written:268

d(x) = A(x)u, A =
[

1 0 x y 0 0
0 1 0 0 x y

]
(14)269

where u = [d10, d20, d1x , d1y, d2x , d2y]T is the new unknown270

vector: d10 and d20 correspond to the translation of the window271

center and dik = ∂kdi .272

Plugging (14) into (11) leads to an underdetermined system273

of equations. The solution is obtained by pre-multiplying both274

terms by AT , hence275

〈M〉w u = 〈b〉w , M = AT JA, b = −AT rt . (15)276

Equation (15) represents the proposed monogenic phase277

version of the Lucas & Kanade algorithm with affine parame-278

trization of the displacement [21].279

It can be shown that the entries of M and b are the local280

moments of orders zero to two of the spatial and temporal281

derivatives of r1 and r2:282

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

r1x r1y xr1x yr1x xr1y yr1y

r2x r2y xr2x yr2x xr2y yr2y

xr1x xr1y x2r1x xyr1x x2r1y xyr1y

yr1x yr1y xyr1x y2r1x xyr1y y2r1y

xr2x xr2y x2r2x xyr2x x2r2y xyr2y

yr2x yr2y xyr2x y2r2x xyr2y y2r2y

⎤
⎥⎥⎥⎥⎥⎥⎦

283

b = − [
r1t r2t xr1t xr2t yr1t yr2t

]
. (16)284

Note that, according to (12), it is r1x = cos2(θ), r2y =285

sin2(θ) and r2x = r1y = sin(θ) cos(θ).286

B. Multiscale Choice of Window Size287

The choice of the window size is a tedious issue connected288

with local techniques: the assumed motion model (translational289

or affine) may not hold when the window is too big, otherwise,290

the adoption of an excessively small window may result in291

the well known aperture problem [34]. To circumvent this292

issue, in [20], [21] Sühling et al. proposed a multiscale strategy293

for locally choosing the most consistent window size. This is294

based on the possibility of computing the image moments, i.e.,295

the entries of the system matrix M and the vector b in (16), at296

multiple scales, by using an efficient B-spline coarse-to-fine297

strategy.298

In particular, they are obtained from window functions w299

that are progressively scaled and subsampled by a factor 2300

in each dimension. More precisely, at scale j , the window301

w j (x − x0) = w((x − 2 j x0)/2 j ) is employed, where w is302

written as the separable product of two B-spline functions.303

By doing so, at each scale J f ≤ j ≤ Jc (J f ≥ 0) a solu-304

tion u j can be computed. Among the scales considered, the305

Algorithm 1: Multiscale Monogenic Optical Flow
Input: two subsequent frames: I1, I2

parameters: λ0, J f , Jc, Np , k, σ .
Output: displacement between I1 and I2: d

d = 0; % initial displacement
for i = 1 : Np do % pyramidal refinement

[Be,Bo1,Bo2] = SQF (λ0); % see (2) and (3)

[p1,q1] = MonogenSignal (I1,Be, Bo1, Bo2)

[p2,q2] = MonogenSignal (I2,Be,Bo1, Bo2)

f = MonogenFreq (p1,q1); % see (6)

θ = MonogenOrient (q1,σ ); % see (10)

J = JcobianMatrix ( f ,θ ); % see (12)

rt = TimeDer (p1, p2, q1,q2); % see (13)

�d = MultiscaleMonogenicOF (J, rt , Jc,J f );

