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Jan 27th 2016 

Dear Editor and Reviewers, 

We would like to thank you for your thorough review and the useful comments and suggestions 

formulated about our paper “Detailed Evaluation of Five 3D Speckle Tracking Algorithms using Synthetic 

Echocardiographic Recordings.” submitted to IEEE Transactions on Medical Imaging. 

The remainder of this letter contains our answers to your reviews. A revised version of the manuscript 

follows, where modified parts appear in blue for a better identification. The authors hope this will 

simplify the work of the editor and reviewers.  

We thank you again for your valuable review, and we remain available for any further information you 

may need. 

The detailed point-to-point response letter to the reviewers’ comments follows.  

Sincerely yours, 

the authors. 
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Reviewer 1 

This manuscript describes a detailed comparison of 5 different types of algorithms for assessing cardiac 

motion estimation.  The authors have exerted great effort to introduce a variety of different methods 

straight from the source rather than making their own implementations.  This is attractive because it 

somewhat voids the critique of failing to implement the algorithms correctly.  Additionally, the authors 

implement their selected methods on realistic simulated data, which provides a real truth value for 

robust comparison.  On the whole, this manuscript is well written and logical, and I have few real 

critiques.  My only significant critique is the real relevance of the work.  The authors briefly cite one of 

their review papers to indicate that these methods have some clinical diagnostic potential, but in reality 

these methods have been around for a long time in both MR and US and still fail to be used clinically.  

Despite the authors’ extensive efforts, it’s still unclear whether this manuscript contributes anything that 

will really drive the field forward.  Based on the existing literature combined with current clinical 

utilization, arguments for and against cardiac strain based metrics can still be made either way.  (In this 

case by clinical utilization, I refer to clinical practice rather than large patient focused studies.)  I think it 

would be useful for the field if the authors’ spent at least a little more space justifying their extensive 

well-considered efforts. 

General Comments: 

Q1:  My primary concern is expressed above.  It would be useful to make a stronger argument for the 

work. 

Answer: We have expanded the introduction by presenting the echocardiographic strain technology 

more extensively. In particular, we tried to make clearer where we stand in terms of use of STE in the 

clinical practice. In particular, we emphasize 2 things that show that the strain imaging has matured into 

a modality that is used in clinical routine (and not only in clinical studies/publications): 

1. The guidelines on monitoring the cardiotoxic effect of chemotherapy include strain 

measurements. 

2. Global longitudinal strain (GLS) has now been demonstrated by multiple studies to be more 

prognostic than ejection fraction for future cardiac events in different patients populations, as 

shown in the recent meta-analysis done by Kalam et al. (ref. [4] in the manuscript). In the 

conclusion, the authors explicitly point out that GLS outprforms EF but that it will take time to 

have this migrate to clinical practice for historical reasons. 

Q2: The manuscript focuses on using data that can be obtained using standard clinical technology.  In 

this regard, it’s unclear why RF based methods are included since it seems that these methods cannot be 

applied to data acquired on current clinical systems, and RF methods are otherwise doomed to fail on the 

frame rates used in this study. The authors do mention this known shortcoming of RF methods, but 

specifically, I question the relevance of RF methods in this manuscript at all given the stated motivation 

of the study.  What would be more compelling is if RF methods were employed with the necessary frame 
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rates so it could be determined whether RF method are still worth pursuing for the particular problem of 

cardiac strain imaging. 

Answer: We agree this is a natural concern. As we discussed in the paper, RF poses additional 

methodological and technical challenges as compared to B-mode tracking. Therefore, it remains unclear 

whether the technique can be applied to 3D echo data at clinical frame rates. Yet, there are strong 

ongoing efforts in this directions. In [1] RF tracking was applied to 3D echo data acquired on children at 

38-51 Hz. In [2] and [3], it was applied to open-chest dog’s scans at 51-56 Hz. In this sense, it is also 

noteworthy mentioning that, when presenting our simulation pipeline in conferences [4], we were 

asked several times to make RF data available. Finally, the fact that a well respected team with 

longstanding expertise in the field of cardiac strain imaging accepted to participate to this study, is in 

itself a measure of the interest and the expectations behind the RF tracking technology. As such, RF 

tracking is an important actor in the present research scenario which, we believe, deserves to be 

represented in this study. 

[1] Richard G.P. Lopata, Maartje M. Nillesen, Johan M. Thijssen, L. Kapusta, Chris L. de Korte, Three-

Dimensional Cardiac Strain Imaging in Healthy Children Using RF-Data, Ultrasound in Medicine & 

Biology, Volume 37, Issue 9, September 2011, Pages 1399-1408; 

[2] Compas, C.B.; Wong, E.Y.; Xiaojie Huang; Sampath, S.; Lin, B.A.; Pal, P.; Papademetris, X.; Thiele, K.; 

Dione, D.P.; Stacy, M.; Staib, L.H.; Sinusas, A.J.; O'Donnell, M.; Duncan, J.S., "Radial Basis Functions for 

Combining Shape and Speckle Tracking in 4D Echocardiography," in Medical Imaging, IEEE Transactions 

on , vol.33, no.6, pp.1275-1289, June 2014; 

[3] Congxian Jia; Kolias, T.J.; Rubin, J.M.; Ping Yan; Sinusas, A.J.; Dione, D.P.; Duncan, J.S.; Qifeng Wei; 

Thiele, K.; Lingyun Huang; Sheng-Wen Huang; O'Donnell, M., "3D elasticity imaging on an open-chest 

dog heart," in Ultrasonics Symposium (IUS), 2009 IEEE International , vol., no., pp.155-158, 20-23 Sept. 

2009 

[4] M. Alessandrini, M. De Craene, O. Bernard, S. Giffard-Roisin, P. Allain, I. Waechter-Stehle, J. Weese, 

E. Saloux, H. Delingette, M. Sermesant, and J. D’hooge, “A pipeline for the generation of realistic 3D 

synthetic echocardiographic sequences: Methodology and open-access database,” Medical Imaging, 

IEEE Transactions on, vol. 34, no. 7, pp. 1436–1451, July 2015. 

Q3: In a number of places the authors use citations as nouns. Under most style conventions this is 

considered inappropriate, but I do see this in a lot of papers submitted to transactions on medical 

imaging so it may be considered acceptable for this journal. The authors’ might check with the journal’s 

style guide or one of the editors. 

Answer: We thank the reviewer for bringing our attention on this. Yet, we haven’t found any explicit 

guidelines against citing papers by the name of the first author. In this paper, we cite by name only 

those papers describing the algorithms involved in the comparison. This is done to make immediately 

clear to the reader which author contributed which algorithm. 
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Specific Comments: 

Q3: External data: It would be useful if the external data included some kind of readme file. 

Answer: As recommended, we added a readme.txt to illustrate the content of the folder. The new 

supporting material can now be downloaded at http://bit.ly/1QnUEKm 

Q4: Page 1, Line 48, 2nd column: Without a citation it’s unclear that this statement about commercial 

systems is true.  In this reviewer’s experience at least some (maybe 2 or3) of the top commercial vendors 

do not use block matching, or at least use a hybrid technique that relies significantly on non block 

matching data. I think a citation would be important to really make this claim. 

Answer: This is true. We have smoothed that statement and added a few references (cf. pp. 3 first 

column, text in blue).  

Q5: Page 4, Line 17, 1st column (now pp. 4, second col., text in blue): This particularly error metric 

doesn’t seem adequately justified.  Typically, without some additional justification mean squared error 

(or root mean squared error) is a less informative (meant in the theoretical sense) error metric due to the 

fact that assuming Gaussian statistics is a theoretically less informative decision than imposing error 

metrics associated with other error distributions. 

Answer: The expression the reviewer is referring to measures the relative distance between two curves, 

i.e. the computed and the reference strain. We normalize it by the reference in order to make it less 

dependent on i) the strain amplitude variation over time and ii) the strain direction. We believe this is an 

appropriate way to show how accurate is an algorithm in average. We used similar measurements 

previously in [1, 2] below. We also agree that the average error could be complemented, e.g., by the 

maximum distance between the two curves. Anyway we don’t believe this would bring additional 

insights on one’s algorithm performance. Moreover, we note that this kind of ‘punctual’ information is 

also provided by the time-to-peak measurements (cf. Fig. 10). Time-to-peak differences have been 

proposed as a clinical marker to assess dyssynchrony. 

[1] Heyde, B.; Alessandrini, M.; Hermans, J.; Barbosa, D.; Claus, P.; D'hooge, J., "Anatomical image 

registration using volume conservation to assess cardiac deformation from 3D ultrasound recordings," in 

Medical Imaging, IEEE Transactions on , in press. 

