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Abstract—Cardiac volume/function assessment remains a crit-
ical step in daily cardiology and 3D ultrasound plays an
increasingly important role. Fully automatic left ventricular
segmentation is, however, a challenging task due to the artifacts
and low contrast-to-noise ratio of ultrasound imaging. In the
present work, a fast and fully automatic framework for full
cycle endocardial left ventricle segmentation is proposed. This
approach couples the advantages of the B-spline explicit active
surfaces framework, a purely image information approach, to
those of statistical shape models to give prior information
about the expected shape for an accurate segmentation. The
segmentation is propagated throughout the heart cycle using
a localized anatomical affine optical flow. It is shown that this
approach not only outperforms other state-of-the-art methods
in terms of distance metrics with mean average distances of
1.81 ± 0.59 mm and 1.98 ± 0.66 mm at end-diastole and end-
systole respectively but is computationally efficient (in average
11 seconds per 4D image) and fully automatic.

Index Terms—3D echocardiography, left ventricle segmenta-
tion, B-spline explicit active surfaces, statistical shape model,
localized anatomical affine optical flow.

I. INTRODUCTION

ANALYSIS of cardiac function, and specifically of left
ventricular (LV) function, is an important part of clinical

cardiology for patient management, disease diagnosis, risk
stratification or therapy selection [1], [2], [3]. Among the
different cardiac imaging modalities, 3D ultrasonic imaging
stands out as a low-cost, portable, risk-free and non-invasive
technique with good space and time resolution. However, 3D
ultrasound poses several challenges due to its low contrast-to-
noise ratio, the presence of artifacts and the dependence on
the acquisition conditions [4].

In spite of the challenges presented, numerous approaches
have been proposed for automatic or semi-automatic chamber
assessment, both in the research community and in the form
of commercial solutions as can be appreciated in the review
of Pedrosa et al. [5]. LV endocardial segmentation has been
particularly well studied and a number of approaches have
been proposed as can be appreciated in the review of Leung
and Bosch [4]. This is especially true when compared to other

chambers such as the right ventricle and left atrium which
have received significantly less attention though some methods
have been proposed [6], [7]. Given the different frameworks
proposed for the same problem of LV segmentation, initiatives
such as the CETUS challenge [8] play an extremely important
role in allowing the benchmarking of different frameworks
[9], [10], [11], [12], [13] on the same datasets using the
same evaluation tools. Though the highest ranked solution of
the challenge was a purely image information approach by
Barbosa et al. [9] using the B-spline explicit active surfaces
(BEAS) framework, later approaches using shape and/or ap-
pearance clues proved to be more successful. Such approaches
by Oktay et al. [14] and van Stralen et al. [15] came to prove
the pre-existing idea that 3D ultrasound imaging is inherently
challenging to segment due to its many artifacts and that prior
information is key to an accurate segmentation. Nevertheless,
the gap between state-of-the-art technologies and interobserver
variability is still present and, as such, new approaches joining
the advantages of successful basic segmentation frameworks
such as BEAS with tools that provide prior information about
the LV are of much interest.

In the present work, a framework for fast and fully auto-
matic segmentation and tracking of the LV in 3D echocardio-
graphic images is proposed. A shape-based deformable model
based on the BEAS framework [16] using a statistical shape
model (SSM) as in Queirós et al. [17] is used for segmentation
at end-diastole (ED). This assures that both image information
and shape-based clues are used, thus increasing the robustness
of this approach when compared to BEAS or other methods
based solely on image information. This segmentation is then
propagated to the rest of the cardiac cycle using localized
anatomical affine optical flow (lAAOF) [18]. To further refine
the results from the lAAOF, the shape-based BEAS framework
is applied at end-systole (ES), again allowing for the combi-
nation of both image information and shape-based clues for
the final segmentation result.

The main novelty of the presented study lies on the algo-
rithmic design and validation of the proposed method. Joining
different and independent algorithmic tools, the authors were
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able to build a single efficient framework capable of perform-
ing fast, fully automatic and robust full-cycle segmentation
and validate it in a very reliable dataset that allows direct
comparison to other state-of-the-art methods. Furthermore, the
shape-based regularization introduced in [18] was extended in
this study, from the original formulation based on a 1D SSM
of Queirós et al. which would not be applicable to the LV to
a full 2D oriented SSM.