d = d +�d; % add increment

I2 = Interp (I2,x +�d); % warp second frame

λ0 = λ0/k; % decrease wavelength

u j producing the smallest residual error ||Mu j − b||�2/|w|�1 306

is retained as the final displacement estimate. Whenever nec- 307

essary, bi-cubic interpolation is employed to obtain a dense 308

motion field. With this strategy, the scale providing the most 309

consistent motion estimate is selected. 310

C. Iterative Displacement Refinement 311

The hypothesis of small displacements employed in differ- 312

ential techniques may be inadequate whenever the displace- 313

ment is substantial or the image intensity profile is non-linear. 314

A possible way to deal with this limitation is to implement 315

a form of Gauss-Newton optimization: the current estimate is 316

used to undo the motion, and then the estimator is reapplied to 317

the warped images to find the residual displacement [24], [31], 318

[35]. When applied iteratively, this procedure can improve the 319

estimation accuracy considerably. 320

We employed the aforementioned refinement scheme in 321

the algorithm presented. In particular, we found it to be 322

particularly effective when the degree of detail in the mono- 323

genic phase image progressively increases between subsequent 324

iterations. In practice, this is established by suitably tuning the 325

center frequency f0 of the SQF bank. By doing so, the coarsest 326

image is first employed to determine a rough estimate of the 327

displacement. This estimate is then adjusted on the finer detail 328

data, obtained from an higher value of center frequency. 329

IV. IMPLEMENTATION DETAILS 330

The pseudo-code of the proposed algorithm is pre- 331

sented in Algorithm 1. The pyramidal refinement scheme of 332

Section III-C was implemented by decreasing the filter wave- 333

length λ0 by a factor k = 1.5 at each iteration. The number 334

of iterations Np and the starting wavelength value have been 335

optimized in each of the experiments described in the next 336

session. 337
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(a) (b) (c)

Fig. 2. (a) Vertical, (b) horizontal, and (c) grid tags. Images from [6].

The multiscale window choice was implemented by consid-338

ering fifth-order B-splines and scales j = {2, 3, 4, 5}. We note339

that at scale j the motion is computed on square windows340

with sides 5 · 2 j − 1, with a spacing of 2 j pixels between341

neighboring estimates. A value σ = 2 was used for the robust342

computation of the monogenic orientation.343

The proposed algorithm has been implemented in344

MATLAB (R2011b, The Math-Works, Natick, MA). The code345

is made freely available at http://www.creatis.insa-lyon.fr/346

us-tagging/code.347

V. RESULTS348

The algorithm was tested on realistic simulated cardiac349

ultrasound and tagged cardiac MRI (tMRI) image sequences350

for which the benchmark motion was known. In each case,351

a comparison will be presented with state-of-the art algo-352

rithms for cardiac motion estimation and with the algorithm353

of Zang et al. [24], which, to the best of our knowledge,354

is the most closely related work to the study presented in355

this paper. The Zang algorithm is briefly summarized in356

Appendix VI.357

Concerning performance assessment, the most commonly358

used measurement in the literature is the angular error [36].359

Nevertheless, this metric has several shortcomings. At first,360

due to the arbitrary scaling constant (1.0) used to avoid the361

divide-by-zero problem, it penalizes small displacements more362

than large ones. Second, symmetrical deviations of estimated363

vectors from the true value result in different error values.364

For these reasons, we employ here the less conventional but365

more appropriate endpoint error (EE) [37], [38]:366

E E = ||d − d̄||2 (17)367

where d denotes the estimated displacement and d̄ the368

benchmark displacement.369

A. MRI Tagging370

1) Background: Tagged MRI is currently the gold-standard371

technique for quantification of myocardial contractility in vivo372

[23], [39]. With this technique, cardiac tissue is marked with373

magnetically saturated tagging lines or grids (cf. Fig. 2)374

that deform with the underlying tissue during the cardiac375

cycle, thus providing details on the myocardial motion.376

With time elapsing, the grid loses contrast and sharpness377

[cf. Fig. 3(a)–(c)]. This is the reason why state-of-the-art378

techniques for the estimation of myocardial motion from379

tMRI sequences exploit the image phase rather than the less380

(a) (b) (c)

(d) (e) (f)

Fig. 3. Tags fading effect on (a)–(c) a real tMRI sequence and (d)–(f) on a
simulated one.