[2] M. Alessandrini, A. Basarab, L. Boussel, X. Guo, A. Serusclat, D. Friboulet, D. Kouame, O. Bernard, and 

H. Liebgott, “A new technique for the estimation of cardiac motion in echocardiography based on 

transverse oscillations: A preliminary evaluation in silico and a feasibility demonstration in vivo,” 

Medical Imaging, IEEE Transactions on, vol. 33, no. 5, pp. 1148–1162, May 2014. 

Q6: Figure 3: This figure does not contain a dependent axis label, and based on the caption it looks like a 

subplot might be missing. 

Answer: The y-axis has been added and the caption has been updated. 
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Q7: Figure 4: It seems like the title would be more appropriate as the dependent axis label, which is 

missing. 

Answer: The correction has been made.  

Q8: Figure 5 (now Fig. 6): Could you please clarify what is mean by ‘outliers’ numbers reduced of a factor 

of 10’.  Does this mean the outlier values were divided by 10 or the population of outliers was decimated. 

Answer: We made it now clear that the population was decimated. 

Q9: Figure 6 and corresponding results:  It is strictly speaking considered incorrect or at least 

unnecessary to use a Bland-Altman plot/analysis when there is an actual truth value.  (I realize that in 

some literature it is used this way anyway.)  Effectively though it doesn't show anything different from 

what is shown in the correlation plots. 

Answer: We agree. We keep on reporting bias and limits of agreement but we don’t refer to Bland 

Altman analysis anymore. The old ‘Bland Altman’ plots were therefore removed. 

Reviewer 2 

The manuscript "Detailed evaluation of five 3D speckle tracking algorithms using synthetic 

echocardiographic recordings” by Alessandrini and coll. proposes a shared database of realistic US 

synthetic cardiac phantoms for benchmarking 3D speckle tracking techniques based on the most used 

methods for cardiac deformation quantification.  Five different speckle tracking techniques were tested 

on 7 US sequences corresponding to different pathological conditions. The performances were evaluated 

considering tracking and strain accuracy. Results for tracking accuracy show AFFD, AAOF and S-Demon 

perform similarly and better than BM and RFBM. AFFD confirmed high accuracy for strain 

measurements, irrespective of strain directions. 

Overall the paper is clearly organized and well written. The description of the considered algorithm is 

short but they are well known and, for each one, the parameter values are reported. Statistics for 

algorithm comparison seems appropriate and the discussion of the results is comprehensive. 

My main concern regards methodological and innovative contents of the paper. The paper does not 

provide any innovative methodological contribution and it overlaps in some parts with previously 

published paper (ref.s 15-17) therefore publication on IEEE TMI journal is questionable. However, a 

shared realistic synthetic dataset available for benchmarking new algorithms is of great interest and a 

direct comparison of new algorithms on the same dataset is also a common need. In this regards, this 

paper is a step forward towards a common platform for new algorithm testing. In addition, STE 

represents a promising technique in the echocardiographic field and a deeper insight to better 

understand the performance of the state-of-art 3D STE techniques is of great interest. 

Q1: I suggest to include some realistic data corresponding to physiological conditions in the synthetic 

database; 
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Answer: We’ve followed this suggestion and added a physiological simulation to the synthetic dataset. 

Correspondingly, the results section has been updated by including the tracking results on the healthy 

sequence. The bull’s eye plots for the healthy sequence have been added in Fig. 9(a). 

Q2: considering many commercial packages based on the BM approach include spatial/temporal 

smoothing, my suggestion is to add the fully regularized block matching algorithm in the present paper; 

Answer: with respect to commercial software packages, it was not feasible to include them in this study. 

Yet, a comparison between commercial products is the topic of an ongoing study. We also agree the lack 

of smoothing in the BM algorithm was one of the main limitations of the study.  

After this revision, we thus asked the BM contributing team to possibly include a spatio-temporal 

smoothing step. As mentioned in Sec. III-D BM updated instead their original submission by adding both 

spatial and temporal smoothing. Nonetheless, after benchmarking spatial smoothing was not found 

beneficial and was therefore switched off in the final submission. 

Concerning RFBM, we did not mention in the paper that the original submission already included a 

spatial regularization of the displacement estimates. This is now made explicit in Sec. III-E and in Table I. 

Moreover, as mentioned in the discussion (Sect. VI-D), RFBM would introduce smoothing at the strain 

computation step by fitting an affine transform to the displacement estimates. However we decided to 

maintain strain computation consistent between participants in order to avoid further sources of 

variability, besides being consistent with the recent clinical guidelines.  

Q3: the tracking accuracy should be evaluated also on a regional segment basis. 

Answer: We thank the reviewer for this suggestion. We have added a regional evaluation of tracking 

accuracy, where we measure variations with respect to i) myocardial layer (i.e. endocardium vs. mid 

myocardium vs. epicardium), ii) myocardial level (i.e. basal segments vs. middle segments vs. apical 

segments) and iii) functional region (i.e. healthy segments vs. ischemic segments). The new analysis is 

presented in Sect. IV.A.2. 

Reviewer 3 

General comment: This is overall a well-defined and well-written study that compares the accuracy of 

several methods for 3D tracking of myocardial deformation using relevant metrics and statistical analysis 

for the given context. The methods included come from different groups which is a strength in itself, but 

one can also speculate whether equal effort was put into the optimization of each approach. This is 

especially apparent for the block matching approaches which seem relatively crude. The end results are 

thus partly a bit difficult to assess in absolute terms, but still of high value and interest. The manuscript 

deserves to be published in my opinion, but I do have some comments that I would like to see addressed 

first. 

DATA: 
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Q1: There is very little discussion about the potential limitations of the simulation approach. How does it 

differ from reality and how could this limit the evaluation? 

Answer: The discussions in the first submission were indeed shrunk to the essential in order to meet the 

10 pages limit. We have expanded the discussions in the revised manuscript and addressed to our best 

the important points raised by the reviewer. In particular, we address explicitly limitations related to the 

ultrasound data, the motion model, the error metrics used and the algorithms considered (cf. Sect. VI).  

Q2: Using a model implies simplifications. Could the model used favor some of the methods presented? 

For instance, could it be the case that the underlying simplifications of the model itself (tissue model / 

motion model) fits very well with the underlying assumptions of the global regularization routines 

included in some of the methods? Would this differ in real-life? 

Answer: This point is now addressed in the discussions (Sect. VI-B). 

Q3: Some more discussion about data limitations would improve the manuscript. 

Answer: Please see answer to Q1 above. 

METHODS: 

Q4: The methods presented involve different similarity metrics and different kinds and amounts of 

regularization / smoothing. An improved presentation of the different methods would strengthen the 

manuscript, for instance by including a more detailed taxonomy with regards to similarity measure, 

variational (global) vs local approach, regularization / smoothing, etc. 

Answer: As recommended, we have worked out a table summarizing the principal features of each 

algorithm (cf. Table 1).  

Q5: The methods are said to be state of the art, but this should be further explained. What makes them 

state of the art? Given that the commercial implementations are not in the comparison study this is 

perhaps a bit premature, even though some of the algorithms compared may be more sophisticated and 

have proven valuable in other settings such as image registration. 

Answer: We have expanded on the state of development/evaluation of each technique in Section III (cf. 

text in blue). We have also eliminated the term ‘state-of-the-art’. We stress that, although these are not 

commercial implementations, at least 4 of the techniques are the output of long-lasting research project 

from well-established teams with leading expertise in the field of cardiac strain imaging. We 

acknowledge the only exception could be for the BM algorithm. Indeed, the considered implementation 

was not evaluated previously, with the exception of the small preliminary study in [1]. Nonetheless, BM 

is a very well established principle and the implementation considered followed a thorough literature 

overview. The quality of the implementation is also proved by the results presented in this study.  

[1] Alessandrini, M.; Heyde, B.; Cygan, S.; Sermesant, M.; Delingette, H.; Bernard, O.; De Craene, M.; 

D'hooge, J., "Elastic registration vs. block matching for quantification of cardiac function with 3D 
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ultrasound: Initial results of a direct comparison in silico based on a new evaluation pipeline," in 

Ultrasonics Symposium (IUS), 2014 IEEE International , vol., no., pp.608-611, 3-6 Sept. 2014. 

Q6: Related to the pros and cons of the different approaches, I would for instance look more into the 

trade-off between regularization and accuracy in time and space. Smoothing / overfitting is a concern for 

3D strain. 

Answer: This is true, we have elaborated further on this point in the discussions, where this is explicitly 

stated as a limitation of the study (Sect. VI-B). Looking into this compromise would imply including more 

datasets with different degree of ischemia and performing a sensitivity analysis of the hyper-parameters 

balancing the regularization. This could be the topic for future studies. 

Q7: What about the influence of frame rate? Given the model it would be interesting to see when 

methods break down for lower frame rates and improve differently for higher frame rates. At the 

minimum a paragraph in the discussion should be included. 

