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Abstract—Quantification of regional myocardial motion and1

deformation from cardiac ultrasound has been fostering consid-2

erable research efforts. Despite the tremendous improvements3

done in the field, all existing approaches still face a common4

limitation which is intrinsically connected with the formation5

of the ultrasound images. Specifically, the reduced lateral res-6

olution and the absence of a phase information in the lateral7

direction highly limit the accuracy in the computation of lateral8

displacements. In this context, this paper introduces a novel9

setup for the estimation of cardiac motion with ultrasound. The10

framework includes an unconventional beamforming technique11

and a dedicated motion estimation algorithm. The beamformer12

aims at introducing phase information in the lateral direction by13

producing transverse oscillations. The estimator directly exploits14

the phase information in the two directions by decomposing15

the image into two 2D single-orthant analytic signals. The16

displacement is then computed by assuming time conservation17

of the two associated image phases. A local affine displacement18

model accounts for typical contraction/expansion, rotation and19

shear of myocardial tissue.20

The proposed framework was evaluated in silico on five ultra-21

realistic simulated echocardiographic sequences corresponding22

to three parasternal short-axis and two apical four-chamber23

acquisitions. The algorithm was contrasted against other two24

phase-based solutions exploiting the presence of transverse oscil-25

lations and against block-matching on standard images without26

transverse oscillations. The evaluation revealed that all algo-27

rithms exploiting transverse oscillations were able to estimate28

lateral displacements with a better accuracy as compared to29

block matching, leading to an overall higher precision in the30

computation of the cardiac strain. Moreover, among the phase-31

based solutions considered, the proposed one was found to be in32

average the more precise and reliable.33

An implementation of the new beamforming strategy on a34

research ultrasound platform is also presented in this paper along35

with a preliminary in vivo evaluation on one healthy subject.36

Index Terms—echocardiography, latreal displacements, motion37

estimation, radiofrequency signal, transverse oscillations, multi-38

dimensional Hilbert transform, cardiac strain.39
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I. INTRODUCTION 40

Cardiovascular diseases are the leading cause of deaths in 41

the world (48%), and it is projected that the annual number 42

of deaths due to cardiovascular disease will increase from 17 43

millions in 2008 to 25 millions in 2030 [1]. In this context, 44

clinical assessment of the cardiac function is essential for the 45

diagnosis and treatment of heart diseases. Among available 46

imaging techniques echocardiography has received special 47

attention, since it offers high temporal resolution while being 48

of relatively low cost. Moreover, cardiac motion estimation 49

and the derived strain measures performed from ultrasound 50

image sequences has proven to be a valuable tool for assessing 51

cardiac function [2]–[6]. As a consequence, the development 52

of motion estimation techniques from cardiac ultrasound data 53

has a long history, dating back to the late eighties [7], and is 54

still the topic of active research [8]–[12]. 55

Following [13], most common approaches can be grouped 56

in three main classes. A first family of methods is based on 57

the differential technique known as optical flow. The earlier 58

attempts towards automated cardiac motion estimation belong 59

to this class [7], [14], [15]. Since they rely on the local analysis 60

of spatial and temporal gradients, these methods may fail at 61

estimating large inter-frame cardiac motion. This implies using 62

multi-scale strategies or a block-matching initialization to 63

provide a reliable first-order estimate of the displacement [16]– 64

[18]. A second family is referred to as speckle tracking, and 65

consists in finding the best match, as defined by the adopted 66

similarity measure, between two blocks extracted from two 67

subsequent frames. Most common similarity measures include 68

cross-correlation (CC) [19], [20], sum of absolute differences 69

(SAD) [21] or sum of squared differences (SSD) [22]. It 70

was shown in [23] that these measures provide the maximum 71

likelihood estimate of the displacement for a given statistical 72

distribution of the image noise (Laplacian for SAD, Gaussian 73

for SSD) and, following that observation, a new measure 74

based on a Rayleigh distributed multiplicative noise was there 75

introduced. Similar lines of reasoning have been exploited 76

in [24]–[26]. Finally, several authors proposed to estimate 77

cardiac motion by using non-rigid image registration, i.e. by 78

computing a global deformation map warping a given frame on 79

a reference one. The deformation field can be either discrete or 80

parametric and is generally computed by minimizing a given 81
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cost function. In [27] the deformation field is represented on a82

