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Abstract—In this paper we present a compressed sensing (CS)
method adapted to 3D ultrasound imaging (US). In contrast
to previous work, we propose a new approach based on the
use of learned overcomplete dictionaries. Such dictionaries allow
for much sparser representations of the signals since they are
optimized for a particular class of images such as US images.
In this study, the dictionary was learned using the K-SVD
algorithm on patches extracted from a training dataset and the
reconstruction was performed from 3D volumes not included
in the training dataset. In each case, CS reconstruction was
performed on the non-log envelope data by removing 20% to 80%
of the original samples and the accuracy of the reconstruction
was evaluated in terms of the normalized root mean square
error relative to the original volume. Using numerically simulated
data, we evaluate the influence of the training parameters
and the influence of the sampling strategy. The latter is done
by comparing the two most common sampling patterns, i.e.
point-wise and line-wise random patterns. The results show in
particular that line-wise sampling yields an accuracy comparable
to the conventional point-wise sampling. This indicates that CS
acquisition of 3D data is feasible in a relatively simple setting,
and thus offers the perspective of increasing the frame rate
by simply skipping the acquisition of many lines among the
several thousands required in 3D imaging. We then evaluate the
approach on US volumes of several ex vivo and in vivo organs.
We first show that the learned dictionary approach yields better
performances than conventional sparsifying dictionaries based on
fixed transforms such as Fourier or discrete cosine. Finally, we
investigate the generality of the learned dictionary approach and
show that it is possible to build a general dictionary allowing
to reliably reconstruct different volumes of different ex vivo or
in vivo organs. The difference between the reconstruction error
obtained with a specific dictionary and the one obtained with the
general dictionary is minimal (on the order of 107%).

Index Terms—Compressed sensing, 3D ultrasound, overcom-
plete dictionaries, K-SVD, sparse representation

I. INTRODUCTION

Traditional imaging modalities, like ultrasound (US) echog-
raphy, rely all on Shannon’s theorem that fixes the limit for the
sampling frequency of a signal to twice its highest frequency
component. In order to avoid artifacts and to respect Shannon’s
theorem, US devices use a sampling rate that is at least four

times the central frequency of the emitted pulse. Consequently,
when sampling at such rates, the amount of data obtained
is large, especially in 3D imaging, and can impair real-time
imaging or data transfer. In 3D US imaging, the number of
radiofrequency (RF) lines that must be acquired to sweep
the whole volume can be extremely high, typically several
thousands. The acquisition time of one RF line is related
to the speed of sound and the depth of investigation and
cannot be compressed, leading to long acquisition times and
thus low frame rate (several Hz) which limits acquisitions
for dynamic organs, such as the heart. In this context, the
recently introduced compressed sensing (CS) theory offers the
perspective of reducing the amount of data acquired. CS is
based on the idea that it is possible, under certain assumptions,
to recover a signal sampled below the Shannon sampling
limit [1]-[3]. Its application to medical ultrasound imaging
is promising thanks to its capability to reduce the volume
of acquired data and thus to speed up the acquisitions and
increase the imaging rate of 3D US devices.

The application of compressed sensing techniques to US
imaging has motivated research efforts only recently, since
the first works were published in 2010 [4]-[6] and therefore
few studies have been devoted to this topic to date. A key
element in CS is that the data to be reconstructed should
have a sparse expansion in some basis or dictionary. As a
consequence, one important feature of the existing studies
is the choice of the representation where the US data are
assumed to be sparse. Several works [7]-[11] assume a sparse
distribution of scatterers in the direct, spatial domain. In [12],
the authors assume that the US signals themselves are sparse
and characterized through a-stable distributions. Most of the
previous works however consider that the signal is sparse in a
given basis or frame such as Fourier [4], [13]-[17], wavelets
[4], [6], [16], [18], Discrete Cosine [6] or wave atoms [4],
[16].

Another important feature for ensuring a successful CS
reconstruction is the way the measurement of the data is
performed. While most of the studies rely on conventional
CS performed in the discrete domain, let us mention the
works in [8], [9] which are particular inasmuch as they use
an analog-to-digital version of CS based on the so-called
Xampling mechanism [19] and considering the US data as



Finite Rate of Innovation signals [20]. As far as discrete
CS is considered, early works showed that linear projection
of the data on sub-Gaussian random matrices (e.g. with
ii.d. Gaussian, Rademacher or Bernoulli entries) provides
incoherent measurements allowing for exact reconstruction
[21]. In practice however, the use of random sensing matrices
is not straightforward, since it implies dedicated acquisition
hardware. Such sensing matrices have been thus mostly used
in simulation studies, such as [10], [12], [13] with Gaussian
matrices and [11] with a Rademacher matrix.

