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Abstract—Real-time 3D Echocardiography (RT3DE) has been
proven to be an accurate tool for left ventricular (LV) volume
assessment. However, identification of the LV endocardium re-
mains a challenging task, mainly because of the low tissue/blood
contrast of the images combined with typical artifacts. Several
semi and fully automatic algorithms have been proposed for
segmenting the endocardium in RT3DE data in order to extract
relevant clinical indices, but a systematic and fair comparison
between such methods has so far been impossible due to the lack
of a publicly available common database. Here, we introduce
a standardized evaluation framework to reliably evaluate and
compare the performance of the algorithms developed to segment
the LV border in RT3DE. A database consisting of 45 multiven-
dor cardiac ultrasound recordings acquired at different centers
with corresponding reference measurements from 3 experts are
made available. The algorithms from nine research groups were
quantitatively evaluated and compared using the proposed online
platform. The results showed that the best methods produce
promising results with respect to the experts’ measurements
for the extraction of clinical indices, and that they offer good
segmentation precision in terms of mean distance error in the
context of the experts’ variability range. The platform remains
open for new submissions.
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I. INTRODUCTION

LEFT ventricular geometry and function are important fac-
tors in terms of patient management, outcome, and long-

term survival [1], [2]. Thus, the assessment of left ventricular
volumes throughout the cardiac cycle and its associated indices
derived from volume traces is a routine task in diagnostic
cardiology. To this end, several imaging modalities such as
echocardiography, cardiovascular magnetic resonance (CMR),
cardiac computed tomography (CT) or positron emission com-
puted tomography (PET) can be used

While magnetic resonance imaging remains the gold stan-
dard for the assessment of cardiac morphology and function,
several studies have shown that real-time 3D echocardiography
can provide comparable results but with the distinct potential
of performing the acquisition in real-time at high temporal
resolution and bed-side, thereby giving it the potential to be
the preferred modality in the near future [3], [4]. Indeed,
over the last decade the assessment of cardiac morphology
and function by ultrasound imaging has made a significant
step forward by the introduction of RT3DE, as it allows
a truly 3D visualization of the heart avoiding some of the
problems intrinsically associated with 2D imaging such as
foreshortening, out-of-plane motion and the need of geometric
assumptions for volume estimation [3]. Unfortunately, due to
the intrinsic physical limits of acoustical wave propagation,
RT3DE currently suffers from a low spatial and temporal
resolution compared to conventional 2D echocardiography and
the potential presence of motion artifacts due to stitching
strategies [5]. As a consequence, state-of-the-art commercial
solutions towards LV segmentation still require some degree
of user interaction both at the initialization step and after
segmentation/tracking when corrections are required [4]. Thus,
the development of fully automatic and fast techniques for LV
volumetric assessment is still an open issue and therefore an
active field of research [6].

Although different solutions currently exist to segment the
LV, the lack of a common database of recordings makes
it difficult to evaluate and contrast their performance. The
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novelties introduced in this paper are the following:
• provide a common set of RT3DE datasets together with

reference measurements based on an established protocol
to manually extract the endocardial surface in RT3DE;

• introduce an online open framework to consistently evalu-
ate the performance of semi and fully automatic methods
for the delineation of the LV border from RT3DE at end-
diastolic and end-systolic phases;

• contrast state-of-the art segmentation algorithms in the
field of ultrasound cardiac imaging using the aforemen-
tioned framework;

• identify and locate for each method the segmented re-
gions with the highest errors in order to provide useful
directions for further investigations.

The paper is organized as follows. In Section II, we discuss
previous work on LV detection in RT3DE imaging. The
evaluation framework is presented in Section III. Section IV
provides a brief description of the nine evaluated methods.
The results of the involved methods as produced by the online
system are presented in Section V and discussed in Section
VI. Finally, concluding remarks are given in Section VII.

II. PREVIOUS WORK

Since LV segmentation in 3D echocardiography is a subject
of research that has been investigated for more than ten
years, a wide range of image processing methods are already
available in this field [6]. Techniques successfully applied
for LV segmentation in RT3DE can be categorized based on
their underlying methodology: deformable models, surface fit-
ting approaches, graph-cuts, multi-atlas and machine learning
techniques. Deformable models constitute the most widely
used technique to segment 3D ultrasound data because of
its attractiveness in terms of mathematical formulation of the
segmentation problem, its flexibility in terms of shape repre-
sentation and its computational time efficiency (depending on
the chosen representation) [8]–[11]. Surface fitting approaches
are based on shape interpolation from a set of points that
were previously identified as belonging to the endocardial
surface. The most popular techniques that have been applied
in RT3DE are active shape models (ASM) [12] and Doo-
Sabin subdivision surfaces (DSS) [13], [14]. The main feature
of ASM corresponds to the embedded representation of the
shape based on a space built from a set of references. These
methods are known to require a large number of training
samples to be meaningful. The main asset of DSS is its
capacity to represent smooth surfaces by a small number
of parameters. Graph-cuts and multi-atlas segmentation are
methods that have been recently applied in RT3DE [15],
[16]. In graph-cut techniques, the underlying graph is usually
expressed in a coordinate system adapted to the anatomy of
the endocardial surface. The attractiveness of such approach

A preliminary version of this work appeared in [7]. While in [7] only the
organization of the challenge is reported, the present paper evaluates in details
the performance of nine state-of-the art segmentation algorithms on a large
dataset of 45 patients with 3D reference meshes obtained by cardiologist
consensus with known inter-observer variabilities. It is to the best of our
knowledge the first time that algorithms in the field of ultrasound cardiac
imaging could be accurately evaluated on such database.