B-spline basis and estimated by applying a SSD-like similarity83

measure to the image intensity. In [28] a discrete deformation84

function based on intensity and phase information is used.85

Since image registration is formulated as an inverse problem,86

it allows easily introducing a priori such as smoothness [11],87

[29], or incompressibility [8], [11].88

Most of the approaches described above operate on conven-89

tional envelope-detected images, i.e. obtained through demod-90

ulation of the radio-frequency (RF) signal. Recently, several91

studies have proposed performing speckle tracking by using92

the RF signal instead. Since the RF signal contains high93

frequencies it is indeed better adapted to the estimation of94

small motions (typically on the order of the emitted pulse95

wavelength). This is done by using either time-domain correla-96

tion or phase difference estimation [30]. This type of technique97

is particularly used for cardiac elastography and examples98

include the work by Lubinski [31], Chen [32], D’hooge [33],99

Lopata [34], [35] and Konofagou [36]. RF-based speckle100

tracking is, however, currently not widespread in the field of101

echocardiography because its high motion sensitivity implies102

high frame rates [33], [37]. A comparison between envelope-103

detected and RF-based echocardiographic speckle tracking104

may be found in [34] and [38].105

As noted in [34], any of the above-mentioned approaches106

faces an intrinsic limitation: the reduced lateral resolution (i.e.107

in the direction perpendicular to the beam propagation axis)108

and the absence of direct-phase information in the lateral109

direction results in a low accuracy in the computation of lateral110

displacements. Several algorithms have been described to111

tackle this issue, based on sophisticated interpolation schemes112

or re-correlation [4], [36], [39].113

Another way around consists in modifying the image for-114

mation in order to introduce phase information in the lateral115

direction, i.e. by using a particular beam-forming step designed116

to produce transverse oscillations. This approach has been ini-117

tiated by Jensen in the field of blood flow quantification [40],118

[41] and in ultrasound elastography [42], [43]. Preliminary119

results produced by our group recently extended this technique120

to echocardiography [44]–[47].121

In this context, we describe in this paper a new setup for122

cardiac motion estimation, based on the following elements:123

• a specific beamforming scheme for producing transverse124

oscillations (TO) in cardiac imaging, i.e. adapted to a125

sectorial acquisition geometry. As explained above, such126

approach allows introducing phase information in the127

lateral direction and thus improving accuracy of the 2D128

motion estimation in this direction.129

• a phase-based motion estimation algorithm specifically130

dedicated to the obtained TO images. This estimator131

locally constrains the motion to correspond to an affine132

transform and exploits the available two-dimensional133

phase of the TO images. Compared to previously pub-134

lished phase-based motion estimation methods (e.g. [45]135

or [46]), the approach presented herein combines the136

phases of two single-orthant analytical signals with an137

affine transformation instead of simple translations.138

The accuracy of the proposed framework is evaluated in139

silico from five ultra-realistic simulated sequences [48] mim- 140

icking respectively three parasternal short-axis and two apical 141

four chamber acquisitions. The new estimator is contrasted 142

against other two phase-based estimators in [49] and [30] and 143

conventional block-matching applied to standard images (i.e. 144

without TO) [50]. Note that, although historically among the 145

earlier techniques proposed for motion estimation in medical 146

ultrasound [50], block-matching nonetheless still remains the 147

methodology of choice [35], [51]. 148

For each algorithm we evaluated the accuracy in recovering 149

the simulated displacement field and in computing the cardiac 150

strain. All algorithms exploiting transverse oscillations were 151

found to estimate more accurately the lateral component of 152

the displacement than standard block matching and this led 153

to an overall better precision in the computation of the total 154

displacement field and of the cardiac strain. Among the 155

phase-based techniques considered the proposed algorithms 156

was found to be in average the more accurate and reliable. 157

An implementation of the new beamforming technique on 158

an ultrasound research platform [52] is also presented along 159

with a preliminary in vivo evaluation of the proposed motion 160

estimation framework for the computation of cardiac strain on 161

one healthy subject. Computed strain curves were in line with 162

what reported in literature for an healthy heart. 163

The paper is structured as follows. Section II describes the 164

generation of the transverse oscillations for sectorial cardiac 165

acquisition. Section III presents the motion estimation algo- 166

rithm and Section IV provides the details of the numerical 167

experiments used to evaluate the proposed framework. Section 168

V presents the obtained results, which are discussed in Section 169

VI. 170

II. TRANSVERSE OSCILLATION ULTRASOUND IMAGES 171

Transverse oscillation (TO) ultrasound images exhibit in the 172

lateral direction the same kind of oscillations normally present 173

in the axial direction [41]. Lateral oscillations are obtained 174

by implementing a point spread function (PSF) presenting, in 175

addition to the common axial modulation, a modulation in 176

the lateral direction. TO modality was originally developed 177

for linear probes where, denoting by x and z lateral and axial 178

coordinates respectively, the system PSF can be written as [53] 179

h(x, z) = hx(x)hz(z) with: 180

hξ(ξ) = e
−π

ξ2

σ2
ξ cos

(

2π
ξ

λξ

)

(1)

where ξ = {x, z}, λx (λz) is the lateral (axial) oscillation 181

wavelength and σx (σz) is the lateral (axial) full width half 182

maximum (FWHM) of the Gaussian envelope [42]. 183

The axial profile of the PSF is related to the excitation pulse 184

and the impulse response of the transducer elements used. As 185

a consequence, the axial modulation is naturally present in the 186

axial PSF profile and the weighting window can be adapted 187

using specific excitation pulses. The degrees of freedom that 188

enable one to control the transverse profile of the PSF are 189

instead the delay between the elements used in transmit and in 190

receive and the weighting coefficients applied to each element 191

in transmit and in receive. 192
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To design these parameters the Fraunhofer approximation193

is commonly used [54]. Fraunhofer approximation applies to194

focused acoustic beams and states that, at the focal point, the195

lateral beam profile hx(x) and the radiating aperture w(x) are196

related by the Fourier transform [54]:197

hx(x0) ∝
∫

Aperture

w(x)e−j 2π
λzz

x0xdx (2)

From (2) it is straightforward to show that a bi-modal apodiza-198

tion function of the kind [42]:199

w(x) ∝ e
−π

(

x−x0
σ0

)2

− e
−π

(

x+x0
σ0

)2

(3)

realizes the desired lateral profile, with x0 = zλz/λx and200

σ0 =
√
2λzz/σx. As these parameters depend on the axial201

coordinate, the apodization function has to be dynamically202

adjusted in order to obtain a depth-invariant PSF [53].203

A. Transverse oscillations in echocardiography204

To date most consolidated applications of TO are blood flow205

imaging [40], [41], [55] and elastography [42], [43]. In both206

cases the presence of lateral oscillations has been shown to207

favor a more accurate estimation of lateral displacements as208

compared to traditional beamforming techniques.209

Recently, the concept of TO has been extended to cardiac210

ultrasound, where the accurate quantification of lateral heart211

deformations still remains a challenge [56]. Our group had212

a pioneering role in studying the feasibility of TO imaging213

in echocardiography [44]–[47]. In particular, a beamforming214

technique was presented in [44] for the generation of TO on215

sectorial probes of common use in cardiac applications. The216

beamformer design relies on the principle of back-propagation217

and allows to obtain on pre-scan converted data (i.e. in polar218

coordinates) the same kind of lateral oscillations otherwise219

possible on linear probes. More specifically, a PSF completely220

analogous to the one in (1) can be obtained in the polar space221

(ρ, θ). This is done according to the coordinate transformation222

z ≈ ρ and x ≈ ρθ and, consequently, the parameters223

transformation λx ≈ λθρ, σx ≈ σθρ, λz ≈ λρ and σz ≈ σρ.224

The required apodization function has the same form as (3),225

where the peaks position and width are given by xθ0 = λρ/λθ226

and σθ0 =
√
2λρ/σθ . Interestingly, these quantities are no227

longer depth-dependent as in linear geometries. As a result a228

space invariant PSF can be obtained on sector scan without229

dynamically modifying the apodization function. For more230

detail we address the reader to [44].231

III. MOTION ESTIMATION ALGORITHM FOR232

ECHOCARDIOGRAPHIC IMAGES WITH TRANSVERSE233

OSCILLATIONS234

Consider two rectangular blocks of pixels extracted from235

two subsequent RF frames s(x, z, t0) and s(x, z, t1) (for236

simplicity t1 = t0 + 1) of a cardiac ultrasound sequence.237

The motion estimation problem consists in computing the238

displacement field d(x, z) = [d1(x, z), d2(x, z)]
T mapping239

the second block onto the first, being d1 and d2 the lateral240

and axial components of the displacement respectively. This is241

normally done by adopting the so called brightness constancy 242

assumption s(x, z, t0) = s(x− d1(x, z), z − d2(x, z), t1). 243

Nevertheless, it has been shown that brightness conservation 244

can be a misleading assumption as far as cardiac ultrasound 245

images are concerned [18]. The reason is that the amplitude 246

of the backscattered echo depends on the angle formed by 247

the acoustic beam and the myocardial fibers, which obviously 248

varies in time due to the heart motion. As a consequence, 249

the same portion of tissue will return different echoes after it 250

position has changed. For this reason, we replace the classical 251

brightness constancy assumption with a more robust phase 252

constancy assumption. Image phase is indeed ideally suited for 253

ultrasound images since it is independent on the local intensity 254

while intrinsically related to the local image structure. 255

In particular, 2D single-orthant analytic signals are used to 256

compute the image phase [57]. Based on multidimensional 257

Hilbert transforms, they represent one of the first attempts to 258

generalize the classical 1D analytic signal to n dimensions 259

(as for example for 2D images). The suitability of single- 260

orthant analytic signals for modeling and processing TO 261

ultrasound images has been shown in different contexts from 262

the considered one in [49], [58]. 263

Based on the TO theory presented in the previous section, a

signal model consisting of a 2D spatial modulation at spatial

frequencies 1/λx and respectively 1/λz can be assumed [49]:

s(x, z, t0) = ws(x, z, t0) cos(2πx/λx) cos(2πz/λz) (4)

where ws is a low-pass 2D window having its highest 264

frequency lower than the frequency of the 2D cosinus (a 265

reasonable hypothesis in TO ultrasound imaging). 266

The four single-orthant analytic signals are then calculated

by canceling three of the four quadrants in the 2D spectrum.