Since using random sensing matrices is difficult in practice,
it is often preferred to resort to deterministic, structured
sensing matrices. In such case, successful CS reconstruction
of US images' implies uniform random sampling of the data
[21].

Let us end this brief outline by noting that there are very
few studies dealing with 3D US data. In [6], [22] point-
wise and line-wise sampling patterns have been proposed and
compared on one experimental RF image using Daubechies
wavelets, finite differences and discrete cosine as sparsifying
bases. Very recently Birk et al. [23] extended the analog-to-
digital Xampling mechanism to 3D acquisitions.

The objective of this study is to investigate in details the
feasibility of compressive sensing 3D ultrasound. Preliminary
results [24], [25] were presented in recent conference papers.
In the above detailed context, this study introduces three main
novelties and contributions :

o First, we address CS reconstruction of 3D US images
using learned overcomplete dictionaries since they can
be optimized for a particular class of images such as US
images and thus allow for sparser representations. We
show in particular that the learned dictionary approach
yields better performances than conventional sparsifying
dictionaries based on fixed transforms such as Fourier or
discrete cosine. To the best of our knowledge, this aspect
has never been investigated for 3D ultrasound. The only
study in the literature that might be compared to our work
is reported in [26], which deals with US tomography. The
technique that we propose is different as we work on 3D
ultrasound echography.

« Secondly, we evaluate the generality of the learned dic-
tionary approach. Indeed this approach may be hampered
by overlearning, yielding a learned dictionary providing
satisfying reconstruction only for images very close to
the learning set. We show that it is possible to build
a dictionary allowing to reliably reconstruct different
volumes of different ex vivo and in vivo organs.

« Thirdly, we focus our attention on the line-wise sampling
of entire RF lines which results in an increase of the
frame rate since we work on the reconstruction of the
envelope image. We study the influence of the sampling
strategy on simulated data, by comparing in each case
the 2 most common sampling patterns, i.e. point-wise
and line-wise random patterns. We show in particular

"More generally, the physics of acquisition often imposes a deterministic
sensing matrix, e.g. Fourier in MRI. Since US acquisition is performed in the
direct domain, the sensing matrix is simply the identity in this case.

that although not fully uniform, the line-wise sampling
results in an accuracy comparable to the conventional
point-wise sampling, using the dictionary based strategy
we propose. As previously mentioned, this indicates that
CS acquisition of 3D data is feasible in practice in a
relatively simple setting.

The structure of the paper is the following. First, the prin-
ciple of CS is briefly recalled. Second, the dictionary learning
algorithm is described. Section IV presents the application
of the proposed approach to 3D simulated and experimental
data. Section V presents the results obtained from numerical
simulations, section VI describes the results obtained from
acquisitions performed ex vivo on animal brains, hearts and
kidneys and section VII provides the results obtained from in
vivo liver and kidney data. Finally, section VIII concludes this

paper.
II. COMPRESSED SENSING THEORY

Compressive sensing (CS) [2] allows the reconstruction of
a signal € R" from a linear combination of a small number
of random measurements y € R™,m < n. In a general
setting, the measurements y may be acquired in the so-called
’sensing basis” ® , which depends on the acquisition device.
For example, in MRI, ® is the Fourier basis and in ultrasound,
® simply consists in the usual delta functions. We then have:

y = Rdx (D

where R® is thus a m X n matrix. The columns of R have
an entry one at random positions and zero elsewhere, thereby
modeling the random selection of the measurements.

The CS theory assumes that = has a sparse representation
in some model basis ¥, which can be an orthonormal basis,
a frame or an overcomplete dictionary, such that:

x = Ty (2)

where v has only s < m < n non zero coefficients. The
signal v is then said to be s-sparse. CS theory shows that this
sparsity allows an exact recovering of v with overwhelming
probability for a certain class of matrices ®W [3]. In particular,
the sensing basis @ has to be incoherent with the model basis
W [27], which is ensured by the randomness of the non-zero
components of R®. Finally, the problem can be written as
follows:

y = ROVv = Av 3)

where A is a m x n full rank matrix (i.e. the m rows of A are
independent).

In these settings, the CS problem thus amounts to solve
(3) for v , under the constraint that v is sparse. Once v is
estimated, the signal x , can then be computed from (2).