resides in its capacity of expressing the segmentation problem
as a graph and thus benefits from powerful graph-flow opti-
mization techniques. Multi-atlas segmentation techniques are
registration-based techniques that perform the segmentation
of the endocardium from a set of pre-segmented volumes.
Based on the selection of the best atlases after registration,
merging techniques are usually used to enhance the quality of
the segmented results. Finally, machine learning approaches
have proven their value for LV segmentation in several studies
[14], [17], [18]. Usually, these techniques are not designed to
produce the final segmented surface but provide a fundamental
intermediate step that guides the segmentation process. For
example, methods based on marginal space learning have been
specially designed to accurately locate the myocardial region
[18]. Similarly, a boundary fragment model has been success-
fully applied for the identification of extracted contours [14].
Finally, random forest-based approaches have been applied as
a discriminative classifier in order to characterize the affiliation
of each voxel to the myocardium [17].

All these techniques could also be categorized into fully
automatic [11], [18]–[21], [24] and semi-automatic [9], [23]
approaches. For the latter case, the amount of user interaction
for initialization could be considered either as low (few
anatomical landmarks are needed) [9], [23] or time consuming
(manual contouring at the end-diastolic frame is required) [22].
Since time is a key point in clinical ultrasound, it has to be
noticed that most of the proposed techniques are fast, some
even running in real-time (with processing times around 40
ms for the most efficient [19], [21]). Table I gives a summary
of the accuracy of existing automatic 3D LV segmentation
techniques when compared with manual references. Although
this table provides some evidence of the relative performance
of the different approaches, it is clear that a fair and true
comparison is not feasible given the differences in patient
population and image quality (due to different acquisition
conditions and equipment). This points to the need for a
publicly available common database.

III. EVALUATION FRAMEWORK

A. 3D echocardiographic data

1) Patient selection: From November 2013 to August 2014,
3D images from 45 patients referred to three different hospitals
(Rennes University Hospital - France, University Hospitals
Leuven - Belgium and Thoraxcenter - Erasmus MC - Rot-
terdam - Netherlands) for 3D echocardiography were selected
and included in this study (within the regulations set by the
local ethical committee of each hospital). In order to provide
a balanced and representative database of images with typical
segmentation challenges, data was acquired in a population
divided into 3 subgroups: 15 healthy subjects, 15 patients with
a previous myocardial infarction at least 3 months prior to time
of acquisition and 15 patients with dilated cardiomyopathy.

2) Acquisition protocol: In order to avoid biasing the seg-
mentation results toward the equipment of one vendor, RT3DE
exams were performed using machines from three different
vendors: a GE Vivid E9, using a 4V probe, a Philips iE33,
using either a X3-1 or a X5-1 probe, and a Siemens SC2000,
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TABLE I
STATE-OF-THE-ART ALGORITHMS FOR LV SEGMENTATION IN RT3DE.

Study *
Algorithm Volumes Segmented Shapes
# T R BA (µ± 2σ) MAD (µ± σ)

EDV ESV EF EDV (ml.) ESV (ml.) EF (%) ED (mm) ES (mm) FC (mm)

Angelini et al. [9] 10 0.63 0.62 0.45 16.1±50 6.6±34 0.5±22
Hansegard et al. [19] 21 0.04 0.91 0.91 0.74 -5.9±21 6.2±19 -7.7±12 2.2±0.6
Leung et al. [20] 99 0.95 -1.47±40 2.9±1.0
Duan et al. [21] 35 0.033 4.0±3.2
Leung et al. [22] 35 6 0.982 1.9±14 1.35±0.5
Yang et al. [18] 67 1.5 1.32±12 1.0±10 1.28±1.1
Rajpoot et al. [23] 34 -5.0±49 1.2±26 -0.7±14 2.2±0.7 1.52±0.4
Dikici et al. [24] 29 0.08 2.0±X 2.0±X
Barbosa et al. [11] 24 1 0.97 0.97 0.91 -1.4±23 2±19 -1.0±10

* The following symbols were used: EDV: End Diastolic Volume; ESV: End Systolic Volume; EF: Ejection Fraction; FC: full cycle; #: number of exams;
T: average frame processing time (s) per volume; R: correlation coefficient; BA: Bland-Altman analysis; MAD: mean absolute surface distance.

(a) good (b) fair (c) poor

Fig. 1. Variability in the quality of the volumes acquired in clinical conditions

using a 4Z1c probe. Moreover, all three hospitals acquired with
two different ultrasound systems and were asked to acquire
five patients from each patient group, so that patient group,
hospital and ultrasound systems were equally distributed.
Only images of acceptable quality for clinical diagnosis were
included. The following guidelines were followed during the
acquisition and inclusion of the data. Image quality had to
be sufficient for visual analysis by an expert. Optimization,
e.g. choice for harmonics, spatial resolution or other system
settings were up to the operator. Exclusion criteria were i) left
bundle branch block (LBBB) or visually dyssynchronous LV;
ii) frame rate below 16 volumes per second; iii) mitral plane
out of image sector at ED; iv) significant stitching or other type
of artifacts affecting the visibility of endocardium throughout
the cardiac cycle; v) poor visualization of a LV wall or a
wall out of the image sector to an extent that the image can
no longer be manually analyzed with good confidence (since
one important goal of this study is the assessment of clinical
indices based on volume measurements). Given that datasets
were acquired in a clinical setting, a considerable variability
in image quality could be anticipated (Figure 1).