trustworthy pixel intensity. The popular algorithms HARP 381

(harmonic phase) [39] and SinMod (sine-wave modeling) [23] 382

belong to this family of methods. In particular, the latter was 383

shown to outperform HARP in [23]. 384

Both the aforementioned algorithms are derived from mod- 385

eling the tMRI image as the superposition of monochromatic 386

plane waves: 387

I (x) ≈ A(x) cos(ωT
0 x) (18) 388

where ω0 is fixed given tags direction and spacing. The 389

displacement is then computed in the Fourier domain from the 390

responses of a set of bandpass directional filters tuned accord- 391

ingly to ω0. More specifically, while HARP [39] employs 392

a phase-based disparity measure similar to the one by Fleet 393

and Jepson [40], SinMod estimates the displacement based on 394

an analytical expression for the cross-power spectrum of two 395

subsequent frames [23]. 396

It is interesting to observe (18) in relation with the work 397

presented here. At first, that model directly satisfies the 398

assumption of 1D local structures, at the base of the mono- 399

genic signal analysis. This makes the monogenic signal a 400

promising tool for the study of tMRI sequences. To our 401

knowledge, this is the first study investigating this possibility. 402

Second, (18) can be readily obtained from (1) by including the 403

first-order phase expression used in Section III. This reveals 404

that on tMRI images the assumption of small displacements 405

is no longer required. The upper-limit for the displacement is 406

now given by one-half of the tag spacing, beyond which the 407

motion estimation problem becomes undetermined. 408

2) Motion Estimation Results: The proposed algorithm 409

is compared with SinMod, available in the InTag plugin 410

for OsiriX.1 The evaluation was made on synthetic tMRI 411

sequences, generated with the ASSESS software [41]. The 412

synthetic motion is established on the basis of a 2D ana- 413

lytical model taking typical contraction, relaxation, torsion 414

and thickening of the cardiac muscle into account [42]. 415

The characteristic tag-fading effect, not considered in 416

ASSESS, was also taken into account in this study, as shown in 417

1Available at: http://www.creatis.insa-lyon.fr/inTag/.
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TABLE I