For reconstruction of measurements with additive noise, we
have:
y=Av+e 4)

where e represents a noise term of bounded energy e[, < e.
In this setting, reconstruction can be performed by solving the
following minimization problem [28]:

P: do=arg m]}gn |lv]l, subjectto |y— Av|,<e (5)
veER™



In practical applications the signal is generally not exactly
sparse but most of its coefficients in (2) are small. When
signal coefficients v decays exponentially in absolute value,
the signal is called compressible. The solution found by P (5)
gives the approximation of v by keeping its largest entries.

III. LEARNING OVERCOMPLETE DICTIONARIES

The CS theory assumes that = has a sparse representation in
some model basis which, in this study, will be an overcomplete
dictionary rather than a fixed basis. Such dictionaries allow
for much sparser representations of the signals since they are
optimized for a family of signals that are of interest such as
US images.

Dictionary learning uses a set of training samples X =
{;rl}fil which contains N samples, to find an optimal dic-
tionary D of RP*X containing K atoms of size p that will
best sparsify them. This can be formulated as the following
minimization problem:

min [ X — DO[3 s.t. ¥, |6, < To ©6)

where ||| is the Frobenius norm. T; is the number of
non-zero entries, which is expected to be very small, X
contains all the training samples as columns and © contains
the corresponding coefficients.

Solving the dictionary learning problem is also NP-hard and
numerous algorithms have been proposed, the literature on this
topic being vast and fast growing. Tosic et al. give a review of
these methods in [29]. In this study we have chosen the K-SVD
algorithm due to its efficiency and ease of implementation.

The K-SVD method solves iteratively the optimization
problem using two steps: the sparse-coding step and the dic-
tionary update step. In the sparse-coding stage we assume the
knowledge of D and we find © using any pursuit algorithm.
The minimization problem (8) can be decomposed as follows:

néin||x7;—D9,-,||§ st. 6]y < To, fori=1,2,.,N (7)

and is usually solved using orthogonal matching pursuit
(OMP). In the dictionary update step, both © and D are
assumed to be fixed, and only the kth column dj in the
dictionary D is updated with its corresponding representation
coefficients.

This algorithm is called K-SVD as it obtains the updated
dictionary by SVD computations, each determining one col-
umn. The algorithm iterates between the two steps until
convergence. K-SVD algorithm and variations can be seen in
detail in [30], [31]. In this study, the implementation of the
approximate K-SVD presented by Rubinstein [32] were used
with the improvements proposed in [31] for the learning of
the overcomplete dictionary.

IV. APPLICATION TO 3D US IMAGING
A. Sampling patterns in 3D US imaging

The sampling protocols in US imaging have to be designed
to fulfill both the requirements of CS and of the US devices.
On one hand, according to the CS theory the sampling basis
has to be incoherent with the sparsifying basis. On the other

hand, the US imaging devices have a limited number of
sampling strategies that can be adopted due to the physical
constraints of the medical devices.

As a result, two main sampling strategies are then possi-
ble: point-wise random sampling, which corresponds to the
standard CS settings, or line-wise sampling, which has the
advantage of yielding a simple practical implementation for ul-
trasound acquisitions. In the first strategy each of the acquired
RF line? is sampled according to a distinct random pattern and
the full US acquisition (corresponding to the juxtaposition of
the N acquired RF lines) then forms the RF image. Overall,
this strategy can thus simply be seen as directly sampling
the full RF image with a point-wise 2D random pattern and
many studies devoted to CS in US uses such scheme [10]-
[15]. Let us note however that while this sampling strategy is
desirable for CS reconstruction, its practical implementation
is far from obvious. First, such implementation implies a
dedicated hardware allowing for the desired random sampling.
Moreover, RF lines are nowadays obtained by beamforming in
the digital domain and the sampling has thus to be performed
at the level of raw data. This is taken into account in the
study by Liebgott [4], which performs CS reconstruction of
pre-beamformed RF signals. The second strategy corresponds
to a line-wise random pattern: it simply consists in randomly
skipping the acquisition of several RF lines, thus yielding a
RF image with missing lines. The main interest of this strategy
relies on the fact that it is by design much easier to implement
in practice and it has thus been used in several studies [17],
[18], [33].

The data acquisition in US imaging is performed in the
image space so the acquisition basis ® is the Dirac basis. In
this context, two different sampling schemes R; and Rs are
proposed and evaluated. R; is a uniform random sampling
pattern in the three directions. Ry consists in uniformly
random sampling the same set of RF lines on each consecutive
slice of the volume in the axial direction. These two sampling
schemes are represented in Figure 1.