3) Training and testing datasets: Fifteen of the 45 RT3DE
recordings, together with reference meshes, are made available
for training or tuning of the algorithms. The remaining 30
datasets are used for testing. Care was taken to ensure that
the training and testing datasets had a similar distribution of
pathologies, hospitals and ultrasound machines. Acquired data
were fully anonymized and handled within the regulations set
by the local ethical committees of each hospital. All data
was converted to a general 4D image representation format
(mhd/raw) without loss of resolution. ED and ES frames were

TABLE II
CHARACTERISTICS OF THE TWO DATASETS. RESULTS AS MEAN ±

STANDARD DEVIATION.∗ : AVERAGE SIGNIFICANTLY DIFFERENT FROM THE
TRAINING SET (UNPAIRED T-TEST, p < 0.01).

Dataset EDV ESV EF Image Quality
ml ml % good/fair/poor

Training 213± 97 151± 91 33± 15 6 / 6 / 3
Testing 152± 62∗ 93± 54∗ 41± 11 8 / 10 / 12
Total 172± 80 113± 73 39± 13 14 / 16 / 15

identified based on ECG and valve opening/closure by a single
expert. The training dataset is released with the associated
reference meshes (saved in vtk format) obtained with the
contouring protocol described in Section III-B.

Characteristics of the training and testing datasets are given
in Table II. Image quality was assessed by one clinical expert
as good, fair or poor. Image quality was slightly better in the
training set. It can be seen that ED volumes as well as ES
volumes are significantly different (p < 0.01) between the
training and testing sets: the training set generally has higher
volumes. These are unwanted effects of the fairly low amount
of patients per subgroup. We refer the reader to [7] for more
details on the acquisition setup.

B. Reference segmentation

Establishing a well-defined ground truth segmentation was
of utmost importance for this work. However, there are no
clear guidelines for endocardial contouring in 3D echocardio-
graphy. Therefore, considerable effort was spent to define a
consistent contouring method for manual segmentation of the
3D echocardiographic data. For the ground truth drawings, we
aimed for a contour definition in line with clinical standards
used in 2D echocardiography. A detailed contouring guideline
was set up at the beginning of the study. This guideline was
refined during the training phase (contouring of the first 15
patients) and also used to resolve conflicts during consensus
discussions.

1) Contouring protocol: We refer the reader to [25] for a
complete description of the contouring procedure and protocol.
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In short, convention was defined for LV wall, mitral valve
(MV) plane, trabeculations, papillary muscles and apex. Basic
points were to a) include trabeculae and papillary muscles in
the LV cavity; b) keep tissue consistency between ED and ES
instants; c) terminate the contours in the MV plane on the
ventricular side of the bright ridge, at the points where the
valve leaflets are hinging; d) partially exclude left ventricular
outflow tract (LVOT) from the cavity by drawing from septal
MV hinge point to the septal wall to create a smooth shape;
e) draw the apex high up near the epicardium both in ED and
ES taking into consideration that there should be little motion
of the true apex point.

2) Tracing protocol: Manual contouring of the endo-
cardium at the ED and ES phases was performed indepen-
dently by 3 expert cardiologists from 3 distinct institutions
using a custom non-commercial contouring package for 3D
echocardiograms (named Speqle3D), developed by the Uni-
versity of Leuven and tested in an earlier study [26]. In order
to minimize the impact of the reference mesh design on the
segmentation error measurement, the cardiologists were asked
to manually select a dense number of 3D points that belong to
the endocardial border. A protocol was defined that allowed
extracting this dense point cloud in a reproducible manner.
At first, all datasets were oriented by defining the LV long
axis, LV apex, LV base and the right ventricle insertion point.
Then, each expert independently traced the endocardial border
in a set of predefined planes (short axis and longitudinal
planes). For each longitudinal plane about 15 points were
set at the endocardial border, starting from the mitral valve
plane. In the short axis planes about 10 points were set using a
similar process. Finally expert meshes were generated through
spherical harmonic least square fitting of the 3D point cloud.
By doing so, the 3D endocardial surfaces were defined by
each expert from more than 110 3D points manually annotated,
which we considered to be a good trade-off between the degree
of smoothness of the final endocardial shape, the accuracy
of the extracted border (determined by the resolution and
quality of the ultrasound equipment) and the time required for
manual contouring. Since for the clinical study the volumes
are computed directly from the reference meshes and since all
the evaluated methods perform segmentation directly in 3D,
we also decided to use the interpolated reference meshes for
the computation of the segmentation accuracy.

3) Evaluation of correspondence and consensus: Consen-
sus between experts was checked from pairwise differences in
LV volume and EF and Hausdorff distances. To qualify for
consensus between all operators the following criteria had to
be met: relative difference in LV volume ≤ 10%, absolute
difference in LVEF ≤ 5% and Hausdorff distances ≤ 5mm.
All experts were asked to review the contouring of sets that did
not meet criteria in the first round and suggest modifications,
and one or more experts would retrace. Differences were
then checked against (slightly relaxed) criteria: the average
of the three pairwise observer differences was evaluated, and
Hausdorff distances ≤ 7mm were accepted (the same initial
criteria relative to the volumes and the EF having been used).
In only two cases, the three operators did not agree within the
consensus criteria. These drawings were then accepted, in the

context of persistent observer interpretation difference. From
the final contours, a mean mesh was constructed. This mean
mesh (named reference mesh in the sequel) was used in the
online evaluation platform as the experts’ ground truth.