II. METHODOLOGY

A. B-spline Explicit Active Surfaces

The key concept of the BEAS framework [16] is to regard
the boundary of an object as an explicit function, where one of
the coordinates of the points on the surface, x = {x1, ..., xn},
is given explicitly as a function of the remaining coordinates,
i.e. x1 = ψ(x2, ..., xn). In this framework, ψ is defined as a
linear combination of B-spline basis functions:

x1 = ψ(x2, ..., xn) = ψ(x∗) =
∑

k∈Zn−1

c[k]βd
(
x∗

h
− k

)
, (1)

where x∗ is the point of coordinates {x2, ..., xn} and βd(·) the
uniform (n−1)-dimensional B-spline of degree d. The knots of
the B-splines are located on a rectangular grid defined on the
chosen coordinate system, with a regular spacing given by h.
The coefficients of the B-spline representation are gathered in
c[k].

Given the volumetric nature of the object of interest, the
B-spline representation was created on a spherical coordinate
system thus defining the active geometric functions as r =
ψ(φ, θ). As in previous implementations of BEAS for LV seg-
mentation [19], the angular discretization of the boundary rep-
resentation was set empirically at 24×16 (elevation×azimuth)
and the B-spline scale to 21 for both angular coordinates.

The evolution of the model is defined by the minimization
of an energy criterion E. This energy is expressed by the sum
of the data attachment term Ed and a regularization term Er:

E = Ed + Er. (2)

The data attachment energy function Ed follows a variation
of the localized Yezzi energy adapted for endocardial segmen-
tation [19], thus taking into account the expected intensities
of the blood pool and the endocardium:

Ed =

∫
Ω

δφ(x)

∫
Ω

B(x,y) · (uin − uout) dydx, (3)

where δφ(x) is the Dirac operator applied to the level set
function φ(x) = Γ(x∗) − x1, which is defined over the
image domain Ω and where Γ(x∗) represents the surface being
segmented. uin and uout are the local intensity means around
x, respectively inside and outside the surface. B(x,y) is the
mask function in which these local parameters are estimated,
restricted to the points along N(x), the normal direction of
the surface, at a distance smaller than ρ:

B(x,y) =

{
1, if y = x + kN(x), k ∈ [−ρ, ρ]

0, otherwise
(4)

The neighborhood region limit ρ was set at 16 mm as in
Barbosa et al. [9].

The minimization of the data attachment energy term in (3)
can then be performed through optimization of the B-spline
coefficient c[ki], thus:

∂Ed
∂c[ki]

=

∫
Γ

(
Ī(x∗)−uin

Ain
+
Ī(x∗)−uout

Aout

)
βd
(
x∗

h
−ki

)
dx∗, (5)

where Aj is the area of region j used to estimate the local
mean uj and Ī(x∗) corresponds to the image value at the
position x = {Γ(x∗), x2, ..., xn}.

B. Statistical Shape Model (SSM)

In order to provide accurate shape information to the
proposed shape-based approach, a sufficiently broad and nu-
merous dataset of 3D LV shapes is needed. For that purpose,
289 cardiac magnetic resonance (cMR) datasets from a large
multi-center clinical study, DOPPLER-CIP [20], were used.
This study was aimed at patients whose profile corresponds
to suspected chronic ischemic disease and thus encompasses
patients of a broad clinical spectrum. The cMR datasets were
contoured by experts at ED and ES and the 2D slices were
aligned using an iterative closest point (ICP) algorithm [21]
to correct for breath-hold slice misalignment. A 3D mesh
was then interpolated from the aligned 2D contours at ED
and ES for each patient. A more detailed description of the
strategy used to create the 3D LV meshes is provided in the
supplementary files.

Similar to Queirós et al. [17], the SSM was built in the
BEAS coordinate system; in this case in spherical coordinates.
The SSM shapes will then be represented by their B-spline
representation coefficients c[k]. Because such a representation
assumes that the position and orientation of the coordinate
system is identical for every shape, the position and orientation
of the training shapes have to be aligned, which can be done
according to the centroid and direction of largest variance of
each shape.

Starting from the aligned 3D LV shapes in BEAS space,
the first step to build the SSM is to scale all shapes so
that equivalent points from different shapes can be compared
without the influence of the LV size. Considering cs[k] the
sth shape of all N shapes, this is done by: calculating the
mean of all shapes c̄[k] = 1

N

∑N
s=1 cs[k], scaling each shape

to the current mean c̄[k] and then repeating these steps until
the process converges [22]. The scaling step is done according
to:

cscaled[k] = c[k]

∑
i

w[ki]c̄[ki]c[ki]∑
i

w[ki]c[ki]c[ki]
, (6)

where w[k] is a set of weights chosen to give more significance
to the points that tend to be most stable:

w[ki] =

(
N∑
s=1

V ariance(cs[ki])

)−1

. (7)

Principal Component Analysis (PCA) can then be applied
to extract the shape variability of the LV B-spline coefficients
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(a) (b)

Fig. 1: SSM mean models at ED (a) and ES (b).