B. Reconstruction bases

The quality of the reconstruction depends on the sparsity of
its representation in the model basis W. RF data represent a
specific challenge, because they do not easily lend themselves
to a sparse representation in fixed basis or frames. We thus
propose using learned overcomplete dictionaries to represent
them. Indeed, such a dictionary is optimized for a given family
of signals of interest and allow theoretically for much sparser
representations of these signals.

In order to quantify the interest of learned dictionnary
for CS reconstruction of US data, it will be informative
to compare this reconstruction with the one obtained with
standard bases. In this study, we have selected two bases for
this comparison: the first is the Fourier basis (i.e. standard
DFT), since it is maximally incoherent with the sensing Dirac

2Let us recall here that US acquisition starts with a series of raw channel
signals available from the probe elements, which are then beamformed to form
the radio-frequency (RF) signals. Detection of the envelope of each RF signal
and juxtaposition yields the so-called envelope image. Log transformation
finally provides the usual B-mode image.
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(a) R;: 3D random sampling (b) Ry: 3D line-wise sampling

Fig. 1. Sampling masks R; and Rp adapted to a spatial sampling of 3D
US volumes. The black pixels correspond to the samples used for CS. The
proportion of samples here is 50% of the original volume.

basis and it has been shown to provide reasonnable results
[13]-[17]. The second basis is the discrete cosine transform
(DCT), since it has better coefficients concentration properties
than the Fourier transform and thus should provide a more
compressible representation.

C. Reconstruction scheme

In each case, the testing dataset consisted of one 3D volume
and formed the original data, . CS reconstruction was then
performed on a sub-sampled dataset by removing varying
amounts of samples. In the results presented, 20 — 80% of
the original samples were removed. Both the training and CS
reconstruction were performed on the 3D envelope of normal-
ized volumes before log-compression. In both experiments,
where sectorial probes are used, we work only on the polar
data before scan conversion to the Cartesian data.

CS reconstruction using an overcomplete dictionary was
performed using a block-wise approach. The patches extracted
from the volume may be overlapping with an overlap rate
r and are of size p. Let z; of RP,p < n, be a 3D patch
of the volume to be reconstructed and D of RP*X be the
overcomplete dictionary, where K is the number of atoms
of size p, p < K. For this patch (2) then writes x; = Duv;
where v; thus contains the coefficients of the expansion of z;
in D. By solving P», we can then recover x; from the linear
measurements y; of R™. The 3D CS reconstruction problem
P, was solved in our case through the /; minimization using
the spectral projected-gradient algorithm SPGL1 [34].

The accuracy of the results was quantified by comparing the
CS reconstruction to the original data through the normalized
root mean square error (NRMSE).

V. SIMULATION RESULTS
A. Simulation setup

We evaluate our algorithm on simulated 3D echocardio-
graphic images generated according to the framework recently
proposed in [35], [36]. In synthesis they are obtained by
combining an electromechanical model of cardiac contraction

TABLE I
DICTIONARY LEARNING PARAMETERS

Parameters | Default value Tested values
n 83 43,63,103,123
r (%) 50 0,25,75
q 4 1,2,3

[37] with an ultrafast ultrasound simulator (COLE, [38] and
Field II, [39] ). The framework was used to simulate the
ultrasound scan of one cardiac cycle of an healthy heart. 3

We note that the so obtained sequences, despite synthetic,
look extremely realistic and in terms of image properties are
fully representative of what is expected from real ultrasound
recordings (see Figure 6(a)).

The simulated US system was equipped with a cardiac
phased array transducer of center frequency 3.3 MHz transmit-
ting a Gaussian weighted pulse with a -6 dB relative bandwidth
of 65%.The raw RF signals were sampled at 50 MHz and a
symmetric transverse two-way beam profile was assumed, fo-
cusing at 80 mm when transmitting and dynamically focusing
on receive.

The simulated images consisted of 107 x 80 beamlines in
azimuthal and elevational direction and 6782 samples in axial
direction over an angle of 80 x 80 degrees, resulting in a frame
rate of 30 Hz due to the use of parallel beamforming. More
details on the ultrasound model can be found in [36]. After
envelope calculation and down-sampling the final data sets
were downsampled at 2.2 MHz and consisted of 296 samples
in axial direction and 107 x 80 beamlines .

Using this protocol we simulated two data sequences for
this paper with two different scatterer distributions which
produce two different speckle patterns. The data was divided
in two groups: the training group consisting of five volumes
coming from the first simulated sequence and a testing group
consisting of one volume of the second simulated sequence.
The training data was used for the learning of the overcomplete
dictionary while the testing data was reconstructed using the
CS theory.