However, given the symmetry of the 2D Fourier transform of

real images, these analytic signals contain, two by two, redun-

dant information [49]. For this reason, we only conserve two

of the four available single-orthant analytic signals. Following

[49], they can be expressed in the frequency domain as:

Sso1(f1, f2, t) = S(f1, f2, t)(1 + sign(f1))(1 + sign(f2))

Sso2(f1, f2, t) = S(f1, f2, t)(1− sign(f1))(1 + sign(f2)).
(5)

where capitals letters denote the 2D Fourier transform, f1 267

and f2 denote the lateral and axial frequency respectively and 268

sign(x) = x/|x|. By denoting Φso1(x, z, t) and Φso2(x, z, t) 269

the spatial phases associated to the two considered analytic 270

signals, the phase constancy assumption reads as: 271

(

Φso1(x, z, t1)
Φso2(x, z, t1)

)

=

(

Φso1(x+ d1(x, z), z + d2(x, z), t0)
Φso2(x+ d1(x, z), z + d2(x, z), t0)

)

.

(6)

Assuming small displacements, as commonly done in differ- 272

ential techniques, the right hand side of (6) can be replaced by 273

its first order Taylor development and this leads to the linear 274

system of equations [49]: 275

(

Φ
(t)
so1(x, z)

Φ
(t)
so2(x, z)

)

= J ·
(

d1(x, z)
d2(x, z)

)

. (7)
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where Φ
(t)
so2(x, z) and Φ

(t)
so2(x, z) are the temporal deriva-276

tives of Φso1 and Φso2 respectively while277

J(x, z, t) = 2π

(

1/λx 1/λz

−1/λx 1/λz

)

(8)

is the Jacobian matrix of the vector [Φso1,Φso2]
T .278

While the motion estimation problem (7) could be in279

principle solved pixel-wise, the corresponding solution would280

be highly sensitive to noise, which is not acceptable in a281

low SNR context as medical ultrasound. The common way282

around this is to solve the problem in the least squares sense283

by assuming that all the pixels in a block translate of the284

same quantity, i.e. d(x, z) = d0. Nevertheless, several studies285

pointed out that the simple translation model is too restrictive286

in the context of cardiac motion estimation [17], [18]. In this287

scenario a much better solution is instead represented by the288

affine model [17], [18]. Considering for simplicity a block289

centered at (x0, z0) = (0, 0), the affine model is:290

d(x, z) = A(x, z)u, A =

[

1 0 x z 0 0
0 1 0 0 x z

]

, (9)

where u = [d10, d20, d1x, d1z , d2x, d2z]
T is the new unknown291

vector: d10 and d20 correspond to the translation of the window292

center and dik = ∂kdi.293

By plugging (9) into (7) and after suitable rearrangement

of the system entries, it can be shown (see Appendix A) that

the motion estimation problem can be independently solved

for the two main directions x and z as:

λx

4π







Φ
(t)
so1(x0, z0)− Φ

(t)
so2(x0, z0)

...

Φ
(t)
so1(xN−1, zN−1)− Φ

(t)
so2(xN−1, zN−1)






=

=





1 x0 z0
... ... ...
1 xN−1 zN−1









d10
d1x
d1z



 (10)

and

λz

4π







Φ
(t)
so1(x0, z0) + Φ

(t)
so2(x0, z0)

...

Φ
(t)
so1(xN−1, zN−1) + Φ

(t)
so2(xN−1, zN−1)






=

=





1 x0 z0
... ... ...
1 xN−1 zN−1









d20
d2x
d2z



 (11)

where (xk, zk) (k = 0, 1, · · · , N − 1) denotes the coordinate294

of the k-th pixel of the considered block.295

The two over-determined systems (10) and (11) are then296

solved by classical least-squares fitting. We also remember297

that given two complex numbers the sum of their phases is298

equal to the phase of their product while the difference of their299

phases is equal to the phase of the product of the first with300

the conjugate of the second. These relations are better used301

in the motion estimation framework to compute phase sums302

and differences, since they allow avoiding tedious unwrapping303

issues.304

We also note that, since the phase of (4) does not change305

for horizontal (vertical) shifts equal to the wavelength λx306

(λz), then the largest displacements that can be estimated307
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Fig. 1. Comparison of standard beamforming and transverse oscillations: (a)
and (b) compare the same frame of the SAx3 sequence in the two acquisition
modalities while (c) illustrates the M-mode computed over one cardiac cycle
on the scan-line represented by the red segment. End systole (ES) has been
assigned in correspondence of the highest muscle contraction and is denoted
by a dark green line. For the SAx3 sequence ES corresponds roughly to frame
18.

unambiguously in the lateral and axial direction respectively 308

are limited to λx/2 and λz/2. 309

Finally, while the motion estimation algorithm has been 310

presented for Cartesian coordinates (x, z), as said in Section 311

II, exactly the same considerations apply to pre-scan converted 312

sectorial data simply by replacing (x, z) by the polar couple 313

(ρ, θ). 314

IV. MATERIALS AND METHODS 315

A. Evaluation data set 316

A quantitative performance evaluation of the proposed 317

framework was made in silico. A preliminary feasibility study 318

in vivo will be shown in the results section. 319

For the in silico evaluation we made use of ultra-realistic 320

synthetic echocardiographic image sequences generated ac- 321

cording to an original framework we recently developed [48]. 322

Briefly, cardiac motion is mimicked by displacing a set of 323

point scatterers over time. Both scatter amplitude and motion 324

are learned from a real echocardiographic acquisition adopted 325

as a template. From the time-variant scatter map FieldII is 326

employed to simulate the image formation process [59], [60]. 327

Since the synthetic cardiac motion is known, this can be used 328

to benchmark motion estimation algorithms. 329

The resulting synthetic sequences are extremely realistic 330

both in their motion and aspect, to the point it is hard to 331

distinguish them from real clinical recordings. In particular, 332

all the typical image artifacts such as reverberations, clutter 333

noise, signal dropout, local intensity and/or contrast variations 334

over time due to changing cardiac fiber orientation, which 335

have a major impact on the performance of algorithms for mo- 336

tion/deformation estimation, are naturally present as they are 337

inherited from the template sequence [48]. As a consequence, 338

although obtained on synthetic data, the reported evaluation is 339

well representative of what could be expected on real clinical 340

data. 341
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Fig. 2. Amplitude spectrum of the RF images corresponding to the two SAx
frames in Fig. 1(a) and (b).