[22]. Through singular value decomposition [23], it is then
possible to obtain the eigenvectors pi and the corresponding
eigenvalues λi of the covariance matrix:

S =
1

N

N∑
s

(cs[ki]− c̄[ki]) (cs[ki]− c̄[ki])T . (8)

Since most of the variation can be explained by a small
number of eigenvectors, only a portion of the original set is
kept, corresponding to the number of eigenvectors t whose
sum represents 90% of the total variance of all variables. In
this way, any shape from the dataset can be approximated by:

c[k] ≈ c̄[k] + Pb, (9)

where P is the matrix of the first t eigenvectors and b is a
vector of t weights which for any given shape corresponds to
b = PT (c[k]− c̄[k]).

To be able to model both ED and ES separately, two
different SSMs were created according to the methodology
described above. The mean shapes for each of these models
are shown in Figure 1. Note that since these models are scaled
according to (6) only shape variations can be observed in this
figure. Additional description of each of the SSMs, namely the
shape variations described by each component, are provided
in the supplementary files.

C. SSM-Based Regularization

To then use the SSM with BEAS for the segmentation of
new images, two different regularization energies were defined
so that the segmented shapes are regularized according to those
observed in the training set. These two regularizations, a hard
and a soft SSM-based regularization, were first proposed by
Queirós et al. [17]. In the present study, those regularization
energies were adapted to regularize the B-spline coefficients
c[k] of a 3D shape.

The hard SSM-based regularization restricts the segmented
shape to the shape variability observed in the training set.
At each iteration, the weights b are computed and each
is restricted to ±m

√
λi, where m defines the limits to the

variability from the mean [22]. m is typically set between 2
and 3 since most of the population lies within three standard
deviations and was set at 2.5 in this study. Through (9), a new
regularized shape creg[k] is then obtained [17]. To include
this hard SSM-based term in the BEAS framework, the energy
functional can be defined as:

Ehard =

∫
Γ

1

2
(c[k]− creg[k])2dx∗. (10)

The minimization of this energy according to the B-spline
coefficients gives:

∂Ehard
∂c[k]

=

∫
Γ

(c[k]− creg[k])dx∗. (11)

The soft SSM-based regularization follows the rationale that
it is much more probable to find an average shape than a shape
which is close to the variability limits. In that way, the soft
SSM-based regularization penalizes high values of bi and is
defined as the squared Mahalanobis distance to the training
shapes [22], thus:

Esoft =

t∑
i=1

b2i
λi

=

∫
Γ

(c[k]− c̄[k])
T
S−1(c[k]− c̄[k]) dx∗ (12)

Following the derivation shown in Queirós et al. [17], the
minimization of Esoft gives:

∂Esoft
∂c[k]

=

∫
Γ

2PD−1b dx∗, (13)

where D is the diagonal matrix of t eigenvalues λ.
To incorporate these two energies into BEAS, the regular-

ization term Er is defined as:

Er = αEhard + βEsoft, (14)

where α and β are hyperparameters controlling the relative
weight between the two terms.

D. Framework Description

A conceptual description of the proposed framework is
shown in Figure 2.

1) Automatic Initialization: The automatic initialization
algorithm used was first introduced in Barbosa et al. [19] and
was inspired by the work of van Stralen et al. [24]. It relies
on the sequential detection of the LV long axis (LAx) and the
base to fit a spheroid to the endocardial boundaries. A detailed
description of this method can be found in the original paper
by Barbosa et al. [19]. This initialization will provide the initial
estimation of the LAx and center for BEAS and the SSM.

2) Automatic SAx Orientation: The short axis (SAx) orien-
tation method used was proposed in Pedrosa et al. [25]. This
method aims at the detection of the right ventricular inferior
insertion point and relies on image intensity information and
analysis of the structures surrounding the LV. A detailed
description of this method can be found in Pedrosa et al. [25].

The SAx orientation is crucial to correctly position the
SSM, given that different sides of the LV have different shape
characteristics. However, this orientation algorithm depends
on a previous estimate of the LV surface and the result from
the initialization is too rough as it relies on the fitting of
an ellipsoid. As such, the automatic SAx orientation is only
applied after an initial stage of segmentation with BEAS.