B. Results: Influence of dictionary learning parameters

Our first objective is to evaluate the performance of our
method by acting on the following parameters of the dictionary
learning algorithm: patch size (n), overcompleteness (g, where
the size of the dictionary is given by K = ¢ X n), and
overlap of patches (r, overlapping percentage rate between
two consecutive patches).

We measure the influence of each parameter separately, by
making one of them vary in the range specified in the Table
I "Tested values” column, while all others are set to their
default value. The performance is measured by comparing the
CS reconstruction to the original data through the NRMSE
as a function of the number of removed samples. For brevity
sake, we present in the following the results obtained using the
sampling pattern Ry (line-wise sampling) since the sampling

3The corresponding data is made publicly available at the following link:
http://bit.ly/3dstraus.



mask Ry is of limited interest for US acquisitions. The
influence of the sampling patterns R; and R» is then tested on
the reconstruction of simulation data using a learned dictionary
with default parameters.

-—q=1

20 30 40 50 60 70 80
Samples removed (% of original data)

Fig. 2. Influence of the overcompleteness g on the resulting NRMSE as a
function of the number of removed samples using the sampling mask Ra.
Other parameters are n = 83,7 = 50%.

1) Influence of the overcompleteness: In Figure 2 we
present the reconstruction errors obtained for four tested
redundancy values ¢ = 1,2,3,4. As can be seen, for any
subsampling rate the increase of the number of dictionary
elements generally improves the results, although this im-
provement becomes small when the dictionary is at least three
times overcomplete.
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Fig. 3. Influence of the overlap percentage on the resulting NRMSE as a
function of the number of removed samples using the sampling mask Rj.
Other parameters are n = 83,q = 4.

2) Influence of the overlapping percentage: As shown in
Figure 3, a high overlapping rate means that more patches y,,
contribute to the reconstruction of the same patch, which leads
to a lower statistical reconstruction error. However, having
an overlapping rate that is too close to 1 is not favorable in
terms of computational load: indeed increasing the overlap rate
increases the number of patch reconstructions. Moreover, we
can observe from Figure 3 that the improvement is very small
when the overlap is larger than 25%.

3) Influence of the patch size: Figure 4 shows the accuracy
obtained for different patch sizes. Note that this experiment
was made independent of the overlap factor by setting r=0%

=--n=4
--=n=6

14| gemn=g | )

20 30 40 50 60 70 80
Samples removed (% of original data)

Fig. 4. Influence of the patch size n on the resulting NRMSE as a function
of the number of removed samples using the sampling mask Ry. Other
parameters are ¢ = 4,7 = 0%.

(i.e. no overlap). We notice on Figure 4 that the reconstruction
NRMSE is close for patches of size equal to or larger than
8, thus we might be tempted to choose a high patch size
in order to reduce the number of total patch reconstructions.
However, the higher the patch, the larger the reconstruction
computational load. A patch size of 8 seems to be a good
compromise between a good NRMSE and a reasonable amount
of computations.
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Fig. 5. NRMSE as a function of the number of removed samples using the
sampling mask R; and Rs. The error is computed on the envelope of the
3D US volume after CS reconstruction using K-SVD dictionary, Fourier basis
and DCT.

C. Results: Simulation data reconstructions

Using the default parameters, we compare the reconstruction
results that we obtain using the K-SVD dictionary with com-
pressed sensing reconstructions using the Fourier basis and the
DCT. This comparison is performed for the two proposed sam-
pling patterns R; and Ro. Figure 5 shows the reconstruction
NRMSE error as a function of the subsampling rate and for
each of the transforms used for reconstruction and using the
sampling patterns R; and Ry (Figure 5). It can be observed
that the error increases with the number of removed samples,
for every transform and whatever the sampling pattern. The
error corresponding to the DCT takes the largest values, and
the distance between the error curves corresponding to each
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Fig. 6. Visualization of 3D CS reconstructions of a simulated US volume using the sampling mask R2 in (a) Polar coordinates and (b) Cartesian coordinates.
Original data, Fourier based reconstruction using a 50% subsampling rate, K-SVD based reconstruction using a 50% subsampling rate, Fourier based
reconstruction using a 80% subsampling rate and K-SVD based reconstruction using a 80% subsampling rate.

transform is relatively constant. The K-SVD dictionary clearly
gives the smallest error, whatever the subsampling rate and
performs particularly well for high subsampling rates. We
note that for any transform, the reconstruction error associated
with the line-wise sampling pattern Ry is close and slightly
larger than the error obtained with the point-wise subsampling
scheme R;, which is from a theoretical point of view the most
incoherent with the representation basis/dictionnary. This is

interesting since it shows that CS acquisition of 3D data is
feasible in a relatively simple setting. Overall, these results
show that the default parameters previously chosen for the
K-SVD dictionary perform well on simulated volumes.