Answer: We realize the information on the frame rate was missing in the previous submission. This has 

been added now (cf. Sec. II.A), in particular all datasets were simulated at a temporal resolution of 34 

frames/s. Temporal resolution is easily adjustable in the e/m model. The value chosen was considered a 

reasonable average of what available clinically. We agree evaluating the influence of frame rate is 

important and we commented on it in the discussion. Yet, this kind of evaluation remained beyond the 

scope of this specific study. We have initiated an effort in this direction in [1] 

[1] Alessandrini, M.; Heyde, B.; Ling Tong; Bernard, O.; D'hooge, J., "Tracking quality in plane-wave 

versus conventional cardiac ultrasound: A preliminary evaluation in-silico based on a state-of-the-art 

simulation pipeline," in Ultrasonics Symposium (IUS), 2015 IEEE International , vol., no., pp.1-4, 21-24 

Oct. 2015. 

RESULTS: 

Q8: The results from block matching was actually quite encouraging considering that no spatial or 

temporal smoothing was involved. Computationally, this algorithm is further highly parallelizable. If 

possible I would also include a commercial implementation, this could for instance be a vendor 

independent software like the one from Tomtec. But I understand if this is for further work. 

Answer: We agree block matching was a very close competitor of methodologically more elaborated 

techniques. In the revised manuscript, BM was further improved by including temporal and spatial 

smoothing (see answer 2 to Reviewer 2). Nonetheless, the implementation of spatial smoothing was not 

found beneficial after benchmarking and, therefore, it was switched off in the final submission. Yet. 

Temporal smoothing help improving accuracy further (cf. result section). Concerning parallelizability, 

please see the answer to Q11. 

Benchmarking commercial 3D STE solutions is a priority in our ongoing efforts. Indeed, they were left 

out of this study since: 
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 Including commercial solutions would require taking care of several practical issues such as the 

access to the software package, data conversion to an appropriate (possibly proprietary) file 

format, making sure the software is used by expert users;  

 Given the amount of new solutions for cardiac strain imaging which are constantly published, 

we believe providing a (yet limited) snapshot of what available in research was still relevant and 

could deserve a dedicated publication; 

In this regard, it’s also noteworthy mentioning we are currently in the process of setting up a 

comparison study between commercial packages for what concerns 2D strain, by using an extension of 

the pipeline considered in this paper. This has been added to the paper (cf. end of Sect. VI). 

Q10: There are a lot of results, if needed I would reduce the amount of results to make room for more 

analysis / discussion as mentioned previously. 

Answer: As recommend, and due, we have expanded the discussion section trying to address all the 

points raised. Moreover, as suggested in Reviewer 1 (Q9), we have dropped the Bland-Altman analysis. 

Q11: With regards to computation time, it is quite possible to evaluate this from an algorithm standpoint 

(e.g. complexity / flops etc.). And in this setting it would also be interesting to note particular 

implementation details such as parallelization. Some techniques such as block matching are local and 

can easily be implemented in parallel for execution of GPUs. Global variational approaches based on 

iterative optimization solvers are in this sense typically less parallelizable. 

Answer: we expanded the section dedicated to computational complexity (cf. Sect. IV.C) and added a 

paragraph on computational complexity to the conclusions (cf. Sect. VII).  

Discussion / conclusion 

Q12: I agree with the conclusion, but I find it is too bad that the block matching algorithms are not at the 

level of sophistication with regards to its implementation as the other techniques. 

Answer: We added some more detail on the level of development/evaluation of each algorithm in Sec. 

III. For what concerns the degree of sophistication, we agree the lack of regularization represents a gap 

with respect to what available commercially. For what concerns RFBM we don’t believe this comes from 

poor sophistication. The technique is indeed the output of several years of research in the developing 

team and the same implementation was recently used in [1]. One of the reasons why the technique 

suffered in this comparison is the way strain was computed. As mentioned in the discussions (Sec. VI.3), 

the technique as implemented would introduce smoothing at the strain computation stage by using 

affine least squares fitting of the displacement fields. For what concerns B-mode BM we agree the 

absence of smoothing was a limitation of the study. We asked therefore the contributing team to 

include a (spatial and temporal) regularization step. The revised manuscript considers therefore an 

updated BM implementation inclusive of regularization (cf. Sec. III). Of note, spatial smoothing was not 

found beneficial after benchmarking and was therefore switched off in the final submission. 
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[1] Congxian Jia; Kolias, T.J.; Rubin, J.M.; Ping Yan; Sinusas, A.J.; Dione, D.P.; Duncan, J.S.; Qifeng Wei; 

Thiele, K.; Lingyun Huang; Sheng-Wen Huang; O'Donnell, M., "3D elasticity imaging on an open-chest 

dog heart," in Ultrasonics Symposium (IUS), 2009 IEEE International , vol., no., pp.155-158, 20-23 Sept. 

2009. 
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1

Detailed Evaluation of Five 3D Speckle Tracking

Algorithms using Synthetic Echocardiographic

Recordings
Martino Alessandrini∗, Brecht Heyde, Sandro Queirós, Szymon Cygan, Maria Zontak, Oudom Somphone,

Olivier Bernard, Maxime Sermesant, Hervé Delingette, Daniel Barbosa, Mathieu De Craene, Matthew O’Donnell

and Jan D’hooge

Abstract—A plethora of techniques for cardiac deformation
imaging with 3D ultrasound, typically referred to as 3D speckle
tracking techniques, are available from academia and industry.
Although the benefits of single methods over alternative ones have
been reported in separate publications, the intrinsic differences
in the data and definitions used makes it hard to compare the
relative performance of different solutions. To address this issue,
we have recently proposed a framework to simulate realistic 3D
echocardiographic recordings and used it to generate a common
set of ground-truth data for 3D speckle tracking algorithms,
which was made available online.

The aim of this study was therefore to use the newly developed
database to contrast non-commercial speckle tracking solutions
from research groups with leading expertise in the field. The
five techniques involved cover the most representative families
of existing approaches, namely block-matching, radio-frequency
tracking, optical flow and elastic image registration. The tech-
niques were contrasted in terms of tracking and strain accuracy.
The feasibility of the obtained strain measurements to diagnose
pathology was also tested for ischemia and dyssynchrony.

Index Terms—3D echocardiography, speckle tracking, cardiac

strain, standardization, quality assurance, synthetic datasets.
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I. INTRODUCTION

A. Echocardiographic Strain Imaging

Echocardiographic strain imaging has emerged as a power-

ful tool to quantify local cardiac mechanics non-invasively [1].

Although strain heavily depends on extrinsic conditions (size,

preload, and afterload), it decreases when contractility is af-

fected [2]. Strain is less sensitive to tethering from surrounding

segments than velocity or displacement measurements, and is

therefore preferred for detecting abnormal segments [2].

Clinical feasibility of echocardiographic strain has been

shown in a multitude of studies: strain has been used to

diagnose myocardial ischaemia; it has been proposed as a

tool to predict infarct size after coronary reperfusion; it is

recommended as routine measurement in patients undergoing

chemotherapy; it has been proposed as predictor of risk of

ventricular arrhythmias; it may be applied to guide placement

of the pacing lead in patients receiving cardiac resynchro-

nization therapy [3]. Strain is more sensitive than ejection

fraction as a measure of systolic function [3] and has better

prognostic value [4]. Although strain imaging still remains a

technology under development whose employment is limited

to centers with expertise in deformation imaging, there are

strong ongoing efforts aimed to standardize its use and foster

its adoption in the clinical routine [5].

Recently, real time 3D ultrasound has become technically

feasible. Volumetric imaging solves intrinsic shortcomings of

the standard 2D modality, such as the presence of out-of-

plane motion, problems in the optimal slice selection and

the need of geometrical assumptions. This has motivated

natural attempts from academia and industry to translate the

strain imaging technology to 3D. Yet, the reduced temporal

resolution of today’s 3D equipment and the increased data

size make accurate and time effective estimation of cardiac

strain in 3D still challenging. As such, 3D strain technology

remains so far mainly confined to the research arena [6], [7].

B. 3D Speckle Tracking

To prepare for the clinical translation of the 3D strain tech-

nology, a plethora of solutions have been constantly proposed,

generally referred to as 3D speckle tracking (3D STE). Based

on the way the displacement is computed from the image

sequence, they can be grouped in three main categories.
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One possibility is to extend the original block matching

technique, initially developed for 2D ultrasound [8] to 3D

[9], [10]. Hereto, a set of 3D image patches are tracked

independently from one another over the cardiac cycle. Their

position in the following frame is updated by looking for

the most similar patch over a predefined search window.

Similarity can be defined in several ways, e.g. by normalized

cross correlation [9]. Smoothness of the displacement field is

typically imposed at a post-processing stage by interpolation

and filtering. Block matching represents the conventional im-

plementation on many commercial systems. The same concept,

with appropriate modifications, can be applied to raw radio-

frequency (RF) data (RF tracking). RF tracking is receiving

an increased interest given the proven benefits when assessing

small deformations [11], [12]. Nonetheless, due to the low

temporal resolution of commercial systems and therefore the

associated large deformations between subsequent frames, the

application of RF tracking to 3D echocardiographic clinical

data remains an issue. Although an initialization technique can

be employed in this case, e.g. based on the B-mode [11], the

bias introduced by the latter might overbalance the theoretical

benefits of the RF-based estimation. Thus, it still remains

unclear whether RF tracking has to be preferred to B-mode

tracking for this particular task.