C. Evaluation metrics
The goal of the online platform is twofold: measuring the

degree of accuracy of the detected endocardial surface against
the ground truth (image processing side) and comparing global
LV morphological and functional indices (clinical side). Two
sets of complementary measurements have thus been deployed
as described hereunder. It is however worth to point out that
a good segmentation method will not necessary obtain the
equivalent good scores in terms of clinical indices extraction
(and vice versa), emphasizing the need to analyze the results
in a separate way.

1) Segmentation accuracy: To measure the degree of accu-
racy of the extracted endocardial surface Suser obtained from
a semi or fully automatic segmentation method, three standard
metrics are used.

a) Mean surface distance (dm): The mean surface dis-
tance, dm, between the surface Suser and the corresponding
reference surface Sref is defined as the mean of the Euclidean
distances between every point in Suser and the closest sur-
face point in Sref . This is carried out efficiently using the
Proximity Query Package (PQP) [27], which we have slightly
modified to compute point to triangle distances. One interest of
the mean surface distance metric is to avoid situations where
an evaluated method obtains good segmentation results by over
and under-estimating different local regions of the reference
surface with the same amount of error.

b) Hausdorff surface distance (dH ): The Hausdorff dis-
tance, dH , measures the local maximum distance between the
two surfaces Suser and Sref . This criterion was also computed
using PQP. Note that in order to minimize the difference
between sampling densities of Suser and Sref , we apply a
linear subdivision operator to the surface containing the lowest
number of vertices.

c) Modified Dice similarity index: The modified Dice
similarity index, D∗ = 1 − 2 (|V ∩ Vref |) / (|V |+ |Vref |),
is computed as a measure of overlap between the segmented
volume (V ) extracted from a semi or fully automatic method
and the corresponding reference volume (Vref ), giving a mea-
surement value between 0 (full overlap) and 1 (no overlap).

These three metrics are computed for both ED and ES and
averaged over all patients, e.g. notated as dH,ED.

2) Clinical performance: To measure the ability of the
algorithms in extracting relevant clinical indices, modified
correlation (corr∗ = 1 − corr), bias and standard deviation
(std) values are computed from the end-diastolic volumes
(EDV , expressed in ml), end-systolic volumes (ESV , ex-
pressed in ml) and ejection fractions (EF = 100 ∗ (EDV −
ESV )/EDV , expressed in percent) measurements. The com-
bination of the bias and standard deviation also provides useful
information on the corresponding limit of agreement values.
The following notations are used in the rest of this paper:
• EDVcorr∗ (ESVcorr∗ , EFcorr∗ ): modified correlation

computed from EDV (resp. ESV , EF ) measures;
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• EDVbias (ESVbias, EFbias): bias computed from
EDV (resp. ESV , EF ) measures;

• EDVstd (ESVstd, EFstd): the standard deviation com-
puted from EDV (resp. ESV , EF ) error measures.

The code used to compute the different evaluation metrics
is publicly-accessible at the web address used for the presen-
tation of the online platform: https://miccai.creatis.insa-lyon.
fr/miccai/.

D. Method categories

Depending on the amount of user-interaction, we distinguish
two categories of algorithms on the proposed platform:
• Fully automatic: fully automatic methods segment the

endocardial surface without any user-interaction. The
RT3DE is the only input used by the method.

• Semi-automatic: semi-automatic methods are allowed
having a small number of manual steps in order to
initialize the algorithm. Adjustments of the resulting
contours after segmentation are not allowed.

E. Online evaluation platform

The registration of the teams and the computation of the
different error measures of the involved methods are done
through a dedicated Midas online platform which was specif-
ically installed and customized for the purpose of this study.
This platform is now available for new submissions. It will
be maintained and kept open as long as the data remains
relevant to clinical practice. The code corresponding to the
evaluation platform is publicly-accessible at https://miccai.
creatis.insa-lyon.fr/miccai/.

F. MICCAI 2014 workshop

The evaluation framework was launched during the “Chal-
lenge on Endocardial Three-dimensional Ultrasound Segmen-
tation (CETUS)” workshop which was organized during the
17th International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI), on September
14th, 2014 in Boston, USA [7]. Around 50 groups from
academia and industry were invited by e-mail to participate
in the segmentation challenge. Twenty-one teams created an
account on the dedicated website. Nine teams that managed to
achieve meaningful results within the allotted time for training
participated in the challenge workshop.

IV. EVALUATED ALGORITHMS

The nine evaluated algorithms are described in this Section.
More details can be found in the corresponding proceed-
ings papers of the workshop which have been published in
the open-access MIDAS journal (http://www.midasjournal.org/
browse/journal/76). Among these methods, four belong to the
semi-automatic sub-category and five to the fully-automatic
sub-category (see Table III).

http://www.midasplatform.org
https://miccai.creatis.insa-lyon.fr/miccai/

1) Bernier et al. (semi-automatic method): [28] proposed a
fast semi-automatic method based on graph cut and an implicit
U-shape prior. In a first step, the user was required to place a T-
bar target (three point clicks) at the base of the LV and extends
it all the way to the apex. From this target, the 3D volume was
sampled and projected to a spherical-cylindrical coordinate
system. Then, a graph was made in which each node was
associated to a voxel. The capacity of each edge was assigned
a gradient-based energy term, some of which being infinite to
make sure the resulting volume passes through key anatomical
points. Then, a graph-cut procedure provided delineation of the
endocardial surface which, in turn, was projected back to the
original Euclidean space.