ENDPOINT ERROR (μ± σ ) IN PIXELS ON NINE SIMULATED SEQUENCES

Sequence Algorithm

Proposed SinMod Zang

D30 0.152 ± 0.121 0.215 ± 0.145 0.163 ± 0.137

D30F20 0.082 ± 0.072 0.128 ± 0.112 0.087 ± 0.079

D30R10T01P0 0.264 ± 0.149 0.363 ± 0.199 0.303 ± 0.202

D30R20T01P0 0.462 ± 0.239 0.970 ± 1.129 0.531 ± 0.328

D30R20T01P0F20 0.209 ± 0.139 0.344 ± 0.224 0.224 ± 0.174

D30R20T01P3 0.419 ± 0.228 0.911 ± 1.099 0.461 ± 0.301

R20F20 0.244 ± 0.164 0.416 ± 0.264 0.247 ± 0.191

R10 0.161 ± 0.087 0.220 ± 0.090 0.164 ± 0.104

R20 0.104 ± 0.072 0.174 ± 0.122 0.124 ± 0.079

Fig. 3(d)–(f). The effect was obtained by adjusting the image’s418

histogram limits on each frame so as to match those of a real419

sequence taken as a template. The algorithm of Zang et al.420

[24] was also considered in the comparison.421

The results obtained on nine simulated sequences are422

summarized in Table I. For each algorithm the parameters were423

optimized to return the smallest average error on the sequence424

D30R20T01P0F20. For the proposed algorithm, these values425

were λ0 = 4 for the initial wavelength and Np = 5 for426

the number of refinement steps. For the Zang algorithm,427

the values were α = 0.2 for the weight between the data428

and the smoothness term, γ = 0.1 for the weight between429

the monogenic signal and the monogenic curvature and a430

variance ρ2 of 2 pixels for the Gaussian localizing window431

(see Appendix VI for a clearer understanding of the parame-432

ters’ meaning). A multi-resolution refinement scheme was also433

employed [24] with four levels. SinMod required the tags type434

(grid), direction (45°) and spacing (six pixels). The name of435

each sequence reflects the values of the parameters used for436

its generation, namely: contraction/expansion (D), rotation (R),437

thickening (T), frame-rate (F) and healthy (P0) or pathological438

(P3) state. Greater detail on their meaning can be found439

in [42].440

These results show that the proposed algorithm system-441

atically returns the estimate with the smallest mean value442

and variance, which is a proof of precision and reliability.443

While the improvement with respect to SinMod is evident,444

the improvement with respect to the Zang algorithm is less445

pronounced. Nevertheless, the differences among all the algo-446

rithms were found to be statistically significant (p < 0.0001)447

for all sequences using the Friedman rank test (α = 0.05) in448

conjunction with the post-hoc test proposed by Daniel [43],449

as suggested in [44]. In order to avoid correlations among450

samples, we suitably subsample the error images prior to the451

statistical analysis.452

A clearer understanding of the algorithm’s performance is453

provided by Fig. 4 where the error dispersion on two of the454

simulated sequences is represented for the three algorithms455

considered. The sequences were considered in order to present456

two different kinds of motions, specifically pure rotation (a)457

and pure contraction/expansion (b). In both cases, the proposed458

algorithm and Zang’s algorithm outperform SinMod. It is also459
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Fig. 4. Boxplot of the errors for (a) R20F20 and (b) D30F20. The center of
each box represents the median while the body extends from the 25th to the
75th percentile.

clear how the proposed algorithm provides better estimates 460

than Zang’s in the first part of the sequence, i.e. when the 461

displacements are greater, while, in the final part, the two 462

estimates are almost equivalent. 463

To better appreciate the difference in performance, it is 464

useful to analyze the local behavior of each algorithm. This is 465

represented in Fig. 5, where the error images obtained on the 466

4-th frame of the two sequences considered above is displayed. 467

At that instant, the displacement reaches the maximum average 468

value and the greatest spatial variation in both cases: in the 469

first case (first row in the Figure) the angular velocity decreases 470

linearly, passing from the endocardial to the epicardial contour; 471

in the second (second row in the figure) the radial contraction 472

is null on the epicardium and maximal on the endocardium. 473

From the comparison between Fig. 5(c)–(g) and 474

Fig. 5(d)–(h) it is clear how the Zang algorithm suffers 475

more from these gradients of velocity than the proposed 476

algorithm. This is a consequence of its global nature. Indeed, 477

this method imposes a constraint on the gradient of the motion 478

field that turns out to be inadequate when the entity of the 479

displacement varies rapidly inside the image. At this point, 480

it is important to remember that these results correspond to 481

the optimal parameters’ configuration. In particular, smaller 482

values of the smoothness weight α, which could tentatively 483

be employed in order to avoid over-regularization effects, 484

lead instead to larger errors. For example, a reduction of 485

α from the optimal 0.2 to 0.05 leads to an increase in the 486

endpoint error from 0.45 to 0.68 pixels. As shown by the 487

previous results, SinMod is outperformed by both methods. 488

More generally, Zang’s algorithm appears to involve exces- 489

sively rigid priors on the displacement model, which makes it 490

unsuitable to dealing with more complex and inhomogeneous 491

motion patterns. In contrast, the proposed algorithm does not 492
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Error map for the fourth frame. (a)–(d) R20F20. (e)–(h) D30F20. The green arrows in (a) and (e) denote the benchmark field.
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Fig. 6. Sensitivity to noise of (a) proposed algorithm, (b) Zang’s algorithm, and (c) SinMod. Note that different scales have been adopted in the three plots
in order to optimize the error range visualization. Indeed, this is substantially different in the three cases. As an example, the average error variation in the
6-dB case is of 0.09 pixels for Zang’s algorithm, 0.04 pixels for SinMod, and 0.02 pixels for the proposed algorithm.