Five synthetic sequences were generated according to [48],342

namely three parasternal short-axis (SAx) and two apical343

four chamber (A4C), which correspond to two of the most344

commonly employed views in the clinical practice [61]. In345

the following the three SAx sequences will be denoted as346

SAx1, SAx2 and SAx3 while the two A4C sequences will be347

denoted as A4C1 and A4C2. For each of the five sequences348

the two acquisition modalities of interest were simulated, i.e.349

traditional beamforming and TO. Note that the time variant350

scatter map associated to a synthetic sequence, and hence the351

benchmark motion field, remained unchanged when modifying352

the beamforming strategy.353

The two acquisition strategies were implemented by suitably354

setting the receive apodization function of the synthetic probe355

used by FieldII: a standard Hanning window was used in the356

standard case while the bimodal function in (3) was used in357

the case with TO. In this latter case the parameters λθ = 6◦,358

σθ = 4λθ were used, while the remaining probe settings359

were kept constant for both acquisition modalities, namely360

center frequency f0 = 4 MHz, sampling frequency fs = 40361

MHz, speed of sound c = 1540 m/s and 64 elements. Sweep362

angle were 65◦ for the SAx sequences and 75◦ for the A4C363

sequences. Frame rate was 50 frames/sec for the three SAx364

sequences and 45 frames/sec for the two A4C ones.365

Examples of simulated images are given in Fig. 1. Since366

the TO model (1) holds for pre-scan converted data, images367

are reported in the polar domain (ρ, θ). It is evident how368

the presence of lateral oscillations reflects in a richer speckle369

pattern as compared to traditional beamforming. Fig. 1 only370

allows assessing the visual realism of the individual frames.371

In order to appreciate the dynamical behavior the reader is372

addressed to the videos posted at http://www.creatis.insa-lyon.373

fr/us-tagging/News November 2011.374

The Fourier spectrum of two simulated frames (radio fre-375

quency images are considered for the frequency analysis)376

obtained with standard beamforming and TO is reported in377

Fig. 2(a) and (b) respectively. Note the effect of the lateral378

modulation at the angular frequency 1/λθ in the case with379

TO.380

B. Cardiac motion estimation381

As reference technique for standard RF images we will382

consider block matching (BM). On RF images with TO the383

estimator described in Section III, referred to as Affine Phase 384

Based Estimator (APBE), will be contrasted against other 385

two phase-based solutions: a previous version of the same 386

estimator [49], referred to as Translation Phase Based Estima- 387

tor (TPBE), where a simple translation model is considered 388

instead of the affine model in (9), and a technique based on the 389

maximizing block-wise the correlation between phase images, 390

referred to as Phase correlation estimator (PhCorr). The 391

latter, based on an iterative Newton algorithm, estimates the 392

displacement by searching for the phase root of the complex 393

cross-correlation function [30]. For one block of pixels, PhCorr 394

method was implemented to estimate the displacements of all 395

the columns and rows, and the final estimates were the mean 396

values for each direction. 397

Considering RF data prevents axial down-sampling and this 398

implies dealing with axial displacements which, at conven- 399

tional sampling rates, are easily of the order of few tens of 400

pixels. As an example, at the considered sampling rate (fs = 40 401

MHz) and speed of sound (c = 1540 m/s), a displacement of 1 402

mm in the direction of the beam propagation would correspond 403

to a shift of ∼ 52 pixels. 404

Displacements of such entity violate the small displace- 405

ments assumption essential in differential techniques as the 406

proposed one. We dealt with this issue by proceeding in two 407

steps: an initialization phase to produce a coarse estimate 408

of the displacement and a successive refinement, where the 409

proposed phase based estimator was applied to estimate the 410

residual motion. 411

The initialization was performed with block-matching with 412

sums of absolute differences as similarity criterion. At this 413

stage no interpolation (i.e. no sub-pixel precision) was used 414

in order to speedup the procedure. Initialization was not 415

performed on the RF directly but on the B-mode. Indeed 416

B-mode images, being base-band, are better suited for the 417

analysis of large deformations than RF [38]. 418

In order to have a fair comparison among the four consid- 419

ered algorithms, the same initialization was kept both when 420

the refinement was made on standard RF (the case of BM) 421

and on TO RF (the case of the APBE and TBPE algorithms). 422

In particular the initial estimate was obtained from B-mode 423

images without transverse oscillations. 424

The initialization procedure is summarized in Fig. 3. The 425

block-matching initialization D = [D1, D2] determines the 426

two blocks s1 and s2 for the successive refinement ∆D. The 427

total displacement is then given by D+∆D. For what concerns 428

the algorithm in Section III, the fact that the two blocks are not 429

aligned only implies replacing in (10) and (11) Φso2(xi, zi) 430

with Φso2(xi + D1, zi + D2). The parameters [L1, L2] and 431

[G1, G2] defined in Fig. 3 were the only required. They were 432

optimized in order to have the smallest estimation error (see 433

next section for more details) on the synthetic SAx3 sequence. 434

The optimal found values (in pixels) corresponded to: L1 = 435

16, L2 = 64, G1 = 3 and G2 = 64. The RF image size was 436

4562×113 pixels2. 437

When block-matching was employed for the refinement 438

interpolation factors of 1 and 6 were used in the axial and 439

lateral directions respectively. Note that, due to the high 440

sampling frequency of RF data, an interpolation of 1 in 441
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Fig. 3. Initialization procedure. (a) Frame at time t. (b) Frame at time t+1.
The centers of the considered blocks are represented as black dots. The block
s1 is centered at (x0, z0). D1 and D2 are the lateral and axial initial estimates
given by block-matching and defining the center of the block s2. G1 and G2

define the spacing between the nodes. L1 and L2 define the block size. The
successive refinement will be on s1 and s2.

the axial direction was sufficient to obtain a resolution of442

c/(2fs) ≈ 0.02 mm.443

Let’s finally point out that, since the TO image model holds444

only for pre-scan converted data, in the proposed framework445

motion estimation must be performed in polar coordinates. The446

computed displacement field has then to be scan converted to447

have the values in Cartesian coordinates.448

C. Accuracy assessment449

The four algorithms were compared in terms of accuracy in450

the recovered displacement field and in the computed cardiac451

strain.452

1) Displacement field: Let’s denote as d̄k(x, z) =453

[d̄k,1(x, z), d̄k,2(x, z)] the ground-truth displacement between454

frame k and frame k+1 at position (x, z) and as dk(x, z) =455

[dk,1(x, z), dk,2(x, z)] the estimated one.456

The results in polar coordinates were considered first.457

Hereto the main goal is to show the improvement in the458

estimation of lateral displacements made possible thanks to459

the proposed framework. Lateral and axial errors were used460

for this purpose:461

errk,lat(x, z) = |d̄k,1(x, z)− dk,1(x, z)|,
errk,ax(x, z) = |d̄k,2(x, z)− dk,2(x, z)|, (12)

where |·| denotes the absolute value. Error study was limited to462

the region of the left-ventricle muscle. The latter was manually463

contoured from the first frame of each synthetic sequence. The464

mask was then propagated to all the frames of the sequence465

by using the benchmark motion field. The value of these error466

metrics will be reported in pixels.467

Cardiac ultrasound sequences are commonly visualized and468

processed in Cartesian coordinates, i.e. after scan conversion of469

the beamformed images. For this reason the remaining part of470

the evaluation considered scan converted images. In this case 471

the accuracy in the recovered displacement was measured with 472

the endpoint error [62]: 473

EEk(x, z) = ||d̄SC
k (x, z)− d

SC
k (x, z)||2. (13)