2) Domingos et al. (semi-automatic method): [29] pro-
posed a semi-automatic two-step method. Manual initialization
was performed through means of a 3D interactive GUI.
Processing each short-axis slice independently, a Structured
Random Forest (SRF) [30] was used to predict the probability
of each pixel belonging to the endocardium-blood interface
from a given image patch. Following detection of an endocar-
dial surface, an explicit continuous LV surface model based
on Doo-Sabin subdivision surfaces [13] was deformed to a
subset of the boundary candidates in each volume, firstly in
a standard ”model-to-data” approach, and finally in a ”data-
to-model” step where all detected boundary candidates were
used to fit the surface.

3) Oktay et al. (semi-automatic method): [31] applied a
multi-atlas label propagation method. To initialize the algo-
rithm, the user was required to place three points (apex, mid-
ventricle, and mitral valve location) by doing a rigid alignment
between the target and the atlas images before performing
the image registration. In order to improve correspondences
between ultrasound images, a spectral representation expressed
through a dictionary space was used [32]. This image feature
was shown to be effective in aligning ultrasound images by
achieving state-of-the-art segmentation accuracy with a multi-
atlas approach while being computationally efficient.

4) Wang et al. (semi-automatic method): [33] proposed a
semi-automatic method, which utilizes a multi-scale quadra-
ture filter method [34] to enhance the 3D volume, followed by
a model-based level-set method. As initialization, four points
were indicated in order to define the long and short axis of the
left ventricle. Moreover, the short axis was used to estimate
the initial orientation of the model and thus had to point to
the right ventricle. In addition to image enhancement, the
integrated phase map of the multi-scale filters was used to
weigh the model fitting process. To speed up the proposed
segmentation method, a fast level-set method using coherent
propagation was implemented [35].

5) Barbosa et al. (fully-automatic method): [36] proposed
the following workflow. The segmentation of ED frame started
from an ellipsoid surface automatically fitted to the contours
of the left ventricle [11]. This ellipsoid approximation of the
LV anatomy was then further refined using B-spline Explicit
Active Surfaces [37]. The cardiac motion during the cardiac
cycle was estimated using a tracking-oriented approach, using
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both a global optical flow-based tracker and local block
matching. The core novelty of the proposed algorithm relied
on the recursive formulation of the block-matching problem,
which introduced temporal consistency on the patterns being
tracked.

6) Keraudren et al. (fully-automatic method): [38] seg-
mented the LV endocardial surface iteratively using a succes-
sion of Random Forest classifiers, based on the autocontext
framework [39]. The image features used were selected as:
(1) pixel intensities, (2) pixel labels obtained in previous
classification steps, and (3) geodesic distance of pixels to the
centers of the LV, mitral valve and myocardium. By using the
labels computed in the preceding steps, each classifier gained
contextual information and the resulting classification pipeline
implicitly learned the shape of the LV and the spatial layout
of the mitral valve and the myocardium.

7) Milletari et al. (fully-automatic method): [40], proposed
a method based on Hough votes incorporating shape and
appearance priors into a decision forest [41]. During training,
annotated volumes were used to obtain features, votes, seg-
mentation and intensity patches. The votes encoded relative
displacements between the LV center and the current position
of the data-point. Segmentations were obtained by discrimi-
nating data-points. Each of the data-points belonging to the
narrow band around the contour was enabled to cast votes
in order to localize the center of the LV in the image. Once
the LV center was determined, all the votes that accumulated
around its location back-projected the associated segmentation
patches to the position of the data-points that had cast them.

8) Smistad et al. (fully-automatic method): [42] proposed
a method based on the use of a mesh model of the LV
that was transformed using global and local deformation. The
deformation parameters were predicted and estimated for each
frame using an extended Kalman filter. This method was based
on the approach of [13]. However, the proposed method used
mean value coordinates instead of subdivision surfaces to
deform the mesh model locally. This enabled deformation of
a complex model with few parameters. Edge detection along
the normal of each vertex in the mesh model were used as
observations for the Kalman filter. Edges were detected using
the STEP model [43].

9) Van Stralen et al. (fully-automatic method): [44] pro-
posed to segment the LV endocardial surface by using 3D
Active Appearance Models. Separate ED and ES AAMs
were built from the reference meshes provided through the
training database, extended with 25 previously acquired 3D
echocardiographic volumes, imaged using various equipment.
Multiple automatic initialization strategies were used and the
best match was selected based on the AAM matching residual.
The ED segmentation served as initialization for ES matching
after scaling. A bias correction was applied by scaling seg-
mentations along the long axis with 95% to compensate for
the wider drawings in the training data.

Finally, it is worth to note that the broad range of methods
evaluated in this study covers the current solutions imple-

mented in the standard echocardiographic equipment (e.g. ma-
chine learning [18], statistical shape model [45] and Kalman
filtering [19].)

V. RESULTS

The results given in this section are based on the nine al-
gorithms described above. Moreover, the result tables provide
mean (or standard deviation) expert inter-observer variability
values for each measure. This allows us to compare the best
scores obtained by the algorithms relatively to the agreement
reached by the experts. Finally, for each algorithm, the time
needed to perform the segmentation of one single volume is
given. Obviously, these values are only indicative since both
the programming language and hardware configuration are
different for each method.

A. Left ventricle segmentation accuracy

Table III shows the segmentation accuracy of the 9 algo-
rithms (4 semi-automatic, 5 fully automatic) and the corre-
sponding expert inter-observer variabilities at ED and ES. Each
of the measures corresponds either to the mean or the standard
deviation of the different metrics computed at ED and ES on
the full testing dataset for each participant. From these results,
the following observations can be made. In the semi-automatic
category, in terms of mean value, the method of Domingos
et al. outperforms all the other methods for all but one of
the measures. Additionally, this method showed competitive
behavior in terms of standard deviation of the distance metrics.
In the fully automated category, the same conclusions can be
made for the method of Barbosa et al.