imply any hypothesis on the motion field, and therefore it can493

handle similar situations with superior flexibility.494

The sensitivity to noise was also evaluated. To this end, we495

contaminated the frames of sequence R20F20 with additive496

Rician noise [5]. Fig. 6 reports the endpoint error variation497

due to noise, i.e. the value |E En − E Ere f |, where E Ere f is498

the average endpoint error measured in the noise-free case499

(cf. Fig. 4), while E En is the value in the presence of500

noise. The results are based on 15 independent noise realiza-501

tions. While the performance of the Zang algorithm decreases502

considerably, especially for large motions, the performance503

of the proposed algorithm remains virtually unchanged. The504

good robustness against noise stems from two factors: the505

multiscale window choice of Section III-B and the robust506

monogenic orientation of Section II-A. The first guarantees507

that the integration scale is optimized locally so as to minimize508

the noise effect on the velocity determination, while the second509

ensures a more robust computation of the monogenic features.510

We also note that sensitivity to noise is a known drawback511

of global techniques as compared to local techniques [45].512

SinMod also shows better noise robustness as compared to the513

Zang algorithm. Nevertheless, it should be noted that SinMod 514

also returned the worst results in terms of accuracy. 515

Here we note that the computation of the monogenic signal 516

involves pre-filtering the data, and this can produce some 517

noise suppression. Nevertheless, this fact does not explain the 518

superiority with respect to Zang’s algorithm given that the 519

latter makes use of the same set of SQF filters that we employ 520

in the proposed method. Instead, the actual difference comes 521

due to the fact that the proposed is a local method, therefore 522

intrinsically less sensitive to noise. Moreover, as previously 523

mentioned, noise robustness is further improved by the use of a 524

multiscale window choice and a robust monogenic orientation 525

computation. 526

A further fundamental point concerns computational time. 527

For the optimal parameters’ configuration, it was 0.55 s/image 528

for the proposed algorithm (image size, 256 × 256 pixels2) 529

and 17 s/image for Zang’s algorithm. Both these values refer 530

to MATLAB implementations executed on a desktop PC 531

with a 3.47 GHz Intel Xeon X5690 processor, 12 Gb of 532

RAM and running Windows 7. Although unoptimized for 533

definition, given that MATLAB was used, these results give 534
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(a) (b)

(c) (d)

Fig. 7. Color encoding of the radial component of the estimated displacement.
Red color encodes inward motion and blue color outward one. No color
denotes no motion. The displacement value is expressed in pixel. (a) and
(b) present the results on a systolic and diastolic frame on a healthy
subject. (c) and (d) present the results on a systolic and diastolic frame
on a post-infarction subject. (a) Systole healthy. (b) Diastole healthy.
(c) Systole post infarct. (d) Diastole post infarct.