where d̄
SC
k (x, z) and d

SC
k (x, z) denote the reference and the 474

estimated displacement after scan conversion and || · ||2 is the 475

ℓ2-norm. Errors in Cartesian coordinates were measured in 476

millimeters. 477

2) Strain: Cardiac strain was measured similarly to [63]. 478

The endocardium was first manually contoured in the ED 479

frame (i.e. the first frame of the sequence). A ROI for strain 480

estimation was then created by expanding the endocardial 481

contour along its normal to represent the myocardium. This 482

region was subsequently populated in the directions normal 483

and tangential to the endocardial contour with 6 and 100 484

sample points respectively, and given a label corresponding 485

to one of the heart segments. Segments were established fol- 486

lowing the guidelines given by the American Heart Associated 487

(AHA) [64]. Namely, six equally spaced segments around the 488

circumference were considered for SaX views while, for what 489

concerns apical views, three equally spaced longitudinal levels 490

were defined from base to apex, either on the septal or lateral 491

side, thus leading again to six segments. 492

The test points were then displaced over the full cardiac cy- 493

cle by using the reference displacement and the displacement 494

estimated by each algorithm. The strain along a direction n at 495

time k was then computed as [29], [63]: 496

ǫn(k) =
Dn(k)

Dn(0)
− 1 (14)

where Dn(k) denotes the distance between two consecutive 497

test points. More precisely, normal and tangential directions 498

on SaX sequences were used to determine radial and cir- 499

cumferential strain components (ǫRR and ǫCC ) respectively, 500

while the tangential directions on apical sequences was used 501

to determine the longitudinal component ǫLL. 502

Note that each simulated sequence corresponds to one 503

full cycle from one end-diastole to the following. Given the 504

periodicity of the cardiac cycle it is therefore reasonable to 505

assume ǫn(NF ) = 0 being NF the number of frames in 506

the sequence. As in [29], [63], this condition is imposed by 507

applying the following drift compensation to the computed 508

strain curves. The strain compensated strain ǫdc is: 509

ǫdc
n
(k) = ǫn(k)−

k − 1

NF − 1
ǫn(NF ). (15)

Segmental strain was obtained by averaging the strain values 510

computed point-wise on the test points on each segment. 511

3) Statistical analysis: For what concerns the accuracy in 512

retrieving the displacement field, the statistical significance of 513

the differences among the four algorithms was tested by means 514

of the Friedman rank test (α = 0.05) in conjunction with the 515

post-hoc test proposed by Daniel [65], as suggested in [66]. 516

Strain accuracy was instead assessed by using the Pearson 517

correlation coefficient ρ together with the bias µ and standard 518

deviation σ returned by the Bland-Altman (BA) analysis. For 519

each correlation value the p-value was computed testing the 520
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hypothesis of no correlation. The statistical significance of521

each reported bias µ was measured with a t-test. Fisher’s z-522

transform (α = 0.05) was used to compare the strengths of523

different correlations. T-test (α = 0.05) was used to compare524

the biases returned by the BA analysis.525

Segmental strain values were considered and all segments526

were included in the analysis. The three strain components527

ǫRR, ǫCC and ǫLL were considered independently. Among the528

different phases in the cardiac cycle, the strain at end systole529

has been shown to be particularly relevant for diagnosis [12].530

Hereto the accuracy in computing end-systolic strain values531

was measured separately and will be presented in the results532

section. Nevertheless, considering a single time instant reduced533

the sample size to a point that statistical significance was534

never observed. In order to have more statistically significant535

results, and together to have a more exhaustive look at the536

strain behaviour over time, the analysis was repeated by537

including multiple time instants obtained by sampling one538

frame out of eight. Temporal sub-sampling was adopted to539

avoid correlation.540

Let’s finally note that no post processing operation such as541

low-pass or median filtering was performed on the estimated542

displacement fields. This was done to have a direct understand-543

ing of the relation between the data type (standard beamform-544

ing and TO) and the accuracy possible in the computation of545

displacements.546

V. RESULTS547

A. In silico results548

1) Accuracy in the displacement field:549

Table I and Table II report respectively the lateral and axial550

displacement errors measured in pixels on the five simulated551

sequences before scan conversion while Table III reports the552

errors measured in millimeters after scan conversion. Mean553

values and standard deviations are computed for each sequence554

by including all pixel estimates and all frames. An analysis of555

the errors behaviour over time is provided by Fig. 4.556

From Table I all algorithms exploiting TO images almost557

consistently return in average more accurate lateral motion558

estimates than regular block matching on standard RF images,559

with the only exception of sequence A4C1 where the PhCorr560

algorithm performs the worst. This result reveals that the561

additional lateral information introduced by the TO frame-562

work can be effectively exploited to compute more accurate563

estimates of cardiac motion. Moreover among the considered564

algorithms the proposed APBE motion estimator regularly565

produced the estimates with the smallest mean error and566

the smallest variance, which reveals a superior accuracy and567

reliability. As shown by Fig. 4(a)–(b), the higher accuracy568

of the APBE method in the lateral direction was observed569

at almost every time instant.570

From what concerns errors in the axial direction, as shown571

by Table II and Fig. 4(c)–(d), on one side both TPBE and Ph-572

Corr algorithms performed very similarly to BM. This is easily573

explained by the fact that lateral oscillations do not modify574

substantially the axial profile of the system PSF and hence no575

improvement is expected for the motion computation in that576
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Fig. 4. Errors in the estimated displacement displayed over time for the
SAx3 sequence. First, second and third row report the lateral error (in
pixel), the axial error (in pixel) and the endpoint error after scan conversion
(in millimeters) respectively. The mean error and its standard deviation are
presented in adjacent subfigures. Each simulated cardiac cycle goes from end
diastole to end diastole. On each error plot end systolic frame is illustrated
by a vertical dashed line. For a more detailed understanding of the timing cf.
the M-mode of the sequence in Fig. 1(c).

direction. On the other side the proposed APBE estimator was 577

observed to produce in average slightly higher errors than the 578

other algorithm considered. Note otherwise that, despite an 579

increase in the average error, the error dispersion obtained 580

by the proposed algorithm was still the smallest among the 581

considered techniques. As a remark note that the fact that 582

errors are much higher in the axial direction than in the lateral 583

one is explained by the fact that, as mentioned in Section 584

IV-B, axial displacement on RF data can be easily one order 585

of magnitude larger than later ones (few pixels vs. tenth of 586

pixels). 587

The error after scan conversion is illustrated in Table III and 588

Fig. 4(e)–(f). Clearly, is the value of displacement computed 589

after scan conversion to represent the actual deformation of 590

the cardiac muscle in the physical space and hence to have a 591

meaning in the diagnostic process. In this case the proposed 592

algorithm is the one returning the displacement estimates with 593

the smallest mean error and standard deviation. Again this 594

property is persistently observed at almost all time instants. 595

Concerning statistical consistency, all differences reported in 596
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TABLE I
HORIZONTAL ERROR (MEAN VALUE ± STANDARD DEVIATION). VALUES IN PIXELS.