One alternative is to use the optical flow principle, which

assumes conservation of pixel brightness over time [13].

Optical flow is typically coupled with the assumption of

small displacements and either solved locally on independent

image patches [14] or globally by adding a smoothing term

[13]. Large deformations can be coped with by recursively

applying the estimator in a pyramidal refinement scheme [14].

The Demons algorithm represents a computationally efficient

simplification of the optical flow problem [15], [16]. Unlike

block matching, spatial smoothness can be more naturally

included as a constraint term in the optimization problem.

Finally, elastic image registration provides an alternative

framework to compute a smooth dense deformation field.

Hereto, cardiac deformation is parameterized by using its

decomposition into a set of basis functions, typically B-splines

[17], [18]. Several kinds of constraints can be easily included

as additive penalty terms to the global cost function, such as

smoothness [18] and incompressibility [19], [20].

C. Motivation

With the number of available solutions rapidly growing,

assessing and comparing their performance in a reliable and

reproducible way becomes of primary importance. For what

concerns cardiac deformation imaging, magnetic resonance

imaging (MRI) is commonly considered as the “gold standard”

[6]. Nonetheless, comparison against a different modality

introduces additional difficulties to the benchmarking process,

such as the need to co-register the two datasets in space and

time. One alternative is to make use of physical phantoms

or animal preparations with sonomicrometry as a reference

measurement [6]. As a drawback, all aforementioned setups

are costly, complex to implement and scarcely reproducible

between different research groups, thus making the reported

(a) synthetic dataset in [21] (b) synthetic dataset in this study

Fig. 1. Comparison between the synthetic datasets used in [21] and the present
study.

performance hard to compare. In this regard, the use of

synthetic datasets represents a more feasible alternative for

a preliminary evaluation [6], [17], [21] since i) it is a simple

setup requiring only a personal computer and ii) testing data

can be shared electronically. Nonetheless, the poor realism of

the current generation of synthetic datasets represents a limited

application scope for the evaluation studies reported so far (cf.

Fig. 1(a)).

In this context, we have been actively investing in the

development of more realistic synthetic datasets for bench-

marking 3D STE algorithms. In particular, our efforts went

on combining an accurate cardiac motion model [21] with a

realistic ultrasound speckle texture [22]. As such, in our most

recent contribution [23], state-of-the-art solutions in the fields

of electromechanical modeling (E/M) [24] and ultrasound

simulation [25] were integrated in an original framework that

exploits a real ultrasound recording to learn and simulate

realistic speckle textures. The obtained synthetic sequences

are visually realistic, i.e. fairly reproduce all major elements

that make motion tracking challenging, yet fully synthetic, in

particular the reference values of deformation and strain are

available voxelwise from the electromechanical model. The

pipeline was used to generate an online testing set for 3D

STE techniques1. The aim of this study was therefore to use

this pipeline to contrast the performance of non-commercial

3D STE solutions.

D. Statement of the Contribution

We asked groups with leading expertise in the field of

3D US deformation imaging to contribute to this compar-

ison study. Our principal effort was ensuring a maximal

methodological diversity of the techniques represented. For

practical reasons, the call was restricted to groups within the

pre-existing network of our laboratory. Ultimately, five tech-

niques from the following centers were contrasted: University

of Leuven, University of Minho, Philips Research, Warsaw

University of Technology and University of Washington. At

least one technique from each of the methodological families

previously identified was present, namely: one technique based

on elastic registration, one implementation of RF tracking, one

implementation of B-mode block matching and two techniques

based on optical flow. The comparison was focused on both

displacement and strain accuracy.

Of note, with respect to the comparison study between 3D

STE solutions recently reported in [21], the work presented

here has substantial differences:

1 https://team.inria.fr/asclepios/data/straus/
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• The synthetic dataset employed here is considerably more

realistic (hence representative of a real clinical setting)

than the one in [21], both in terms of image properties

and motion model (cf. Fig. 1). Most importantly, the

new sequences embed the major elements making wall

motion estimation challenging, such as i) the motion

of surrounding structures like papillary muscles, valves

and trabeculations which may hinder/bias the tracking

accuracy near endo- and epicardium [26] and ii) the

spatially variant contrast-to-noise-ratio along the the my-

ocardial wall [19]. Moreover, the E/M simulations were

improved as compared to [21] in order to obtain more

representative motion patterns, with particular attention to

ejection fraction and global longitudinal, circumferential

and radial strain values [23];

• This study offers a more comprehensive and representa-

tive view of the state of the research in the field of 3D

US cardiac deformation imaging. Specifically, in [21],

all considered techniques were based on elastic regis-

tration or optical flow. Differently, we aimed to include

at least one technique from each of the main families

that cluster the current research scenario. In particular,

including block matching is especially relevant given

that several commercial implementations of this method

are available [6], [27], [28]. Moreover, as mentioned,

although RF tracking is gaining popularity, a thorough

comparison against B-mode based techniques is currently

still missing.

A very preliminary version of this report was presented in

[29]. Nonetheless i) elastic registration and block matching

were considered only, ii) the implementations of the two

algorithms were different (i.e. less optimized) from the ones

considered here, iii) 5 synthetic sequences were considered

only and iv) the performance analysis was less thorough.

The paper proceeds as follows. The setup of the comparison

study is described in Sect. II. Sect. III briefly describes

the considered algorithms, while the results are presented in

Sect. IV. Discussion and limitations of the study are presented

in Sect. V and Sect. VI, respectively. Conclusions are left to

Sect. VII.

II. SETUP OF THE COMPARISON STUDY

A. Synthetic Data

The synthetic evaluation database was generated with the

pipeline described in [23] and is available online at1. The

synthetic sequences appear similar to real ultrasound record-

ings, yet, the myocardial motion is fully controlled by the E/M

model in [24]. By varying the parameters of the E/M model,

we generated 8 sequences corresponding to different patho-

physiological conditions, namely: one healthy sequence; four

ischemic cases, corresponding to occlusion of the proximal

or distal parts of the left anterior descending coronary artery

(LADprox and LADdist, respectively), of the left circumflex

coronary artery (LCX) and of the right coronary artery (RCA);

three simulations of dilated cardiomiopathy, of which one

with a synchronous activation pattern (sync) and two dyssyn-

chronous due to left branch bundle block (LBBBsmall and

(a) (b)

Fig. 2. (a) AHA segments. (b) In black the tetrahedral used by the E/M
simulator, in colors the anatomical mesh used to compute displacement and
strain indices. Colors denote different AHA segments.

LBBBlarge), characterized by a progressively longer delay in

the activation of septum and lateral wall.

Each E/M simulation returned a time series of tetrahedral

meshes defining the instantaneous position of the myocardium

over the full simulated cycle. Indices of cardiac deforma-

tion/strain are more conveniently expressed in anatomical

coordinates, namely radial (R), longitudinal (L) and circumfer-

ential (C) [6]. The anatomical coordinates were therefore used

to re-sample the original tetrahedral meshes regularly along

L (30 points), C (25 points) and R (3 points). All details are

provided in [30]. The final result of the re-meshing operation is

illustrated in Fig. 2(b). For regional analysis, the LV was split

into 17 segments according to the standard AHA subdivision

(cf. Fig. 2). The re-sampled meshes were used as ground-truth

in the comparison study, as explained in Sect. II-C, therefore

being referred to as “ground truth meshes”.

The simulated ultrasound volumes were obtained by apply-

ing the fast US simulator COLE [25]. Parameters were tuned

so to match as close as possible to the current state-of-the-art

3D ultrasound systems in clinical practice. In particular, we

implemented a phased array with center frequency of 3.3MHz

with a relative bandwidth at -6dB of 65%. Sampling frequency

was 50MHz. The US pyramid consisted of 107 beams in

azimuth and 80 beams in elevation direction over an angle of

76 degrees in both directions. As such, the size of RF volumes

was 107×13637×80 voxels. After scan conversion, the size

of B-mode volumes was 224×176×208 voxels, for a voxel

size of 0.7×0.9×0.6 mm3. For all datasets, time resolution

was 34 frames/s. For a dynamic visualization of the synthetic

recordings, we refer to our project’s web page1 and to the

interactive web interface2.

