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Abstract—We study in this paper the statistics of the ra-
dio frequency (RF) signal in the case of partially developed
speckle. Using the K distribution framework, we give the
probability density function of the associated distribution,
the corresponding moments, and estimators for the param-
eters of the distribution. The consistency of the proposed
estimators is evaluated in terms of their bias and variance
through numerical simulations. The ability of the proposed
distribution to model RF echographic signals from cardiac
tissues is evaluated from data acquired in vivo.

I. Introduction

Most applications of medical ultrasound imaging are
based on the analysis of B-scan images that are con-

structed from the envelope of the echo signal. In this con-
text, the statistics of the ultrasound echo envelope have
been extensively studied for both segmentation [1]–[4] and
tissue characterization [5]–[7] purposes. The most com-
monly used statistical model for the envelope signal is
the conventional Rayleigh distribution, which relies on the
assumption of a large number of scatterers per resolu-
tion cell and corresponds to fully developed speckle [8].
In echocardiography, this model is particularly well suited
to characterize reflections from blood, but it fails to model
more complex structures such as myocardial tissue. There-
fore, K distributions have been proposed to model differ-
ent kinds of tissue in ultrasound envelope imaging [9]–[11].
The model first has been introduced in the radar domain
[12], [13] and has been applied successfully to ultrasound
imaging [11] in order to model partially developed speckle,
which arises when the scatterers density is small or when
the scatterers have varying scattering cross-section.

With the introduction of digital ultrasound devices, the
radio-frequency (RF) signal has become more readily avail-
able. The interest of such signal resides in the fact that it
potentially contains more information than the envelope
echo. In practice, this signal is either available as a real
signal (usually called simply RF signal) or as a complex
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signal obtained through demodulation and formally corre-
sponding to the complex envelope of the RF signal (usu-
ally called IQ signal for in phase quadrature signal). In
contrast, with the statistics of the envelope-detected sig-
nal, the statistics of the RF signal in the case of partially
developed speckle have not been widely explored in the
field of medical ultrasound. Therefore, we propose to de-
scribe these statistics and to use them in echocardiography
for the modeling of RF signals backscattered from the my-
ocardium. This choice is motivated by the work of Clifford
et al. [14] who showed that the statistics of the envelope-
detected signal backscattered from myocardial regions cor-
responds to partially developed speckle, and thus can be
reliably modeled through a standard K-distribution. In
terms of myocardium properties, this phenomenon may
be explained either by the clustering of the scatterers in
the resolution cell or by a large variability of the scattering
cross section, inducing a decrease of the apparent scatter-
ers density [11], [14].

In Section II we briefly recall the theoretical basis for the
K distributions and give the probability density function
(pdf) of the RF signal and the corresponding moments. In
Section III we provide the estimators for the parameters
of the distribution. In Section IV, the consistency of the
proposed estimators is evaluated in terms of their bias and
variance through numerical simulation. In Section V we
evaluate the ability of the proposed distribution to model
in vivo RF data from cardiac images. The main conclusions
are given in Section VI.

II. Statistics of the RF Signal Based on the K

Distribution

The backscattered ultrasonic signal results from the
individual energy contributions of each scatterer embed-
ded in the resolution cell. This situation can be described
mathematically as a random walk in the complex plane
[8], [11]. From this model, the signal can be expressed as
a random process, depending on the number of scatter-
ers present inside the resolution cell, their relative posi-
tion (structure), and their contribution. This results in a
K distribution for the envelope-detected signal when the
scatterers position is assumed to be uniformly distributed
and when their amplitude is modeled as a K distribution
itself [11]–[13]. The pdf of the complex envelope and RF
signals given below then can be derived from the pdf of
the analytical signal [11] using standard algebraic compu-
tation. It is interesting to note that these expressions also
can be straightforwardly obtained as a particular case of
the multiplicative model designed for the modeling of ex-
tremely heterogeneous clutter in the field of SAR [15].
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Fig. 1. f rf
X pdf for several values of parameter α: {0.75, 1.5, 4, 20}.

The smaller the parameter α value, the sharper the curve. The curves
were normalized so that the mean square value of the pdfs is unity.