SAx1 SAx2 SAx3 A4C1 A4C2

APBE 0.153 ± 0.139 0.131 ± 0.119 0.192 ± 0.186 0.307 ± 0.292 0.202 ± 0.174
TPBE 0.170 ± 0.167 0.147 ± 0.147 0.233 ± 0.232 0.365 ± 0.369 0.214 ± 0.192
BM 0.180 ± 0.216 0.206 ± 0.237 0.331 ± 0.365 0.440 ± 0.430 0.256 ± 0.290
PhCorr 0.148 ± 0.163 0.135 ± 0.151 0.208 ± 0.229 0.455 ± 0.447 0.204 ± 0.213

TABLE II
VERTICAL ERROR (MEAN VALUE ± STANDARD DEVIATION). VALUES IN PIXELS.

SAx1 SAx2 SAx3 A4C1 A4C2

APBE 1.0478 ± 2.2246 1.0114 ± 1.6374 2.0473 ± 3.4013 1.9055 ± 3.8254 0.5657 ± 1.7386
TPBE 0.8705 ± 2.3213 0.8669 ± 1.7177 1.8538 ± 3.5787 1.7467 ± 4.1863 0.4829 ± 1.9180
BM 0.9672 ± 2.3697 0.9150 ± 1.7659 1.8861 ± 3.6915 1.4724 ± 4.2151 0.5519 ± 1.9180
PhCorr 0.9027 ± 2.3535 0.8508 ± 1.7498 1.9344 ± 3.6270 5.9907 ± 7.3476 0.5795 ± 1.9456

TABLE III
ENDPOINT ERROR (MEAN VALUE ± STANDARD DEVIATION) AFTER SCAN CONVERSION. VALUES IN MILLIMETRES.

SAx1 SAx2 SAx3 A4C1 A4C2

APBE 0.104 ± 0.112 0.095 ± 0.092 0.137 ± 0.146 0.119 ± 0.124 0.084 ± 0.091
TPBE 0.115 ± 0.133 0.105 ± 0.115 0.162 ± 0.178 0.133 ± 0.144 0.089 ± 0.103
BM 0.130 ± 0.177 0.151 ± 0.192 0.231 ± 0.279 0.174 ± 0.207 0.112 ± 0.167
PhCorr 0.105 ± 0.135 0.101 ± 0.124 0.150 ± 0.178 0.212 ± 0.220 0.085 ± 0.109
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Fig. 5. Comparison between the errors computed by the proposed algorithm
(in red) and the mean value of the reference displacement field (in green).
Sub-figures (a), (b) and (c) correspond respectively to the errors in the
lateral direction, axial direction and after scan conversion as reported in Fig.
4(a)(c)(e).

this section were find to be significant with p < 0.0001 as de-597

fined by the Friedman rank test. Note that spatial subsampling598

of the displacement field was performed prior to the statistical599

analysis in order to avoid correlation between samples.600

Clearly, the value of the measured errors is correlated with601

the velocity profile during the cardiac cycle: large errors are602

expected in the instants of fastest motion as ejection and rapid603

inflow while smaller errors are expected when the motion is604
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Fig. 6. Example of estimated motion fields on one diastolic (a) and one
systolic (b) frame of the short axis sequence. The color encodes the radial
velocity component according to the colormap in (c). The white cross denotes
the LV center here located manually. Note how the estimated motion fields
reflects the physiological expansion and contraction of the cardiac muscle in
these two phases of the cardiac cycle.

slow as at end systole and end diastole. This explains the bi- 605

modal behaviour of the error curves in Fig. 4. To give better 606

insights on this dependency, the error curves obtained with the 607

proposed algorithm are put in relation with the average true 608

displacement of the cardiac muscle in Fig. 5. 609

The spatial behaviour of the estimation error for the four 610

approaches considered is reported in Fig. 7. The error image 611

is relative to the 27th frame of the simulated SAx3 sequence 612

and illustrates the performance of each algorithm in a worst 613

case scenario. Indeed at that instant, belonging to the rapid 614

ventricular filling phase (cf. Fig. 1(c)), the highest average 615

velocity over the entire cardiac cycle was measured. The error 616

maps confirm that all estimators based on TO RF images 617

outperform block matching in estimating lateral displacements 618
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(a) err = 0.33 ± 0.41 (b) err = 0.40± 0.46 (c) err = 0.38± 0.45 (d) err = 0.62± 0.67

(e) err = 4.45 ± 8.55 (f) err = 4.37± 8.61 (g) err = 4.39± 8.63 (h) err = 4.38± 8.63

Fig. 7. Error images on frame 27 (maximum error) of the SAx3 sequence for the four considered algorithms: lateral error and axial error in the top and
bottom row respectively. All errors reported in pixels. The sub-captions report the mean error ± its standard deviation.

while the precision in the axial direction is very similar619

among the four solutions. Among the four estimators, the620

APBE algorithm produces the errors with the smallest average621

value and the more uniform spatial distribution. Note that622

the maximum error localized on the endocardial contour is623

due to the motion of the mitral valve which interferes on the624

displacement computation within the muscle.625

For what concerns the BM algorithm, sub-pixel accuracy626

was obtained in the lateral direction by interpolating of a627

factor 6 while no interpolation was employed in the axial628

direction. We verified that no relevant improvement in the629

motion estimation accuracy was obtained by increasing those630

values.631

2) Strain analysis: Table IV compares the four algorithms632

in terms of their accuracy in the computation of cardiac633

strain. Multiple frames are considered in order to have a634

statistically relevant comparison. All algorithms exploiting TO635

were observed to return more accurate strain estimates for636

all the three directions. The proposed APBE algorithm was637

the one producing in average more consistent estimates: it638

produced the highest correlation for the two strain components639

ǫRR and ǫLL, the smallest bias for the two components ǫRR640

and ǫCC and the smallest standard deviation for ǫLL. In the641

remaining cases the TPBE algorithm was the most accurate,642

however note that in those cases the differences with APBE643

were not statistically significant, except for the bias of ǫLL.644

Moreover note that measured biases for the APBE algorithm645

were not statistically significant for ǫRR (p = 0.71) and ǫCC 646

(p = 0.72). The Bland-Altman plot of the four algorithms 647

considered for the radial, circumferential and longitudinal 648

strain components respectively are illustrated in Fig. 8, 9 and 649

10 respectively. 650

Examples of computed strain curves are provided in Fig. 651

V-A1. All the three algorithms exploiting TO produce strain 652

curves closer to the benchmark than BM. We measured the 653

normalized distance between the estimated strain curve and 654

the benchmark as: 655

Dalgo =

√

√

√

√

∑

k

(ǫ(k)− ǭ(k))
2

ǭ(k)2
(16)

where ǭ(k) is the benchmark global strain at time k while ǫ(k) 656

is the computed one. For all strain components, the APBE 657

algorithm returned the estimate with the smallest normalized 658

distance: for ǫRR it was DAPBE = 0.19, DTPBE = 0.23, 659

DPhCorr = 0.36 and DBM = 0.85; for ǫCC it was DAPBE 660

= 0.10, DTPBE = 0.16, DPhCorr = 0.27 and DBM = 0.67; for 661

ǫLL it was DAPBE = 0.05, DTPBE = 0.07, DPhCorr = 0.91 662

and DBM = 0.25. 663

End-systolic strain values have been shown to be relevant 664

for the assessment of cardiac function. Given the size of the 665

data set, the number of end-systolic strain values were not 666

sufficient to have statistical significance. The results of the 667

strain analysis restricted to end-systole are reported for sake of 668
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TABLE IV
COMPARISON OF THE FOUR ALGORITHMS FOR ESTIMATION OR RADIAL STRAIN ǫRR , CIRCUMFERENTIAL STRAIN ǫCC AND LONGITUDINAL STRAIN ǫLL