For this dataset, the overall best algorithms produced seg-
mentation results whose accuracy was close (1.6 times bigger
on average) to the inter-expert variability range after consensus
agreement. Although there still exists room for improvement,
these results are very encouraging regarding the capacity of the
semi/fully automatic methods in performing LV segmentation
with a high level of accuracy. Finally, it is interesting to note
that the fully automatic method of Barbosa et al. produces
among the best results in terms of mean values for dm,
dH and D∗ at both ED and ES when compare to the
semi-automatic results. This illustrates the strong potential
for fully automatic approaches in performing competitive LV
segmentation without the need of user interventions.

An example of the spatial distribution of the endocardial
segmentation accuracy at ED is shown in Fig. 2. The wire-
frame mesh in gray corresponds to the reference standard
while the colored mesh corresponds to either the segmentation
result obtained by each algorithm (Fig. 2-a) or to the surface
manually drawn by each expert (Fig. 2-b). The color map
shows the distance error dm (expressed in mm) computed
either between the participants’ mesh and the reference mesh
(Fig. 2-a) or between a pair of expert meshes (Fig. 2-b). For
the majority of the participants, the error is not uniformly
distributed but is concentrated on some parts of the meshes.

This kind of information is provided to each user of the evaluation platform
as described in the video tutorial at https://miccai.creatis.insa-lyon.fr/miccai/
core/tutorial1.swf
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TABLE III
LEFT VENTRICLE SEGMENTATION ACCURACY OF THE NINE EVALUATED METHODS ON THE FULL TESTING DATASET (30 PATIENTS). THE VALUES IN

BOLD CORRESPOND TO THE BEST PERFORMANCE FOR EACH MEASURE. CPU VALUES REPRESENT THE TIME NEEDED FOR THE SEGMENTATION OF ONE
VOLUME.

Method
ED ES

dm dH D∗ dm dH D∗

mean std mean std mean std mean std mean std mean std

Participants category cpu mm mm val. mm mm val.

Inter-observer 1.39 0.40 4.70 1.27 0.069 0.021 1.34 0.35 4.70 1.15 0.080 0.021

Bernier et al. [28] Semi-auto. 2 sec. 2.37 0.60 9.41 2.62 0.118 0.029 2.64 0.60 9.34 2.08 0.163 0.047
Domingos et al. [29] Semi-auto. 16 sec. 2.09 0.68 9.31 3.89 0.106 0.038 2.20 0.72 8.35 2.67 0.129 0.050
Oktay et al. [31] Semi-auto. 32 min. 2.18 0.70 7.55 1.77 0.106 0.033 2.47 0.74 8.57 2.96 0.151 0.049
Wang et al. [33] Semi-auto. 90 sec. 2.54 0.99 9.04 3.58 0.125 0.042 2.68 1.11 9.14 3.33 0.159 0.057

Barbosa et al. [36] Fully-auto. 5 sec. 2.26 0.73 8.10 2.66 0.106 0.041 2.43 0.91 8.13 3.08 0.144 0.057
Keraudren et al. [38] Fully-auto. 90 sec. 2.44 0.95 8.98 3.09 0.130 0.048 2.54 0.75 9.15 3.24 0.158 0.057
Milletari et al. [40] Fully-auto. 40 sec. 2.14 0.68 8.25 3.87 0.107 0.031 2.91 1.01 8.53 2.30 0.162 0.062
Smistad et al. [42] Fully-auto. 65 msec. 2.62 0.95 8.26 2.98 0.115 0.038 2.92 0.93 8.99 2.98 0.156 0.050
van Stralen et al. [44] Fully-auto. 60 sec. 2.44 0.91 8.45 3.50 0.121 0.054 2.79 1.24 8.65 2.85 0.165 0.079

This suggests that local drops of signal or the presence of
spurious structures such as papillary muscles or trabeculae
which can involve strong edges, can wrongly influence algo-
rithms locally. In this particular example, the result of Oktay
et al. and Domingos et al. provide competitive results in the
context of the experts’ variability range both in terms of error
measurement and geometries.

In order to further explore this, we provide in Fig. 3-b
the bullseye plots of the mean distance error dm between
the experts’ meshes, expressed in mm, computed per AHA
segment (representation of the LV which divides its anatomy
into 17 pre-defined segments and averaged over the full
testing dataset at ED (figure on the top) and ES (figure at
the bottom). These plots reveal the different locations of the
endocardium that are currently difficult to contour, even for
expert cardiologists. From this figure, we can observe that the
regions with the highest disagreement correspond mostly to the
apical cap (segment 17) for both ED and ES and the anterior
and anterolateral wall from the base to the apex (segments 1, 7,
13 and 6, 12, 16 respectively) at ED. This could be explained
by two main reasons: i) the anterolateral papillary muscle in
these segments makes endocardial definition more difficult and
ii) the anterior wall is the most difficult to visualize with
echo because of its unfavorable orientation with respect to
the ultrasound beam and its proximity to the lung tissue.