A. Statistical Expressions for the Radio-Frequency Signal

In this framework, the pdf of the RF signal X is given as:

f rf
X(x) =

b√
πΓ(α)

(
b |x|
2

)α−0.5

Kα−0.5 (b |x|) , (1)

where Γ is the standard Gamma function and Kα−0.5 is
the modified Bessel function of the second kind of order
α − 0.5.

The corresponding distribution is called KRF distribu-
tion in the remainder of the paper. α and b are, respec-
tively, the shape and scale parameters of the distribution.
It is to be noted that the Gaussian distribution is a lim-
iting case of KRF when the parameter α takes on large
values. Fig. 1 shows f rf

X for different values of the shape
parameter α.

From (1) the moments of the KRF distribution for the
absolute value of the random variable may be computed as:

µrf
n = Erf [|X|n]

=
1√
π

(
2
b

)n Γ ((n + 1)/2) .Γ (α + n/2)
Γ(α)

.
(2)

B. Statistical Expressions for the Complex Envelope Signal

As mentioned in Section I, the RF signal may be given
as a complex envelope, usually called the IQ signal. For
completeness, we give the statistics of this representation,
which can be derived by following the same scheme as the
one used for the RF signal. Let us call X +jY the analytic
signal associated to the RF signal. The complex envelope
signal se(t) = u + jv corresponds to a frequency shift of
the analytical signal:

u + jv = (X + jY ) . exp (−jω0t) . (3)

The resulting complex signal has lower central fre-
quency than the analytic signal, but with the same energy
content that makes it very attractive. The joint density

function of the real part u and the imaginary part v of the
complex envelope signal is obtained as:

f iq
U,V (u, v) =

1
2π

2b
Γ(α)

(
b
√

u2 + v2

2

)α

· Kα−1

(
b
√

u2 + v2
) 1√

u2 + v2
. (4)

The corresponding distribution is called KIQ distribu-
tion in the remainder of the paper. As in the case of the RF
signal, the Gaussian distribution is a limiting case of KIQ
distribution corresponding to large values of the shape pa-
rameter α. It can be shown from (4) that the moments of
the real and imaginary part of the complex signal are the
same as the moments of the RF signal as given in (2).

III. Estimation of Parameters

The estimation of the parameters α and b has been thor-
oughly investigated [16]–[22] for the envelope-detected sig-
nal. In this section we give the counterpart of three com-
monly used estimators for the RF signal.

Because maximum likelihood (ML)-based methods do
not lead to a closed form solution in the case of K distri-
bution statistics, most estimators are based on order mo-
ments. Using the analytic expression of the K distribution
moments, it has been shown [18] that the two parameters
of the K distribution can be estimated by using any two
estimates of the moments. The simplest approach, called
explicit estimator, uses the second- and fourth-order mo-
ments. This method has the advantage of being fast and
performs well for a large number of samples (> 2000). But
it fails when the amount of data is small due to the large
variability of the fourth-order moment. In this perspec-
tive, an approach based on the first- and second-order mo-
ment, called implicit estimator, has been described [21].
This method yields nonlinear equations that have to be
solved numerically. Therefore, it is computationally more
expensive. Starting from the observation that improved
accuracy results when the log of the data is used [16], [17],
a new technique was recently proposed by Blacknell [17].
This method is based on the use of log moments to ob-
tain an expression, depending only on the shape param-
eter that yields an explicit expression for the estimation
of α. Using the expression of the moment given in (2), the
RF counterpart of these three moment-based estimators
for parameter α may be derived as:

Explicit estimator for the RF signal:

Erf
[
X4

]
Erf [X2]

= 3
(

1 +
1
α

)
. (5)

Implicit estimator for the RF signal:

Erf
[
X2

]
(Erf [|X|])2

=
π

2
α

Γ(α)2

Γ(α + 0.5)2
. (6)
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TABLE I
Estimated Bias and Sample Variance of α for N = 512.1

Explicit Implicit Blacknell
α E [α̂] − α Var[α̂] E [α̂] − α Var[α̂] E [α̂] − α Var[α̂]

0.4 0.1485 0.0253 0.0270 0.0032 0.0209 0.0017
0.8 0.2146 0.1110 0.0407 0.0201 0.0385 0.0163
1.2 0.3461 0.4043 0.0919 0.0895 0.0924 0.0850
1.6 0.4507 0.9356 0.1245 0.2157 0.1345 0.2498
2.0 0.7231 2.2788 0.2609 0.6719 0.2955 0.8442

1Note, Averages computed over 1000 independent trials in each case.