IN TERMS OF CORRELATION COEFFICIENT, BLAND-ALTMAN BIAS µ AND BLAND-ALTMAN LIMITS OF AGREEMENT σ. THE p-VALUE BETWEEN

BRACKETS REPORTS THE STATISTICAL SIGNIFICANCE OF THE REPORTED VALUE. THE SYMBOL ⋆ DENOTES VALUES STATISTICALLY DIFFERENT

(p <0.05) FROM THE ONE OF APBE. STATISTICAL SIGNIFICANCE OF THE DIFFERENCES WAS MEASURED WITH THE FISHER’S Z-VALUE FOR ρ AND WITH

A T-TEST FOR µ.

ǫRR ǫCC ǫLL

ρ (p-value) µ (p-value) σ ρ (p-value) µ (p-value) σ ρ (p-value) µ (p-value) σ

APBE 0.96 (< 0.001) 0.24 (0.71) 6.60 0.82 (0.000) 1.43 (0.72) 5.00 0.94 (0.000) -0.03 (< 0.001) 1.29
TPBE 0.94 (< 0.001) 1.04 (0.13) 6.71 0.85 (0.000) 2.06 (< 0.001) 4.10 0.93 (0.000) 0.02⋆ (< 0.001) 1.44
BM 0.64⋆ (< 0.001) 12.41⋆ (<0.001) 25.37 0.50⋆ (0.008) 5.47⋆ (< 0.001) 9.47 0.088⋆ (0.972) 3.29⋆ (0.002) 6.63
PhCorr 0.87⋆ (< 0.001) -0.69 (0.66) 10.45 0.81 (0.002) 2.42⋆ (< 0.001) 5.11 0.86⋆ (0.002) 0.86⋆ (0.003) 1.83
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Fig. 8. Bland Altman plot for the radial strain component ǫRR. The horizontal line in each plot represents the bias µ while the two dashed lines represent
the limits of agreement [µ− 1.96σ;µ+ 1.96σ].
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Fig. 9. Bland Altman plot for the circumferential strain component ǫCC . The horizontal line in each plot represents the bias µ while the two dashed lines
represent the limits of agreement [µ− 1.96σ; µ+ 1.96σ].

completeness in Table V. What qualitatively shown is that also669

in this case techniques based on TO in average outperform BM670

(cf. biases and standard deviations). Comparing the different671

phase-based techniques becomes instead more complicated672

given the very limited number of samples.673

3) Computational complexity: A final issue concerns the674

computational complexity. Fast processing is indeed particu-675

larly desirable as far as medical ultrasound is concerned, since676

the real-time capability is one of the main advantages of this677

technique. All the considered algorithms were implemented678

in MATLAB (R2011b, The Math-Works, Natick, MA) and679

executed on a desktop PC with a 3.47 GHz Intel Xeon X5690680

processor, 12 Gb of RAM and running Windows 7. The RF681

image size was of 4562×112 pixels2 for the SAx sequence682

and 6724×189 pixels2 for the A4C.683

The most onerous step was the block-matching initializa-684

tion, which on the SAx sequence took roughly 60 s/frame.685

This is clearly a limitation of the current implementation.686

Nevertheless one should consider that real-time implementa- 687

tions of speckle-tracking exist and can be directly employed 688

to speed up the initialization procedure [67]. Concerning the 689

refinement instead, this took roughly 2.5 s/frame for the phase- 690

based estimators and 22 s/frame for BM. Again, the reported 691

times are certainly implementation dependent. In particular 692

more effective implementation can be adopted to decrease the 693

cost associated to BM. Nonetheless it is important to note 694

the computational complexity of the phase based estimators 695

is considerably inferior to the one associated to BM. Indeed, 696

in the first case, the displacement is directly given by the 697

solution of the two 3×3 linear systems of equations given by 698

the least squares solution of (10) and (11), while BM requires 699

interpolation to obtain sub-pixel accuracy and the iterative 700

search of the best match position within each block. For this 701

reason a considerable speedup over BM can still be expected 702

even in more optimized implementations. 703
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Fig. 10. Bland Altman plot for the longitudinal strain component ǫLL. The horizontal line in each plot represents the bias µ while the two dashed lines
represent the limits of agreement [µ− 1.96σ; µ+ 1.96σ].

TABLE V
COMPARISON OF THE FOUR ALGORITHMS FOR STRAIN ESTIMATION. CORRELATION COEFFICIENT, BLAND-ALTMAN BIAS µ AND BLAND-ALTMAN

LIMITS OF AGREEMENT σ. STRAIN VALUES AT END SYSTOLE ARE CONSIDERED ONLY.

ǫRR ǫCC ǫLL

ρ (p-value) BA µ BA σ ρ BA µ BA σ ρ (p-value) BA µ BA σ

APBE 0.94 (0.001) -0.22 9.79 0.95 (0.00) 1.58 7.37 0.86 (0.14) -0.13 2.55
TPBE 0.91 (0.001) -0.30 8.64 0.97 (0.00) 2.57 5.53 0.87 (0.13) 0.12 2.89
BM 0.92 (0.003) 4.50 25.11 0.85 (0.00) 4.94 9.88 0.76 (0.24) 5.17 9.99
PhCorr 0.90 (0.003) -4.66 14.81 0.91 (0.00) 3.01 7.45 0.90 (0.09) 0.64 2.29