Figure 6 shows the log-envelope images corresponding to
the reconstructed non-log envelope 3D US volume in Polar
and Cartesian coordinates. The reconstructions have been
performed for the subsampling rates 50% and 80%, and allow



to visually evaluate the significance of the NRMSE plotted
in Figure 5. We focus our attention on the sampling mask
Ry since the sampling mask R; is of limited interest for US
acquisitions. We do not show the results obtained with the
DCT since they are similar to the ones obtained with the
Fourier basis and the reconstruction error is higher. Figure
6(a) represents the original volume and the reconstruction at
50% and 80% subsampling in Polar coordinates and 6(b) in
Cartesian coordinates. It can be observed that the K-SVD CS
reconstruction provides the best results using 50% of the initial
data while with the Fourier CS reconstruction the missing
sample lines can be observed on the reconstructions. Even
though the reconstruction produced by the K-SVD dictionary
using a 80% subsampling rate are better than with the Fourier
basis, the results deteriorate and the missing sample lines can
be seen on the reconstructions. In the case of the Fourier
reconstruction the missing lines are clear distinguishable in
both Polar or Cartesian coordinates while for the K-SVD
reconstruction we can see the effect of the reconstruction only
on the 80% subsampling case.

Ex vivo brain reconstruction
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Fig. 7. NRMSE as a function of the number of removed samples using the
sampling masks R and Ry. The error is computed for the CS reconstruction
of the ex vivo brain using organ-dependent K-SVD dictionary, Fourier basis
and DCT.

VI. EX VIVO EXPERIMENTAL RESULTS

A. Ex vivo experimental acquisition setup

For the acquisition of the volumes we use the Ultrasonix
MDP research platform equipped with the 4DC7-3/40 Convex
4D transducer. Using this imaging system we imaged the
following ex vivo organs purchased from the store: 3 pig
brains, 3 sheep hearts and 2 sheep kidneys. The central
frequency of the probe was of 5 MHz for the 3 organs and
the signals were collected using a 40 MHz sampling rate.
The transmitted beams, as well as the received signals, were
focused at 56 mm depth. The frame rate of the acquired
volumes is between 1 and 2 MHz depending or the acquisition.
The field of view (FOV) varied between 55 and 65 degrees. For
each organ we acquired the non-log envelope. As previously,

we only use the non-log envelope volumes to perform the CS
reconstruction.

The acquired images consisted of 128 x 47 beamlines
(azimuthal and elevational direction) for the brains, 96 x 43
beamlines for the hearts and 96 x 41 for the kidneys. The
number of samples in the axial direction was 1792, 2304 and
1792 samples respectively. After non-log envelope calculation
the final data sets were downsampled at 5 MHz and consisted
of 128 x 47 x 224, 96 x 43 x 288 and 96 x 41 x 224 voxels
for the brains, hearts and kidneys respectively.

B. Ex vivo reconstruction results using organ-dependent dic-
tionaries

1) Ex vivo brain and heart US images reconstruction:
The CS reconstruction using organ-specific dictionaries was
tested on sets composed of US acquisitions of two different
organs: ex vivo brain and heart. In both cases, the training
data consisted of two acquired volumes of two distinct brains
or hearts and the testing data corresponded to the acquisition
of a third brain or heart. The training and testing data thus
consisted of different acquisitions of the same kind of organ.
According to the reconstruction scheme and the previously
chosen default parameters the training data was composed of
patches extracted from the volumes belonging to the training
dataset.

Figure 7 shows the reconstruction error (NRMSE) com-
puted on the non-log envelope volumes as a function of the
percentage of removed data for the three bases tested. In
order to ease the assessment of the error, the original data
acquired were normalized to unity before reconstruction in this
experiment. Quite consistently, it can be observed that the error
increases with the number of samples removed, whatever the
reconstruction basis. The error corresponding to the DCT takes
the largest values. The K-SVD dictionary gives the smallest
error, whatever the subsampling rate and the distance between
the K-SVD NRMSE and the other basis reconstruction errors
is rather large. The Fourier basis and the DCT give errors
that remain close to each other with the same tendency and
deteriorate faster with the increase of the subsampling rate,
as compared to the K-SVD dictionary. We notice that, as in
the case of simulated data the reconstruction error associated
with the line-wise sampling pattern Ry is close and slightly
larger than the error obtained with the point-wise subsampling
scheme R;. This suggests that CS acquisition of 3D data is
feasible in the line-wise sampling setting without an important
increase of the reconstruction error.