3) Segmentation at ED: The segmentation at ED is com-
posed of two stages. Initially, BEAS is used without the
SSM, so that the energy criterion E is equal to Ed, the data
attachment term. This provides an initial segmentation of the
LV, which is used for the SAx orientation estimation but also
to refine the initial estimates of LAx orientation and center
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Fig. 2: Conceptual description of the proposed segmentation and tracking framework. First, automatic initialization is applied
to the ED frame (A). The first stage of segmentation is then performed using BEAS (B). The result from this segmentation is
used to detect the SAx orientation (C) and this information is then used to perform the second stage of segmentation using
BEAS and the ED SSM. The final ED segmentation is then propagated frame to frame using the lAAOF (E) and a final
refinement to the ES frame is performed using BEAS and the ES SSM (F).

according to the centroid and direction of largest variance of
the segmented mesh. With the center position and both the
LAx and SAx orientation well defined, it is then possible to
use BEAS with the SSM regularization according to (14) to
further refine the segmentation.

4) Localized Anatomical Affine Optical Flow (lAAOF):
lAAOF is then used to propagate the result from ED to
the remaining frames. The lAAOF method was proposed in
Queirós et al. [18] and relies on an affine optical flow approach
which independently estimates the motion at each point in the
surface based on an anatomically constrained neighborhood. A
detailed description of this method can be found in the original
paper by Queirós et al. [18]. The parameters used to tune the
lAAOF were replicated from [18].

5) Segmentation at ES: Segmentation at ES is used to
further refine the result from the lAAOF, thus bringing together
intensity and shape-based clues. In order to balance the con-
tribution between tracking and segmentation clues, an energy
term was added to penalize the deviation between the result
of the lAAOF and the segmentation. Such an approach was
first proposed by Barbosa et al. in [26] and can be formulated
as:

EA =

∫
Γ

(
ψ(x∗)− ψ̃(x∗)

)2

dx∗, (15)

where ψ̃(x∗) is the surface obtained from the tracking using
lAAOF. The minimization of this energy with regard to the
B-spline coefficients can be performed according to:

∂EA
∂c[k]

=

∫
Γ

2
(
ψ(x∗)− ψ̃(x∗)

)
βd
(
x∗

h
− ki

)
dx∗. (16)

The regularization energy criterion is then expressed as:

Er = αEhard + βEsoft + γEA, (17)

where γ is a hyperparameter used to define the balance
between tracking and intensity/shape-based information.

III. EXPERIMENTS

A. Data Description

The proposed framework was tested on the CETUS chal-
lenge data [8]. This challenge comprises 45 sequences of 3D
ultrasound volumes of one cardiac cycle from 45 patients
acquired in three different hospitals and ultrasound machines
from three different vendors. On each dataset, the LV endo-
cardium was contoured by three experts at ED and ES until
consensus was achieved between the three. Fifteen datasets are
available as training with the corresponding reference meshes
at ED and ES, while the remaining 30 datasets correspond to
the testing set and only the 3D echocardiographic images are
available.

B. Segmentation Performance

First, the 15 training datasets were used to tune the hyper-
parameters β and γ needed respectively for the SSM regu-
larization and for the balance between the segmentation and
tracking information. This tuning was performed empirically
by visual inspection of the results. The hyperparameters α,
β and γ were set respectively to 1, 0.0005 and 0.25. Note
that the value of β is directly related to the absolute value
of eigenvalues λ as defined in (12), thus justifying its relative
small value.
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Using these settings, the framework was then tested on the
30 testing datasets. The evaluation of the results was conducted
using the online MIDAS platform of the CETUS challenge,
thus assuring that the proposed method can be directly com-
pared to other state-of-the-art methods. The accuracy of the
segmentation was evaluated at ED and ES through different
distance metrics: Mean Absolute Distance (MAD) [27], which
measures the average distance at any point between the seg-
mented and reference meshes; Hausdorff Distance (HD) [28],
which measures the maximum distance between the segmented
and reference meshes; and Dice [29], which is a measure
of the overlap between the segmented and reference meshes.
Because the meshes obtained from BEAS are sampled in the
spherical coordinate system, causing the point density to be
different along the surface, which could bias the error metrics
to specific regions, the segmented meshes were remeshed
to assure greater smoothness and more uniform mesh point
density. Clinical indices were also studied, namely the Pearson
correlation coefficient and limits of agreement of ED volume
(EDV), ES volume (ESV) and ejection fraction (EF).