B. Processing done by the participants

For each of the 8 simulations the following was available:

• the raw RF images before envelope detection and scan

conversion;

• the B-mode voxel images, i.e. after envelope detection,

log compression and scan conversion;

• the “ground truth meshes”, i.e. after the re-sampling of

Fig. 2(b);

Additionally, a set of MATLAB scripts to compute tracking

and strain errors, hence to be used for parameters tuning, were

also distributed. The dataset was split between a training and a

2https://desk.creatis.insa-lyon.fr/straus/
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TABLE I
CONSIDERED ALGORITHMS. REFER TO THE TEXT FOR A DETAILED DESCRIPTION.

Algorithm Family Image Data

Processed

Global/

Local

Cost function Spatial

Regularization

Temporal

Regularization

AFFD [20] Elastic Image

Registration

B-mode Global Sum of Squared

Differences

Bending +

Incompressibility

Forward + backward

tracking

AAOF Optical flow B-mode Local Brightness

constancy

Local Affine

model fitting

Forward + backward

tracking

S-Demons
[16]

Optical flow B-mode Global,

sparse

Sum of Squared

Differences

Gaussian Smoothing Forward + backward

tracking

BM Block Matching B-mode Local Normalized cross
correlation

None Pointwise Gaussian
smoothing

RFBM Block Matching RF Local Complex

Normalized

cross correlation

local NCC averaging

+ spatial smoothing

None

testing set. The training set consisted of the full data package

(i.e. RF data, B-mode images and ground truth meshes) for

the LADprox and LBBBlarge sequences. For the remaining

sequences (i.e. the testing set) we provided all simulated

ultrasound data (i.e. RF data and B-mode images) plus the

ground truth mesh for the first frame only. The remaining

ground truth meshes were kept by the organizers3.

Participants ran their specific tracking solution on each

simulated dataset and used it to propagate the nodes of the

first ground truth mesh over the full cycle. Performance was

then assessed by comparing the ground truth positions against

the tracking result, as explained in Sect. II-C.

C. Performance Assessment

1) Tracking Accuracy: Tracking error vector was defined as

e
i(k) = x

i(k)−x̂
i(k), with x

i(k) representing the 3D position

of the i-th node of the ground-truth mesh at frame k and

x̂
i(k) the position of the same node when using the tracking

result. Besides error amplitude, we also evaluated separately

its projections along the R, L and C anatomical directions.

2) Strain Accuracy: Radial, longitudinal and circumfer-

ential strains (ǫR, ǫL and ǫC , respectively) were measured

by the relative change in distance between two neighboring

mesh nodes. Namely, ǫn(k) = ℓn(k)/ℓn(0) − 1 with ℓn(k)
the distance between two consecutive nodes along direction

n ∈ {R,L,C} at time k. Segmental strain values were ob-

tained by averaging point measurements per cardiac segment.

For the ischemic dataset, we focused the error analysis to

end-systolic (ES) strain, given its clinical interest as a “techno-

marker” for ischemic heart disease [6]. Hereto, we measured

the Pearsons’s correlation coefficient ρ and the slope α of

the regression line, as well as the bias µ and the limits of

agreement (LOA=1.96σ). Moreover, we tested the accuracy of

the computed ES strain values in detecting ischemia by mea-

suring the area under the curve (AUC) of the receiver operating

characteristic (ROC) curves. The ROC curves were computed

3Note that public release of the ground truth data on our web-page was
postponed until the completion of this study.

from a progressive threshold by assuming ES (absolute) strain

values below the threshold as indicative of ischemia. Segmen-

tal strain values (i.e. point estimates averaged per segment)

were considered in the analysis.

For the dyssynchronous dataset, the analysis of

the full strain profiles was considered. Accuracy in

matching full strain profiles was therefore measured

by the relative error
∑

t
|estimated strain(t)−

reference strain(t)|/
∑

t
|reference strain(t)|. The error

measurement was restricted to the septum (segments # 8 and

9) and lateral wall (segments # 11 and 12), cf. Fig. 2(a).

In particular, time-to-peak measurements were extracted as

clinical markers to quantify a contraction delay. Time-to-

peak values were computed using a continuous B-spline

interpolation of the strain profiles. As such, non-integer

values were allowed. For all the experiments, only the mesh

nodes falling inside the field of view were considered.

3) Statistical Tests: For each reported ρ value, Fisher’s

transformation was used to test the hypothesis of no corre-

lation. The slope of the regression line was assessed with a

F-test. Strain bias µ was instead evaluated with a t-test. The

statistical significance of the reported AUC values (i.e. of AUC

> 0.5) was tested with the non-parametric technique described

in [31]. We also tested the statistical significance of differences

between all possible pairs of algorithms. Hereto, the Fisher’s

transformation was used for correlation coefficients, a paired

t-test was employed for regression slopes and biases while

limits of agreement were compared with an F-test. All values

were considered statistically significant when p < 0.05.

III. CONSIDERED ALGORITHMS

The main features of the algorithms considered in the

comparison are summarized in Table I. A detailed description

follows.

A. Anatomical Free Form Deformation (AFFD)

The group from KU Leuven contributed with an anatomical

free-form deformation technique (AFFD). In this model, the
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displacement field is represented using a tensor-product B-

spline and the control points’ grid is locally oriented along

the cardiac R, L and C directions of the endocardial surface.

The nodes’s weights are optimized with a limited memory

Broyden-Fletcher-Goldfarb-Shanno optimizer with bound con-

straints (L-BFGS-B). The initial 3D AFFD technique was

presented by Heyde et al. in [32], and uses an energy consist-

ing of a sum-of-squared difference image metric representing

the data term and a bending energy to enforce smoothness.

The implementation used in this comparison evolves from the

initial one by further including a penalty for deformations de-

viating from myocardial volume conservation [20]. The hyper

parameters balancing bending energy and volume conservation

were optimized in the training phase.

The AFFD technique and all intermediate steps leading to it

have been thoroughly evaluated in-silico, in-vitro and in-vivo

(cf. [20] and the references therein). In particular, AFFD was

the technique of choice for strain imaging in a recent open

challenge [21].

B. Anatomical Affine Optical Flow (AAOF)

The group from the University of Minho contributed with a

localized anatomically-constrained affine optical flow (AAOF)

algorithm. Their algorithm is the 3D extension of the one

proposed in Queirós et al. [33] for fast left ventricle tracking

in cine cardiac MRI datasets. The principle is to estimate the

motion between adjacent cardiac phases using optical flow.

In order to reduce its computational burden and avoid the

influence of surrounding tissues, the motion estimation step

is anatomically-constrained by only considering a region of

interest around the tracked surface. Subsequently, the esti-

mated motion is integrated into a local affine motion model, in

which each surface point considers the motion of its neighbor

points and their relative distances. By including an iterative

displacement refinement scheme, the algorithm is able to

accurately capture large displacements. In the present case, the

reference mesh is initially divided into three surfaces, namely

endo-, mid- and epicardial surfaces. Each surface is then

propagated independently by estimating its motion throughout

the cardiac sequence.

The AAOF algorithm extends the recent BEAS frame-

work for LV endocardial tracking [34]. BEAS was evaluated

clinically and showed competitive against non-commercial

solutions (cf. [34] and the references therein). Moreover, it

was among the most accurate techniques in a recent open

challenge on 3D LV segmentation [35]. Although this is the

first application of AAOF to 3D US, its global counterpart for

cine MRI was evaluated extensively [36].

C. Sparse Demons (S-Demons)

Philips contributed with a sparse implementation of the

Demons algorithm [15], called Sparse-Demons (S-Demons),

which was previously presented in Somphone et al. [16].

Briefly, the idea is to find a dense, non-rigid displacement

field by minimizing an energy functional defined only on a

finite number of points of interest. A fluid-like regularization

of the displacement is adopted, which can be approximated by

Gaussian filtering [16]. The crucial parameters to be adjusted

are the width of the Gaussian kernel σ (i.e. the larger sigma,

the smoother the estimated displacement field) and the number

and location of the points of interest. For more details we refer

to [16].

S-Demons was previously evaluated on synthetic 3D record-

ings in [16] and found competitive with the best performing

algorithms considered in [21].

D. B-mode Block Matching (BM)

The group from the Warsaw University of Technology con-

tributed with an implementation of B-mode block matching.

Three dimensional normalized cross correlation (NCC) was

used as a similarity function. Prior to localizing its maximum,

NCC was interpolated in 3D by using cubic B-splines in order

to achieve a resolution of 1/16 of a voxel. The search range

for each block was set to cover a maximum physiological

velocity of 12 cm/s. Kernel size was chosen experimentally

by assessing the average and median displacement errors on

the training set. As such, final estimations were carried out

using a kernel of 10.7×13.6×9.3 mm (i.e. 16×16×16 voxels).

All the mesh nodes were tracked through the whole deforma-

tion cycle. The method implemented spatial smoothing based

on gaussian filtering. This smoothing was executed at each

frame, before estimating positions of mesh nodes at next time

step. Temporal smoothing for each point trajectory was also

implemented. This was carried out after the whole cycle of

displacements was estimated. Assessment of the method’s

performance showed that, due to the sparsity of tracking

points, spatial smoothing caused estimation errors to increase.