Figures 3-a provides the bullseye plots of distance error
computed between the reference meshes and the participants’
meshes averaged over the full testing dataset at ED. It should
be noted that the scale of the colorbar for these plots has been
adjusted to the data, so the same set of colors now covers
a wider range of values. The obtained results are consistent
with the observations made for Figure 3-b. Indeed, the regions
involving the highest variability between experts are the ones
where the different algorithms share difficulties in performing
proper segmentation, in particular near the apical region (seg-
ment 13 to 17) and the anterior and anterolateral wall at the
mid-level (segments 7, 12). Finally, some methods (Keraudren

et al. and Bernier et al.) make substantial segmentation errors
at the basal regions (segment 1 to 6), which could be attributed
to the presence of the valves and the difficulties in dealing with
the open nature of the heart in this region of the volume. The
same study has been performed for ES and is reported in the
supplementary materials attached to this paper.

B. Clinical indices extraction performance

Table IV presents an overview on the performance of the 9
methods in their ability to estimate accurate clinical indices.
Results are reported on the full testing dataset at ED and ES,
along with the corresponding mean inter-observer variabili-
ties.For the clinical indices, the algorithms of Bernier et al.
and Barbosa et al. globally outperform the other methods in
their respective category. In particular, the method of Bernier
et al. obtained almost the overall best results for both EDV and
ESV indices while the algorithm of Barbosa et al. achieved
the best scores for all the measures involving the EF index. In
addition, the best algorithms gave results that come close to
inter-observer variability values for all clinical indices. This
suggests that (semi) automatic methods perform already quite
similar to human observers, although a well-defined observer
consensus still provides more reliable values. The differences
seem larger for ES and EF than for ED. This observation can
be partially explained by the high level of agreement obtained
by the three cardiologists on this dataset for the ESV index
which is 2 times lower than for the EDV from the same
patients.

VI. DISCUSSION

A. Evaluation framework

In the proposed framework, 45 datasets were acquired
at three different medical centers with ultrasound machines
from three different vendors, ensuring that algorithms would
not be biased towards specific equipment. Radio-frequency
data would also have been of interest for research purposes,
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Fig. 2. Example of LV segmentation results obtained from the same particular subject at ED. The wire-frame mesh in gray corresponds to the reference
standard while the colored mesh corresponds either to the segmentation result obtained by each algorithm (a) or to the surface manually drawn by each expert
(b). The color map shows the distance error dm (in mm) computed either between the participants’ mesh and the reference one (a) or computed between a
pair of expert meshes (b).

TABLE IV
CLINICAL INDEX ACCURACY OF THE NINE EVALUATED METHODS FOR THE FULL TESTING DATASET (30 PATIENTS). THE VALUES IN BOLD CORRESPOND

TO THE BEST PERFORMANCE FOR EACH MEASURE.

Method EDV ESV EF
corr* bias std corr* bias std corr* bias std

Participants category val. ml. ml. val. ml. ml. val. val. val.

Inter-observer 0.015 -3.0 11.1 0.007 -1.9 6.5 0.048 -0.1 3.3Mean

Bernier et al. [28] Semi-auto. 0.021 2.7 13.9 0.032 2.2 13.7 0.189 0.1 7.8
Domingos et al. [29] Semi-auto. 0.083 8.7 25.0 0.044 -5.2 15.9 0.181 8.3 7.2
Oktay et al. [31] Semi-auto. 0.055 -6.0 20.8 0.076 -0.4 20.6 0.220 -1.5 6.9
Wang et al. [33] Semi-auto. 0.073 2.0 23.8 0.044 -3.9 16.1 0.119 3.5 5.2

Barbosa et al. [36] Fully-auto. 0.035 -5.0 17.7 0.033 -6.8 13.9 0.111 2.9 5.2
Keraudren et al. [38] Fully-auto. 0.079 15.9 24.6 0.048 -6.2 16.6 0.281 12.1 10.6
Milletari et al. [40] Fully-auto. 0.047 5.1 19.0 0.040 -16.8 15.2 0.255 15.2 7.6
Smistad et al. [42] Fully-auto. 0.049 -10.1 19.4 0.036 -11.3 14.6 0.121 3.7 5.2
van Stralen et al. [44] Fully-auto. 0.034 -15.4 16.0 0.036 -13.2 14.4 0.389 3.7 8.8
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Fig. 3. Bullseye plots of distance error dm (in mm) computed for the full testing dataset between a) the reference meshes and the participants’ meshes at
ED instant and b) the experts (designed as observers) at ED and ES. The scales of the colorbar in fig. a) and b) have been adjusted to the data range

however the clinical equipment that we used do not offer
the possibility to acquire such signal. The publicly available
database is thus only composed of conventional B-mode
volumes. The pathologies were carefully selected in order to be
as representative as possible for a majority of clinical scenar-
ios necessitating an endocardial segmentation (thus showing
significant variation in volume and shape).

The interest of an evaluation framework critically relies on
the quality of the reference. Creating reference delineations
with multiple observers is a tedious and complex task. For
this purpose, a dedicated manual contouring protocol for
LV delineation has been specifically defined with close in-
volvement of three expert cardiologists. Although the same
guidelines were given to the experts, their annotations were
not always consistent. The largest differences were usually
located near the mitral valve hinge points and at the apex.
Strict distance criteria were used to ensure coherence between
manual contouring. A second contouring round had to be put
in place for most of the treated volumes (42 of the 45 patients)
to reach consensus between the experts.