Mean computational times of the proposed framework were
also obtained using MATLAB code running on an Intel R©
Xeon R© E5-1650v2@3.5GHz with 32GB RAM.

C. Position/Orientation Performance and Sensitivity

Because the characteristics of the SSM are closely related
to the position and orientation (LAx and SAx) of the BEAS
coordinate system, it is important to determine the error in the
estimation of these parameters. For that purpose, the position,
LAx orientation and SAx orientation of the CETUS training
set reference meshes were compared to those obtained with
the proposed method.

Furthermore, the sensitivity of the segmentation results to
variations of these parameters was studied. This was per-
formed by introducing variations from the reference position
or orientation on each of these parameters and evaluating
the segmentation performance. In this way, to evaluate, for
example, the sensitivity to the position, BEAS was initialized
at a random position at a distance D from the reference mesh
position and with the reference SAx and LAx orientation. The
segmentation result was then evaluated on MAD, HD and
Dice. To prevent sporadic results from this random positioning,
each image was started from three different random positions
each time and the results averaged.

D. Parameter Sensitivity Assessment

To study the robustness and stability of the proposed
framework with respect to the multiple parameters involved,
a parameter sensitivity assessment was conducted. As such,
the balance of the different energies, namely α, β and γ,
was studied. Each parameter was varied from their empirically
determined preset by 50% of its value and its impact studied
in terms of MAD, HD and Dice. To further analyse the contri-
bution of each component of the framework, the segmentation
performance was analysed when each of these energy parame-
ters was set to zero. To highlight the importance of the lAAOF,
the segmentation performance of the framework without the

Fig. 3: Bullseye plots of average MAD and HD at every region for
ED and ES for the training datasets. Measures in mm.

lAAOF was also studied by using the ED segmentation result
for initialization of the ES segmentation.

E. Statistical Analysis

Paired t-tests were used to analyse the significance of
differences between the proposed method and other methods
in literature and to analyse the parameter sensitivity of the
proposed method. Results are denoted as mean ± standard
deviation.

IV. RESULTS

.

A. Segmentation Performance

Tables I and II show the segmentation and tracking results
for the proposed approach, as well as the performance obtained
with other state-of-the-art methods and inter-observer vari-
ability from manual contouring. Those obtained by Queirós
et al. [18] and Barbosa et al. [9] also use BEAS as the
segmentation tool but neither use shape-based information.
Queirós et al. used the same lAAOF tracking whereas Barbosa
et al. used a global anatomically constrained optical flow
approach followed by block matching refinement instead of
the lAAOF. The other approaches presented were chosen as
they are, to the author’s knowledge, the ones presenting the
best segmentation results on the CETUS dataset.

A regionwise analysis of error was also conducted by
dividing the LV into the 17-segment model [31], using the
LAx as reference and dividing the LV into basal (35%), mid-
cavity (35%) and apical (30%) regions. The average MAD
and HD at ED and ES for the training datasets is shown in
Figure 3. It can be observed that the greatest errors occur on
the apical region and on the anterior side of the LV. Figure
4 shows examples of the fully automatic segmentation results
compared to the consensus manual contours by experts.
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TABLE I: Performance on the CETUS testing datasets. MAD, HD and Dice of the proposed framework, other state-of-the-art
approaches and inter-observer variability. All values in mean ± standard deviation (NR stands for not reported). ?, † and ‡
indicate respectively that the difference to the proposed framework was statistically significant at a p < 0.05, p < 0.01 and
p<0.001 level. Note that for methods [10], [15], [14], [30] a comparison is not possible as the data is not publicly available.

Method MAD (mm) HD (mm) Dice
ED ES ED ES ED ES

Proposed 1.81± 0.59 1.98± 0.66 6.31± 1.69 6.95± 2.14 0.909± 0.034 0.875± 0.046
Queirós et al. [18] 2.26± 0.72‡ 2.45± 0.85‡ 8.10± 2.62‡ 8.19± 3.03? 0.894± 0.040‡ 0.861± 0.054?