C. Generality: Reconstruction results using a single dictio-
nary

In order to test the generality of the CS reconstruction using
an overcomplete dictionary learned with the K-SVD algorithm,
we trained the dictionary on a set composed of US acquisitions
of three different organs. The training data is thus composed
of US volumes of two brains, two hearts and one kidney.
The testing dataset is composed of one brain, one heart and
one kidney that are not included in the training dataset. The
dictionary learning parameters remain the same as previously
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Fig. 9. Visualization of 3D CS reconstructions of an ex vivo kidney US volume using the sampling mask Rp in (a) Polar coordinates and (b) Cartesian
coordinates. Reconstructions using the K-SVD dictionary for 50 and 80% subsampling rates.

and we focus our attention on the sampling mask Ry since the
sampling mask R; is of limited interest for US acquisitions
and yields similar results.

Figure 8 shows the reconstruction error NRMSE for the
beamformed non-log envelope images as a function of the
subsampling rate, for each of the transforms used for re-
construction and for each of the reconstructed US organ
volumes i.e.: brain, heart and kidney. We can notice that
the results obtained for the three organs are very close and
the curves exhibit the same tendencies. Interestingly, the
differences between the reconstructions performed using the
specific dictionaries of the previous section (Figures 7) and the
ones performed using the general dictionaries are very small:
in the range [4.8—6.4] x 10~ for the brain reconstruction and
[1.1 — 7.4] x 10~* for the heart reconstruction. This indicates

that the general dictionary performs as well as the organ-
specific dictionaries.

Figure 9 shows the log-envelope images corresponding to
the reconstructed non-log envelope 3D US volume of the ex
vivo kidney in Polar and Cartesian coordinates. We show only
one axial-azimuthal slice on which we can see the effects
of the sampling and the quality of the reconstruction. We
do not show the results obtained with the DCT since they
are similar to the ones obtained with the Fourier basis and
the reconstruction error is higher. We do not show either
the reconstructions of the ex vivo heart and brain since the
results in terms of reconstruction errors are similar. The left
image represents the original data before subsampling and
reconstruction followed by the CS reconstruction using the K-
SVD dictionary and the CS reconstruction using the Fourier



basis at 50% and 80% subsampling.

The first observation to make is that for all the subsampling
rates, the CS method provided good reconstructions of the
whole volume except in the case of the 80% subsampling
where we can clearly start to see the missing columns,
particularly in the case of the Fourier-based reconstruction. It
can be observed that the K-SVD CS reconstruction provides
the best results, as previously, while with the Fourier CS
reconstruction the missing sample lines can always be seen on
the reconstructions. Even though the reconstruction produced
by the K-SVD dictionary using 20% of the initial data are
better than with the Fourier basis, the quality of the results
decreases when removing more samples and the missing
samples start to be visible on the reconstructions. At 50%
subsampling CS with the dictionary reconstructs better the fine
details such as the vessel ramifications in the kidney. At 80%
subsampling, even though the reconstruction produced by the
K-SVD dictionary are better than with the Fourier basis, the
quality of the results is lower and the missing sample channels
start to be seen on the reconstructions. At such subsampling
rate, the CS reconstruction with the Fourier basis loses almost
completely the fine details and the resulting image is much
deteriorated while with the K-SVD these structures are still
preserved.

Overall we observe that the reconstructions performed with
experimental data are consistently worse than with the sim-
ulated data. In terms of NRMSE the error is indeed five
times higher in the case of the experimental volumes. This
is easily explained by the quality of the original samples.
The comparison of Figure 6 (simulated data) and the Figures
9 (experimental data) shows clear differences: the simulated
images have a better resolution and less speckle regions than
the experimental volumes.

VII. IN VIVO EXPERIMENTAL RESULTS
A. In vivo experimental acquisition setup

For the acquisition of the volumes we use the Ultrasonix
MDP research platform equipped with the 4DC7-3/40 Convex
4D transducer. Using this imaging system we imaged the liver
and the kidney of two healthy subjects. All subjects provided
written informed consent. The central frequency of the probe
was of 4 MHz for all the acquisitions. The transmitted beams,
as well as the received signals, were focused at 76 mm depth.
Other parameters of the probe were: field of view (FOV) =
45 degrees, frame rate = 2 MHz and gain = 50% for all
the acquisitions. For each subject and organ we acquired the
non-log envelope. As previously, we only use the non-log
envelope volumes to perform the CS reconstruction. After
non-log envelope calculation and down-sampling, the final
data sets were sampled at SMHz and consisted of volumes
of 33 x 128 x 512 voxels.