TABLE II
Estimated Bias and Sample Variance of α for N = 1024.1

Explicit Implicit Blacknell
α E [α̂] − α Var[α̂] E [α̂] − α Var[α̂] E [α̂] − α Var[α̂]

0.4 0.1224 0.0115 0.0218 0.0018 0.0172 0.0009
0.8 0.1278 0.0510 0.0226 0.0095 0.0226 0.0074
1.2 0.1616 0.1583 0.0311 0.0360 0.0340 0.0328
1.6 0.2580 0.3599 0.0772 0.0998 0.0833 0.1094
2.0 0.2874 0.5905 0.0885 0.1935 0.0973 0.2165

1Note, Averages computed over 1000 independent trials in each case

Blacknell estimator for the RF signal:

Erf
[
X2 log |X|

]
Erf [X2]

− Erf [log |X|] = 1 +
1
2α

. (7)

Thus, these parameters are obtained from the available
data by replacing the various moments in expressions (5),
(6), and (7) by their sample version. Once α is estimated,
the scale parameter b may be computed from (2) as:

b =

√
2α

Erf [X2]
. (8)

As the moments expression for the KIQ distribution is
the same as the one for the KRF distribution, parameter
estimators for the IQ signal also are given by (5), (6),
and (7).

IV. Numerical Simulations

In this section, a comparison of the performance of es-
timators (5)–(7) is presented1. Hereto, data distributed
according to the pdf given in (1) were generated using the
cumulative distribution function (CDF) method [23]. The
power of the data was normalized in such a way that the
second-order moment of the process was unity by setting:

b =
√

2α. (9)

Data were generated for five values of the shape param-
eter α in the range [0.4, 2.0]. This corresponds to the range

1As the simulation procedure and the estimators for the RF signal
and the real part of the IQ signal are identical, it is noted that the
results presented here also hold for the IQ signal.

TABLE III
Orientation of the Echocardiographic Images and Location

of the Processed Tissue Areas.

Orientation Processed tissue area

Apical 4 chamber (ACH) Interventricular septum
Apical 2 chamber (A2CH) Left ventricle anterior wall
Parasternal long axis (PALA) Left ventricle inferolateral wall
Parasternal short axis (PASA) Left ventricle inferolateral wall

observed from the experiments made on different orienta-
tions and on different patients, where α was found to vary
between 0.4 and 1.2 for myocardial regions. The number
of data samples (N) was chosen to be 512 and 1024, re-
spectively. This procedure was followed 1000 times and
the corresponding bias and variance are presented in Ta-
bles I and II for N = 512 and N = 1024, respectively.
The results show that the bias and variance of the estima-
tors improve as N increases and that they increase with
α. The explicit estimator yields the lowest performance.
Implicit and Blacknell estimators exhibit lower bias and
variance and have similar behavior for small values of α
(< 1). The implicit estimator provides slightly better re-
sults when α is larger than 1.2. It is interesting to note
that these results are in concordance with those obtained
from the envelope-based estimator data [19], [21].

V. Experimental Results on In Vivo Data

We tested the ability of the distributions defined in Sec-
tion II to model RF and IQ data on a variety of ultrasound
cardiac images of clinical interest. Data were acquired us-
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(a) (b)

Fig. 2. Results obtained for a Parasternal long axis view in the myocardial tissue. (a) Parasternal long axis image in which the black
curve indicates the myocardium region delimited by a trained cardiologist. (b) Fits of the Gaussian and KRF distributions to the RF data
corresponding to the myocardium region shown in (a). For this example, the resulting Freeman-Tuckey measure associated to the KRF and
the Gaussian distribution are, respectively, 434 and 4311. The corresponding RMSE is 75 and 192.

TABLE IV
RMSE and Freeman Tuckey Results for RF Tissue Regions.