The patient data were provided by hospitals under conditions of restricted
scientifc usage in the context of this study. The accessibility to the data is
thus subject to a license agreement available at https://www.creatis.insa-lyon.
fr/EvaluationPlatform/CETUS/rules.html

B. Evaluation results

The algorithm of Domingos et al. (machine learning tech-
nique) produces four of the six best segmentation scores in
terms of mean value while the algorithm of Bernier et al.
(graph cut model) obtained five of the nine best scores for
the extraction of relevant clinical indices. These results are
very encouraging since these techniques have only recently
been applied for segmentation of RT3DE, which shows that
the application of novel theory in the field of RT3DE can
still be a source of improvement. For a long term perspective,
this means that significant improvements are still achievable
in this domain. In terms of image information extraction, it is
interesting to note that one third of the methods in competition
exploit machine learning techniques [29], [31], [40], among
them the method of Domingos et al. obtained particular good
results in the semi-automatic sub-category for LV segmenta-
tion. This interesting aspect is even more striking given the
limited size of the training dataset (15 patients). Indeed, given
that machine learning techniques generally require a large
amount of cases during the training stage, one can assume that
the current results obtained by this group of methods were still
sub-optimal and can potentially be further improved.

The analysis of the results given in Table III and IV confirms
the necessity of evaluating segmentation accuracy and the abil-
ity to retrieve relevant clinical indices in a complementary way.
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For instance, the algorithm of Domingos et al. which provides
the overall best segmentation scores in the semi-automatic
category did not obtain the same best tendency in terms of
clinical indices extraction. This observation can be partially
explained by the fact that this method obtained the worst
scores in terms of bias in its relative category which reveals a
tendency of the algorithm to over-segment (respectively under-
segment) the encodardial volume at ED (respectively ES). The
analysis of the distribution of the errors (Figure 3) reveals a
tendency for all the methods to produce higher segmentation
errors on LV regions which are associated with local drops
of signal, i.e. near the apical region and the anterior and
anterolateral wall at the mid-level. Moreover, some methods
shared difficulties in performing proper segmentation at the
basal regions, which could be explained by the presence of
valvular leaflets and the lack of a blood/tissue boundary in
the mitral annulus.

Since echocardiography is a real-time imaging modality, the
CPU time required by the different algorithms is also worth
noting even though this measure was not taken into account
for the challenge ranking (because of the underlying technical
difficulties). In this context, the algorithm of Smistad et al. is
the fastest method with an average runtime per segmented vol-
ume of 65 milliseconds. The chosen strategy of representing
the surface by a dedicated model involving few parameters
combined with an extended Kalman filtering to guide the
surface deformation [42] allowed the authors to achieve near
real time processing with competitive segmentation accuracy.
The rest of the algorithms could then be categorized into three
groups: methods with a processing time around few seconds
[28], [29], [36], methods with a processing time around a
minute [33], [38], [40], [44] or tens of minutes [31].

Based on the score values provided in Table III and IV,
it appears that the fully automatic algorithm of Barbosa et al.
(explicit deformable model) produced very competitive results
for both LV segmentation and clinical indices extraction,
illustrating the strong potential of fully automatic method to
be deployed in a clinical environment. Although the current
best semi/fully automated algorithms produce promising re-
sults when compared to the expert’s variability, there still
exists room for improvement. Indeed, performance of the best
algorithms for the segmentation task is close to but still below
the agreement of the expert cardiologists (about 1.6 times
worse in average) while the same conclusions can be made
for the clinical indices (e.g. 1.2, 2.1 and 2.3 times worse for
EDV, ESV and EF standard deviation measures, respectively).
Finally, the evaluation of the 9 different algorithms with
the standardized evaluation framework provides also useful
directions for further investigations. For example, it may be
interesting to investigate the robustness of the segmentation
methods with respect to their manual/automatic initialization.
Also, it would be interesting to investigate whether a combi-
nation of algorithms outperforms the current best scores.

C. Study limitations

The quality of an evaluation framework critically relies on
the number of datasets that are made available for training

and testing. In this study, 45 datasets were acquired at three
different medical centers. Although this limited number of
patients can be seen as an issue, it has to be pointed out that it
required already more than 10 months to generate the manual
references from 3 different cardiologists including consensus
revisions. To the best of our knowledge, this is the first time
such an echocardiographic database is made publicly available
to the community.

The segmentation quality has been investigated in this study
through the use of standard distance measurements, i.e. mean
surface distance, Hausdorff surface distance and Modified Dice
similarity index. Although other indices could have been used,
the chosen metrics allow a direct comparison of the results
presented in this work with most of the previous studies
performed in the same field, as shown in Table I.

Finally, as detailed in Section III-A2, we have defined and
used a restrictive acquisition protocol. In particular images
have been excluded because of poor visualization of a LV wall
or wall out of the image sector to an extent that the image
can no longer be manually analyzed with good confidence.
Although dropout occurs regularly in ultrasound images and
segmentation strategies that are robust to it are of research
interest, the diagnostic value of such poor quality images is
questionable. More importantly, the purpose of the evaluation
platform is to compare semi/fully automatic segmentation
results with manual references for clinical indices extraction
based on volume. Because the accuracy of the manually
extracted volume is directly linked to the visibility of the LV
cavity in the image, we decided to restrict the data to those
images which allow assessing those measures with enough
accuracy.

VII. CONCLUSIONS

A publicly available standardized evaluation framework to
compare the performance of endocardial segmentation tech-
niques in RT3DE was presented in this article. The results
showed that the current best algorithms produce promis-
ing results with respect to the experts’ measurements for
the extraction of clinical indices, and that they offer good
segmentation precision in terms of mean distance error in
the context of the experts’ variability range after consensus
agreement. Although these results are very encouraging, they
also reveal that there still exists room for improvement. The
evaluation framework remains open for new submissions at
https://www.creatis.insa-lyon.fr/EvaluationPlatform/CETUS/.
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