B. In vivo results704

The goal to this section is to show that the state of advance705

of the proposed framework is beyond simple simulation and an706

in vivo evaluation on real clinical recording is already possible.707

The proposed image formation technique with transverse708

oscillations was implemented on a real scanner. In particular709

the ultrasound research platform Ula-op [52] equipped with a710

cardiac probe model PA230 from Esaote (Esaote Spa, Genoa,711

Italy) was used. The acquisitions was performed by an experi-712

enced radiologist on one 25 years old male healthy volunteer.713

In particular two views were acquired: one apical four chamber714

and one parasternal short axis. In order to compare standard715

B-mode images and the proposed TO beamforming, the RF716

lines of the two imaging modalities were interleaved during the717

acquisition: every second line corresponded to a conventional718

B-mode sector scan and the other one used the beamforming719

strategy of Section II to provide TO images. The frame rate720

for both modalities was of 25 frames/s. The RF signals were721

acquired at a sampling frequency of 50 MHz. The beam722

density was of 1 beam/degree. Due to memory limitations,723

a total of 49 frames (2 seconds) for each mode could be724

acquired. This was sufficient to obtain one complete cardiac725

cycle.726

Fig. 12 shows one sample frame from each of the two views727

when acquired with and without TO. Fig. 13 shows a selection728

corresponding to the heart septum on the short axis view. From729

the latter the difference in speckle pattern is evident.730

Both sequences were processed with the APBE algorithm of731

Section III. The strain curves for the radial and circumferential732

strain components computed from the SAx sequence are733

reported in Fig. 14. The measured strain values are consistent734

with what reported in literature for an healthy heart [68]. A735

thorough clinical evaluation including strain and strain rate736

values on healthy and pathological subjects falls beyond the 737

scope of this paper and will be made object of future studies. 738

VI. DISCUSSIONS AND CONCLUSION 739

The paper introduced a novel setup for improving cardiac 740

motion estimation with ultrasound. Despite the important 741

progresses made in the field even best performing techniques 742

still register a low accuracy in estimating displacement/strain 743

values in the lateral direction (i.e. perpendicular to the beam 744

propagation). The proposed framework aimed at overcoming 745

this limitation by combining two elements: an unconventional 746

beamforming technique and a dedicated motion estimation 747

algorithm. 748

The beamformer was designed so to add oscillations in the 749

lateral direction. As already known from blood flow imaging 750

and elastography such an acquisition scheme leads to an image 751

model intrinsically better suited for the estimation of lateral 752

displacements. We then presented an algorithm specifically 753

designed to exploit the availability of a phase information 754

in the two directions. This was done by decomposing the 755

ultrasound image into two 2D single-orthant analytic signals 756

and assuming time conservation of the two associated image 757

phases. 758

A quantitative evaluation of the proposed setup was per- 759

formed in silico on five synthetic cardiac ultrasound sequences. 760

The comparison included block-matching on standard images 761

without transverse oscillations and other two phase-based 762

solutions exploiting the presence of oscillations in the lateral 763

direction. The obtained results revealed an higher accuracy in 764

the estimation of the cardiac motion when TO were employed. 765

In particular the proposed estimator were the most accurate 766

among the three phase-based algorithms. This better accuracy 767

reflected into a more robust estimation of the cardiac strain. 768
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Fig. 11. Comparison among the four computed strain curves and the
benchmark. Global strain values (i.e. averaged over the entire muscle) are
considered at each time instant.

More specifically the proposed setup was the one allowing in769

average for the highest correlation with the reference strain770

values, the smallest bias and the smallest limits of agreement771

as computed with the Bland Altman analysis.772

While the estimation of lateral displacements were improved773

by the employment of the affine model, leading to an overall774

higher accuracy on the motion field after scan-conversion, we775

acknowledge that the estimates in the axial direction were776

in average slightly less precise than what obtained with the777

other techniques considered. A possible reason is that a more778

complex model (as the affine one) is more prone to over-fitting779

than a simple one (as the translation one) in the presence of780

noise. One solution would be locally choosing for the model781

best adapted to the data (translation or affine in our case) as782

proposed e.g. in [69]. This possibility will be considered in783

future studies.784

The synthetic evaluation is a first necessary step towards785

a more thorough validation including phantom experiments786

and real patients, which will be the topic of future studies.787

In this perspective an implementation of the proposed beam-788

forming technique with transverse oscillations on the UlaOP789

(a) without TO (b) with TO

(c) without TO (d) with TO

Fig. 12. Sample images acquired with the UlaOp platform. The two
acquisition modalities on an apical view are compared in (a) and (b). The
two acquisition modalities on an short axis view are compared in (c) and (d).

(a) without TO (b) with TO

Fig. 13. Zoom of the heart septum on the short axis view without(a) and
with (b) transverse oscillations.

ultrasound research platform was presented in the paper along 790

with the preliminary motion estimation results on one healthy 791

volunteer. In particular in this preliminary evaluation it was 792

shown that the extracted strain curves were consistent with 793

what expected from the literature. 794

Concerning the computational complexity, the generation 795

of transverse oscillations only implies modifying the receive 796

apodization function of the system and hence it does not 797

increase the computational demand. Instead for what concerns 798
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the motion estimation algorithm its implementation in terms of799

computational efficiency is still sub-optimal (MATLAB imple-800

mentation) and hence not competitive with the block matching801

implementations present on commercial systems. Nevertheless802

the proposed estimator is in principle less onerous than block803

matching as no iterative research within a search window804

is needed and no interpolation is needed to reach sub-pixel805

accuracy. Moreover, being local, the proposed estimator is806

intrinsically parallelizable and can hence take advantage of807

parallel computation platforms as GPUs.808

An issue that requires consideration in view of a clinical809

evaluation is how transverse oscillations are perceived by the810

final user, i.e. the physician. This evaluation must consider the811

opinion of multiple experts and falls beyond the scope of this812

paper. Nevertheless one should consider that several possibil-813

ities exist to exploit transverse oscillations for motion/strain814

estimation while visualizing images close to the standard b-815

mode images currently of use in the clinical practice. One816

possibility would be to acquire the two modalities in parallel817

(possibly with a dedicated architecture for TO). The second818

possibility would be extending envelope detection to the lateral819

direction so to account for lateral oscillations. Interestingly this820

2D envelope could be directly obtained as the amplitude of821

the single-orthant analytic signal computed in (5), and hence822

would not require supplemental calculations.823

Future studies include an extension of the proposed setup to824

3D echocardiography. Despite 2D still remains the modality825

of choice in the clinical practice, 3D US has shown to be826

potentially more accurate in the quantification of cardiac827

mechanics and, therefore, a more reliable diagnostic tool. For828

what concerns the proposed framework, the extension of the829

estimator to 3D is straightforward, cf. [49]. For the beamform-830

ing of 3D TO images, several approaches are possible. First of831

all a matrix array will be necessary because a two dimensional832

apodization function must be designed. Pihl and Jensen and833

Pihl et al. proposed in [70] and in [71] respectively a twofold834

2D approach where two different 3D volumes are formed to835

estimate 3D vector motion maps: one with TO oriented in the836

lateral direction and one with the TO oriented in the elevation837

direction. In [72], Salles et al. proposed to use instead a838

separable 2D apodization function featuring 4 Gaussian peaks839

to obtain directly volumes featuring both, lateral and elevation840

oscillations. 841
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APPENDIX 851

For one pixel of coordinates (x, z), using the analytical 852

expression of the Jacobian matrix given in (8), the spatial 853

phase time consistency in (7) may be further developped as a 854

system of two equations. 855

Φ
(t)
so1(x, z) = 2π/λxd1(x, z) + 2π/λzd2(x, z)

Φ
(t)
so2(x, z) = −2π/λxd1(x, z) + 2π/λzd2(x, z) (17)

Replacing d1(x, z) and d2(x, z) in (17) by the affine model 856

in (9) and adding and substracting the two previous equations 857

leads to: 858

λx/2π(Φ
(t)
so1(x, z)− Φ

(t)
so2(x, z)) =

(

1 x z
)





d10
d1x
d1z





λz/2π(Φ
(t)
so1(x, z) + Φ

(t)
so2(x, z)) =

(

1 x z
)





d20
d2x
d2z



 (18)

Finally, by applying (18) for a block of N pixels of 859

coordinates (xi, zi) with i running from 0 to N−1, we obtain 860

the two systems of equations given in (10) and (11). 861
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