For this reason spatial smoothing was omitted. For temporal

smoothing, Gaussian filter with size of 7 time points was

chosen.

E. RF block matching (RFBM)

The group from the University of Washington contributed

with a RF block matching implementation based on Chen

et al. [12]. Block matching was applied to RF data in po-

lar coordinates, where the axial dimension was sub-sampled

with a factor 4 for computational efficiency. Block size was

21×7×3 voxels and computed based on the expected speckle

size, as measured by the average width of the auto-correlation

function of the RF signal. The search region was 51×3×3

voxels and chosen based on the average displacement mea-

sured from the ground truth. Sub-pixel axial displacements

were computed with the phase zero-crossing method and were

totally unconstrained based on any model assumptions of ex-

pected displacement/strain values. A second-order polynomial

approximation was employed in the lateral and elevational

directions. A tracking quality check was performed based on

comparing the result of incremental (i.e. between time t − 1
and t) and direct (i.e. between time 0 and t) tracking. Motion

patterns of adjacent speckles in the myocardium have innate

coherence due to their physical proximity. We achieve spatial

coherence by averaging the similarity (NCC) maps of adjacent

voxels. Moreover, each voxel participates in multiple blocks,

hence has several estimates, which might be further averaged
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TABLE II
GLOBAL TRACKING ERROR IN MM [5-TH PERCENTILE, MEDIAN, 95-TH

PERCENTILE]

Algorithm Full database Normal Geometry Dilated Geometry

AAOF [0.09; 0.38; 1.51] [0.09; 0.38; 1.35] [0.08; 0.39; 1.88]

AFFD [0.14; 0.47; 1.28] [0.14; 0.48; 1.30] [0.13; 0.44; 1.23]

S-Demons [0.14; 0.49; 1.41] [0.15; 0.49; 1.41] [0.13; 0.50; 1.41]

BM [0.26; 0.90; 2.46] [0.26; 0.86; 2.11] [0.25; 0.99; 3.19]

RFBM [0.09; 0.72; 4.33] [0.10; 0.72; 4.40] [0.07; 0.73; 4.23]
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to reject non-consistent estimates. The algorithm was used to

find a dense displacement field on the whole volume. The

mesh nodes were then propagated by linearly interpolating the

displacement field.

RFBM was previously evaluated in-vitro on cardiac phan-

toms and in-vivo on open chest animal preparations (cf. [37]

and the references therein).

IV. RESULTS

For synthesis, we provide in this report only a, yet represen-

tative, subset of the obtained results. A supporting document is

made available containing the full set of error plots. For repro-

ducibility, the ground-truth meshes and the associated tracking

result from all participants are made available at our project

web-page1, along with the MATLAB scripts used to compute

tracking and strain errors *** note for the reviewers: All sup-

porting material will be made public at the time of publication.

At this stage, it can be downloaded at http://bit.ly/1QnUEKm

***. Of note, all algorithms (with a slight difference for

RFBM, as mentioned in Sect. III) performed the tracking

by accumulating incremental estimates between couples of

consecutive frames. Moreover, in order to minimize error

accumulation, AFFD, S-Demons and AAOF implemented a bi-

directional tracking strategy combining forward and backward

estimates (cf. Table I).

A. Tracking Accuracy

1) Global analysis: Global tracking errors (i.e. inclusive

of all nodes, time instants and sequences) are summarized in

Table II. To evaluate the influence of the geometry on the

tracking quality, error statistics are also reported separately for

sequences obtained from a healthy geometry (i.e. the healthy

simulation and the four ischemic ones) and sequences obtained

from a dilated geometry. AAOF returned the smallest mean

error on both ischemic and dilated datasets. AFFD and S-

Demons returned slightly larger average errors while error

dispersion was instead smaller as compared to AAOF. BM and

RFBM had a larger error bias and wider dispersion ranges as

compared to non-block matching solutions. As a reference, the

average ground-truth displacement at end-of-systole was 4.64

mm.

Fig. 3(b) presents the 3 anatomical components of the

tracking error. For all algorithms, radial errors had the largest

variance and a slight positive bias (i.e. tendency to underesti-

mate radial motion). Among non-block matching solutions, the

relative loss in accuracy in the radial direction was particularly

relevant for AAOF. Longitudinal and circumferential errors

did not exhibit clear biases, except for RFBM, which tended

to underestimate longitudinal displacements. Such longitudinal

errors are explained by the difficulty of RF tracking in coping

with large motions. As an example, note that, with the US

parameters employed, a displacement of 1 mm leads to a shift

of ∼ 65 RF samples.

2) Regional analysis: Error dependency on the myocardial

layer was analyzed first (cf. Fig. 4(a)). All algorithms returned

more accurate estimates at the mid-myocardial level, i.e.

where boundary effects are less important. Moreover, errors

were generally higher on the epicardial surface. This is a

consequence of the poor delineation of the epicardial border

typical of cardiac ultrasound [38]. As expected, error increase

was the highest for the solutions which did not apply an

explicit constraint in the radial direction (AAOF and RFBM in

particular). This effect was particularly important for RFBM,

as also illustrated by the bull’s eye plot in Fig. 5.

Error variations per left ventricular level (i.e. basal vs. mid

vs. apical segments) and per functional region (i.e. normal

vs. ischemic segments) were also analyzed, cf. Fig. 4(b,

c). The first experiment showed a progressive error increase

when moving from apex to base, cf. Fig. 4(b). This is

partly explained by the lower image quality when moving

away from the probe and by the progressively larger absolute

displacements in the apex to base direction. This effect was

particularly important for RFBM. Again, this can be due to the

difficulty in coping with large displacements. Errors were in

contrast more uniformly distributed with respect to variations

in the mechanical function of the segments. Yet, except for

S-Demons and AFFD, there was a tendency in returning more

accurate tracking on normal segments as compared to ischemic

ones, Fig. 4(c). This might be a consequence of the tuning

strategy chosen. In particular, tuning with respect to global

error will naturally privilege normal regions due to their larger

relative extent.

Fig. 6 displays the tracking error over time for the LADprox

training sequence. The vertical blue lines denote aortic valve

opening, aortic valve closure and opening of the mitral valve,

respectively. All algorithms made the highest errors at ES, i.e.

when the displacement is the largest. Techniques combining
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Fig. 5. Bull’s eye plot of tracking error for the RFBM sequence evaluated at
ES on the LADprox sequence independently on the 3 trans-mural layers.

forward and backward tracking (AFFD, AAOF and S-Demons)

effectively reduced error accumulation as compared to BM and

RFBM, as evidenced by the lower end-diastolic error values. In

this sense, AFFD had a slightly higher error drift at the end

of the cardiac cycle as compared to AAOF and S-Demons.

In general, median errors had comparable behavior and were

mostly below 1 mm. Among the considered solutions, RFBM

suffered the most from the presence of outliers, as shown by

the larger error dispersion.

B. Strain Accuracy

1) Detection of Ischemia: The obtained numerical values of

correlation coefficient ρ, regression slope α, bias µ and limits

of agreement LOA for ES strain are summarized in Table III.

For each metric, the best values are denoted in bold font. In

these experiments, the 4 ischemic sequences were considered

only.

AFFD was the only algorithm to preserve high accuracy

irrespective of the strain direction. In particular, it was the

only technique for which the bias was never statistically

significant. Moreover, it had the highest ρ for C- and R-strain

and the lowest µ and LOA for R-strain. Remaining algorithms

had instead problems in retrieving R-strain accurately. AAOF

returned highly accurate estimates of L-strain, with the highest

ρ, the narrowest LOA and a non-significant bias. Compared to

AFFD and S-Demons, AAOF had the slight tendency to under-

estimate C-strain, as shown by the lower α. Moreover, AAOF

returned a statistically significant positive bias for R-strain.

S-Demons had high accuracy for L- (highest α) and C-strain

(highest ρ and narrowest LOA), while it had the tendency

to under-estimate R-strain substantially, as explained by the

statistically significant negative µ and the low α.

Algorithms based on block-matching were in general less

accurate than algorithms based on elastic registration or op-

tical flow. In particular, they mainly suffered from the noisy

displacement estimates, which explain the larger LOA. The

gap in performance was the smallest for BM, in particular

for L- and C-strain. Yet, in both cases, BM had the tendency

to underestimate strain values as shown by the relatively low

α. RFBM suffered the most from the presence of outliers as

shown by the larger LOA.

For each accuracy metric and each possible pair of algo-

rithms, we tested the statistical significance of the difference

between the values obtained, as explained in Sect. II-C. The

results of the test have been left out of this manuscript
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TABLE III
CORRELATION COEFFICIENT ρ, SLOPE OF THE REGRESSION LINE α, BIAS µ, LIMITS OF AGREEMENT LOA, AND AREA UNDER THE ROC CURVE (AUC)
FOR THE 5 ALGORITHMS. AN ASTERISK DENOTES STATISTICAL SIGNIFICANCE OF THE REPORTED MEASUREMENTS, NAMELY OF ρ > 0, α > 0, µ > 0

AND AUC > 0.5. BEST VALUES ARE REPORTED IN BOLD FONT. VALUES WERE MEASURED ON THE ISCHEMIC DATASETS ONLY.