a clear vision on the relation between the complexity of the535

two algorithms. The increased computational burden of the536

Zang algorithm is readily explained by its global formulation,537

demanding the employment of iterative optimization routines,538

cf. Appendix VI. On the contrary, the proposed algorithm539

reaches a sub-second speed with its efficient B-spline formal-540

ism (even in this unoptimized version). It is worth pointing541

out that fast computation is primal as far as medical imaging542

is concerned.543

Finally, the feasibility of the algorithm presented in a544

clinical setting was qualitatively assessed by considering two545

real acquisitions. The first came from a healthy subject546

(Siemens MAGNETOM Avanto 1.5T, 6 mm tag-spacing,547

0° tag-orientation), the second from a patient who underwent548

inferior cardiac infarction due to the occlusion of the left549

anterior descending artery (LAD). This latter acquisition refers550

to two days after reperfusion (Siemens MAGNETOM Avanto551

1.5T, 6 mm tag-spacing, 45° tag-orientation). A qualitative552

representation of the results is given in Fig. 7. The color map553

superimposed on the tMRI image encodes the radial com-554

ponent of the estimated displacement computed with respect555

to the center of the myocardium, represented by a white556

cross. Red and blue denote inward and outward displacement,557

respectively.558

The first line of figures corresponds to a systolic and dias-559

tolic frame on the healthy subject: the estimated displacement560

reflects the physiological contraction and dilatation of the left561

ventricle in these two phases of the heart cycle. In contrast,562

on the post-infarct patient, the color notation reflects the563

reduced mobility of the heart regions involved in the infarction.564

More than that, Fig. 7(c) demonstrates a dyskinetic behavior,565

represented by an non physiological outward motion during 566

systole [21]. 567

In the experiments illustrated in Fig. 7, the heart mask was 568

drawn manually by a cardiologist and the center point was 569

computed as its center of mass. Several ways for automatizing 570

myocardium tracking on tMRI sequences have been proposed 571

in the literature and could be employed here in lieu of manual 572

contouring. Reviewing them is beyond the scope of this paper. 573

Clearly, the evaluation proposed above is far from being 574

an exhaustive clinical evaluation of the proposed algorithm. 575

Still, it gives insights into the meaningfulness of the estimates 576

it returns. A deeper evaluation on diagnostic cases is left to 577

further studies. 578

We conclude this section by noting that, even though the 579

model (18) is adequate for line-tags, otherwise, in the case 580

of grid-tags, a second wave roughly perpendicular to the first 581

should be included in the image model. This would suggest 582

investigating the use of 2D extensions of the monogenic signal. 583

In particular the signal multi-vector [28] shows excellent fit 584

with the grid-tag image model. Similar considerations deserve 585

to be investigated more in depth in future studies. Nonetheless, 586

the results presented here show that, even in the grid-tag case, 587

the monogenic-phase-based algorithm presented still produces 588

relevant estimates. 589

B. Cardiac Ultrasound 590

1) Background: Quantitative analysis of cardiac ultrasound 591

sequences can provide important mechanical measurements 592

such as muscle strain and twist, wall thickness and ejection 593

fraction [18]. Compared to MRI, medical ultrasound has a 594

higher spatio-temporal resolution, requires no infrastructures, 595

low budgets and involves no discomfort for the patients. For 596

these reasons it is currently the most widespread medical 597

imaging exam [46]. These factors explain the high clinical 598

interest in the development of tools for the determination of 599

cardiac function from cardiac ultrasound images [18]. 600

While tissue Doppler offers a powerful instrument to 601

evaluate cardiac deformation [47], it suffers from the major 602

limitation that only the velocity component in the direction of 603

the ultrasound beam can be determined. This has motivated 604

a growing interest in the development of non-Doppler 605

techniques. They include speckle-tracking [48], frame-to- 606

frame [49] or group-wise elastic registration [33] and optical 607

flow [21]. In particular, the algorithm of Sühling et al. [21] 608

achieves an excellent compromise between accuracy and 609

computational complexity. Moreover, its clinical feasibility 610

has been attested in thorough studies [17]. 611

The Sühling algorithm improves the Lucas & Kanade [30] 612

formalism by including the multiscale window choice strat- 613

egy of Section III-B. As in [30], motion is computed on 614

the basis of the brightness conservation between subsequent 615

frames. Nevertheless, as mentioned in the introduction, this 616

can be a misleading assumption as far as cardiac ultrasound 617

is concerned. This is also proved by the increasing interest in 618

phase-based solutions [11], [14]. 619

The following compares the proposed multiscale monogenic 620

optical-flow algorithm presented in this paper, the Sühling 621
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(a) (b)

(c) (d)

Fig. 8. (a) and (b) Diastolic and systolic frames from a synthetic short axis
sequence. The motion estimated with the proposed algorithm is superimposed
as green arrows. (c) and (d) Diastolic and systolic frames from a synthetic
apical four chambers sequence.