Barbosa et al. [9] 2.26± 0.72‡ 2.43± 0.89‡ 8.10± 2.62‡ 8.29± 3.01? 0.894± 0.040‡ 0.856± 0.056‡

Bernier et al. [10] 2.37±NR 2.64±NR 9.41±NR 9.34±NR 0.882±NR 0.837±NR
van Stralen et al. [15] 1.91±NR 2.48±NR 6.66±NR 7.38±NR 0.910±NR 0.862±NR
Oktay et al. [14] 1.94± 0.55 2.23± 0.60 7.00± 1.99 7.53± 2.23 0.904± 0.02 0.874± 0.04

Inter-observer Variability [30] 1.01± 0.30 1.01± 0.38 3.37± 0.87 3.30± 0.94 0.949± 0.15 0.938± 0.21

TABLE II: Performance on the CETUS testing datasets. Pearson correlation coefficient (R) and limits of agreement (LOA)
(mean ± standard deviation) in comparison to the reference cardiac indices (EDV, ESV and EF) of the proposed framework,
other state-of-the-art approaches and inter-observer variability. Volumes obtained with the proposed method were not statistically
significantly different at a p<0.05 level when compared to [18], [9]. Note that for methods [10], [15], [14], [30] a comparison
is not possible as the data is not publicly available.

Method EDV (ml) ESV (ml) EF (%)
R LOA R LOA R LOA

Proposed 0.953 −3.29± 19.03 0.960 −4.84± 16.09 0.911 1.7± 5.18
Queirós et al. [18] 0.965 −4.99± 17.66 0.971 −5.83± 13.14 0.927 2.30± 4.20
Barbosa et al. [9] 0.965 −4.99± 17.66 0.967 −6.78± 13.86 0.889 2.88± 5.24

Bernier et al. [10] 0.979 2.74± 13.87 0.968 2.18± 13.73 0.811 0.05± 7.84
van Stralen et al. [15] 0.958 −4.86± 18.08 0.965 −15.39± 15.08 0.751 8.40± 7.72
Oktay et al. [14] 0.961 −4.14± 17.35 0.973 −3.47± 13.62 0.892 0.48± 5.50

Inter-observer Variability [30] 0.981 −0.64± 9.27 0.987 −0.50± 7.35 0.959 0.13± 3.10

Regarding computational time, the proposed framework
took on average 0.9 s for the initialization, 0.6 s for the SAx
orientation and a combined time of 1.1 s for the two stages of
ED segmentation. The tracking took on average 0.8 s/frame
and the final ES segmentation 0.4 s. The total time for a fully
automatic ED/ES segmentation was on average 11 s. All data
was processed in a non-optimized MATLAB implementation.

B. Position/Orientation Performance and Sensitivity

At initialization, the position and LAx orientation errors
were respectively 3.7±2.1 mm and 5.0±2.8◦. After refinement
at the first stage of ED BEAS segmentation, the position and
LAx orientation errors were reduced to respectively 2.4± 1.0
mm and 4.4±2.4◦. Automatic SAx orientation failed in one of
the cases due to low image quality giving an error of 120.2◦

compared to manual annotation of the RV insertion point. On
the remaining datasets the SAx orientation error was 6.9±4.4◦.

Figure 5 shows the influence on the segmentation perfor-
mance of the position and orientation of the automatically
defined BEAS coordinate system with respect to the position
and orientation of the reference meshes. It can be observed
that the position and LAx orientation have the most influence
on the segmentation results, where a distance above 2mm from
the reference mesh centroid or an LAx angle deviation greater
than 8◦ give an error larger than what was obtained with the
fully automatic method used in this study.

C. Parameter Sensitivity Assessment

Figure 6 shows the influence of the parameters α, β and
γ on the segmentation results at ED and ES. For the interval
considered from 50% to 150% of the preset value, none of the
observed changes were statistically significant at a p < 0.01
level and only the MAD at ES showed several statistically
significant changes at a p<0.05 level when changing β. When
parameters β and γ are set to 0, the difference is statistically
significant at a p < 0.001 level whereas for α the difference
is not statistically significant. When removing the lAAOF, the
ES segmentation presents an MAD, HD and Dice of 2.91 ±
1.08mm, 9.81 ± 2.92mm and 0.861 ± 0.054 respectively (all
statistically significant at a p<0.001 level).

V. DISCUSSION

A fully automatic LV segmentation and tracking framework
is proposed, combining the strengths of image information
from BEAS and shape-based clues from an SSM for segmen-
tation and lAAOF to perform tracking. The way in which
the SSM is represented on the BEAS space, through the
corresponding B-spline representation coefficients c[k], brings
BEAS and the SSM closer together, avoiding steps such as
conversion between the spherical and Cartesian coordinate sys-
tems and scaling/translation operations. It also avoids one of
the fundamental problems with SSM, the point correspondence
between different training shapes and with testing shapes. This
approach assumes however that the position and orientation



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

(a) (b)

(c) (d)
Fig. 4: Best (a,c) and worst (b,d) automatic segmentation results (red) compared to manual contours by experts (green) at ED (top row)
and ES (bottom row) from the CETUS training set. The three orthogonal planes shown for each 3D image were chosen according to the
automatically defined LAx/SAx orientation.