RMSE Freeman Tuckey measure
Orientation KRF Gaussian KRF Gaussian

Apical 4 chamber (A4CH) 209 478 1920 14931
Apical 2 chamber (A2CH) 186 289 1830 7547
Parasternal long axis (PALA) 78 147 594 3125
Parasternal short axis (PASA) 344 595 3582 20061

ing a Toshiba Powervision 6000 (Toshiba Medical Systems
Europe, Zoetermeer, The Netherlands) equipped with an
RF interface for research purposes and a 3.75-MHz probe.
The RF signal was acquired without any attenuation cor-
rection. The RF sample frequency varied between 25 and
32 MHz according to the acquisition mode. This equip-
ment has the advantage to give access to envelope, RF
and IQ signals. Table III summarizes the image views and
the left ventricular segments visualized. For each view, five
independent RF data sets (from five different, healthy vol-
unteers) were acquired, from which a single image was se-
lected visually to provide easy discrimination between the
myocardium region and the blood pool. Subsequently, a
trained cardiologist manually drew a contour delimiting a
region inside the myocardium. In each region, the fit of
the proposed distribution was done for both RF and IQ
data. The fit to a Gaussian pdf also was performed and
used as a reference for all experiments. The parameter α
of the KRF and KIQ pdf was estimated using Blacknell’s
method.

The ability of the proposed distribution to model the
RF data was expressed through the root mean square er-
ror (RMSE) and a goodness-of-fit measure. The latter was
measured through a Chi-square (χ2)-type test, which has
the interesting property of being able to handle a mul-
tivariate pdf such as the KIQ distribution. As the con-

ventional χ2 test, based on the Pearson’s measure [24], is
heavily affected by small, expected frequencies that com-
monly appear when dealing with heavy tail distributions
such as experimental RF data, we used the χ2 Freeman-
Tuckey measure instead [24]. The number of bins used to
build the histograms from the data was selected according
to the approach proposed by D’Agostino and Stephens [25]
by setting M = 2n2/5, where M is the number of bins and
n is the sample size.

In Fig. 2, an example of the fit obtained for a paraster-
nal long axis view in the myocardial tissue, along with
the associated Freeman-Tuckey measure and RMSE value,
is given. This example illustrates qualitatively how the
KRF distribution better fits the data than the Gaus-
sian. This corresponds quantitatively to a lower Freeman-
Tuckey measure for the KRF (434) than for the Gaussian
(4311). The same holds true for the RMSE, which is 75 in
the case of the KRF and 192 for the Gaussian.

Tables IV and V give the average results correspond-
ing to each image view for RF and IQ data, respectively.
The results show that for all views the KRF and the KIQ
yield lower values for both RMSE and Freeman-Tuckey
measures as compared to the Gaussian. This observation
indicates that the KRF and the KIQ better model the RF
data from myocardial tissue. Thus, these regions seem to
correspond to partially developed speckle, which cannot be



bernard et al.: rf signal, k distribution, and echocardiography 1693

TABLE V
RMSE and Freeman Tuckey Results for IQ Tissue Regions.

RMSE Freeman Tuckey measure
Circular Circular

Orientation KIQ Gaussian KIQ Gaussian

Apical 4 chamber (A4CH) 61 145 350 1749
Apical 2 chamber (A2CH) 49 107 266 1115
Parasternal long axis (PALA) 14 76 114 681
Parasternal short axis (PASA) 70 230 415 3053

properly reflected through a Gaussian distribution. These
results are consistent with previous studies showing that
the K distribution provides a good fit to the statistics of
the envelope-detected signal from myocardial tissue [14].

VI. Conclusions

In this paper, we have proposed to model the statistics
of the RF signal in the case of partially developed speckle
through the so-called KRF and KIQ distributions. We have
derived the expressions of the corresponding pdfs and mo-
ments for both RF and IQ representations of the signal.
From these moments, we also derived the estimators for
the two parameters of the distributions.

Numerical simulations showed that these estimators ex-
hibit the same behavior as their envelope counterpart. In
particular, the bias and variance of the estimators were
found to increase with the shape parameter of the distri-
bution, and the so-called implicit and Blacknell estimators
yielded the more consistent estimates.

The ability of the KRF and KIQ distributions in model-
ing RF signals has been evaluated from echocardiographic
images in myocardial regions. The results clearly show the
reliability of these distributions in representing RF data
corresponding to partially developed speckle.

An interesting application of these results consists in the
segmentation of echocardiographic images using statistics-
based, deformable models, as suggested in [3] and [4]. Ad-
ditional research is currently underway to apply the de-
scribed distribution to the segmentation of echocardio-
graphic images from the RF signal. It is expected that
the modeling properties of the proposed distribution will
give an improvement of the segmentation algorithm in dis-
criminating myocardium from blood pool.
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