TABLE II

ENDPOINT ERROR (μ± σ )

Algorithm Sequence

Apical 4 Chambers Short Axis

Sühling 0.395 ± 0.338 0.396 ± 0.346

Felsberg 0.315 ± 0.257 0.364 ± 0.293

Zang 0.294 ± 0.217 0.324 ± 0.256

Proposed 0.264 ± 0.190 0.313 ± 0.242

algorithm, the Zang algorithm and the Felsberg algorithm,622

which has been recently applied to medical ultrasound in [50].623

2) Motion Estimation Results: In order to provide a624

quantitative evaluation of the algorithms considered, we use625

synthetic echocardiographic sequences. The simulation frame-626

work is described in [51]. The simulated sequences along627

with the benchmark fields are available for download at628

http://www.creatis.insa-lyon.fr/us-tagging/news. In this study,629

we assessed two simulated sequences: one Short Axis (SAx)630

and one Apical 4 Chambers (A4C). These are two of the most631

frequently adopted orientations in the clinical procedure [52].632

A representation of the estimated motion fields with the633

proposed algorithm is given in Fig. 8. These fields show how634

the estimates are qualitatively consistent with physiological635

cardiac motion: indeed the motion vectors point inward during636

systole and outward during diastole.637

Table II reports the average errors obtained on the entire638

simulated sequences. For all the algorithms, the parameters639

have been optimized to obtain the smallest average error on the640

SAx sequence. For the proposed algorithm these are λ0 = 2641

and Np = 5. For the Zang algorithm they are instead γ = 0.2,642

α = 0.2, ρ = 2 and five pyramidal refinements. The Felsberg643

algorithm employed a fixed window w given by the tensor644
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Fig. 9. Endpoint error (in pixels) for the four algorithms on the synthetic
A4C sequence (a) mean value and (b) standard deviation.

product of two B-spline functions of order 5 at scale J = 4, 645

while the optimal wavelength for the SQF was 3 pixels. The 646

Sühling algorithm employed the multiscale window choice 647

by testing the same scales j = {2, 3, 4, 5} as the pro- 648

posed algorithm. Neither Felsberg’s nor Sühling’s algorithm 649

applied any refinement scheme like the one in Section III-C 650

(cf. [19], [21]). 651

From Table II all the three monogenic phase-based algo- 652

rithms considered perform better than Sühling’s algorithm. 653

This confirms that the monogenic phase is a more reliable 654

feature than pixel intensity as far as medical ultrasound is 655

concerned [8], [11], [14]. Also, both the Zang algorithm and 656

the proposed algorithm outperform the Felbsberg algorithm 657

due to their more sophisticated formulation. As in the tMRI 658

case, the improvement with respect to the Zang algorithm is 659

less pronounced than with respect to the other two algorithms. 660

Nevertheless, in this case as well, the differences were found 661

to be statistically significant according to a Friedman rank test 662

(p < 0.0001, α = 0.05). 663

A more detailed performance analysis is illustrated in Fig. 9, 664

where the four algorithms are compared on the A4C sequence. 665

The four curves represent the mean value (a) and standard 666

deviation (b) of the endpoint error on each frame of the 667

sequence. As in the tMRI case, the improvement of our 668

algorithm with respect to the Zang algorithm is more relevant 669

for large displacements. In particular, they occur during the 670

diastolic expansion, roughly comprised between frame 10 and 671

frame 22 of the simulated sequence. Again, this superiority can 672
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(a) (b) (c)

Fig. 10. Color map illustrating the multiscale window choice. Pixels are
colored according to the scale determining their velocity. At the initial step
(a) only scale J = 5 is used, then scale J = 4 is tested and (b) displacements
are updated where requested by the error criterion. The window choice
procedure ends at scale J = 3. The title of each figure reports the endpoint
error at that step.