Fig. 5: Influence of the distance and angle error from the reference position and orientation on the distance metrics (MAD, HD and Dice)
at ED. Horizontal dotted line indicates the performance obtained with the proposed automatic framework on the CETUS training set.

of the coordinate system is identical for every shape. For
the training shapes, it is trivial to match the position and
orientation of every shape, making the previous assumption
valid. When trying to fit the SSM to a new image, the center
and both the LAx and SAx orientations have to be guessed
from image features.

A. Segmentation Performance

From Table I it is clear that the proposed automatic method
shows excellent segmentation and tracking performance and
outperforms any other of the state-of-the-art approaches ap-
plied to the same database. Compared to other approaches
using BEAS [18], [9], the impact of the SSM regularization
on ED segmentation is statistically significant. With a better

starting point at ED for the lAAOF, together with the SSM
regularization at ES, the ES segmentation results are also im-
proved, thereby outperforming other state-of-the-art methods.
Given the different strategies used in each framework, it is
difficult to say with certainty what is the reason behind the
differences in performance but the following possible reasons
can be considered: regarding the semi-automatic method of
Bernier et al. [10] using graph cuts, this method lacks a source
of prior information needed to give an accurate segmentation
when image information is low or incongruous. For both van
Stralen et al. [24] and Oktay et al. [14] that information is
provided, respectively, by an active appearance model and
a multi-atlas approach. However, both these approaches use
ultrasound data as a prior which can be more variable than
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Fig. 6: Influence of the variation of each of the considered parameters α, β and γ on the distance metrics (MAD, HD and Dice) at ED
(blue) and ES (red dotted). Vertical dotted line indicates the preset parameter value. ?, † and ‡ indicate respectively that the difference to
the result with the preset values was statistically significant at a p<0.05, p<0.01 and p<0.001 level.

cMR, especially for reduced datasets. Moreover, both these
methods intend to model the appearance of the image, which
can be particularly difficult due to the differences between
vendors, bad acquisition window or the presence of artifacts.
Regarding the clinical indices on Table II, the proposed
method has a performance similar to the remaining state-of-
the-art methods.

Regarding the regionwise analysis shown in Figure 3, there
could be two possible explanations for the regions with larger
error: either there are inherent image characteristics that make
segmentation more difficult or there are framework specific
characteristics that cause these errors, such as a systematic
error on the LAx detection. However, regionwise error analysis
in different frameworks and on manual contouring by experts
replicate this trend of larger errors at the apical and anterolat-
eral regions [8], which points to inherent image characteristics
that make the segmentation more difficult. Indeed, at the apex,
image information is low due to noise in the near field, whereas
for the anterolateral region, dropout in this region is common
due to its position and proximity to lung tissue.

As for the computational speed, the proposed framework
continues to be computationally efficient, especially if com-
pared to other state-of-the-art approaches. Oktay et al. [14]
reported an average time of 16min per image and Van Stralen
et al. [24] reported an average segmentation time of 15s in
a C++ environment [32] to which the tracking time must be
added (not reported). Furthermore, one can consider ways of
decreasing the computational burden of the proposed method
by changing to a more efficient implementation in C++, where

it has been shown that 3D endocardial segmentation can be
done using BEAS in approximately 12.5 ms [16].

B. Position/Orientation Performance and Sensitivity

As predicted, moving the position and orientation away
from the reference has a strong impact on the performance.
The fact that SAx orientation has a smaller effect than center
position and LAx orientation can be explained by the fact
that, though the LV is far from being symmetric, the shape
differences between the different sides are much less pro-
nounced than the shape difference between the apex and base
of the LV or those resulting from representing the LV shape
from a wrong position. As such, a compromise between the
image information and the SSM can more easily be found
for an incorrect SAx orientation than from an incorrect center
position or LAx orientation.