ǫL ǫC ǫR

ρ α µ LOA AUC ρ α µ LOA AUC ρ α µ LOA AUC

AFFD 0.84∗ 0.89∗ -0.25 3.95 0.90∗ 0.98∗ 0.88∗ 0.16 4.84 0.99∗ 0.93∗ 0.83∗ -0.06 10.00 0.98∗

S-Demons 0.88∗ 0.96∗ 0.42 3.65 0.93∗ 0.98∗ 0.89∗ 0.43 4.52 0.99∗ 0.83∗ 0.62∗ -12.58∗ 15.55 0.95∗

AAOF 0.95∗ 0.88∗ -0.35 2.20 0.96∗ 0.98∗ 0.81∗ -0.09 5.63 0.99∗ 0.83∗ 0.92∗ 9.25∗ 17.21 0.96∗

BM 0.75∗ 0.61∗ -0.06 4.53 0.89∗ 0.89∗ 0.59∗ 1.71 11.14 0.97∗ 0.47∗ 0.22∗ -12.64∗ 24.25 0.81∗

RFBM 0.36 1.43∗ 14.98 25.34 0.67 0.87∗ 0.98∗ 8.22∗ 11.95 0.95∗ 0.35∗ 0.46∗ -5.04 36.36 0.80∗
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Fig. 7. Correlation plot for end-systolic circumferential strain. Empty and full markers denote healthy and ischemic segments respectively. The dashed line
in represents y = x (i.e. perfect correlation), while the regression line, whose equation is reported inside the plot, is displayed in red. Note the different error
scale used in both plots for RFBM.

for the sake of brevity and are provided in the supporting

document. The main points arising from the statistical test are

the following.

For what concerns non block-matching algorithms (AFFD,

AAOF and S-Demons), differences in L- and C-strain were, for

most of the metrics, not statistically significant. The accuracy

of AFFD in R-strain was statistically higher with respect to any

competing solution. For what concerns block-matching solu-

tions (BM and RFBM), BM accuracy was statistically higher

with respect to all metrics for L- and C-strain. Differences in

R-strain were instead not significant for most metrics.

When comparing the two groups of algorithms against each

other, BM had non-significant differences to at least one of

the non block-matching based solutions in L-strain (ρ, α, µ
and LOA, i.e. all assessed metrics), C-strain (ρ, α, µ and

LOA) and R-strain (µ). Instead, error differences between non-

block-matching algorithms and RFBM were in most cases

significant.

Correlation plots for ES C-strain are reported in Fig. 7,

where empty and full markers denote healthy and ischemic

segments, respectively. The plots in Fig. 7 allow to make

several additional considerations. At first, BM and, to a lesser

extent, AAOF seemed to be biased towards healthy segments.

The overall lower α seemed therefore mainly explained by

the tendency to underestimate strain in ischemic regions. This

trend was instead less apparent for L- and R-strain. The plots

also show that C-strain errors of RFBM were mainly localized

in few segments, while L- and R-strain errors were instead

more uniformly distributed.

The bull’s eye plots in Fig. 9 allow to gain further insights

on the algorithms’ performance. In particular, they correspond

to C-strain estimates on the normal and LCX sequences.

Ischemic segments, as available from the ground truth, are

denoted by the bold black contours. To reduce boundary

effects, strain was measured at the mid-myocardial layer. All

algorithms returned strain maps qualitatively similar to the

ground truth and ischemic segments were identified by lower

(absolute) strain values. The plots confirm the tendency of BM

and, to a lesser extent, AAOF to return low C-strain estimates.

The bull’s eyes also show that regularized solutions tended to

smear the interface between healthy and ischemic regions out.

Differently, block-matching algorithms returned strain maps

that were overall more noisy but also more sensitive to rapid

strain variations. This is particularly evident for RFBM.

To evaluate more quantitatively the capability to discrimi-

nate ischemic from normal segments, we measured, for each

algorithm, the area (AUC) under the ROC curve. The obtained

results are reported in Table III, while the ROC curves are

plotted in Fig. 8. The AUC values measured on the ground-

truth were AUC = 0.98 for R-strain, AUC = 0.95 for L-strain

and AUC = 0.99 for C-strain. In Fig. 8, the ground-truth ROC

curve is represented by the gray shaded region. All algorithms

achieved a good separation (AUC > 0.9) when using C-strain,

with S-Demons reaching the ground truth value. Interestingly,

although less accurate than for the other components, R-strain

estimates allowed a good discrimination for all algorithms.

Ground truth values of L-strain were intrinsically the less dis-

criminative and this explains the lower area values which were

obtained in average. Yet, all algorithms achieved AUC∼0.9,

except for RFBM where L-strain was deteriorated due to the

low SNR of the tracking results.
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TABLE IV
RELATIVE ERROR (IN %) BETWEEN ESTIMATED AND REFERENCE STRAIN

CURVES (MEAN ± STANDARD DEVIATION OVER THE DYSSYNCHRONOUS

DATASET).

C-strain L-strain R-strain

AFFD 0.16 ± 0.44 1.20 ± 3.58 0.48 ± 0.93

S-Demons 0.12 ± 0.15 1.10 ± 4.42 1.37 ± 2.46

AAOF 0.18 ± 0.76 1.26 ± 5.60 2.04 ± 1.96

BM 0.62 ± 1.94 9.27 ± 46.08 0.73 ± 1.16

RFBM 0.45 ± 0.38 15.00 ± 89.40 2.54 ± 4.01

2) Detection of Dyssynchrony: Table IV reports the relative

errors between estimated and ground-truth strain curves, as

defined in Sect. II-C, where the best performance is denoted

by the bold font. S-Demons returned the most accurate L- and

C-strain estimates while, as in the ischemic dataset, it tended

to underestimate R-strain. AFFD estimates were instead more

constant with respect to the strain direction. AAOF tended

to overestimate R-strain. Fig. 10 compares longitudinal strain

profiles measured from the septum and lateral wall. The higher

error drift for BM and RFBM is partly explained by the fact

that neither technique compensated for error accumulation.

The time-to-peak values computed from the estimated strain

profiles are represented by the markers in Fig. 10. Fig. 10

shows that, for all algorithms, the computed timing differences

were accurate enough to detect a dyssynchronous contraction.

C. Computation Time

Computation times cannot be compared directly because

of i) the different implementations/hardware employed ii)

conceptual differences between algorithms computing the

displacement voxelwise on the full image domain (AFFD,

RFBM) versus algorithms localizing the computation to a

sparse set of points only (AAOF, S-Demons, BM) and iii)

differences in the kind of data processed (i.e. RF tracking is

intrinsically computationally more demanding given the bigger

data size). Moreover, for the purpose of this comparison, al-

gorithms were optimized for accuracy and not execution time.

Nonetheless, computational complexity remains an important

constraint towards clinical translation and is therefore reported

here for indicative purposes.

AFFD was implemented in C++ and required ∼10

min/frame on a Linux cluster (1.8GHz CPU, 256GB RAM).

The AAOF algorithm was implemented in MATLAB and took

3.8 s/frame on a 4-core 3.60 GHz processor. The S-Demons

algorithm required 0.08 s/frame on an Intel Core i7-4800MQ

(a) normal

(b) LCX

Fig. 9. Bull’s eye plots of end-systolic circumferential strain for the normal (a)
and LCX (b) sequence. The ground truth is at the top left. Ischemic segments
are identified by the bold black contours. The text in white reports the average
strain in %, rounded to the closest integer value, measured in the segment.

CPU @ 2.70GHz with 16GB RAM. The RFBM algorithm

required 50 min/frame on a stand-alone Intel(R) Core i7 with

3.6GHz CPU and 32GB RAM. BM was coded in MATLAB

and took 129 s/frame on a Intel i7, 6GB RAM notebook.

For computational efficiency, a C implementation of the NCX

function was wrapped in the MATLAB code.

Assuming a reference temporal resolution of 30 frames/s

for 3D US, S-Demons and AAOF were therefore the best

candidates for online processing. Moreover, although this was

not the case for the considered implementation, we note that

block-matching can be easily optimized for fast execution on

parallel architectures such as GPU’s. AFFD is instead based

on iterative optimization solvers and is therefore typically

less parallelizable. Improving computational efficiency of the

AFFD technique is topic of active research within the devel-

oping team [39].

V. DISCUSSION

We contrasted five non-commercial solutions for 3D defor-

mation imaging in cardiac ultrasound by using a simulation
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pipeline we have recently developed [23].