B. In vivo reconstruction results non organ-dependent dictio-
naries

The CS reconstruction of in vivo US organs was tested in a
general context using the dictionary described in the previous
section, i.e. learned from a set of 3 different ex vivo organs (
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Fig. 10. NRMSE as a function of the number of removed samples using
the line-wise sampling mask Ry. The error is computed for the CS using the
general K-SVD dictionary and the Fourier basis for the CS reconstruction of:
(a) liver and (b) kidney.

two brains, two hearts and one kidney). The testing dataset is
composed of one liver and one kidney that were acquired in
vivo. We focus our attention on the sampling mask R, and on
the Fourier basis.

Figure 10 shows the reconstruction error NRMSE for the
non-log envelope images as a function of the subsampling rate,
for each of the transforms used for reconstruction and for each
of the reconstructed US organ volumes i.e. liver and kidney.
We can notice that the results obtained for the two organs
are very close and the curves exhibit the same tendencies.
The differences between the reconstructions performed using
the same dictionary for the reconstruction of ex vivo volumes
(Figure 8) and the ones performed on in vivo US volumes
are very small: in the range [4.5 — 7.6] x 1073 for the kid-
ney reconstruction. This indicates that the general dictionary
performs well for both ex vivo or in vivo 3D acquisitions.

Figure 11 shows the log-envelope images corresponding
to the reconstructed non-log envelope 3D US volume of an
in vivo liver, in Polar and Cartesian coordinates for better
visibility. We show only one axial-azimuthal slice on which
we can see the effects of the sampling and the quality of
the reconstruction. We do not show the results obtained with
the DCT since they are similar to the ones obtained with the
Fourier basis and the reconstruction error is higher. The left
image represents the original data before subsampling and
reconstruction followed by the CS reconstruction using the
ex vivo K-SVD dictionary and the CS reconstruction using
the Fourier basis at 50% and 80% subsampling. We observe
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that we do not see anymore the subsampled beamlines on
the reconstruction. The Fourier reconstruction still has visually
a poorer quality than the K-SVD reconstruction, the images
are covered with noise and the finer details are lost. At
50% subsampling, CS using the dictionary gives satisfying
results and both small and big structures are preserved. At
80% subsampling, even though the reconstruction produced
by the K-SVD dictionary is better than with the Fourier
basis, the quality of the results is lower and some regions
are deteriorated.

VIII. CONCLUSION

This study demonstrates that the CS theory using overcom-
plete learned dictionaries can be applied to 3D ultrasound
imaging to reduce the volume of data needed for the re-
construction and speed up the acquisitions. We showed in
particular that the learned dictionary approach yields lower
errors (NRMSE) than conventional sparsifying dictionaries
based on fixed transforms such as Fourier or discrete cosine.
Experiments performed on simulated and experimental 3D US
volumes with the K-SVD based CS reconstruction using a
subsampling rate up to 80% resulted in US volumes close to
the original, with minimal loss of information and seem to
confirm our sparsity hypothesis.

In addition, a sampling protocol suited to US imaging was
proposed here by randomly subsampling full RF lines. The
obtained results using this line-wise sampling strategy showed
that we can recover 3D ultrasound signals of high quality
using only 50% of the initial data. This shows in particular
that although not fully uniform, the line-wise sampling yields
results with an accuracy comparable to the conventional point-
wise random subsampling. This indicates that CS acquisition
of 3D data is thus feasible in practice in a relatively simple
setting.

Finally, we evaluated the generality of the learned overcom-
plete dictionary by training it on 3D US volumes of different
ex vivo and in vivo organs. This approach showed that the
dictionary is not hampered by overlearning and provides satis-
fying reconstructions for images coming from different organs.
The difference between the reconstruction error obtained with
a specific dictionary and the one obtained with the general
dictionary is minimal (on the order of 10%).

In this paper, we showed the powerful potential of CS
to reduce data volume and speed up acquisitions with the
proposed sampling protocol. However, since the image is
treated as overlapping blocks, the overall computational time
is highly increased. Considering that the dictionary is learned
in advance, using dedicated circuits (GPU type) for the CS
reconstruction could allow a great improvement in processing
times and overall increase the imaging rate, keeping the real-
time nature of US imaging.

Future work will include an investigation of adaptive sparse
learning routines providing on the fly dictionaries as well as
an optimization of the processing and reconstruction times.
Various applications will also be considered (3D imaging using
matrix arrays and duplex ultrasonography (B-mode/Doppler)).
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