Figure 5 also shows that one of the bottlenecks of this
method is the positioning and orientation of the LV. It can be
seen that when the reference position and orientation is used,
the error decreases considerably (MAD: 1.38 mm; HD: 4.86
mm; Dice: 0.959). As such, it would be important, in future
work, to focus on better automatic initialization methods that,
ideally, would provide the true center of the LV and the LAx
and SAx orientation. This would imply however to move away
from the current initialization, which roughly delineates the LV
using the Hough transform, to more complex methodologies,
possibly involving machine learning or other more abstract
approaches.
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C. Parameter Sensitivity Assessment

Overall, the parameter sensitivity assessment showed that
the performance of the proposed method is not significantly
impaired within a wide range of the parameter settings. The
parameters related to the SSM regularization seem to have a
higher impact as they control the balance between the image
information and the SSM. The parameter related to the balance
between segmentation and tracking has, as expected, no impact
on ED segmentation since γ is not used at ED, and little
impact on ES segmentation performance. When each of the
parameters is set to zero, thus turning off the corresponding
energy contribution, the performance contribution of each
energy becomes clear and both β and γ are crucial for
the results obtained. The contribution of α is, however, less
pronounced. This is due to the fact that the soft energy term
already penalizes shapes away from the mean shape, making
it less likely for the segmented shape to deviate to the hard
set limits at m = 2.5. Nevertheless, it can be argued that
the hard energy term is important to effectively limit the
maximum deviation from the mean shape (if α = 1) and in
more challenging images where image artifacts could make it
easier for the segmented shape to deviate from the mean.

Regarding the lAAOF, it is shown that it also plays an
important role in following the endocardial surface from ED to
ES to initialize the segmentation at ES, as the results without
the lAAOF are significantly worse than the proposed method.
Nevertheless, in spite of the fact that in this study the lAAOF
was chosen to track the endocardial surface, other tracking
methods could equally be applied in a straightforward manner
and, if proven to be more effective in tracking the LV, could
potentially improve the ES segmentation results further.

Though in this study only the parameters related to the
balance of the different energies were studied, the performance
of BEAS and the lAAOF also depend on different parameters.
Nonetheless, these have been studied before [19], [33], [18]
and the optimal settings found were used in this study.

D. Limitations and Future Work

In spite of the promising results shown in this paper, there
are limitations which must be addressed in the future. First,
as mentioned in Section V-B, the positioning and orientation
of the LV is a limiting factor of the accuracy of the proposed
framework and should be addressed in the future to provide
better segmentation results. Secondly, the parameter tuning
performed in this study was quite limited. While in this
study only parameters β and γ were subject to parameter
tuning, there are other parameters that could be further tuned
and which were not directly addressed. Even though some
of these have been tuned before on the same dataset such
as the BEAS [9] and lAAOF [18] parameters, a tuning of
all parameters together could prove beneficial, especially for
the framework elements identified as crucial such as the
initialization. Thirdly, in this study only the endocardial border
was considered. Nevertheless, the epicardial border is also of
importance to study clinical indices, such as LV mass, and
is an essential step for automatic cardiac strain measurements
through the definition of a region-of-interest. As such, it would

be interesting to build an SSM that would describe both the
endo- and epicardial borders so that the current framework
could be applied for full myocardial segmentation. However,
the validation of such a framework cannot be done with
the CETUS challenge dataset, as no epicardial contours are
provided and, to the author’s knowledge, there are no other
freely available and reliable datasets of 3D ultrasound data
with both endo- and epicardial manual contours.

The dataset used for the SSM must also be considered.
First, it could be argued that the cMR shapes used are not
ideal as they are derived from 2D slices rather than from
true 3D data. However, that would imply that replacing the
current SSM by one built from true 3D data would only further
improve the results as more accurate data would be embedded
into the SSM. Secondly, the very population targeted by the
study from where the shapes were obtained is not ideal. Given
that DOPPLER-CIP targeted patients suspected of chronic
ischemic disease, one cannot consider that the dataset used
represents a normal population. However, as before, that would
imply that replacing this population with a more representative
one would only improve results as the SSM is more well suited
for the purpose for which it is intended.

VI. CONCLUSION

In this work, a novel fast and fully automatic LV segmenta-
tion and tracking framework based on shape-based BEAS and
lAAOF is proposed. The proposed approach outperforms all
other state-of-the-art methods for LV segmentation evaluated
on the MICCAI CETUS challenge. Moreover, it outperforms
other methods in terms of computational speed, being able to
perform ED/ES segmentation and tracking in a few seconds
in a non-optimized implementation. The main strengths of the
proposed framework result from the combination of image
and shape information through the balance of the image
information from BEAS and the SSM regularization and the
combination of tracking and segmentation clues for an efficient
ES segmentation.
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