Techniques based on elastic registration (AFFD) and optical

flow (AAOF and S-Demons) had similar tracking accuracy.

In particular, AAOF returned the smallest mean error while

error dispersion was slightly larger as compared to AFFD

and S-Demons. L-strain estimates were accurate for all three

solutions with correlation coefficients close to 0.9 and non-

significant biases. This is noteworthy given the relevance of

L-strain in clinical diagnostics [6]. AFFD and S-Demons

returned accurate C-strain estimates while AAOF had the

slight tendency to underestimate circumferential deformations.

Yet, C-strain error differences where found not to be statis-

tically significant. AFFD was the only solution to preserve

high accuracy for R-strain while performance dropped for

AAOF and S-Demons. This is particularly relevant given that

achieving accurate estimates of radial deformation appears

to be an open challenge of the 3D STE technology [21],

[40]. The higher accuracy of AFFD can be related to the

presence of a volume conservation penalty, which constrains

R-strain estimates to the, typically more robust, L- and C-strain

estimates. R-strain errors for AAOF could be due to the fact

that the three trans-mural surfaces were tracked independently.

Hence, the technique could benefit from a spatial constraint in

the radial direction.

Techniques based on block-matching (BM and RFBM) were

in general less accurate as due to the more noisy displacement

(hence, strain) estimates. Overall, BM was more accurate than

RFBM. In particular, its accuracy for L- and C-strain was not

statistically different from the one of non block-matching so-

lutions. RFBM suffered the most from the presence of outliers,

as due to the large inter-frame displacements in RF space and

to the boundary effects at endo- and epicardium. In this regard,

we note that RF-based tracking is typically coupled with

high frame rate imaging where displacements are intrinsically

smaller [41]. Hereto, an initialization based on B-mode images

could help cope with large displacements [11]. Moreover, the

high sensitivity of RF tracking can be preserved even for 3-D

tracking at low frame rates when RFBM results are integrated

with shape-based methods to constrain displacement values,

especially near boundaries where RFBM methods exhibit high

variance but shape-based methods perform well [42].

Despite the different levels of accuracy, the measured AUC

values showed that all algorithms could detect ischemia with

a good accuracy, especially when using C-strain (AUC >
0.9). This result is also partly explained by the large strain

differences between healthy and ischemic segments. This point

is addressed further in the following. Strain accuracy on the

dilated dataset reflected qualitatively what observed on the

ischemic one. Nonetheless, time-to-peak measurements were

appropriate to detect dyssynchrony for all five algorithms.

Along with the AUC value, this result points to the fact that

absolute strain accuracy and the ability to derive clinically

relevant features from the strain estimates are problems which

deserve separate attention.

VI. LIMITATIONS OF THE STUDY

A. Synthetic ultrasound data

As discussed in [23], the synthetic sequences exhibit a

sharp transition in the speckle properties, i.e. speckle motion

is coherent in the myocardium, while it is fully random in

the surrounding regions. This could make boundary effects

more important as compared to real recordings, in particular

for the un-regularized solutions. To account for this, all seed

points considered in the evaluation were placed well inside

the myocardium, i.e. far from the interface between the two

regions (cf. Fig. 2).

Second, stationary ultrasound artifacts such as dropout and

reverberations are not included in the evaluation dataset.

Robustness to these effects is an important design criterion for

effective STE solutions. Including such artifacts and evaluating

their influence on the strain estimates is priority in our ongoing

research.

B. Motion model

Concerning the healthy simulation, peak systolic L-strain

remains low as compared to reported normality ranges [23].

This is a common limitation of existing heart models and

improving this aspect is the topic of ongoing research.

Moreover, in the ischemic dataset, ischemic areas were

large and characterized by a substantial strain reduction. This

prevented from evaluating more systematically the compro-

mise, intrinsic to regularized solutions, between the enforced

smoothness of the displacement field, the spatial resolution of

the strain estimates and the sensitivity to subtle strain changes.

A sensitivity analysis for those methods fell beyond the scope

of this study, nonetheless it remains a necessary further step

towards the clinical translation of these techniques. In this
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perspective, segmental strain values should be complemented

by more detailed error maps. In this sense, the bull’s eye

plots in Fig. 9 showed that regularized solutions tended

to over-smooth the interface of the ischemic region, while

block matching estimates, although more noisy, identified the

interface with better contrast. Enlarging the synthetic dataset

by including more localized and progressive levels of ischemia

is thus part of our ongoing research.

Moreover, post-systolic shortening is an important addi-

tional marker of ischemic dysfunction. To our knowledge,

this effect is not reproduced by existing cardiac models and,

in particular, it is not present in our synthetic dataset. For

what concerns the detection of dyssynchrony, other strain

markers, such as of septal flash, can be used to complement

time-to-peak measurements [43]. Including these effects and

evaluating the accuracy in their detection is therefore the topic

of ongoing investigation.

A further point is that strain estimates are known to be de-

pendent on the temporal resolution of the imaging system [44].

In this study, temporal resolution was equal to 34 frames/s

for all dataset. The value was chosen as a representative

average of what is available clinically. Modifying frame rate

is a straightforward adjustment of the E/M model. Evaluating

the impact of frame rate on tracking and strain accuracy fell

beyond the scope of this paper. Yet, this represents one of our

ongoing topics of research and a preliminary report can be

found in [45].

Overall, the employment of a motion model, by definition,

introduces simplifications and, therefore, a bias in the results.

In particular, numerical stability aspects may favor (temporally

and spatially) smooth deformation fields and, hence, regular-

ized solutions. In this regard, we note that the bio-mechanical

model employed is among the most advanced available: it

is the output of a long-lasting research activity and several

ongoing studies are preparing its clinical translation [46], [47].

Moreover, we also stress that none of the regularized solutions

employed the bio-mechanical model as a constraint to the

computed displacement estimates which, obviously, would

introduce an unacceptable bias.

C. Sample Size

The small sample size, along with the limited diversity

of the motion patterns and image qualities mentioned above,

prevents from generalizing the obtained results as well as

extrapolating them to the clinical practice. Enriching the

synthetic database is therefore the topic of ongoing research.

D. Performance Metrics Used

For all participants, strain was computed in the same way

from the tracked positions of the mesh nodes. Nonetheless,

we note that different algorithms could benefit from different

strain computation strategies: e.g. regularized solutions could

compute strain analytically from the continuous deformation

field, while, for block-matching solutions, robust parametric

(e.g. affine) fitting of the displacement estimates could be used

to improve robustness to outliers. We kept strain computation

uniform in order to rule out additional sources of variability

in the comparison. Moreover, achieving a common set of

definitions is crucial towards the standardization of the 3D

STE technology [5], [6]. In particular, our strain definition

is based on extending to 3D the recent recommendations for

computation of global longitudinal strain with 2D US [5].

We also note that the definition of directional strain em-

ployed is insensitive to shear strain. In this perspective, the

concept of principal strain could be adopted to compute

deformation indices independent on the coordinate system

used [37].

E. Algorithm implementation

This study considered an in-house implementation of block

matching. As such, there is necessarily a disparity with respect

to what is available in commercial packages. Although the

block matching principle is in itself very well established,

there are several possible degrees of freedom, most importantly

in the way the displacement estimates are regularized, which

can affect the final output considerably. Involving commercial

packages is therefore our priority in the near future.

With these limitations in mind, this remains to our knowl-

edge the first study where an heterogeneous set of well

established non-commercial 3D STE techniques is directly

contrasted on a set of realistic echocardiographic recordings. In

silico testing is obviously not sufficient for clinical translation,

nonetheless, it is recognized as a necessary preliminary step in

this direction [48]. Extending the comparison to commercial

solutions for 2D strain by using a 2D extension of the

evaluation pipeline presented in this study [49] is the topic

of ongoing research.

VII. CONCLUSIONS

We contrasted five 3D STE algorithms from leading teams

in the field by using an evaluation pipeline we have recently

developed. To our knowledge, this was the first time a diverse

range of techniques were contrasted directly on a realistic set

of ground-truth data.

Overall, non block matching based solutions returned

closely accurate L- and C-strain estimates. AFFD was instead

the only technique to preserve good accuracy for R-strain

while performance dropped for competing solutions. Block

matching algorithms (BM and RFBM) were in average less

accurate. Yet, L- and C-strain errors for BM were mostly not

statistically different from the ones of the previous three meth-

ods. RFBM suffered instead from the low temporal resolution

(hence the large displacement) of the used dataset. Concerning

computational complexity, S-Demons and AAOF were close

to real-time processing while competing solutions (AFFD and

RFBM in particular) were computationally more demanding.

Moreover, BM could benefit from a substantial speed-up due

to the intrinsic parallelizability.

Whether the reported findings can be extrapolated to the

clinical practice remains to be established.

Our effort is to allow for a more solid and objective

assessment of the state-of-the-art of the 3D STE technology,

thereby promoting a more organized and effective development

of the latter.
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