be explained by the major flexibility involved by the proposed673

formalism, which makes it more suitable for following com-674

plex motion patterns. The frames between 22 and 44 instead675

represent the end of diastole. In this interval, the displacement676

is minimal and the Fesberg, Zang and the proposed algorithm677

return close results. Finally, the last frames correspond to the678

systolic contraction. Here the Zang algorithm and the one679

proposed herein still give close estimates, while the error for680

the Felsberg algorithm increases. This flaw results from the681

absence in the latter of any strategy to account for large682

displacements, as the pyramidal refinement adopted in the683

Zang algorithm and the proposed algorithm.684

Finally, Fig. 10 shows the benefits derived from the mul-685

tiscale window choice of Section III-B. The color display686

represents the scale retained in the velocity computation687

while the title reports the corresponding endpoint error. The688

progressive error reduction shows how the window selection689

procedure allows the computation of more consistent velocity690

estimates. The block-like appearance of the color maps results691

from the estimate stopping at scale j = 3, so that one velocity692

is computed every 23 pixels. A pixel-wise map is then obtained693

by nearest-neighbor interpolation.694

With respect to Fig. 10, it is also interesting to note that,695

while the scale j = 2 was also considered, it was never696

selected in the velocity computation. This reveals that the697

automatic window selection procedure makes the algorithm698

almost independent on the chosen range [J f , Jc].699

Again, besides being more precise, the proposed algorithm700

is somewhat more computationally effective than the Zang701

algorithm. As an example, the computation time for one A4C702

image (size, 271 × 333 pixels2) with the optimal parameters703

was 0.68 s while it was 18.6 s for the Zang algorithm. This704

point is even more important here than with MRI. Indeed,705

although off-line processing is considered acceptable in the706

latter case, it would not be for ultrasound, where the real-time707

aspect is one of the major attractions.708

VI. CONCLUSION709

We have described a novel algorithm for the analysis710

of heart motion from medical images. The displacement is711

estimated from the monogenic phase and is therefore robust712

to possible variations of the local image energy. A local affine 713

model accounts for the typical contraction, torsion and shear 714

of myocardial fibers. An effective B-spline multiresolution 715

strategy automatically selects the scale returning the most con- 716

sistent velocity estimate. The multiresolution strategy together 717

with a least-squares estimate of the monogenic orientation 718

make the algorithm robust under image noise. 719

Due to its general formulation, the proposed algorithm is 720

well suited for measuring myocardial motion from images 721

from different modalities. In particular, we have presented 722

an evaluation on cardiac tagged MRI and echocardiographic 723

sequences. The results have shown that the proposed algorithm 724

is a valid alternative to state-of-the-art techniques in the two 725

fields. Moreover, it was shown to be more accurate and 726

considerably less computation-demanding than another recent 727

algorithm based on the monogenic signal [24]. 728

A potentially valuable application is motion compensation 729

of myocardial perfusion MRI images [7]. Indeed, the major 730

challenge in correcting the motion problem is that the local 731

tissue contrast in the image sequence changes locally with 732

time, especially in the region of interest, the left ventricular 733

myocardium. Due to the low sensitivity to alterations in the 734

brightness profile, we believe the application of the proposed 735

algorithm to this problem could lead to beneficial results. 736

APPENDIX 737

ZANG ALGORITHM FOR OPTICAL FLOW COMPUTATION 738

The Zang algorithm, reported in [24], is based on an 739

extension of the monogenic signal for intrinsically 2D struc- 740

tures, called monogenic curvature tensor. The motion estimate 741

is then obtained by plugging this new feature in the popular 742

non-linear energy function of Bruhn et al. [36]: 743

E(w) =
∫
�

(
ψ1

(
wT Jρ (∇3ϕ + γ∇3�)w

))
dxdy 744

+α
∫
�
ψ2

(
|∇w|2

)
dxdy. (19) 745

where w = [d1, d2, 1], ∇3 = [∂x , ∂y, ∂t ], Jρ (∇3 f ) = 746

Kρ ∗ (∇3 f ∇3 f T
)
, ψi (z) = 2βi

√
1 + z/βi , α, γ and β are 747

constant parameters and Kρ is a Gaussian kernel with standard 748

deviation ρ. The two terms ϕ and � are the monogenic signal 749

and monogenic curvature phases, respectively. 750

The minimization of (19) is carried out as in [24], [36] with 751

two nested iterative procedures. An outer fixed point cycle in 752

ψ1, ψ2 to remove the non-linearity and an inner successive 753

over-relaxation method (SOR) to solve the resulting linear 754

problem. A pyramidal refinement scheme is also employed, 755

as in [24], [36]. 756
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